pm.h 11.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
/*
 *  pm.h - Power management interface
 *
 *  Copyright (C) 2000 Andrew Henroid
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */

#ifndef _LINUX_PM_H
#define _LINUX_PM_H

#ifdef __KERNEL__

#include <linux/list.h>
#include <asm/atomic.h>

/*
 * Power management requests... these are passed to pm_send_all() and friends.
 *
 * these functions are old and deprecated, see below.
 */
typedef int __bitwise pm_request_t;

#define PM_SUSPEND	((__force pm_request_t) 1)	/* enter D1-D3 */
#define PM_RESUME	((__force pm_request_t) 2)	/* enter D0 */


/*
 * Device types... these are passed to pm_register
 */
typedef int __bitwise pm_dev_t;

#define PM_UNKNOWN_DEV	((__force pm_dev_t) 0)	/* generic */
#define PM_SYS_DEV	((__force pm_dev_t) 1)	/* system device (fan, KB controller, ...) */
#define PM_PCI_DEV	((__force pm_dev_t) 2)	/* PCI device */
#define PM_USB_DEV	((__force pm_dev_t) 3)	/* USB device */
#define PM_SCSI_DEV	((__force pm_dev_t) 4)	/* SCSI device */
#define PM_ISA_DEV	((__force pm_dev_t) 5)	/* ISA device */
#define	PM_MTD_DEV	((__force pm_dev_t) 6)	/* Memory Technology Device */

/*
 * System device hardware ID (PnP) values
 */
enum
{
	PM_SYS_UNKNOWN = 0x00000000, /* generic */
	PM_SYS_KBC =	 0x41d00303, /* keyboard controller */
	PM_SYS_COM =	 0x41d00500, /* serial port */
	PM_SYS_IRDA =	 0x41d00510, /* IRDA controller */
	PM_SYS_FDC =	 0x41d00700, /* floppy controller */
	PM_SYS_VGA =	 0x41d00900, /* VGA controller */
	PM_SYS_PCMCIA =	 0x41d00e00, /* PCMCIA controller */
};

/*
 * Device identifier
 */
#define PM_PCI_ID(dev) ((dev)->bus->number << 16 | (dev)->devfn)

/*
 * Request handler callback
 */
struct pm_dev;

typedef int (*pm_callback)(struct pm_dev *dev, pm_request_t rqst, void *data);

/*
 * Dynamic device information
 */
struct pm_dev
{
	pm_dev_t	 type;
	unsigned long	 id;
	pm_callback	 callback;
	void		*data;

	unsigned long	 flags;
	unsigned long	 state;
	unsigned long	 prev_state;

	struct list_head entry;
};

/* Functions above this comment are list-based old-style power
 * managment. Please avoid using them.  */

/*
 * Callbacks for platform drivers to implement.
 */
extern void (*pm_idle)(void);
extern void (*pm_power_off)(void);

typedef int __bitwise suspend_state_t;

#define PM_SUSPEND_ON		((__force suspend_state_t) 0)
#define PM_SUSPEND_STANDBY	((__force suspend_state_t) 1)
#define PM_SUSPEND_MEM		((__force suspend_state_t) 3)
#define PM_SUSPEND_DISK		((__force suspend_state_t) 4)
#define PM_SUSPEND_MAX		((__force suspend_state_t) 5)

typedef int __bitwise suspend_disk_method_t;

115 116
/* invalid must be 0 so struct pm_ops initialisers can leave it out */
#define PM_DISK_INVALID		((__force suspend_disk_method_t) 0)
117 118 119 120 121 122
#define	PM_DISK_PLATFORM	((__force suspend_disk_method_t) 1)
#define	PM_DISK_SHUTDOWN	((__force suspend_disk_method_t) 2)
#define	PM_DISK_REBOOT		((__force suspend_disk_method_t) 3)
#define	PM_DISK_TEST		((__force suspend_disk_method_t) 4)
#define	PM_DISK_TESTPROC	((__force suspend_disk_method_t) 5)
#define	PM_DISK_MAX		((__force suspend_disk_method_t) 6)
L
Linus Torvalds 已提交
123

124 125 126 127
/**
 * struct pm_ops - Callbacks for managing platform dependent suspend states.
 * @valid: Callback to determine whether the given state can be entered.
 * 	If %CONFIG_SOFTWARE_SUSPEND is set then %PM_SUSPEND_DISK is
128 129 130 131 132 133
 *	always valid and never passed to this call. If not assigned,
 *	no suspend states are valid.
 *	Valid states are advertised in /sys/power/state but can still
 *	be rejected by prepare or enter if the conditions aren't right.
 *	There is a %pm_valid_only_mem function available that can be assigned
 *	to this if you only implement mem sleep.
134 135 136 137 138 139 140 141 142 143
 *
 * @prepare: Prepare the platform for the given suspend state. Can return a
 *	negative error code if necessary.
 *
 * @enter: Enter the given suspend state, must be assigned. Can return a
 *	negative error code if necessary.
 *
 * @finish: Called when the system has left the given state and all devices
 *	are resumed. The return value is ignored.
 *
144 145 146 147 148 149 150 151 152 153
 * @pm_disk_mode: The generic code always allows one of the shutdown methods
 *	%PM_DISK_SHUTDOWN, %PM_DISK_REBOOT, %PM_DISK_TEST and
 *	%PM_DISK_TESTPROC. If this variable is set, the mode it is set
 *	to is allowed in addition to those modes and is also made default.
 *	When this mode is sent selected, the @prepare call will be called
 *	before suspending to disk (if present), the @enter call should be
 *	present and will be called after all state has been saved and the
 *	machine is ready to be powered off; the @finish callback is called
 *	after state has been restored. All these calls are called with
 *	%PM_SUSPEND_DISK as the state.
154
 */
L
Linus Torvalds 已提交
155
struct pm_ops {
156
	int (*valid)(suspend_state_t state);
L
Linus Torvalds 已提交
157 158 159
	int (*prepare)(suspend_state_t state);
	int (*enter)(suspend_state_t state);
	int (*finish)(suspend_state_t state);
160
	suspend_disk_method_t pm_disk_mode;
L
Linus Torvalds 已提交
161 162
};

163 164 165 166 167
/**
 * pm_set_ops - set platform dependent power management ops
 * @pm_ops: The new power management operations to set.
 */
extern void pm_set_ops(struct pm_ops *pm_ops);
A
Alexey Starikovskiy 已提交
168
extern struct pm_ops *pm_ops;
L
Linus Torvalds 已提交
169 170
extern int pm_suspend(suspend_state_t state);

171
extern int pm_valid_only_mem(suspend_state_t state);
L
Linus Torvalds 已提交
172

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
/**
 * arch_suspend_disable_irqs - disable IRQs for suspend
 *
 * Disables IRQs (in the default case). This is a weak symbol in the common
 * code and thus allows architectures to override it if more needs to be
 * done. Not called for suspend to disk.
 */
extern void arch_suspend_disable_irqs(void);

/**
 * arch_suspend_enable_irqs - enable IRQs after suspend
 *
 * Enables IRQs (in the default case). This is a weak symbol in the common
 * code and thus allows architectures to override it if more needs to be
 * done. Not called for suspend to disk.
 */
extern void arch_suspend_enable_irqs(void);

L
Linus Torvalds 已提交
191 192 193 194 195 196
/*
 * Device power management
 */

struct device;

197 198 199
typedef struct pm_message {
	int event;
} pm_message_t;
L
Linus Torvalds 已提交
200 201

/*
D
David Brownell 已提交
202 203 204 205 206 207
 * Several driver power state transitions are externally visible, affecting
 * the state of pending I/O queues and (for drivers that touch hardware)
 * interrupts, wakeups, DMA, and other hardware state.  There may also be
 * internal transitions to various low power modes, which are transparent
 * to the rest of the driver stack (such as a driver that's ON gating off
 * clocks which are not in active use).
L
Linus Torvalds 已提交
208
 *
D
David Brownell 已提交
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
 * One transition is triggered by resume(), after a suspend() call; the
 * message is implicit:
 *
 * ON		Driver starts working again, responding to hardware events
 * 		and software requests.  The hardware may have gone through
 * 		a power-off reset, or it may have maintained state from the
 * 		previous suspend() which the driver will rely on while
 * 		resuming.  On most platforms, there are no restrictions on
 * 		availability of resources like clocks during resume().
 *
 * Other transitions are triggered by messages sent using suspend().  All
 * these transitions quiesce the driver, so that I/O queues are inactive.
 * That commonly entails turning off IRQs and DMA; there may be rules
 * about how to quiesce that are specific to the bus or the device's type.
 * (For example, network drivers mark the link state.)  Other details may
 * differ according to the message:
 *
 * SUSPEND	Quiesce, enter a low power device state appropriate for
 * 		the upcoming system state (such as PCI_D3hot), and enable
 * 		wakeup events as appropriate.
 *
 * FREEZE	Quiesce operations so that a consistent image can be saved;
 * 		but do NOT otherwise enter a low power device state, and do
 * 		NOT emit system wakeup events.
 *
 * PRETHAW	Quiesce as if for FREEZE; additionally, prepare for restoring
 * 		the system from a snapshot taken after an earlier FREEZE.
 * 		Some drivers will need to reset their hardware state instead
 * 		of preserving it, to ensure that it's never mistaken for the
 * 		state which that earlier snapshot had set up.
 *
 * A minimally power-aware driver treats all messages as SUSPEND, fully
 * reinitializes its device during resume() -- whether or not it was reset
 * during the suspend/resume cycle -- and can't issue wakeup events.
 *
 * More power-aware drivers may also use low power states at runtime as
 * well as during system sleep states like PM_SUSPEND_STANDBY.  They may
 * be able to use wakeup events to exit from runtime low-power states,
 * or from system low-power states such as standby or suspend-to-RAM.
L
Linus Torvalds 已提交
248 249
 */

250 251 252
#define PM_EVENT_ON 0
#define PM_EVENT_FREEZE 1
#define PM_EVENT_SUSPEND 2
D
David Brownell 已提交
253
#define PM_EVENT_PRETHAW 3
254 255

#define PMSG_FREEZE	((struct pm_message){ .event = PM_EVENT_FREEZE, })
D
David Brownell 已提交
256
#define PMSG_PRETHAW	((struct pm_message){ .event = PM_EVENT_PRETHAW, })
257 258
#define PMSG_SUSPEND	((struct pm_message){ .event = PM_EVENT_SUSPEND, })
#define PMSG_ON		((struct pm_message){ .event = PM_EVENT_ON, })
L
Linus Torvalds 已提交
259 260 261

struct dev_pm_info {
	pm_message_t		power_state;
D
David Brownell 已提交
262
	unsigned		can_wakeup:1;
L
Linus Torvalds 已提交
263
#ifdef	CONFIG_PM
D
David Brownell 已提交
264
	unsigned		should_wakeup:1;
L
Linus Torvalds 已提交
265 266 267 268 269 270 271 272 273 274 275 276 277
	pm_message_t		prev_state;
	void			* saved_state;
	struct device		* pm_parent;
	struct list_head	entry;
#endif
};

extern void device_pm_set_parent(struct device * dev, struct device * parent);

extern int device_power_down(pm_message_t state);
extern void device_power_up(void);
extern void device_resume(void);

278
#ifdef CONFIG_PM
279 280
extern suspend_disk_method_t pm_disk_mode;

281
extern int device_suspend(pm_message_t state);
282
extern int device_prepare_suspend(pm_message_t state);
D
David Brownell 已提交
283 284 285 286 287 288

#define device_set_wakeup_enable(dev,val) \
	((dev)->power.should_wakeup = !!(val))
#define device_may_wakeup(dev) \
	(device_can_wakeup(dev) && (dev)->power.should_wakeup)

289 290
extern int dpm_runtime_suspend(struct device *, pm_message_t);
extern void dpm_runtime_resume(struct device *);
291 292 293 294 295 296
extern void __suspend_report_result(const char *function, void *fn, int ret);

#define suspend_report_result(fn, ret)					\
	do {								\
		__suspend_report_result(__FUNCTION__, fn, ret);		\
	} while (0)
297

298 299 300 301 302 303 304 305 306 307 308 309 310 311
/*
 * Platform hook to activate device wakeup capability, if that's not already
 * handled by enable_irq_wake() etc.
 * Returns zero on success, else negative errno
 */
extern int (*platform_enable_wakeup)(struct device *dev, int is_on);

static inline int call_platform_enable_wakeup(struct device *dev, int is_on)
{
	if (platform_enable_wakeup)
		return (*platform_enable_wakeup)(dev, is_on);
	return 0;
}

D
David Brownell 已提交
312 313
#else /* !CONFIG_PM */

314 315 316 317
static inline int device_suspend(pm_message_t state)
{
	return 0;
}
D
David Brownell 已提交
318 319 320 321

#define device_set_wakeup_enable(dev,val)	do{}while(0)
#define device_may_wakeup(dev)			(0)

322 323 324 325 326 327 328 329 330
static inline int dpm_runtime_suspend(struct device * dev, pm_message_t state)
{
	return 0;
}

static inline void dpm_runtime_resume(struct device * dev)
{
}

331 332
#define suspend_report_result(fn, ret) do { } while (0)

333 334
static inline int call_platform_enable_wakeup(struct device *dev, int is_on)
{
335
	return 0;
336 337
}

338
#endif
L
Linus Torvalds 已提交
339

D
David Brownell 已提交
340 341 342 343 344 345 346 347 348 349 350
/* changes to device_may_wakeup take effect on the next pm state change.
 * by default, devices should wakeup if they can.
 */
#define device_can_wakeup(dev) \
	((dev)->power.can_wakeup)
#define device_init_wakeup(dev,val) \
	do { \
		device_can_wakeup(dev) = !!(val); \
		device_set_wakeup_enable(dev,val); \
	} while(0)

L
Linus Torvalds 已提交
351 352 353
#endif /* __KERNEL__ */

#endif /* _LINUX_PM_H */