omap2.c 31.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
 * Copyright © 2004 Micron Technology Inc.
 * Copyright © 2004 David Brownell
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/delay.h>
14
#include <linux/interrupt.h>
15 16
#include <linux/jiffies.h>
#include <linux/sched.h>
17 18 19 20
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/partitions.h>
#include <linux/io.h>
21
#include <linux/slab.h>
22

23 24 25
#include <plat/dma.h>
#include <plat/gpmc.h>
#include <plat/nand.h>
26 27

#define	DRIVER_NAME	"omap2-nand"
28
#define	OMAP_NAND_TIMEOUT_MS	5000
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

#define NAND_Ecc_P1e		(1 << 0)
#define NAND_Ecc_P2e		(1 << 1)
#define NAND_Ecc_P4e		(1 << 2)
#define NAND_Ecc_P8e		(1 << 3)
#define NAND_Ecc_P16e		(1 << 4)
#define NAND_Ecc_P32e		(1 << 5)
#define NAND_Ecc_P64e		(1 << 6)
#define NAND_Ecc_P128e		(1 << 7)
#define NAND_Ecc_P256e		(1 << 8)
#define NAND_Ecc_P512e		(1 << 9)
#define NAND_Ecc_P1024e		(1 << 10)
#define NAND_Ecc_P2048e		(1 << 11)

#define NAND_Ecc_P1o		(1 << 16)
#define NAND_Ecc_P2o		(1 << 17)
#define NAND_Ecc_P4o		(1 << 18)
#define NAND_Ecc_P8o		(1 << 19)
#define NAND_Ecc_P16o		(1 << 20)
#define NAND_Ecc_P32o		(1 << 21)
#define NAND_Ecc_P64o		(1 << 22)
#define NAND_Ecc_P128o		(1 << 23)
#define NAND_Ecc_P256o		(1 << 24)
#define NAND_Ecc_P512o		(1 << 25)
#define NAND_Ecc_P1024o		(1 << 26)
#define NAND_Ecc_P2048o		(1 << 27)

#define TF(value)	(value ? 1 : 0)

#define P2048e(a)	(TF(a & NAND_Ecc_P2048e)	<< 0)
#define P2048o(a)	(TF(a & NAND_Ecc_P2048o)	<< 1)
#define P1e(a)		(TF(a & NAND_Ecc_P1e)		<< 2)
#define P1o(a)		(TF(a & NAND_Ecc_P1o)		<< 3)
#define P2e(a)		(TF(a & NAND_Ecc_P2e)		<< 4)
#define P2o(a)		(TF(a & NAND_Ecc_P2o)		<< 5)
#define P4e(a)		(TF(a & NAND_Ecc_P4e)		<< 6)
#define P4o(a)		(TF(a & NAND_Ecc_P4o)		<< 7)

#define P8e(a)		(TF(a & NAND_Ecc_P8e)		<< 0)
#define P8o(a)		(TF(a & NAND_Ecc_P8o)		<< 1)
#define P16e(a)		(TF(a & NAND_Ecc_P16e)		<< 2)
#define P16o(a)		(TF(a & NAND_Ecc_P16o)		<< 3)
#define P32e(a)		(TF(a & NAND_Ecc_P32e)		<< 4)
#define P32o(a)		(TF(a & NAND_Ecc_P32o)		<< 5)
#define P64e(a)		(TF(a & NAND_Ecc_P64e)		<< 6)
#define P64o(a)		(TF(a & NAND_Ecc_P64o)		<< 7)

#define P128e(a)	(TF(a & NAND_Ecc_P128e)		<< 0)
#define P128o(a)	(TF(a & NAND_Ecc_P128o)		<< 1)
#define P256e(a)	(TF(a & NAND_Ecc_P256e)		<< 2)
#define P256o(a)	(TF(a & NAND_Ecc_P256o)		<< 3)
#define P512e(a)	(TF(a & NAND_Ecc_P512e)		<< 4)
#define P512o(a)	(TF(a & NAND_Ecc_P512o)		<< 5)
#define P1024e(a)	(TF(a & NAND_Ecc_P1024e)	<< 6)
#define P1024o(a)	(TF(a & NAND_Ecc_P1024o)	<< 7)

#define P8e_s(a)	(TF(a & NAND_Ecc_P8e)		<< 0)
#define P8o_s(a)	(TF(a & NAND_Ecc_P8o)		<< 1)
#define P16e_s(a)	(TF(a & NAND_Ecc_P16e)		<< 2)
#define P16o_s(a)	(TF(a & NAND_Ecc_P16o)		<< 3)
#define P1e_s(a)	(TF(a & NAND_Ecc_P1e)		<< 4)
#define P1o_s(a)	(TF(a & NAND_Ecc_P1o)		<< 5)
#define P2e_s(a)	(TF(a & NAND_Ecc_P2e)		<< 6)
#define P2o_s(a)	(TF(a & NAND_Ecc_P2o)		<< 7)

#define P4e_s(a)	(TF(a & NAND_Ecc_P4e)		<< 0)
#define P4o_s(a)	(TF(a & NAND_Ecc_P4o)		<< 1)

97 98 99 100 101 102 103 104 105 106 107 108
/* oob info generated runtime depending on ecc algorithm and layout selected */
static struct nand_ecclayout omap_oobinfo;
/* Define some generic bad / good block scan pattern which are used
 * while scanning a device for factory marked good / bad blocks
 */
static uint8_t scan_ff_pattern[] = { 0xff };
static struct nand_bbt_descr bb_descrip_flashbased = {
	.options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES,
	.offs = 0,
	.len = 1,
	.pattern = scan_ff_pattern,
};
109

110

111 112 113 114 115 116 117 118 119 120
struct omap_nand_info {
	struct nand_hw_control		controller;
	struct omap_nand_platform_data	*pdata;
	struct mtd_info			mtd;
	struct mtd_partition		*parts;
	struct nand_chip		nand;
	struct platform_device		*pdev;

	int				gpmc_cs;
	unsigned long			phys_base;
121 122
	struct completion		comp;
	int				dma_ch;
123 124 125 126 127 128 129
	int				gpmc_irq;
	enum {
		OMAP_NAND_IO_READ = 0,	/* read */
		OMAP_NAND_IO_WRITE,	/* write */
	} iomode;
	u_char				*buf;
	int					buf_len;
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
};

/**
 * omap_hwcontrol - hardware specific access to control-lines
 * @mtd: MTD device structure
 * @cmd: command to device
 * @ctrl:
 * NAND_NCE: bit 0 -> don't care
 * NAND_CLE: bit 1 -> Command Latch
 * NAND_ALE: bit 2 -> Address Latch
 *
 * NOTE: boards may use different bits for these!!
 */
static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
{
	struct omap_nand_info *info = container_of(mtd,
					struct omap_nand_info, mtd);

148 149 150 151 152 153 154 155 156 157
	if (cmd != NAND_CMD_NONE) {
		if (ctrl & NAND_CLE)
			gpmc_nand_write(info->gpmc_cs, GPMC_NAND_COMMAND, cmd);

		else if (ctrl & NAND_ALE)
			gpmc_nand_write(info->gpmc_cs, GPMC_NAND_ADDRESS, cmd);

		else /* NAND_NCE */
			gpmc_nand_write(info->gpmc_cs, GPMC_NAND_DATA, cmd);
	}
158 159
}

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
/**
 * omap_read_buf8 - read data from NAND controller into buffer
 * @mtd: MTD device structure
 * @buf: buffer to store date
 * @len: number of bytes to read
 */
static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
{
	struct nand_chip *nand = mtd->priv;

	ioread8_rep(nand->IO_ADDR_R, buf, len);
}

/**
 * omap_write_buf8 - write buffer to NAND controller
 * @mtd: MTD device structure
 * @buf: data buffer
 * @len: number of bytes to write
 */
static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
{
	struct omap_nand_info *info = container_of(mtd,
						struct omap_nand_info, mtd);
	u_char *p = (u_char *)buf;
184
	u32	status = 0;
185 186 187

	while (len--) {
		iowrite8(*p++, info->nand.IO_ADDR_W);
188 189 190 191
		/* wait until buffer is available for write */
		do {
			status = gpmc_read_status(GPMC_STATUS_BUFFER);
		} while (!status);
192 193 194
	}
}

195 196 197 198 199 200 201 202 203 204
/**
 * omap_read_buf16 - read data from NAND controller into buffer
 * @mtd: MTD device structure
 * @buf: buffer to store date
 * @len: number of bytes to read
 */
static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
{
	struct nand_chip *nand = mtd->priv;

205
	ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
206 207 208 209 210 211 212 213 214 215 216 217 218
}

/**
 * omap_write_buf16 - write buffer to NAND controller
 * @mtd: MTD device structure
 * @buf: data buffer
 * @len: number of bytes to write
 */
static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
{
	struct omap_nand_info *info = container_of(mtd,
						struct omap_nand_info, mtd);
	u16 *p = (u16 *) buf;
219
	u32	status = 0;
220 221 222 223
	/* FIXME try bursts of writesw() or DMA ... */
	len >>= 1;

	while (len--) {
224
		iowrite16(*p++, info->nand.IO_ADDR_W);
225 226 227 228
		/* wait until buffer is available for write */
		do {
			status = gpmc_read_status(GPMC_STATUS_BUFFER);
		} while (!status);
229 230
	}
}
231 232 233 234 235 236 237 238 239 240 241

/**
 * omap_read_buf_pref - read data from NAND controller into buffer
 * @mtd: MTD device structure
 * @buf: buffer to store date
 * @len: number of bytes to read
 */
static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
{
	struct omap_nand_info *info = container_of(mtd,
						struct omap_nand_info, mtd);
242
	uint32_t r_count = 0;
243 244 245 246
	int ret = 0;
	u32 *p = (u32 *)buf;

	/* take care of subpage reads */
247 248 249 250 251 252 253
	if (len % 4) {
		if (info->nand.options & NAND_BUSWIDTH_16)
			omap_read_buf16(mtd, buf, len % 4);
		else
			omap_read_buf8(mtd, buf, len % 4);
		p = (u32 *) (buf + len % 4);
		len -= len % 4;
254 255 256
	}

	/* configure and start prefetch transfer */
257 258
	ret = gpmc_prefetch_enable(info->gpmc_cs,
			PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0);
259 260 261
	if (ret) {
		/* PFPW engine is busy, use cpu copy method */
		if (info->nand.options & NAND_BUSWIDTH_16)
262
			omap_read_buf16(mtd, (u_char *)p, len);
263
		else
264
			omap_read_buf8(mtd, (u_char *)p, len);
265 266
	} else {
		do {
267 268 269
			r_count = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
			r_count = r_count >> 2;
			ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
270 271 272 273
			p += r_count;
			len -= r_count << 2;
		} while (len);
		/* disable and stop the PFPW engine */
274
		gpmc_prefetch_reset(info->gpmc_cs);
275 276 277 278 279 280 281 282 283 284 285 286 287 288
	}
}

/**
 * omap_write_buf_pref - write buffer to NAND controller
 * @mtd: MTD device structure
 * @buf: data buffer
 * @len: number of bytes to write
 */
static void omap_write_buf_pref(struct mtd_info *mtd,
					const u_char *buf, int len)
{
	struct omap_nand_info *info = container_of(mtd,
						struct omap_nand_info, mtd);
289
	uint32_t w_count = 0;
290
	int i = 0, ret = 0;
291
	u16 *p = (u16 *)buf;
292
	unsigned long tim, limit;
293 294 295

	/* take care of subpage writes */
	if (len % 2 != 0) {
296
		writeb(*buf, info->nand.IO_ADDR_W);
297 298 299 300 301
		p = (u16 *)(buf + 1);
		len--;
	}

	/*  configure and start prefetch transfer */
302 303
	ret = gpmc_prefetch_enable(info->gpmc_cs,
			PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1);
304 305 306
	if (ret) {
		/* PFPW engine is busy, use cpu copy method */
		if (info->nand.options & NAND_BUSWIDTH_16)
307
			omap_write_buf16(mtd, (u_char *)p, len);
308
		else
309
			omap_write_buf8(mtd, (u_char *)p, len);
310
	} else {
311 312 313
		while (len) {
			w_count = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
			w_count = w_count >> 1;
314
			for (i = 0; (i < w_count) && len; i++, len -= 2)
315
				iowrite16(*p++, info->nand.IO_ADDR_W);
316
		}
317
		/* wait for data to flushed-out before reset the prefetch */
318 319 320 321 322 323
		tim = 0;
		limit = (loops_per_jiffy *
					msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
		while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit))
			cpu_relax();

324
		/* disable and stop the PFPW engine */
325
		gpmc_prefetch_reset(info->gpmc_cs);
326 327 328
	}
}

329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
/*
 * omap_nand_dma_cb: callback on the completion of dma transfer
 * @lch: logical channel
 * @ch_satuts: channel status
 * @data: pointer to completion data structure
 */
static void omap_nand_dma_cb(int lch, u16 ch_status, void *data)
{
	complete((struct completion *) data);
}

/*
 * omap_nand_dma_transfer: configer and start dma transfer
 * @mtd: MTD device structure
 * @addr: virtual address in RAM of source/destination
 * @len: number of data bytes to be transferred
 * @is_write: flag for read/write operation
 */
static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
					unsigned int len, int is_write)
{
	struct omap_nand_info *info = container_of(mtd,
					struct omap_nand_info, mtd);
	enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
							DMA_FROM_DEVICE;
	dma_addr_t dma_addr;
	int ret;
356
	unsigned long tim, limit;
357

358 359 360
	/* The fifo depth is 64 bytes max.
	 * But configure the FIFO-threahold to 32 to get a sync at each frame
	 * and frame length is 32 bytes.
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
	 */
	int buf_len = len >> 6;

	if (addr >= high_memory) {
		struct page *p1;

		if (((size_t)addr & PAGE_MASK) !=
			((size_t)(addr + len - 1) & PAGE_MASK))
			goto out_copy;
		p1 = vmalloc_to_page(addr);
		if (!p1)
			goto out_copy;
		addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK);
	}

	dma_addr = dma_map_single(&info->pdev->dev, addr, len, dir);
	if (dma_mapping_error(&info->pdev->dev, dma_addr)) {
		dev_err(&info->pdev->dev,
			"Couldn't DMA map a %d byte buffer\n", len);
		goto out_copy;
	}

	if (is_write) {
	    omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT,
						info->phys_base, 0, 0);
	    omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
							dma_addr, 0, 0);
	    omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32,
					0x10, buf_len, OMAP_DMA_SYNC_FRAME,
					OMAP24XX_DMA_GPMC, OMAP_DMA_DST_SYNC);
	} else {
	    omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT,
						info->phys_base, 0, 0);
	    omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
							dma_addr, 0, 0);
	    omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32,
					0x10, buf_len, OMAP_DMA_SYNC_FRAME,
					OMAP24XX_DMA_GPMC, OMAP_DMA_SRC_SYNC);
	}
	/*  configure and start prefetch transfer */
401 402
	ret = gpmc_prefetch_enable(info->gpmc_cs,
			PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write);
403
	if (ret)
404
		/* PFPW engine is busy, use cpu copy method */
405 406 407 408 409 410 411 412
		goto out_copy;

	init_completion(&info->comp);

	omap_start_dma(info->dma_ch);

	/* setup and start DMA using dma_addr */
	wait_for_completion(&info->comp);
413 414 415 416
	tim = 0;
	limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
	while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit))
		cpu_relax();
417 418

	/* disable and stop the PFPW engine */
D
Daniel J Blueman 已提交
419
	gpmc_prefetch_reset(info->gpmc_cs);
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461

	dma_unmap_single(&info->pdev->dev, dma_addr, len, dir);
	return 0;

out_copy:
	if (info->nand.options & NAND_BUSWIDTH_16)
		is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
			: omap_write_buf16(mtd, (u_char *) addr, len);
	else
		is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
			: omap_write_buf8(mtd, (u_char *) addr, len);
	return 0;
}

/**
 * omap_read_buf_dma_pref - read data from NAND controller into buffer
 * @mtd: MTD device structure
 * @buf: buffer to store date
 * @len: number of bytes to read
 */
static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
{
	if (len <= mtd->oobsize)
		omap_read_buf_pref(mtd, buf, len);
	else
		/* start transfer in DMA mode */
		omap_nand_dma_transfer(mtd, buf, len, 0x0);
}

/**
 * omap_write_buf_dma_pref - write buffer to NAND controller
 * @mtd: MTD device structure
 * @buf: data buffer
 * @len: number of bytes to write
 */
static void omap_write_buf_dma_pref(struct mtd_info *mtd,
					const u_char *buf, int len)
{
	if (len <= mtd->oobsize)
		omap_write_buf_pref(mtd, buf, len);
	else
		/* start transfer in DMA mode */
462
		omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
463 464
}

465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
/*
 * omap_nand_irq - GMPC irq handler
 * @this_irq: gpmc irq number
 * @dev: omap_nand_info structure pointer is passed here
 */
static irqreturn_t omap_nand_irq(int this_irq, void *dev)
{
	struct omap_nand_info *info = (struct omap_nand_info *) dev;
	u32 bytes;
	u32 irq_stat;

	irq_stat = gpmc_read_status(GPMC_GET_IRQ_STATUS);
	bytes = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
	bytes = bytes  & 0xFFFC; /* io in multiple of 4 bytes */
	if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
		if (irq_stat & 0x2)
			goto done;

		if (info->buf_len && (info->buf_len < bytes))
			bytes = info->buf_len;
		else if (!info->buf_len)
			bytes = 0;
		iowrite32_rep(info->nand.IO_ADDR_W,
						(u32 *)info->buf, bytes >> 2);
		info->buf = info->buf + bytes;
		info->buf_len -= bytes;

	} else {
		ioread32_rep(info->nand.IO_ADDR_R,
						(u32 *)info->buf, bytes >> 2);
		info->buf = info->buf + bytes;

		if (irq_stat & 0x2)
			goto done;
	}
	gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, irq_stat);

	return IRQ_HANDLED;

done:
	complete(&info->comp);
	/* disable irq */
	gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ, 0);

	/* clear status */
	gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, irq_stat);

	return IRQ_HANDLED;
}

/*
 * omap_read_buf_irq_pref - read data from NAND controller into buffer
 * @mtd: MTD device structure
 * @buf: buffer to store date
 * @len: number of bytes to read
 */
static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len)
{
	struct omap_nand_info *info = container_of(mtd,
						struct omap_nand_info, mtd);
	int ret = 0;

	if (len <= mtd->oobsize) {
		omap_read_buf_pref(mtd, buf, len);
		return;
	}

	info->iomode = OMAP_NAND_IO_READ;
	info->buf = buf;
	init_completion(&info->comp);

	/*  configure and start prefetch transfer */
537 538
	ret = gpmc_prefetch_enable(info->gpmc_cs,
			PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0);
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
	if (ret)
		/* PFPW engine is busy, use cpu copy method */
		goto out_copy;

	info->buf_len = len;
	/* enable irq */
	gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ,
		(GPMC_IRQ_FIFOEVENTENABLE | GPMC_IRQ_COUNT_EVENT));

	/* waiting for read to complete */
	wait_for_completion(&info->comp);

	/* disable and stop the PFPW engine */
	gpmc_prefetch_reset(info->gpmc_cs);
	return;

out_copy:
	if (info->nand.options & NAND_BUSWIDTH_16)
		omap_read_buf16(mtd, buf, len);
	else
		omap_read_buf8(mtd, buf, len);
}

/*
 * omap_write_buf_irq_pref - write buffer to NAND controller
 * @mtd: MTD device structure
 * @buf: data buffer
 * @len: number of bytes to write
 */
static void omap_write_buf_irq_pref(struct mtd_info *mtd,
					const u_char *buf, int len)
{
	struct omap_nand_info *info = container_of(mtd,
						struct omap_nand_info, mtd);
	int ret = 0;
	unsigned long tim, limit;

	if (len <= mtd->oobsize) {
		omap_write_buf_pref(mtd, buf, len);
		return;
	}

	info->iomode = OMAP_NAND_IO_WRITE;
	info->buf = (u_char *) buf;
	init_completion(&info->comp);

585 586 587
	/* configure and start prefetch transfer : size=24 */
	ret = gpmc_prefetch_enable(info->gpmc_cs,
			(PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1);
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
	if (ret)
		/* PFPW engine is busy, use cpu copy method */
		goto out_copy;

	info->buf_len = len;
	/* enable irq */
	gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ,
			(GPMC_IRQ_FIFOEVENTENABLE | GPMC_IRQ_COUNT_EVENT));

	/* waiting for write to complete */
	wait_for_completion(&info->comp);
	/* wait for data to flushed-out before reset the prefetch */
	tim = 0;
	limit = (loops_per_jiffy *  msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
	while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit))
		cpu_relax();

	/* disable and stop the PFPW engine */
	gpmc_prefetch_reset(info->gpmc_cs);
	return;

out_copy:
	if (info->nand.options & NAND_BUSWIDTH_16)
		omap_write_buf16(mtd, buf, len);
	else
		omap_write_buf8(mtd, buf, len);
}

616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
/**
 * omap_verify_buf - Verify chip data against buffer
 * @mtd: MTD device structure
 * @buf: buffer containing the data to compare
 * @len: number of bytes to compare
 */
static int omap_verify_buf(struct mtd_info *mtd, const u_char * buf, int len)
{
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
							mtd);
	u16 *p = (u16 *) buf;

	len >>= 1;
	while (len--) {
		if (*p++ != cpu_to_le16(readw(info->nand.IO_ADDR_R)))
			return -EFAULT;
	}

	return 0;
}

/**
 * gen_true_ecc - This function will generate true ECC value
 * @ecc_buf: buffer to store ecc code
 *
 * This generated true ECC value can be used when correcting
 * data read from NAND flash memory core
 */
static void gen_true_ecc(u8 *ecc_buf)
{
	u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
		((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);

	ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
			P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
	ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
			P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
	ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
			P1e(tmp) | P2048o(tmp) | P2048e(tmp));
}

/**
 * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
 * @ecc_data1:  ecc code from nand spare area
 * @ecc_data2:  ecc code from hardware register obtained from hardware ecc
 * @page_data:  page data
 *
 * This function compares two ECC's and indicates if there is an error.
 * If the error can be corrected it will be corrected to the buffer.
665 666
 * If there is no error, %0 is returned. If there is an error but it
 * was corrected, %1 is returned. Otherwise, %-1 is returned.
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
 */
static int omap_compare_ecc(u8 *ecc_data1,	/* read from NAND memory */
			    u8 *ecc_data2,	/* read from register */
			    u8 *page_data)
{
	uint	i;
	u8	tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
	u8	comp0_bit[8], comp1_bit[8], comp2_bit[8];
	u8	ecc_bit[24];
	u8	ecc_sum = 0;
	u8	find_bit = 0;
	uint	find_byte = 0;
	int	isEccFF;

	isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);

	gen_true_ecc(ecc_data1);
	gen_true_ecc(ecc_data2);

	for (i = 0; i <= 2; i++) {
		*(ecc_data1 + i) = ~(*(ecc_data1 + i));
		*(ecc_data2 + i) = ~(*(ecc_data2 + i));
	}

	for (i = 0; i < 8; i++) {
		tmp0_bit[i]     = *ecc_data1 % 2;
		*ecc_data1	= *ecc_data1 / 2;
	}

	for (i = 0; i < 8; i++) {
		tmp1_bit[i]	 = *(ecc_data1 + 1) % 2;
		*(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
	}

	for (i = 0; i < 8; i++) {
		tmp2_bit[i]	 = *(ecc_data1 + 2) % 2;
		*(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
	}

	for (i = 0; i < 8; i++) {
		comp0_bit[i]     = *ecc_data2 % 2;
		*ecc_data2       = *ecc_data2 / 2;
	}

	for (i = 0; i < 8; i++) {
		comp1_bit[i]     = *(ecc_data2 + 1) % 2;
		*(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
	}

	for (i = 0; i < 8; i++) {
		comp2_bit[i]     = *(ecc_data2 + 2) % 2;
		*(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
	}

	for (i = 0; i < 6; i++)
		ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];

	for (i = 0; i < 8; i++)
		ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];

	for (i = 0; i < 8; i++)
		ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];

	ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
	ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];

	for (i = 0; i < 24; i++)
		ecc_sum += ecc_bit[i];

	switch (ecc_sum) {
	case 0:
		/* Not reached because this function is not called if
		 *  ECC values are equal
		 */
		return 0;

	case 1:
		/* Uncorrectable error */
		DEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR 1\n");
		return -1;

	case 11:
		/* UN-Correctable error */
		DEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR B\n");
		return -1;

	case 12:
		/* Correctable error */
		find_byte = (ecc_bit[23] << 8) +
			    (ecc_bit[21] << 7) +
			    (ecc_bit[19] << 6) +
			    (ecc_bit[17] << 5) +
			    (ecc_bit[15] << 4) +
			    (ecc_bit[13] << 3) +
			    (ecc_bit[11] << 2) +
			    (ecc_bit[9]  << 1) +
			    ecc_bit[7];

		find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];

		DEBUG(MTD_DEBUG_LEVEL0, "Correcting single bit ECC error at "
				"offset: %d, bit: %d\n", find_byte, find_bit);

		page_data[find_byte] ^= (1 << find_bit);

772
		return 1;
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
	default:
		if (isEccFF) {
			if (ecc_data2[0] == 0 &&
			    ecc_data2[1] == 0 &&
			    ecc_data2[2] == 0)
				return 0;
		}
		DEBUG(MTD_DEBUG_LEVEL0, "UNCORRECTED_ERROR default\n");
		return -1;
	}
}

/**
 * omap_correct_data - Compares the ECC read with HW generated ECC
 * @mtd: MTD device structure
 * @dat: page data
 * @read_ecc: ecc read from nand flash
 * @calc_ecc: ecc read from HW ECC registers
 *
 * Compares the ecc read from nand spare area with ECC registers values
793 794 795 796 797
 * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
 * detection and correction. If there are no errors, %0 is returned. If
 * there were errors and all of the errors were corrected, the number of
 * corrected errors is returned. If uncorrectable errors exist, %-1 is
 * returned.
798 799 800 801 802 803 804
 */
static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
				u_char *read_ecc, u_char *calc_ecc)
{
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
							mtd);
	int blockCnt = 0, i = 0, ret = 0;
805
	int stat = 0;
806 807 808 809 810 811 812 813 814 815 816 817 818

	/* Ex NAND_ECC_HW12_2048 */
	if ((info->nand.ecc.mode == NAND_ECC_HW) &&
			(info->nand.ecc.size  == 2048))
		blockCnt = 4;
	else
		blockCnt = 1;

	for (i = 0; i < blockCnt; i++) {
		if (memcmp(read_ecc, calc_ecc, 3) != 0) {
			ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
			if (ret < 0)
				return ret;
819 820
			/* keep track of the number of corrected errors */
			stat += ret;
821 822 823 824 825
		}
		read_ecc += 3;
		calc_ecc += 3;
		dat      += 512;
	}
826
	return stat;
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
}

/**
 * omap_calcuate_ecc - Generate non-inverted ECC bytes.
 * @mtd: MTD device structure
 * @dat: The pointer to data on which ecc is computed
 * @ecc_code: The ecc_code buffer
 *
 * Using noninverted ECC can be considered ugly since writing a blank
 * page ie. padding will clear the ECC bytes. This is no problem as long
 * nobody is trying to write data on the seemingly unused page. Reading
 * an erased page will produce an ECC mismatch between generated and read
 * ECC bytes that has to be dealt with separately.
 */
static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
				u_char *ecc_code)
{
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
							mtd);
846
	return gpmc_calculate_ecc(info->gpmc_cs, dat, ecc_code);
847 848 849 850 851 852 853 854 855 856 857 858 859 860
}

/**
 * omap_enable_hwecc - This function enables the hardware ecc functionality
 * @mtd: MTD device structure
 * @mode: Read/Write mode
 */
static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
{
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
							mtd);
	struct nand_chip *chip = mtd->priv;
	unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;

861
	gpmc_enable_hwecc(info->gpmc_cs, mode, dev_width, info->nand.ecc.size);
862
}
863

864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
/**
 * omap_wait - wait until the command is done
 * @mtd: MTD device structure
 * @chip: NAND Chip structure
 *
 * Wait function is called during Program and erase operations and
 * the way it is called from MTD layer, we should wait till the NAND
 * chip is ready after the programming/erase operation has completed.
 *
 * Erase can take up to 400ms and program up to 20ms according to
 * general NAND and SmartMedia specs
 */
static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
{
	struct nand_chip *this = mtd->priv;
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
							mtd);
	unsigned long timeo = jiffies;
882
	int status = NAND_STATUS_FAIL, state = this->state;
883 884 885 886 887 888

	if (state == FL_ERASING)
		timeo += (HZ * 400) / 1000;
	else
		timeo += (HZ * 20) / 1000;

889 890
	gpmc_nand_write(info->gpmc_cs,
			GPMC_NAND_COMMAND, (NAND_CMD_STATUS & 0xFF));
891
	while (time_before(jiffies, timeo)) {
892
		status = gpmc_nand_read(info->gpmc_cs, GPMC_NAND_DATA);
893
		if (status & NAND_STATUS_READY)
894
			break;
895
		cond_resched();
896 897 898 899 900 901 902 903 904 905
	}
	return status;
}

/**
 * omap_dev_ready - calls the platform specific dev_ready function
 * @mtd: MTD device structure
 */
static int omap_dev_ready(struct mtd_info *mtd)
{
906
	unsigned int val = 0;
907 908 909
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
							mtd);

910
	val = gpmc_read_status(GPMC_GET_IRQ_STATUS);
911 912 913 914
	if ((val & 0x100) == 0x100) {
		/* Clear IRQ Interrupt */
		val |= 0x100;
		val &= ~(0x0);
915
		gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, val);
916 917 918 919 920
	} else {
		unsigned int cnt = 0;
		while (cnt++ < 0x1FF) {
			if  ((val & 0x100) == 0x100)
				return 0;
921
			val = gpmc_read_status(GPMC_GET_IRQ_STATUS);
922 923 924 925 926 927 928 929 930 931 932
		}
	}

	return 1;
}

static int __devinit omap_nand_probe(struct platform_device *pdev)
{
	struct omap_nand_info		*info;
	struct omap_nand_platform_data	*pdata;
	int				err;
933
	int				i, offset;
934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952

	pdata = pdev->dev.platform_data;
	if (pdata == NULL) {
		dev_err(&pdev->dev, "platform data missing\n");
		return -ENODEV;
	}

	info = kzalloc(sizeof(struct omap_nand_info), GFP_KERNEL);
	if (!info)
		return -ENOMEM;

	platform_set_drvdata(pdev, info);

	spin_lock_init(&info->controller.lock);
	init_waitqueue_head(&info->controller.wq);

	info->pdev = pdev;

	info->gpmc_cs		= pdata->cs;
953
	info->phys_base		= pdata->phys_base;
954 955 956 957 958

	info->mtd.priv		= &info->nand;
	info->mtd.name		= dev_name(&pdev->dev);
	info->mtd.owner		= THIS_MODULE;

959
	info->nand.options	= pdata->devsize;
960
	info->nand.options	|= NAND_SKIP_BBTSCAN;
961 962

	/* NAND write protect off */
963
	gpmc_cs_configure(info->gpmc_cs, GPMC_CONFIG_WP, 0);
964 965 966 967

	if (!request_mem_region(info->phys_base, NAND_IO_SIZE,
				pdev->dev.driver->name)) {
		err = -EBUSY;
968
		goto out_free_info;
969 970 971 972 973 974 975
	}

	info->nand.IO_ADDR_R = ioremap(info->phys_base, NAND_IO_SIZE);
	if (!info->nand.IO_ADDR_R) {
		err = -ENOMEM;
		goto out_release_mem_region;
	}
976

977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
	info->nand.controller = &info->controller;

	info->nand.IO_ADDR_W = info->nand.IO_ADDR_R;
	info->nand.cmd_ctrl  = omap_hwcontrol;

	/*
	 * If RDY/BSY line is connected to OMAP then use the omap ready
	 * funcrtion and the generic nand_wait function which reads the status
	 * register after monitoring the RDY/BSY line.Otherwise use a standard
	 * chip delay which is slightly more than tR (AC Timing) of the NAND
	 * device and read status register until you get a failure or success
	 */
	if (pdata->dev_ready) {
		info->nand.dev_ready = omap_dev_ready;
		info->nand.chip_delay = 0;
	} else {
		info->nand.waitfunc = omap_wait;
		info->nand.chip_delay = 50;
	}

997 998
	switch (pdata->xfer_type) {
	case NAND_OMAP_PREFETCH_POLLED:
999 1000
		info->nand.read_buf   = omap_read_buf_pref;
		info->nand.write_buf  = omap_write_buf_pref;
1001 1002 1003
		break;

	case NAND_OMAP_POLLED:
1004 1005 1006 1007 1008 1009 1010
		if (info->nand.options & NAND_BUSWIDTH_16) {
			info->nand.read_buf   = omap_read_buf16;
			info->nand.write_buf  = omap_write_buf16;
		} else {
			info->nand.read_buf   = omap_read_buf8;
			info->nand.write_buf  = omap_write_buf8;
		}
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
		break;

	case NAND_OMAP_PREFETCH_DMA:
		err = omap_request_dma(OMAP24XX_DMA_GPMC, "NAND",
				omap_nand_dma_cb, &info->comp, &info->dma_ch);
		if (err < 0) {
			info->dma_ch = -1;
			dev_err(&pdev->dev, "DMA request failed!\n");
			goto out_release_mem_region;
		} else {
			omap_set_dma_dest_burst_mode(info->dma_ch,
					OMAP_DMA_DATA_BURST_16);
			omap_set_dma_src_burst_mode(info->dma_ch,
					OMAP_DMA_DATA_BURST_16);

			info->nand.read_buf   = omap_read_buf_dma_pref;
			info->nand.write_buf  = omap_write_buf_dma_pref;
		}
		break;

1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
	case NAND_OMAP_PREFETCH_IRQ:
		err = request_irq(pdata->gpmc_irq,
				omap_nand_irq, IRQF_SHARED, "gpmc-nand", info);
		if (err) {
			dev_err(&pdev->dev, "requesting irq(%d) error:%d",
							pdata->gpmc_irq, err);
			goto out_release_mem_region;
		} else {
			info->gpmc_irq	     = pdata->gpmc_irq;
			info->nand.read_buf  = omap_read_buf_irq_pref;
			info->nand.write_buf = omap_write_buf_irq_pref;
		}
		break;

1045 1046 1047 1048 1049
	default:
		dev_err(&pdev->dev,
			"xfer_type(%d) not supported!\n", pdata->xfer_type);
		err = -EINVAL;
		goto out_release_mem_region;
1050 1051 1052
	}

	info->nand.verify_buf = omap_verify_buf;
1053

1054 1055 1056
	/* selsect the ecc type */
	if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_DEFAULT)
		info->nand.ecc.mode = NAND_ECC_SOFT;
1057 1058
	else if ((pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW) ||
		(pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE)) {
1059 1060 1061 1062 1063 1064 1065
		info->nand.ecc.bytes            = 3;
		info->nand.ecc.size             = 512;
		info->nand.ecc.calculate        = omap_calculate_ecc;
		info->nand.ecc.hwctl            = omap_enable_hwecc;
		info->nand.ecc.correct          = omap_correct_data;
		info->nand.ecc.mode             = NAND_ECC_HW;
	}
1066 1067 1068 1069

	/* DIP switches on some boards change between 8 and 16 bit
	 * bus widths for flash.  Try the other width if the first try fails.
	 */
1070
	if (nand_scan_ident(&info->mtd, 1, NULL)) {
1071
		info->nand.options ^= NAND_BUSWIDTH_16;
1072
		if (nand_scan_ident(&info->mtd, 1, NULL)) {
1073 1074 1075 1076 1077
			err = -ENXIO;
			goto out_release_mem_region;
		}
	}

1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
	/* rom code layout */
	if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE) {

		if (info->nand.options & NAND_BUSWIDTH_16)
			offset = 2;
		else {
			offset = 1;
			info->nand.badblock_pattern = &bb_descrip_flashbased;
		}
		omap_oobinfo.eccbytes = 3 * (info->mtd.oobsize/16);
		for (i = 0; i < omap_oobinfo.eccbytes; i++)
			omap_oobinfo.eccpos[i] = i+offset;

		omap_oobinfo.oobfree->offset = offset + omap_oobinfo.eccbytes;
		omap_oobinfo.oobfree->length = info->mtd.oobsize -
					(offset + omap_oobinfo.eccbytes);

		info->nand.ecc.layout = &omap_oobinfo;
	}
1097

1098 1099 1100 1101 1102 1103
	/* second phase scan */
	if (nand_scan_tail(&info->mtd)) {
		err = -ENXIO;
		goto out_release_mem_region;
	}

1104
	err = parse_mtd_partitions(&info->mtd, NULL, &info->parts, 0);
1105
	if (err > 0)
1106
		mtd_device_register(&info->mtd, info->parts, err);
1107
	else if (pdata->parts)
1108
		mtd_device_register(&info->mtd, pdata->parts, pdata->nr_parts);
1109
	else
1110
		mtd_device_register(&info->mtd, NULL, 0);
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126

	platform_set_drvdata(pdev, &info->mtd);

	return 0;

out_release_mem_region:
	release_mem_region(info->phys_base, NAND_IO_SIZE);
out_free_info:
	kfree(info);

	return err;
}

static int omap_nand_remove(struct platform_device *pdev)
{
	struct mtd_info *mtd = platform_get_drvdata(pdev);
1127 1128
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
							mtd);
1129 1130

	platform_set_drvdata(pdev, NULL);
1131
	if (info->dma_ch != -1)
1132 1133
		omap_free_dma(info->dma_ch);

1134 1135 1136
	if (info->gpmc_irq)
		free_irq(info->gpmc_irq, info);

1137 1138
	/* Release NAND device, its internal structures and partitions */
	nand_release(&info->mtd);
1139
	iounmap(info->nand.IO_ADDR_R);
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
	kfree(&info->mtd);
	return 0;
}

static struct platform_driver omap_nand_driver = {
	.probe		= omap_nand_probe,
	.remove		= omap_nand_remove,
	.driver		= {
		.name	= DRIVER_NAME,
		.owner	= THIS_MODULE,
	},
};

static int __init omap_nand_init(void)
{
1155
	pr_info("%s driver initializing\n", DRIVER_NAME);
1156

1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
	return platform_driver_register(&omap_nand_driver);
}

static void __exit omap_nand_exit(void)
{
	platform_driver_unregister(&omap_nand_driver);
}

module_init(omap_nand_init);
module_exit(omap_nand_exit);

1168
MODULE_ALIAS("platform:" DRIVER_NAME);
1169 1170
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");