fec.c 65.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4
/*
 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
 *
5
 * Right now, I am very wasteful with the buffers.  I allocate memory
L
Linus Torvalds 已提交
6 7 8 9 10 11 12 13 14
 * pages and then divide them into 2K frame buffers.  This way I know I
 * have buffers large enough to hold one frame within one buffer descriptor.
 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
 * will be much more memory efficient and will easily handle lots of
 * small packets.
 *
 * Much better multiple PHY support by Magnus Damm.
 * Copyright (c) 2000 Ericsson Radio Systems AB.
 *
15 16
 * Support for FEC controller of ColdFire processors.
 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17 18
 *
 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19
 * Copyright (c) 2004-2006 Macq Electronique SA.
L
Linus Torvalds 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
 */

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/ptrace.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
#include <linux/workqueue.h>
#include <linux/bitops.h>

#include <asm/irq.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/pgtable.h>
44
#include <asm/cacheflush.h>
L
Linus Torvalds 已提交
45 46 47 48 49 50 51 52 53 54 55

#include <asm/coldfire.h>
#include <asm/mcfsim.h>
#include "fec.h"

#if defined(CONFIG_FEC2)
#define	FEC_MAX_PORTS	2
#else
#define	FEC_MAX_PORTS	1
#endif

56
#if defined(CONFIG_M5272)
57 58 59
#define HAVE_mii_link_interrupt
#endif

L
Linus Torvalds 已提交
60 61 62 63 64 65 66 67 68
/*
 * Define the fixed address of the FEC hardware.
 */
static unsigned int fec_hw[] = {
#if defined(CONFIG_M5272)
	(MCF_MBAR + 0x840),
#elif defined(CONFIG_M527x)
	(MCF_MBAR + 0x1000),
	(MCF_MBAR + 0x1800),
69
#elif defined(CONFIG_M523x) || defined(CONFIG_M528x)
L
Linus Torvalds 已提交
70
	(MCF_MBAR + 0x1000),
71 72
#elif defined(CONFIG_M520x)
	(MCF_MBAR+0x30000),
73 74
#elif defined(CONFIG_M532x)
	(MCF_MBAR+0xfc030000),
L
Linus Torvalds 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
#else
	&(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec),
#endif
};

static unsigned char	fec_mac_default[] = {
	0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
};

/*
 * Some hardware gets it MAC address out of local flash memory.
 * if this is non-zero then assume it is the address to get MAC from.
 */
#if defined(CONFIG_NETtel)
#define	FEC_FLASHMAC	0xf0006006
#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
#define	FEC_FLASHMAC	0xf0006000
#elif defined(CONFIG_CANCam)
#define	FEC_FLASHMAC	0xf0020000
94 95 96 97
#elif defined (CONFIG_M5272C3)
#define	FEC_FLASHMAC	(0xffe04000 + 4)
#elif defined(CONFIG_MOD5272)
#define FEC_FLASHMAC 	0xffc0406b
L
Linus Torvalds 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
#else
#define	FEC_FLASHMAC	0
#endif

/* Forward declarations of some structures to support different PHYs
*/

typedef struct {
	uint mii_data;
	void (*funct)(uint mii_reg, struct net_device *dev);
} phy_cmd_t;

typedef struct {
	uint id;
	char *name;

	const phy_cmd_t *config;
	const phy_cmd_t *startup;
	const phy_cmd_t *ack_int;
	const phy_cmd_t *shutdown;
} phy_info_t;

/* The number of Tx and Rx buffers.  These are allocated from the page
 * pool.  The code may assume these are power of two, so it it best
 * to keep them that size.
 * We don't need to allocate pages for the transmitter.  We just use
 * the skbuffer directly.
 */
#define FEC_ENET_RX_PAGES	8
#define FEC_ENET_RX_FRSIZE	2048
#define FEC_ENET_RX_FRPPG	(PAGE_SIZE / FEC_ENET_RX_FRSIZE)
#define RX_RING_SIZE		(FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
#define FEC_ENET_TX_FRSIZE	2048
#define FEC_ENET_TX_FRPPG	(PAGE_SIZE / FEC_ENET_TX_FRSIZE)
#define TX_RING_SIZE		16	/* Must be power of two */
#define TX_RING_MOD_MASK	15	/*   for this to work */

135
#if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
136
#error "FEC: descriptor ring size constants too large"
137 138
#endif

L
Linus Torvalds 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
/* Interrupt events/masks.
*/
#define FEC_ENET_HBERR	((uint)0x80000000)	/* Heartbeat error */
#define FEC_ENET_BABR	((uint)0x40000000)	/* Babbling receiver */
#define FEC_ENET_BABT	((uint)0x20000000)	/* Babbling transmitter */
#define FEC_ENET_GRA	((uint)0x10000000)	/* Graceful stop complete */
#define FEC_ENET_TXF	((uint)0x08000000)	/* Full frame transmitted */
#define FEC_ENET_TXB	((uint)0x04000000)	/* A buffer was transmitted */
#define FEC_ENET_RXF	((uint)0x02000000)	/* Full frame received */
#define FEC_ENET_RXB	((uint)0x01000000)	/* A buffer was received */
#define FEC_ENET_MII	((uint)0x00800000)	/* MII interrupt */
#define FEC_ENET_EBERR	((uint)0x00400000)	/* SDMA bus error */

/* The FEC stores dest/src/type, data, and checksum for receive packets.
 */
#define PKT_MAXBUF_SIZE		1518
#define PKT_MINBUF_SIZE		64
#define PKT_MAXBLR_SIZE		1520


/*
160
 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
L
Linus Torvalds 已提交
161 162 163
 * size bits. Other FEC hardware does not, so we need to take that into
 * account when setting it.
 */
164
#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
165
    defined(CONFIG_M520x) || defined(CONFIG_M532x)
L
Linus Torvalds 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
#define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
#else
#define	OPT_FRAME_SIZE	0
#endif

/* The FEC buffer descriptors track the ring buffers.  The rx_bd_base and
 * tx_bd_base always point to the base of the buffer descriptors.  The
 * cur_rx and cur_tx point to the currently available buffer.
 * The dirty_tx tracks the current buffer that is being sent by the
 * controller.  The cur_tx and dirty_tx are equal under both completely
 * empty and completely full conditions.  The empty/ready indicator in
 * the buffer descriptor determines the actual condition.
 */
struct fec_enet_private {
	/* Hardware registers of the FEC device */
	volatile fec_t	*hwp;

G
Greg Ungerer 已提交
183 184
	struct net_device *netdev;

L
Linus Torvalds 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197
	/* The saved address of a sent-in-place packet/buffer, for skfree(). */
	unsigned char *tx_bounce[TX_RING_SIZE];
	struct	sk_buff* tx_skbuff[TX_RING_SIZE];
	ushort	skb_cur;
	ushort	skb_dirty;

	/* CPM dual port RAM relative addresses.
	*/
	cbd_t	*rx_bd_base;		/* Address of Rx and Tx buffers. */
	cbd_t	*tx_bd_base;
	cbd_t	*cur_rx, *cur_tx;		/* The next free ring entry */
	cbd_t	*dirty_tx;	/* The ring entries to be free()ed. */
	uint	tx_full;
198 199 200 201
	/* hold while accessing the HW like ringbuffer for tx/rx but not MAC */
	spinlock_t hw_lock;
	/* hold while accessing the mii_list_t() elements */
	spinlock_t mii_lock;
L
Linus Torvalds 已提交
202 203 204 205 206

	uint	phy_id;
	uint	phy_id_done;
	uint	phy_status;
	uint	phy_speed;
207
	phy_info_t const	*phy;
L
Linus Torvalds 已提交
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
	struct work_struct phy_task;

	uint	sequence_done;
	uint	mii_phy_task_queued;

	uint	phy_addr;

	int	index;
	int	opened;
	int	link;
	int	old_link;
	int	full_duplex;
};

static int fec_enet_open(struct net_device *dev);
static int fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev);
static void fec_enet_mii(struct net_device *dev);
225
static irqreturn_t fec_enet_interrupt(int irq, void * dev_id);
L
Linus Torvalds 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
static void fec_enet_tx(struct net_device *dev);
static void fec_enet_rx(struct net_device *dev);
static int fec_enet_close(struct net_device *dev);
static void set_multicast_list(struct net_device *dev);
static void fec_restart(struct net_device *dev, int duplex);
static void fec_stop(struct net_device *dev);
static void fec_set_mac_address(struct net_device *dev);


/* MII processing.  We keep this as simple as possible.  Requests are
 * placed on the list (if there is room).  When the request is finished
 * by the MII, an optional function may be called.
 */
typedef struct mii_list {
	uint	mii_regval;
	void	(*mii_func)(uint val, struct net_device *dev);
	struct	mii_list *mii_next;
} mii_list_t;

#define		NMII	20
246 247 248 249
static mii_list_t	mii_cmds[NMII];
static mii_list_t	*mii_free;
static mii_list_t	*mii_head;
static mii_list_t	*mii_tail;
L
Linus Torvalds 已提交
250

251
static int	mii_queue(struct net_device *dev, int request,
L
Linus Torvalds 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
				void (*func)(uint, struct net_device *));

/* Make MII read/write commands for the FEC.
*/
#define mk_mii_read(REG)	(0x60020000 | ((REG & 0x1f) << 18))
#define mk_mii_write(REG, VAL)	(0x50020000 | ((REG & 0x1f) << 18) | \
						(VAL & 0xffff))
#define mk_mii_end	0

/* Transmitter timeout.
*/
#define TX_TIMEOUT (2*HZ)

/* Register definitions for the PHY.
*/

#define MII_REG_CR          0  /* Control Register                         */
#define MII_REG_SR          1  /* Status Register                          */
#define MII_REG_PHYIR1      2  /* PHY Identification Register 1            */
#define MII_REG_PHYIR2      3  /* PHY Identification Register 2            */
272
#define MII_REG_ANAR        4  /* A-N Advertisement Register               */
L
Linus Torvalds 已提交
273 274 275 276 277 278 279 280 281 282 283
#define MII_REG_ANLPAR      5  /* A-N Link Partner Ability Register        */
#define MII_REG_ANER        6  /* A-N Expansion Register                   */
#define MII_REG_ANNPTR      7  /* A-N Next Page Transmit Register          */
#define MII_REG_ANLPRNPR    8  /* A-N Link Partner Received Next Page Reg. */

/* values for phy_status */

#define PHY_CONF_ANE	0x0001  /* 1 auto-negotiation enabled */
#define PHY_CONF_LOOP	0x0002  /* 1 loopback mode enabled */
#define PHY_CONF_SPMASK	0x00f0  /* mask for speed */
#define PHY_CONF_10HDX	0x0010  /* 10 Mbit half duplex supported */
284
#define PHY_CONF_10FDX	0x0020  /* 10 Mbit full duplex supported */
L
Linus Torvalds 已提交
285
#define PHY_CONF_100HDX	0x0040  /* 100 Mbit half duplex supported */
286
#define PHY_CONF_100FDX	0x0080  /* 100 Mbit full duplex supported */
L
Linus Torvalds 已提交
287 288 289 290 291 292

#define PHY_STAT_LINK	0x0100  /* 1 up - 0 down */
#define PHY_STAT_FAULT	0x0200  /* 1 remote fault */
#define PHY_STAT_ANC	0x0400  /* 1 auto-negotiation complete	*/
#define PHY_STAT_SPMASK	0xf000  /* mask for speed */
#define PHY_STAT_10HDX	0x1000  /* 10 Mbit half duplex selected	*/
293
#define PHY_STAT_10FDX	0x2000  /* 10 Mbit full duplex selected	*/
L
Linus Torvalds 已提交
294
#define PHY_STAT_100HDX	0x4000  /* 100 Mbit half duplex selected */
295
#define PHY_STAT_100FDX	0x8000  /* 100 Mbit full duplex selected */
L
Linus Torvalds 已提交
296 297 298 299 300 301 302 303


static int
fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
	struct fec_enet_private *fep;
	volatile fec_t	*fecp;
	volatile cbd_t	*bdp;
304
	unsigned short	status;
305
	unsigned long flags;
L
Linus Torvalds 已提交
306 307 308 309 310 311 312 313 314

	fep = netdev_priv(dev);
	fecp = (volatile fec_t*)dev->base_addr;

	if (!fep->link) {
		/* Link is down or autonegotiation is in progress. */
		return 1;
	}

315
	spin_lock_irqsave(&fep->hw_lock, flags);
L
Linus Torvalds 已提交
316 317 318
	/* Fill in a Tx ring entry */
	bdp = fep->cur_tx;

319
	status = bdp->cbd_sc;
L
Linus Torvalds 已提交
320
#ifndef final_version
321
	if (status & BD_ENET_TX_READY) {
L
Linus Torvalds 已提交
322 323 324 325
		/* Ooops.  All transmit buffers are full.  Bail out.
		 * This should not happen, since dev->tbusy should be set.
		 */
		printk("%s: tx queue full!.\n", dev->name);
326
		spin_unlock_irqrestore(&fep->hw_lock, flags);
L
Linus Torvalds 已提交
327 328 329 330 331 332
		return 1;
	}
#endif

	/* Clear all of the status flags.
	 */
333
	status &= ~BD_ENET_TX_STATS;
L
Linus Torvalds 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355

	/* Set buffer length and buffer pointer.
	*/
	bdp->cbd_bufaddr = __pa(skb->data);
	bdp->cbd_datlen = skb->len;

	/*
	 *	On some FEC implementations data must be aligned on
	 *	4-byte boundaries. Use bounce buffers to copy data
	 *	and get it aligned. Ugh.
	 */
	if (bdp->cbd_bufaddr & 0x3) {
		unsigned int index;
		index = bdp - fep->tx_bd_base;
		memcpy(fep->tx_bounce[index], (void *) bdp->cbd_bufaddr, bdp->cbd_datlen);
		bdp->cbd_bufaddr = __pa(fep->tx_bounce[index]);
	}

	/* Save skb pointer.
	*/
	fep->tx_skbuff[fep->skb_cur] = skb;

356
	dev->stats.tx_bytes += skb->len;
L
Linus Torvalds 已提交
357
	fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
358

L
Linus Torvalds 已提交
359 360 361 362 363 364
	/* Push the data cache so the CPM does not get stale memory
	 * data.
	 */
	flush_dcache_range((unsigned long)skb->data,
			   (unsigned long)skb->data + skb->len);

365 366
	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
	 * it's the last BD of the frame, and to put the CRC on the end.
L
Linus Torvalds 已提交
367 368
	 */

369
	status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
L
Linus Torvalds 已提交
370
			| BD_ENET_TX_LAST | BD_ENET_TX_TC);
371
	bdp->cbd_sc = status;
L
Linus Torvalds 已提交
372 373 374 375

	dev->trans_start = jiffies;

	/* Trigger transmission start */
376
	fecp->fec_x_des_active = 0;
L
Linus Torvalds 已提交
377 378 379

	/* If this was the last BD in the ring, start at the beginning again.
	*/
380
	if (status & BD_ENET_TX_WRAP) {
L
Linus Torvalds 已提交
381 382 383 384 385 386 387 388 389 390 391 392
		bdp = fep->tx_bd_base;
	} else {
		bdp++;
	}

	if (bdp == fep->dirty_tx) {
		fep->tx_full = 1;
		netif_stop_queue(dev);
	}

	fep->cur_tx = (cbd_t *)bdp;

393
	spin_unlock_irqrestore(&fep->hw_lock, flags);
L
Linus Torvalds 已提交
394 395 396 397 398 399 400 401 402 403

	return 0;
}

static void
fec_timeout(struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);

	printk("%s: transmit timed out.\n", dev->name);
404
	dev->stats.tx_errors++;
L
Linus Torvalds 已提交
405 406 407 408 409 410 411 412 413 414 415 416 417
#ifndef final_version
	{
	int	i;
	cbd_t	*bdp;

	printk("Ring data dump: cur_tx %lx%s, dirty_tx %lx cur_rx: %lx\n",
	       (unsigned long)fep->cur_tx, fep->tx_full ? " (full)" : "",
	       (unsigned long)fep->dirty_tx,
	       (unsigned long)fep->cur_rx);

	bdp = fep->tx_bd_base;
	printk(" tx: %u buffers\n",  TX_RING_SIZE);
	for (i = 0 ; i < TX_RING_SIZE; i++) {
418
		printk("  %08x: %04x %04x %08x\n",
L
Linus Torvalds 已提交
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
		       (uint) bdp,
		       bdp->cbd_sc,
		       bdp->cbd_datlen,
		       (int) bdp->cbd_bufaddr);
		bdp++;
	}

	bdp = fep->rx_bd_base;
	printk(" rx: %lu buffers\n",  (unsigned long) RX_RING_SIZE);
	for (i = 0 ; i < RX_RING_SIZE; i++) {
		printk("  %08x: %04x %04x %08x\n",
		       (uint) bdp,
		       bdp->cbd_sc,
		       bdp->cbd_datlen,
		       (int) bdp->cbd_bufaddr);
		bdp++;
	}
	}
#endif
438
	fec_restart(dev, fep->full_duplex);
L
Linus Torvalds 已提交
439 440 441 442 443 444 445
	netif_wake_queue(dev);
}

/* The interrupt handler.
 * This is called from the MPC core interrupt.
 */
static irqreturn_t
446
fec_enet_interrupt(int irq, void * dev_id)
L
Linus Torvalds 已提交
447 448 449 450
{
	struct	net_device *dev = dev_id;
	volatile fec_t	*fecp;
	uint	int_events;
451
	irqreturn_t ret = IRQ_NONE;
L
Linus Torvalds 已提交
452 453 454 455 456

	fecp = (volatile fec_t*)dev->base_addr;

	/* Get the interrupt events that caused us to be here.
	*/
457 458
	do {
		int_events = fecp->fec_ievent;
L
Linus Torvalds 已提交
459 460 461 462 463
		fecp->fec_ievent = int_events;

		/* Handle receive event in its own function.
		 */
		if (int_events & FEC_ENET_RXF) {
464
			ret = IRQ_HANDLED;
L
Linus Torvalds 已提交
465 466 467 468 469 470 471 472
			fec_enet_rx(dev);
		}

		/* Transmit OK, or non-fatal error. Update the buffer
		   descriptors. FEC handles all errors, we just discover
		   them as part of the transmit process.
		*/
		if (int_events & FEC_ENET_TXF) {
473
			ret = IRQ_HANDLED;
L
Linus Torvalds 已提交
474 475 476 477
			fec_enet_tx(dev);
		}

		if (int_events & FEC_ENET_MII) {
478
			ret = IRQ_HANDLED;
L
Linus Torvalds 已提交
479 480
			fec_enet_mii(dev);
		}
481

482 483 484
	} while (int_events);

	return ret;
L
Linus Torvalds 已提交
485 486 487 488 489 490 491 492
}


static void
fec_enet_tx(struct net_device *dev)
{
	struct	fec_enet_private *fep;
	volatile cbd_t	*bdp;
493
	unsigned short status;
L
Linus Torvalds 已提交
494 495 496
	struct	sk_buff	*skb;

	fep = netdev_priv(dev);
497
	spin_lock_irq(&fep->hw_lock);
L
Linus Torvalds 已提交
498 499
	bdp = fep->dirty_tx;

500
	while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
L
Linus Torvalds 已提交
501 502 503 504
		if (bdp == fep->cur_tx && fep->tx_full == 0) break;

		skb = fep->tx_skbuff[fep->skb_dirty];
		/* Check for errors. */
505
		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
L
Linus Torvalds 已提交
506 507
				   BD_ENET_TX_RL | BD_ENET_TX_UN |
				   BD_ENET_TX_CSL)) {
508
			dev->stats.tx_errors++;
509
			if (status & BD_ENET_TX_HB)  /* No heartbeat */
510
				dev->stats.tx_heartbeat_errors++;
511
			if (status & BD_ENET_TX_LC)  /* Late collision */
512
				dev->stats.tx_window_errors++;
513
			if (status & BD_ENET_TX_RL)  /* Retrans limit */
514
				dev->stats.tx_aborted_errors++;
515
			if (status & BD_ENET_TX_UN)  /* Underrun */
516
				dev->stats.tx_fifo_errors++;
517
			if (status & BD_ENET_TX_CSL) /* Carrier lost */
518
				dev->stats.tx_carrier_errors++;
L
Linus Torvalds 已提交
519
		} else {
520
			dev->stats.tx_packets++;
L
Linus Torvalds 已提交
521 522 523
		}

#ifndef final_version
524
		if (status & BD_ENET_TX_READY)
L
Linus Torvalds 已提交
525 526 527 528 529
			printk("HEY! Enet xmit interrupt and TX_READY.\n");
#endif
		/* Deferred means some collisions occurred during transmit,
		 * but we eventually sent the packet OK.
		 */
530
		if (status & BD_ENET_TX_DEF)
531
			dev->stats.collisions++;
532

L
Linus Torvalds 已提交
533 534 535 536 537
		/* Free the sk buffer associated with this last transmit.
		 */
		dev_kfree_skb_any(skb);
		fep->tx_skbuff[fep->skb_dirty] = NULL;
		fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
538

L
Linus Torvalds 已提交
539 540
		/* Update pointer to next buffer descriptor to be transmitted.
		 */
541
		if (status & BD_ENET_TX_WRAP)
L
Linus Torvalds 已提交
542 543 544
			bdp = fep->tx_bd_base;
		else
			bdp++;
545

L
Linus Torvalds 已提交
546 547 548 549 550 551 552 553 554 555
		/* Since we have freed up a buffer, the ring is no longer
		 * full.
		 */
		if (fep->tx_full) {
			fep->tx_full = 0;
			if (netif_queue_stopped(dev))
				netif_wake_queue(dev);
		}
	}
	fep->dirty_tx = (cbd_t *)bdp;
556
	spin_unlock_irq(&fep->hw_lock);
L
Linus Torvalds 已提交
557 558 559 560 561 562 563 564 565 566 567 568 569 570
}


/* During a receive, the cur_rx points to the current incoming buffer.
 * When we update through the ring, if the next incoming buffer has
 * not been given to the system, we just set the empty indicator,
 * effectively tossing the packet.
 */
static void
fec_enet_rx(struct net_device *dev)
{
	struct	fec_enet_private *fep;
	volatile fec_t	*fecp;
	volatile cbd_t *bdp;
571
	unsigned short status;
L
Linus Torvalds 已提交
572 573 574
	struct	sk_buff	*skb;
	ushort	pkt_len;
	__u8 *data;
575

576 577
#ifdef CONFIG_M532x
	flush_cache_all();
578
#endif
L
Linus Torvalds 已提交
579 580 581 582

	fep = netdev_priv(dev);
	fecp = (volatile fec_t*)dev->base_addr;

583 584
	spin_lock_irq(&fep->hw_lock);

L
Linus Torvalds 已提交
585 586 587 588 589
	/* First, grab all of the stats for the incoming packet.
	 * These get messed up if we get called due to a busy condition.
	 */
	bdp = fep->cur_rx;

590
while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
L
Linus Torvalds 已提交
591 592 593 594 595

#ifndef final_version
	/* Since we have allocated space to hold a complete frame,
	 * the last indicator should be set.
	 */
596
	if ((status & BD_ENET_RX_LAST) == 0)
L
Linus Torvalds 已提交
597 598 599 600 601 602 603
		printk("FEC ENET: rcv is not +last\n");
#endif

	if (!fep->opened)
		goto rx_processing_done;

	/* Check for errors. */
604
	if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
L
Linus Torvalds 已提交
605
			   BD_ENET_RX_CR | BD_ENET_RX_OV)) {
606
		dev->stats.rx_errors++;
607
		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
L
Linus Torvalds 已提交
608
		/* Frame too long or too short. */
609
			dev->stats.rx_length_errors++;
L
Linus Torvalds 已提交
610
		}
611
		if (status & BD_ENET_RX_NO)	/* Frame alignment */
612
			dev->stats.rx_frame_errors++;
613
		if (status & BD_ENET_RX_CR)	/* CRC Error */
614
			dev->stats.rx_crc_errors++;
615
		if (status & BD_ENET_RX_OV)	/* FIFO overrun */
616
			dev->stats.rx_fifo_errors++;
L
Linus Torvalds 已提交
617 618 619 620 621 622
	}

	/* Report late collisions as a frame error.
	 * On this error, the BD is closed, but we don't know what we
	 * have in the buffer.  So, just drop this frame on the floor.
	 */
623
	if (status & BD_ENET_RX_CL) {
624 625
		dev->stats.rx_errors++;
		dev->stats.rx_frame_errors++;
L
Linus Torvalds 已提交
626 627 628 629 630
		goto rx_processing_done;
	}

	/* Process the incoming frame.
	 */
631
	dev->stats.rx_packets++;
L
Linus Torvalds 已提交
632
	pkt_len = bdp->cbd_datlen;
633
	dev->stats.rx_bytes += pkt_len;
L
Linus Torvalds 已提交
634 635 636 637 638 639 640 641 642 643 644
	data = (__u8*)__va(bdp->cbd_bufaddr);

	/* This does 16 byte alignment, exactly what we need.
	 * The packet length includes FCS, but we don't want to
	 * include that when passing upstream as it messes up
	 * bridging applications.
	 */
	skb = dev_alloc_skb(pkt_len-4);

	if (skb == NULL) {
		printk("%s: Memory squeeze, dropping packet.\n", dev->name);
645
		dev->stats.rx_dropped++;
L
Linus Torvalds 已提交
646 647
	} else {
		skb_put(skb,pkt_len-4);	/* Make room */
648
		skb_copy_to_linear_data(skb, data, pkt_len-4);
L
Linus Torvalds 已提交
649 650 651 652 653 654 655
		skb->protocol=eth_type_trans(skb,dev);
		netif_rx(skb);
	}
  rx_processing_done:

	/* Clear the status flags for this buffer.
	*/
656
	status &= ~BD_ENET_RX_STATS;
L
Linus Torvalds 已提交
657 658 659

	/* Mark the buffer empty.
	*/
660 661
	status |= BD_ENET_RX_EMPTY;
	bdp->cbd_sc = status;
L
Linus Torvalds 已提交
662 663 664

	/* Update BD pointer to next entry.
	*/
665
	if (status & BD_ENET_RX_WRAP)
L
Linus Torvalds 已提交
666 667 668
		bdp = fep->rx_bd_base;
	else
		bdp++;
669

L
Linus Torvalds 已提交
670 671 672 673 674
#if 1
	/* Doing this here will keep the FEC running while we process
	 * incoming frames.  On a heavily loaded network, we should be
	 * able to keep up at the expense of system resources.
	 */
675
	fecp->fec_r_des_active = 0;
L
Linus Torvalds 已提交
676
#endif
677
   } /* while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) */
L
Linus Torvalds 已提交
678 679 680 681 682 683 684 685 686 687
	fep->cur_rx = (cbd_t *)bdp;

#if 0
	/* Doing this here will allow us to process all frames in the
	 * ring before the FEC is allowed to put more there.  On a heavily
	 * loaded network, some frames may be lost.  Unfortunately, this
	 * increases the interrupt overhead since we can potentially work
	 * our way back to the interrupt return only to come right back
	 * here.
	 */
688
	fecp->fec_r_des_active = 0;
L
Linus Torvalds 已提交
689
#endif
690 691

	spin_unlock_irq(&fep->hw_lock);
L
Linus Torvalds 已提交
692 693 694
}


695
/* called from interrupt context */
L
Linus Torvalds 已提交
696 697 698 699 700 701 702 703 704
static void
fec_enet_mii(struct net_device *dev)
{
	struct	fec_enet_private *fep;
	volatile fec_t	*ep;
	mii_list_t	*mip;
	uint		mii_reg;

	fep = netdev_priv(dev);
705 706
	spin_lock_irq(&fep->mii_lock);

L
Linus Torvalds 已提交
707 708
	ep = fep->hwp;
	mii_reg = ep->fec_mii_data;
709

L
Linus Torvalds 已提交
710 711
	if ((mip = mii_head) == NULL) {
		printk("MII and no head!\n");
712
		goto unlock;
L
Linus Torvalds 已提交
713 714 715 716 717 718 719 720 721 722 723
	}

	if (mip->mii_func != NULL)
		(*(mip->mii_func))(mii_reg, dev);

	mii_head = mip->mii_next;
	mip->mii_next = mii_free;
	mii_free = mip;

	if ((mip = mii_head) != NULL)
		ep->fec_mii_data = mip->mii_regval;
724 725

unlock:
726
	spin_unlock_irq(&fep->mii_lock);
L
Linus Torvalds 已提交
727 728 729 730 731 732 733 734 735 736 737 738 739
}

static int
mii_queue(struct net_device *dev, int regval, void (*func)(uint, struct net_device *))
{
	struct fec_enet_private *fep;
	unsigned long	flags;
	mii_list_t	*mip;
	int		retval;

	/* Add PHY address to register command.
	*/
	fep = netdev_priv(dev);
740
	spin_lock_irqsave(&fep->mii_lock, flags);
L
Linus Torvalds 已提交
741

742
	regval |= fep->phy_addr << 23;
L
Linus Torvalds 已提交
743 744 745 746 747 748 749 750 751 752
	retval = 0;

	if ((mip = mii_free) != NULL) {
		mii_free = mip->mii_next;
		mip->mii_regval = regval;
		mip->mii_func = func;
		mip->mii_next = NULL;
		if (mii_head) {
			mii_tail->mii_next = mip;
			mii_tail = mip;
753
		} else {
L
Linus Torvalds 已提交
754 755 756
			mii_head = mii_tail = mip;
			fep->hwp->fec_mii_data = regval;
		}
757
	} else {
L
Linus Torvalds 已提交
758 759 760
		retval = 1;
	}

761 762
	spin_unlock_irqrestore(&fep->mii_lock, flags);
	return retval;
L
Linus Torvalds 已提交
763 764 765 766 767 768 769
}

static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c)
{
	if(!c)
		return;

770 771
	for (; c->mii_data != mk_mii_end; c++)
		mii_queue(dev, c->mii_data, c->funct);
L
Linus Torvalds 已提交
772 773 774 775 776 777
}

static void mii_parse_sr(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	volatile uint *s = &(fep->phy_status);
778
	uint status;
L
Linus Torvalds 已提交
779

780
	status = *s & ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC);
L
Linus Torvalds 已提交
781 782

	if (mii_reg & 0x0004)
783
		status |= PHY_STAT_LINK;
L
Linus Torvalds 已提交
784
	if (mii_reg & 0x0010)
785
		status |= PHY_STAT_FAULT;
L
Linus Torvalds 已提交
786
	if (mii_reg & 0x0020)
787 788
		status |= PHY_STAT_ANC;
	*s = status;
L
Linus Torvalds 已提交
789 790 791 792 793 794
}

static void mii_parse_cr(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	volatile uint *s = &(fep->phy_status);
795
	uint status;
L
Linus Torvalds 已提交
796

797
	status = *s & ~(PHY_CONF_ANE | PHY_CONF_LOOP);
L
Linus Torvalds 已提交
798 799

	if (mii_reg & 0x1000)
800
		status |= PHY_CONF_ANE;
L
Linus Torvalds 已提交
801
	if (mii_reg & 0x4000)
802 803
		status |= PHY_CONF_LOOP;
	*s = status;
L
Linus Torvalds 已提交
804 805 806 807 808 809
}

static void mii_parse_anar(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	volatile uint *s = &(fep->phy_status);
810
	uint status;
L
Linus Torvalds 已提交
811

812
	status = *s & ~(PHY_CONF_SPMASK);
L
Linus Torvalds 已提交
813 814

	if (mii_reg & 0x0020)
815
		status |= PHY_CONF_10HDX;
L
Linus Torvalds 已提交
816
	if (mii_reg & 0x0040)
817
		status |= PHY_CONF_10FDX;
L
Linus Torvalds 已提交
818
	if (mii_reg & 0x0080)
819
		status |= PHY_CONF_100HDX;
L
Linus Torvalds 已提交
820
	if (mii_reg & 0x00100)
821 822
		status |= PHY_CONF_100FDX;
	*s = status;
L
Linus Torvalds 已提交
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
}

/* ------------------------------------------------------------------------- */
/* The Level one LXT970 is used by many boards				     */

#define MII_LXT970_MIRROR    16  /* Mirror register           */
#define MII_LXT970_IER       17  /* Interrupt Enable Register */
#define MII_LXT970_ISR       18  /* Interrupt Status Register */
#define MII_LXT970_CONFIG    19  /* Configuration Register    */
#define MII_LXT970_CSR       20  /* Chip Status Register      */

static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	volatile uint *s = &(fep->phy_status);
838
	uint status;
L
Linus Torvalds 已提交
839

840
	status = *s & ~(PHY_STAT_SPMASK);
L
Linus Torvalds 已提交
841 842
	if (mii_reg & 0x0800) {
		if (mii_reg & 0x1000)
843
			status |= PHY_STAT_100FDX;
L
Linus Torvalds 已提交
844
		else
845
			status |= PHY_STAT_100HDX;
L
Linus Torvalds 已提交
846 847
	} else {
		if (mii_reg & 0x1000)
848
			status |= PHY_STAT_10FDX;
L
Linus Torvalds 已提交
849
		else
850
			status |= PHY_STAT_10HDX;
L
Linus Torvalds 已提交
851
	}
852
	*s = status;
L
Linus Torvalds 已提交
853 854
}

855
static phy_cmd_t const phy_cmd_lxt970_config[] = {
L
Linus Torvalds 已提交
856 857 858
		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
		{ mk_mii_end, }
859 860
	};
static phy_cmd_t const phy_cmd_lxt970_startup[] = { /* enable interrupts */
L
Linus Torvalds 已提交
861 862 863
		{ mk_mii_write(MII_LXT970_IER, 0x0002), NULL },
		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
		{ mk_mii_end, }
864 865
	};
static phy_cmd_t const phy_cmd_lxt970_ack_int[] = {
L
Linus Torvalds 已提交
866 867 868 869 870 871 872
		/* read SR and ISR to acknowledge */
		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
		{ mk_mii_read(MII_LXT970_ISR), NULL },

		/* find out the current status */
		{ mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr },
		{ mk_mii_end, }
873 874
	};
static phy_cmd_t const phy_cmd_lxt970_shutdown[] = { /* disable interrupts */
L
Linus Torvalds 已提交
875 876
		{ mk_mii_write(MII_LXT970_IER, 0x0000), NULL },
		{ mk_mii_end, }
877 878
	};
static phy_info_t const phy_info_lxt970 = {
879
	.id = 0x07810000,
880 881 882 883 884
	.name = "LXT970",
	.config = phy_cmd_lxt970_config,
	.startup = phy_cmd_lxt970_startup,
	.ack_int = phy_cmd_lxt970_ack_int,
	.shutdown = phy_cmd_lxt970_shutdown
L
Linus Torvalds 已提交
885
};
886

L
Linus Torvalds 已提交
887 888 889 890 891 892 893 894 895 896 897 898
/* ------------------------------------------------------------------------- */
/* The Level one LXT971 is used on some of my custom boards                  */

/* register definitions for the 971 */

#define MII_LXT971_PCR       16  /* Port Control Register     */
#define MII_LXT971_SR2       17  /* Status Register 2         */
#define MII_LXT971_IER       18  /* Interrupt Enable Register */
#define MII_LXT971_ISR       19  /* Interrupt Status Register */
#define MII_LXT971_LCR       20  /* LED Control Register      */
#define MII_LXT971_TCR       30  /* Transmit Control Register */

899
/*
L
Linus Torvalds 已提交
900 901 902 903 904 905 906 907 908
 * I had some nice ideas of running the MDIO faster...
 * The 971 should support 8MHz and I tried it, but things acted really
 * weird, so 2.5 MHz ought to be enough for anyone...
 */

static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	volatile uint *s = &(fep->phy_status);
909
	uint status;
L
Linus Torvalds 已提交
910

911
	status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);
L
Linus Torvalds 已提交
912 913 914

	if (mii_reg & 0x0400) {
		fep->link = 1;
915
		status |= PHY_STAT_LINK;
L
Linus Torvalds 已提交
916 917 918 919
	} else {
		fep->link = 0;
	}
	if (mii_reg & 0x0080)
920
		status |= PHY_STAT_ANC;
L
Linus Torvalds 已提交
921 922
	if (mii_reg & 0x4000) {
		if (mii_reg & 0x0200)
923
			status |= PHY_STAT_100FDX;
L
Linus Torvalds 已提交
924
		else
925
			status |= PHY_STAT_100HDX;
L
Linus Torvalds 已提交
926 927
	} else {
		if (mii_reg & 0x0200)
928
			status |= PHY_STAT_10FDX;
L
Linus Torvalds 已提交
929
		else
930
			status |= PHY_STAT_10HDX;
L
Linus Torvalds 已提交
931 932
	}
	if (mii_reg & 0x0008)
933
		status |= PHY_STAT_FAULT;
L
Linus Torvalds 已提交
934

935 936
	*s = status;
}
937

938
static phy_cmd_t const phy_cmd_lxt971_config[] = {
939
		/* limit to 10MBit because my prototype board
L
Linus Torvalds 已提交
940 941 942 943 944
		 * doesn't work with 100. */
		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
		{ mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
		{ mk_mii_end, }
945 946
	};
static phy_cmd_t const phy_cmd_lxt971_startup[] = {  /* enable interrupts */
L
Linus Torvalds 已提交
947 948 949 950 951 952
		{ mk_mii_write(MII_LXT971_IER, 0x00f2), NULL },
		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
		{ mk_mii_write(MII_LXT971_LCR, 0xd422), NULL }, /* LED config */
		/* Somehow does the 971 tell me that the link is down
		 * the first read after power-up.
		 * read here to get a valid value in ack_int */
953
		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
L
Linus Torvalds 已提交
954
		{ mk_mii_end, }
955 956 957 958
	};
static phy_cmd_t const phy_cmd_lxt971_ack_int[] = {
		/* acknowledge the int before reading status ! */
		{ mk_mii_read(MII_LXT971_ISR), NULL },
L
Linus Torvalds 已提交
959 960 961 962
		/* find out the current status */
		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
		{ mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
		{ mk_mii_end, }
963 964
	};
static phy_cmd_t const phy_cmd_lxt971_shutdown[] = { /* disable interrupts */
L
Linus Torvalds 已提交
965 966
		{ mk_mii_write(MII_LXT971_IER, 0x0000), NULL },
		{ mk_mii_end, }
967 968
	};
static phy_info_t const phy_info_lxt971 = {
969
	.id = 0x0001378e,
970 971 972 973 974
	.name = "LXT971",
	.config = phy_cmd_lxt971_config,
	.startup = phy_cmd_lxt971_startup,
	.ack_int = phy_cmd_lxt971_ack_int,
	.shutdown = phy_cmd_lxt971_shutdown
L
Linus Torvalds 已提交
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
};

/* ------------------------------------------------------------------------- */
/* The Quality Semiconductor QS6612 is used on the RPX CLLF                  */

/* register definitions */

#define MII_QS6612_MCR       17  /* Mode Control Register      */
#define MII_QS6612_FTR       27  /* Factory Test Register      */
#define MII_QS6612_MCO       28  /* Misc. Control Register     */
#define MII_QS6612_ISR       29  /* Interrupt Source Register  */
#define MII_QS6612_IMR       30  /* Interrupt Mask Register    */
#define MII_QS6612_PCR       31  /* 100BaseTx PHY Control Reg. */

static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	volatile uint *s = &(fep->phy_status);
993
	uint status;
L
Linus Torvalds 已提交
994

995
	status = *s & ~(PHY_STAT_SPMASK);
L
Linus Torvalds 已提交
996 997

	switch((mii_reg >> 2) & 7) {
998 999 1000 1001
	case 1: status |= PHY_STAT_10HDX; break;
	case 2: status |= PHY_STAT_100HDX; break;
	case 5: status |= PHY_STAT_10FDX; break;
	case 6: status |= PHY_STAT_100FDX; break;
L
Linus Torvalds 已提交
1002 1003
}

1004 1005 1006 1007
	*s = status;
}

static phy_cmd_t const phy_cmd_qs6612_config[] = {
1008
		/* The PHY powers up isolated on the RPX,
L
Linus Torvalds 已提交
1009 1010 1011 1012 1013 1014 1015 1016
		 * so send a command to allow operation.
		 */
		{ mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL },

		/* parse cr and anar to get some info */
		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
		{ mk_mii_end, }
1017 1018
	};
static phy_cmd_t const phy_cmd_qs6612_startup[] = {  /* enable interrupts */
L
Linus Torvalds 已提交
1019 1020 1021
		{ mk_mii_write(MII_QS6612_IMR, 0x003a), NULL },
		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
		{ mk_mii_end, }
1022 1023
	};
static phy_cmd_t const phy_cmd_qs6612_ack_int[] = {
L
Linus Torvalds 已提交
1024 1025 1026 1027 1028 1029 1030 1031
		/* we need to read ISR, SR and ANER to acknowledge */
		{ mk_mii_read(MII_QS6612_ISR), NULL },
		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
		{ mk_mii_read(MII_REG_ANER), NULL },

		/* read pcr to get info */
		{ mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr },
		{ mk_mii_end, }
1032 1033
	};
static phy_cmd_t const phy_cmd_qs6612_shutdown[] = { /* disable interrupts */
L
Linus Torvalds 已提交
1034 1035
		{ mk_mii_write(MII_QS6612_IMR, 0x0000), NULL },
		{ mk_mii_end, }
1036 1037
	};
static phy_info_t const phy_info_qs6612 = {
1038
	.id = 0x00181440,
1039 1040 1041 1042 1043
	.name = "QS6612",
	.config = phy_cmd_qs6612_config,
	.startup = phy_cmd_qs6612_startup,
	.ack_int = phy_cmd_qs6612_ack_int,
	.shutdown = phy_cmd_qs6612_shutdown
L
Linus Torvalds 已提交
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
};

/* ------------------------------------------------------------------------- */
/* AMD AM79C874 phy                                                          */

/* register definitions for the 874 */

#define MII_AM79C874_MFR       16  /* Miscellaneous Feature Register */
#define MII_AM79C874_ICSR      17  /* Interrupt/Status Register      */
#define MII_AM79C874_DR        18  /* Diagnostic Register            */
#define MII_AM79C874_PMLR      19  /* Power and Loopback Register    */
#define MII_AM79C874_MCR       21  /* ModeControl Register           */
#define MII_AM79C874_DC        23  /* Disconnect Counter             */
#define MII_AM79C874_REC       24  /* Recieve Error Counter          */

static void mii_parse_am79c874_dr(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	volatile uint *s = &(fep->phy_status);
1063
	uint status;
L
Linus Torvalds 已提交
1064

1065
	status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_ANC);
L
Linus Torvalds 已提交
1066 1067

	if (mii_reg & 0x0080)
1068
		status |= PHY_STAT_ANC;
L
Linus Torvalds 已提交
1069
	if (mii_reg & 0x0400)
1070
		status |= ((mii_reg & 0x0800) ? PHY_STAT_100FDX : PHY_STAT_100HDX);
L
Linus Torvalds 已提交
1071
	else
1072 1073 1074
		status |= ((mii_reg & 0x0800) ? PHY_STAT_10FDX : PHY_STAT_10HDX);

	*s = status;
L
Linus Torvalds 已提交
1075 1076
}

1077
static phy_cmd_t const phy_cmd_am79c874_config[] = {
L
Linus Torvalds 已提交
1078 1079 1080 1081
		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
		{ mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
		{ mk_mii_end, }
1082 1083
	};
static phy_cmd_t const phy_cmd_am79c874_startup[] = {  /* enable interrupts */
L
Linus Torvalds 已提交
1084 1085
		{ mk_mii_write(MII_AM79C874_ICSR, 0xff00), NULL },
		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1086
		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
L
Linus Torvalds 已提交
1087
		{ mk_mii_end, }
1088 1089
	};
static phy_cmd_t const phy_cmd_am79c874_ack_int[] = {
L
Linus Torvalds 已提交
1090 1091 1092 1093 1094 1095
		/* find out the current status */
		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
		{ mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
		/* we only need to read ISR to acknowledge */
		{ mk_mii_read(MII_AM79C874_ICSR), NULL },
		{ mk_mii_end, }
1096 1097
	};
static phy_cmd_t const phy_cmd_am79c874_shutdown[] = { /* disable interrupts */
L
Linus Torvalds 已提交
1098 1099
		{ mk_mii_write(MII_AM79C874_ICSR, 0x0000), NULL },
		{ mk_mii_end, }
1100 1101 1102 1103 1104 1105 1106 1107
	};
static phy_info_t const phy_info_am79c874 = {
	.id = 0x00022561,
	.name = "AM79C874",
	.config = phy_cmd_am79c874_config,
	.startup = phy_cmd_am79c874_startup,
	.ack_int = phy_cmd_am79c874_ack_int,
	.shutdown = phy_cmd_am79c874_shutdown
L
Linus Torvalds 已提交
1108 1109
};

1110

L
Linus Torvalds 已提交
1111 1112 1113 1114 1115 1116 1117 1118 1119
/* ------------------------------------------------------------------------- */
/* Kendin KS8721BL phy                                                       */

/* register definitions for the 8721 */

#define MII_KS8721BL_RXERCR	21
#define MII_KS8721BL_ICSR	22
#define	MII_KS8721BL_PHYCR	31

1120
static phy_cmd_t const phy_cmd_ks8721bl_config[] = {
L
Linus Torvalds 已提交
1121 1122 1123
		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
		{ mk_mii_end, }
1124 1125
	};
static phy_cmd_t const phy_cmd_ks8721bl_startup[] = {  /* enable interrupts */
L
Linus Torvalds 已提交
1126 1127
		{ mk_mii_write(MII_KS8721BL_ICSR, 0xff00), NULL },
		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1128
		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
L
Linus Torvalds 已提交
1129
		{ mk_mii_end, }
1130 1131
	};
static phy_cmd_t const phy_cmd_ks8721bl_ack_int[] = {
L
Linus Torvalds 已提交
1132 1133 1134 1135 1136
		/* find out the current status */
		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
		/* we only need to read ISR to acknowledge */
		{ mk_mii_read(MII_KS8721BL_ICSR), NULL },
		{ mk_mii_end, }
1137 1138
	};
static phy_cmd_t const phy_cmd_ks8721bl_shutdown[] = { /* disable interrupts */
L
Linus Torvalds 已提交
1139 1140
		{ mk_mii_write(MII_KS8721BL_ICSR, 0x0000), NULL },
		{ mk_mii_end, }
1141 1142
	};
static phy_info_t const phy_info_ks8721bl = {
1143
	.id = 0x00022161,
1144 1145 1146 1147 1148
	.name = "KS8721BL",
	.config = phy_cmd_ks8721bl_config,
	.startup = phy_cmd_ks8721bl_startup,
	.ack_int = phy_cmd_ks8721bl_ack_int,
	.shutdown = phy_cmd_ks8721bl_shutdown
L
Linus Torvalds 已提交
1149 1150
};

1151 1152 1153 1154 1155 1156 1157
/* ------------------------------------------------------------------------- */
/* register definitions for the DP83848 */

#define MII_DP8384X_PHYSTST    16  /* PHY Status Register */

static void mii_parse_dp8384x_sr2(uint mii_reg, struct net_device *dev)
{
1158
	struct fec_enet_private *fep = netdev_priv(dev);
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
	volatile uint *s = &(fep->phy_status);

	*s &= ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);

	/* Link up */
	if (mii_reg & 0x0001) {
		fep->link = 1;
		*s |= PHY_STAT_LINK;
	} else
		fep->link = 0;
	/* Status of link */
	if (mii_reg & 0x0010)   /* Autonegotioation complete */
		*s |= PHY_STAT_ANC;
	if (mii_reg & 0x0002) {   /* 10MBps? */
		if (mii_reg & 0x0004)   /* Full Duplex? */
			*s |= PHY_STAT_10FDX;
		else
			*s |= PHY_STAT_10HDX;
	} else {                  /* 100 Mbps? */
		if (mii_reg & 0x0004)   /* Full Duplex? */
			*s |= PHY_STAT_100FDX;
		else
			*s |= PHY_STAT_100HDX;
	}
	if (mii_reg & 0x0008)
		*s |= PHY_STAT_FAULT;
}

static phy_info_t phy_info_dp83848= {
	0x020005c9,
	"DP83848",

	(const phy_cmd_t []) {  /* config */
		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
		{ mk_mii_read(MII_DP8384X_PHYSTST), mii_parse_dp8384x_sr2 },
		{ mk_mii_end, }
	},
	(const phy_cmd_t []) {  /* startup - enable interrupts */
		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
		{ mk_mii_end, }
	},
	(const phy_cmd_t []) { /* ack_int - never happens, no interrupt */
		{ mk_mii_end, }
	},
	(const phy_cmd_t []) {  /* shutdown */
		{ mk_mii_end, }
	},
};

L
Linus Torvalds 已提交
1210 1211
/* ------------------------------------------------------------------------- */

1212
static phy_info_t const * const phy_info[] = {
L
Linus Torvalds 已提交
1213 1214 1215 1216 1217
	&phy_info_lxt970,
	&phy_info_lxt971,
	&phy_info_qs6612,
	&phy_info_am79c874,
	&phy_info_ks8721bl,
1218
	&phy_info_dp83848,
L
Linus Torvalds 已提交
1219 1220 1221 1222
	NULL
};

/* ------------------------------------------------------------------------- */
1223
#ifdef HAVE_mii_link_interrupt
L
Linus Torvalds 已提交
1224
static irqreturn_t
1225
mii_link_interrupt(int irq, void * dev_id);
L
Linus Torvalds 已提交
1226 1227 1228 1229 1230 1231 1232 1233 1234
#endif

#if defined(CONFIG_M5272)
/*
 *	Code specific to Coldfire 5272 setup.
 */
static void __inline__ fec_request_intrs(struct net_device *dev)
{
	volatile unsigned long *icrp;
1235 1236 1237
	static const struct idesc {
		char *name;
		unsigned short irq;
1238
		irq_handler_t handler;
1239 1240 1241 1242 1243 1244 1245
	} *idp, id[] = {
		{ "fec(RX)", 86, fec_enet_interrupt },
		{ "fec(TX)", 87, fec_enet_interrupt },
		{ "fec(OTHER)", 88, fec_enet_interrupt },
		{ "fec(MII)", 66, mii_link_interrupt },
		{ NULL },
	};
L
Linus Torvalds 已提交
1246 1247

	/* Setup interrupt handlers. */
1248
	for (idp = id; idp->name; idp++) {
1249
		if (request_irq(idp->irq, idp->handler, IRQF_DISABLED, idp->name, dev) != 0)
1250 1251
			printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, idp->irq);
	}
L
Linus Torvalds 已提交
1252 1253 1254 1255 1256

	/* Unmask interrupt at ColdFire 5272 SIM */
	icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR3);
	*icrp = 0x00000ddd;
	icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1257
	*icrp = 0x0d000000;
L
Linus Torvalds 已提交
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
}

static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
{
	volatile fec_t *fecp;

	fecp = fep->hwp;
	fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
	fecp->fec_x_cntrl = 0x00;

	/*
	 * Set MII speed to 2.5 MHz
	 * See 5272 manual section 11.5.8: MSCR
	 */
	fep->phy_speed = ((((MCF_CLK / 4) / (2500000 / 10)) + 5) / 10) * 2;
	fecp->fec_mii_speed = fep->phy_speed;

	fec_restart(dev, 0);
}

static void __inline__ fec_get_mac(struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	volatile fec_t *fecp;
1282
	unsigned char *iap, tmpaddr[ETH_ALEN];
L
Linus Torvalds 已提交
1283 1284 1285

	fecp = fep->hwp;

1286
	if (FEC_FLASHMAC) {
L
Linus Torvalds 已提交
1287 1288 1289 1290
		/*
		 * Get MAC address from FLASH.
		 * If it is all 1's or 0's, use the default.
		 */
1291
		iap = (unsigned char *)FEC_FLASHMAC;
L
Linus Torvalds 已提交
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
		if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
		    (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
			iap = fec_mac_default;
		if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
		    (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
			iap = fec_mac_default;
	} else {
		*((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
		*((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
		iap = &tmpaddr[0];
	}

1304
	memcpy(dev->dev_addr, iap, ETH_ALEN);
L
Linus Torvalds 已提交
1305 1306

	/* Adjust MAC if using default MAC address */
1307 1308
	if (iap == fec_mac_default)
		 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
L
Linus Torvalds 已提交
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
}

static void __inline__ fec_enable_phy_intr(void)
{
}

static void __inline__ fec_disable_phy_intr(void)
{
	volatile unsigned long *icrp;
	icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1319
	*icrp = 0x08000000;
L
Linus Torvalds 已提交
1320 1321 1322 1323 1324 1325 1326
}

static void __inline__ fec_phy_ack_intr(void)
{
	volatile unsigned long *icrp;
	/* Acknowledge the interrupt */
	icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1327
	*icrp = 0x0d000000;
L
Linus Torvalds 已提交
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
}

static void __inline__ fec_localhw_setup(void)
{
}

/*
 *	Do not need to make region uncached on 5272.
 */
static void __inline__ fec_uncache(unsigned long addr)
{
}

/* ------------------------------------------------------------------------- */

1343
#elif defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x)
L
Linus Torvalds 已提交
1344 1345

/*
1346 1347
 *	Code specific to Coldfire 5230/5231/5232/5234/5235,
 *	the 5270/5271/5274/5275 and 5280/5282 setups.
L
Linus Torvalds 已提交
1348 1349 1350 1351 1352
 */
static void __inline__ fec_request_intrs(struct net_device *dev)
{
	struct fec_enet_private *fep;
	int b;
1353 1354 1355 1356 1357 1358 1359 1360 1361
	static const struct idesc {
		char *name;
		unsigned short irq;
	} *idp, id[] = {
		{ "fec(TXF)", 23 },
		{ "fec(RXF)", 27 },
		{ "fec(MII)", 29 },
		{ NULL },
	};
L
Linus Torvalds 已提交
1362 1363 1364 1365 1366

	fep = netdev_priv(dev);
	b = (fep->index) ? 128 : 64;

	/* Setup interrupt handlers. */
1367
	for (idp = id; idp->name; idp++) {
1368
		if (request_irq(b+idp->irq, fec_enet_interrupt, IRQF_DISABLED, idp->name, dev) != 0)
1369 1370
			printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, b+idp->irq);
	}
L
Linus Torvalds 已提交
1371 1372 1373 1374 1375

	/* Unmask interrupts at ColdFire 5280/5282 interrupt controller */
	{
		volatile unsigned char  *icrp;
		volatile unsigned long  *imrp;
1376
		int i, ilip;
L
Linus Torvalds 已提交
1377 1378 1379 1380

		b = (fep->index) ? MCFICM_INTC1 : MCFICM_INTC0;
		icrp = (volatile unsigned char *) (MCF_IPSBAR + b +
			MCFINTC_ICR0);
1381 1382
		for (i = 23, ilip = 0x28; (i < 36); i++)
			icrp[i] = ilip--;
L
Linus Torvalds 已提交
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394

		imrp = (volatile unsigned long *) (MCF_IPSBAR + b +
			MCFINTC_IMRH);
		*imrp &= ~0x0000000f;
		imrp = (volatile unsigned long *) (MCF_IPSBAR + b +
			MCFINTC_IMRL);
		*imrp &= ~0xff800001;
	}

#if defined(CONFIG_M528x)
	/* Set up gpio outputs for MII lines */
	{
1395 1396
		volatile u16 *gpio_paspar;
		volatile u8 *gpio_pehlpar;
1397

1398 1399 1400 1401
		gpio_paspar = (volatile u16 *) (MCF_IPSBAR + 0x100056);
		gpio_pehlpar = (volatile u16 *) (MCF_IPSBAR + 0x100058);
		*gpio_paspar |= 0x0f00;
		*gpio_pehlpar = 0xc0;
L
Linus Torvalds 已提交
1402 1403
	}
#endif
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426

#if defined(CONFIG_M527x)
	/* Set up gpio outputs for MII lines */
	{
		volatile u8 *gpio_par_fec;
		volatile u16 *gpio_par_feci2c;

		gpio_par_feci2c = (volatile u16 *)(MCF_IPSBAR + 0x100082);
		/* Set up gpio outputs for FEC0 MII lines */
		gpio_par_fec = (volatile u8 *)(MCF_IPSBAR + 0x100078);

		*gpio_par_feci2c |= 0x0f00;
		*gpio_par_fec |= 0xc0;

#if defined(CONFIG_FEC2)
		/* Set up gpio outputs for FEC1 MII lines */
		gpio_par_fec = (volatile u8 *)(MCF_IPSBAR + 0x100079);

		*gpio_par_feci2c |= 0x00a0;
		*gpio_par_fec |= 0xc0;
#endif /* CONFIG_FEC2 */
	}
#endif /* CONFIG_M527x */
L
Linus Torvalds 已提交
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
}

static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
{
	volatile fec_t *fecp;

	fecp = fep->hwp;
	fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
	fecp->fec_x_cntrl = 0x00;

	/*
	 * Set MII speed to 2.5 MHz
	 * See 5282 manual section 17.5.4.7: MSCR
	 */
	fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
	fecp->fec_mii_speed = fep->phy_speed;

	fec_restart(dev, 0);
}

static void __inline__ fec_get_mac(struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	volatile fec_t *fecp;
1451
	unsigned char *iap, tmpaddr[ETH_ALEN];
L
Linus Torvalds 已提交
1452 1453 1454

	fecp = fep->hwp;

1455
	if (FEC_FLASHMAC) {
L
Linus Torvalds 已提交
1456 1457 1458 1459
		/*
		 * Get MAC address from FLASH.
		 * If it is all 1's or 0's, use the default.
		 */
1460
		iap = FEC_FLASHMAC;
L
Linus Torvalds 已提交
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
		if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
		    (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
			iap = fec_mac_default;
		if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
		    (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
			iap = fec_mac_default;
	} else {
		*((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
		*((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
		iap = &tmpaddr[0];
	}

1473
	memcpy(dev->dev_addr, iap, ETH_ALEN);
L
Linus Torvalds 已提交
1474 1475

	/* Adjust MAC if using default MAC address */
1476 1477
	if (iap == fec_mac_default)
		dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
L
Linus Torvalds 已提交
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
}

static void __inline__ fec_enable_phy_intr(void)
{
}

static void __inline__ fec_disable_phy_intr(void)
{
}

static void __inline__ fec_phy_ack_intr(void)
{
}

static void __inline__ fec_localhw_setup(void)
{
}

/*
 *	Do not need to make region uncached on 5272.
 */
static void __inline__ fec_uncache(unsigned long addr)
{
}

/* ------------------------------------------------------------------------- */

1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
#elif defined(CONFIG_M520x)

/*
 *	Code specific to Coldfire 520x
 */
static void __inline__ fec_request_intrs(struct net_device *dev)
{
	struct fec_enet_private *fep;
	int b;
	static const struct idesc {
		char *name;
		unsigned short irq;
	} *idp, id[] = {
		{ "fec(TXF)", 23 },
		{ "fec(RXF)", 27 },
		{ "fec(MII)", 29 },
		{ NULL },
	};

	fep = netdev_priv(dev);
	b = 64 + 13;

	/* Setup interrupt handlers. */
	for (idp = id; idp->name; idp++) {
1529
		if (request_irq(b+idp->irq, fec_enet_interrupt, IRQF_DISABLED, idp->name,dev) != 0)
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
			printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, b+idp->irq);
	}

	/* Unmask interrupts at ColdFire interrupt controller */
	{
		volatile unsigned char  *icrp;
		volatile unsigned long  *imrp;

		icrp = (volatile unsigned char *) (MCF_IPSBAR + MCFICM_INTC0 +
			MCFINTC_ICR0);
		for (b = 36; (b < 49); b++)
			icrp[b] = 0x04;
		imrp = (volatile unsigned long *) (MCF_IPSBAR + MCFICM_INTC0 +
			MCFINTC_IMRH);
		*imrp &= ~0x0001FFF0;
	}
	*(volatile unsigned char *)(MCF_IPSBAR + MCF_GPIO_PAR_FEC) |= 0xf0;
	*(volatile unsigned char *)(MCF_IPSBAR + MCF_GPIO_PAR_FECI2C) |= 0x0f;
}

static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
{
	volatile fec_t *fecp;

	fecp = fep->hwp;
	fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
	fecp->fec_x_cntrl = 0x00;

	/*
	 * Set MII speed to 2.5 MHz
	 * See 5282 manual section 17.5.4.7: MSCR
	 */
	fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
	fecp->fec_mii_speed = fep->phy_speed;

	fec_restart(dev, 0);
}

static void __inline__ fec_get_mac(struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	volatile fec_t *fecp;
	unsigned char *iap, tmpaddr[ETH_ALEN];

	fecp = fep->hwp;

	if (FEC_FLASHMAC) {
		/*
		 * Get MAC address from FLASH.
		 * If it is all 1's or 0's, use the default.
		 */
		iap = FEC_FLASHMAC;
		if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
		   (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
			iap = fec_mac_default;
		if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
		   (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
			iap = fec_mac_default;
	} else {
		*((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
		*((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
		iap = &tmpaddr[0];
	}

	memcpy(dev->dev_addr, iap, ETH_ALEN);

	/* Adjust MAC if using default MAC address */
	if (iap == fec_mac_default)
		dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
}

static void __inline__ fec_enable_phy_intr(void)
{
}

static void __inline__ fec_disable_phy_intr(void)
{
}

static void __inline__ fec_phy_ack_intr(void)
{
}

static void __inline__ fec_localhw_setup(void)
{
}

static void __inline__ fec_uncache(unsigned long addr)
{
}

/* ------------------------------------------------------------------------- */

1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
#elif defined(CONFIG_M532x)
/*
 * Code specific for M532x
 */
static void __inline__ fec_request_intrs(struct net_device *dev)
{
	struct fec_enet_private *fep;
	int b;
	static const struct idesc {
		char *name;
		unsigned short irq;
	} *idp, id[] = {
	    { "fec(TXF)", 36 },
	    { "fec(RXF)", 40 },
	    { "fec(MII)", 42 },
	    { NULL },
	};

	fep = netdev_priv(dev);
	b = (fep->index) ? 128 : 64;

	/* Setup interrupt handlers. */
	for (idp = id; idp->name; idp++) {
1646
		if (request_irq(b+idp->irq, fec_enet_interrupt, IRQF_DISABLED, idp->name,dev) != 0)
1647
			printk("FEC: Could not allocate %s IRQ(%d)!\n",
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
				idp->name, b+idp->irq);
	}

	/* Unmask interrupts */
	MCF_INTC0_ICR36 = 0x2;
	MCF_INTC0_ICR37 = 0x2;
	MCF_INTC0_ICR38 = 0x2;
	MCF_INTC0_ICR39 = 0x2;
	MCF_INTC0_ICR40 = 0x2;
	MCF_INTC0_ICR41 = 0x2;
	MCF_INTC0_ICR42 = 0x2;
	MCF_INTC0_ICR43 = 0x2;
	MCF_INTC0_ICR44 = 0x2;
	MCF_INTC0_ICR45 = 0x2;
	MCF_INTC0_ICR46 = 0x2;
	MCF_INTC0_ICR47 = 0x2;
	MCF_INTC0_ICR48 = 0x2;

	MCF_INTC0_IMRH &= ~(
		MCF_INTC_IMRH_INT_MASK36 |
		MCF_INTC_IMRH_INT_MASK37 |
		MCF_INTC_IMRH_INT_MASK38 |
		MCF_INTC_IMRH_INT_MASK39 |
		MCF_INTC_IMRH_INT_MASK40 |
		MCF_INTC_IMRH_INT_MASK41 |
		MCF_INTC_IMRH_INT_MASK42 |
		MCF_INTC_IMRH_INT_MASK43 |
		MCF_INTC_IMRH_INT_MASK44 |
		MCF_INTC_IMRH_INT_MASK45 |
		MCF_INTC_IMRH_INT_MASK46 |
		MCF_INTC_IMRH_INT_MASK47 |
		MCF_INTC_IMRH_INT_MASK48 );

	/* Set up gpio outputs for MII lines */
	MCF_GPIO_PAR_FECI2C |= (0 |
		MCF_GPIO_PAR_FECI2C_PAR_MDC_EMDC |
		MCF_GPIO_PAR_FECI2C_PAR_MDIO_EMDIO);
	MCF_GPIO_PAR_FEC = (0 |
		MCF_GPIO_PAR_FEC_PAR_FEC_7W_FEC |
		MCF_GPIO_PAR_FEC_PAR_FEC_MII_FEC);
}

static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
{
	volatile fec_t *fecp;

	fecp = fep->hwp;
	fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
	fecp->fec_x_cntrl = 0x00;

	/*
	 * Set MII speed to 2.5 MHz
	 */
	fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
	fecp->fec_mii_speed = fep->phy_speed;

	fec_restart(dev, 0);
}

static void __inline__ fec_get_mac(struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	volatile fec_t *fecp;
	unsigned char *iap, tmpaddr[ETH_ALEN];

	fecp = fep->hwp;

	if (FEC_FLASHMAC) {
		/*
		 * Get MAC address from FLASH.
		 * If it is all 1's or 0's, use the default.
		 */
		iap = FEC_FLASHMAC;
		if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
		    (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
			iap = fec_mac_default;
		if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
		    (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
			iap = fec_mac_default;
	} else {
		*((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
		*((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
		iap = &tmpaddr[0];
	}

	memcpy(dev->dev_addr, iap, ETH_ALEN);

	/* Adjust MAC if using default MAC address */
	if (iap == fec_mac_default)
		dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
}

static void __inline__ fec_enable_phy_intr(void)
{
}

static void __inline__ fec_disable_phy_intr(void)
{
}

static void __inline__ fec_phy_ack_intr(void)
{
}

static void __inline__ fec_localhw_setup(void)
{
}

/*
 *	Do not need to make region uncached on 532x.
 */
static void __inline__ fec_uncache(unsigned long addr)
{
}

/* ------------------------------------------------------------------------- */


L
Linus Torvalds 已提交
1766 1767 1768
#else

/*
1769
 *	Code specific to the MPC860T setup.
L
Linus Torvalds 已提交
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
 */
static void __inline__ fec_request_intrs(struct net_device *dev)
{
	volatile immap_t *immap;

	immap = (immap_t *)IMAP_ADDR;	/* pointer to internal registers */

	if (request_8xxirq(FEC_INTERRUPT, fec_enet_interrupt, 0, "fec", dev) != 0)
		panic("Could not allocate FEC IRQ!");
}

static void __inline__ fec_get_mac(struct net_device *dev)
{
	bd_t *bd;

	bd = (bd_t *)__res;
1786
	memcpy(dev->dev_addr, bd->bi_enetaddr, ETH_ALEN);
L
Linus Torvalds 已提交
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
}

static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
{
	extern uint _get_IMMR(void);
	volatile immap_t *immap;
	volatile fec_t *fecp;

	fecp = fep->hwp;
	immap = (immap_t *)IMAP_ADDR;	/* pointer to internal registers */

	/* Configure all of port D for MII.
	*/
	immap->im_ioport.iop_pdpar = 0x1fff;

	/* Bits moved from Rev. D onward.
	*/
	if ((_get_IMMR() & 0xffff) < 0x0501)
		immap->im_ioport.iop_pddir = 0x1c58;	/* Pre rev. D */
	else
		immap->im_ioport.iop_pddir = 0x1fff;	/* Rev. D and later */
1808

L
Linus Torvalds 已提交
1809 1810
	/* Set MII speed to 2.5 MHz
	*/
1811
	fecp->fec_mii_speed = fep->phy_speed =
L
Linus Torvalds 已提交
1812 1813 1814 1815 1816 1817 1818 1819 1820
		((bd->bi_busfreq * 1000000) / 2500000) & 0x7e;
}

static void __inline__ fec_enable_phy_intr(void)
{
	volatile fec_t *fecp;

	fecp = fep->hwp;

1821
	/* Enable MII command finished interrupt
L
Linus Torvalds 已提交
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
	*/
	fecp->fec_ivec = (FEC_INTERRUPT/2) << 29;
}

static void __inline__ fec_disable_phy_intr(void)
{
}

static void __inline__ fec_phy_ack_intr(void)
{
}

static void __inline__ fec_localhw_setup(void)
{
	volatile fec_t *fecp;

	fecp = fep->hwp;
	fecp->fec_r_hash = PKT_MAXBUF_SIZE;
	/* Enable big endian and don't care about SDMA FC.
	*/
	fecp->fec_fun_code = 0x78000000;
}

static void __inline__ fec_uncache(unsigned long addr)
{
	pte_t *pte;
	pte = va_to_pte(mem_addr);
	pte_val(*pte) |= _PAGE_NO_CACHE;
	flush_tlb_page(init_mm.mmap, mem_addr);
}

#endif

/* ------------------------------------------------------------------------- */

static void mii_display_status(struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	volatile uint *s = &(fep->phy_status);

	if (!fep->link && !fep->old_link) {
		/* Link is still down - don't print anything */
		return;
	}

	printk("%s: status: ", dev->name);

	if (!fep->link) {
		printk("link down");
	} else {
		printk("link up");

		switch(*s & PHY_STAT_SPMASK) {
		case PHY_STAT_100FDX: printk(", 100MBit Full Duplex"); break;
		case PHY_STAT_100HDX: printk(", 100MBit Half Duplex"); break;
		case PHY_STAT_10FDX: printk(", 10MBit Full Duplex"); break;
		case PHY_STAT_10HDX: printk(", 10MBit Half Duplex"); break;
		default:
			printk(", Unknown speed/duplex");
		}

		if (*s & PHY_STAT_ANC)
			printk(", auto-negotiation complete");
	}

	if (*s & PHY_STAT_FAULT)
		printk(", remote fault");

	printk(".\n");
}

G
Greg Ungerer 已提交
1893
static void mii_display_config(struct work_struct *work)
L
Linus Torvalds 已提交
1894
{
G
Greg Ungerer 已提交
1895 1896
	struct fec_enet_private *fep = container_of(work, struct fec_enet_private, phy_task);
	struct net_device *dev = fep->netdev;
1897
	uint status = fep->phy_status;
L
Linus Torvalds 已提交
1898 1899 1900 1901 1902 1903 1904 1905

	/*
	** When we get here, phy_task is already removed from
	** the workqueue.  It is thus safe to allow to reuse it.
	*/
	fep->mii_phy_task_queued = 0;
	printk("%s: config: auto-negotiation ", dev->name);

1906
	if (status & PHY_CONF_ANE)
L
Linus Torvalds 已提交
1907 1908 1909 1910
		printk("on");
	else
		printk("off");

1911
	if (status & PHY_CONF_100FDX)
L
Linus Torvalds 已提交
1912
		printk(", 100FDX");
1913
	if (status & PHY_CONF_100HDX)
L
Linus Torvalds 已提交
1914
		printk(", 100HDX");
1915
	if (status & PHY_CONF_10FDX)
L
Linus Torvalds 已提交
1916
		printk(", 10FDX");
1917
	if (status & PHY_CONF_10HDX)
L
Linus Torvalds 已提交
1918
		printk(", 10HDX");
1919
	if (!(status & PHY_CONF_SPMASK))
L
Linus Torvalds 已提交
1920 1921
		printk(", No speed/duplex selected?");

1922
	if (status & PHY_CONF_LOOP)
L
Linus Torvalds 已提交
1923
		printk(", loopback enabled");
1924

L
Linus Torvalds 已提交
1925 1926 1927 1928 1929
	printk(".\n");

	fep->sequence_done = 1;
}

G
Greg Ungerer 已提交
1930
static void mii_relink(struct work_struct *work)
L
Linus Torvalds 已提交
1931
{
G
Greg Ungerer 已提交
1932 1933
	struct fec_enet_private *fep = container_of(work, struct fec_enet_private, phy_task);
	struct net_device *dev = fep->netdev;
L
Linus Torvalds 已提交
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
	int duplex;

	/*
	** When we get here, phy_task is already removed from
	** the workqueue.  It is thus safe to allow to reuse it.
	*/
	fep->mii_phy_task_queued = 0;
	fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0;
	mii_display_status(dev);
	fep->old_link = fep->link;

	if (fep->link) {
		duplex = 0;
1947
		if (fep->phy_status
L
Linus Torvalds 已提交
1948 1949 1950
		    & (PHY_STAT_100FDX | PHY_STAT_10FDX))
			duplex = 1;
		fec_restart(dev, duplex);
1951
	} else
L
Linus Torvalds 已提交
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
		fec_stop(dev);

#if 0
	enable_irq(fep->mii_irq);
#endif

}

/* mii_queue_relink is called in interrupt context from mii_link_interrupt */
static void mii_queue_relink(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);

	/*
	** We cannot queue phy_task twice in the workqueue.  It
	** would cause an endless loop in the workqueue.
	** Fortunately, if the last mii_relink entry has not yet been
	** executed now, it will do the job for the current interrupt,
	** which is just what we want.
	*/
	if (fep->mii_phy_task_queued)
		return;

	fep->mii_phy_task_queued = 1;
G
Greg Ungerer 已提交
1976
	INIT_WORK(&fep->phy_task, mii_relink);
L
Linus Torvalds 已提交
1977 1978 1979
	schedule_work(&fep->phy_task);
}

1980
/* mii_queue_config is called in interrupt context from fec_enet_mii */
L
Linus Torvalds 已提交
1981 1982 1983 1984 1985 1986 1987 1988
static void mii_queue_config(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);

	if (fep->mii_phy_task_queued)
		return;

	fep->mii_phy_task_queued = 1;
G
Greg Ungerer 已提交
1989
	INIT_WORK(&fep->phy_task, mii_display_config);
L
Linus Torvalds 已提交
1990 1991 1992
	schedule_work(&fep->phy_task);
}

1993 1994 1995 1996 1997 1998 1999 2000
phy_cmd_t const phy_cmd_relink[] = {
	{ mk_mii_read(MII_REG_CR), mii_queue_relink },
	{ mk_mii_end, }
	};
phy_cmd_t const phy_cmd_config[] = {
	{ mk_mii_read(MII_REG_CR), mii_queue_config },
	{ mk_mii_end, }
	};
L
Linus Torvalds 已提交
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

/* Read remainder of PHY ID.
*/
static void
mii_discover_phy3(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep;
	int i;

	fep = netdev_priv(dev);
	fep->phy_id |= (mii_reg & 0xffff);
	printk("fec: PHY @ 0x%x, ID 0x%08x", fep->phy_addr, fep->phy_id);

	for(i = 0; phy_info[i]; i++) {
		if(phy_info[i]->id == (fep->phy_id >> 4))
			break;
	}

	if (phy_info[i])
		printk(" -- %s\n", phy_info[i]->name);
	else
		printk(" -- unknown PHY!\n");
2023

L
Linus Torvalds 已提交
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
	fep->phy = phy_info[i];
	fep->phy_id_done = 1;
}

/* Scan all of the MII PHY addresses looking for someone to respond
 * with a valid ID.  This usually happens quickly.
 */
static void
mii_discover_phy(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep;
	volatile fec_t *fecp;
	uint phytype;

	fep = netdev_priv(dev);
	fecp = fep->hwp;

	if (fep->phy_addr < 32) {
		if ((phytype = (mii_reg & 0xffff)) != 0xffff && phytype != 0) {
2043

L
Linus Torvalds 已提交
2044 2045 2046 2047 2048
			/* Got first part of ID, now get remainder.
			*/
			fep->phy_id = phytype << 16;
			mii_queue(dev, mk_mii_read(MII_REG_PHYIR2),
							mii_discover_phy3);
2049
		} else {
L
Linus Torvalds 已提交
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
			fep->phy_addr++;
			mii_queue(dev, mk_mii_read(MII_REG_PHYIR1),
							mii_discover_phy);
		}
	} else {
		printk("FEC: No PHY device found.\n");
		/* Disable external MII interface */
		fecp->fec_mii_speed = fep->phy_speed = 0;
		fec_disable_phy_intr();
	}
}

/* This interrupt occurs when the PHY detects a link change.
*/
2064
#ifdef HAVE_mii_link_interrupt
L
Linus Torvalds 已提交
2065
static irqreturn_t
2066
mii_link_interrupt(int irq, void * dev_id)
L
Linus Torvalds 已提交
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
{
	struct	net_device *dev = dev_id;
	struct fec_enet_private *fep = netdev_priv(dev);

	fec_phy_ack_intr();

#if 0
	disable_irq(fep->mii_irq);  /* disable now, enable later */
#endif

	mii_do_cmd(dev, fep->phy->ack_int);
	mii_do_cmd(dev, phy_cmd_relink);  /* restart and display status */

	return IRQ_HANDLED;
}
2082
#endif
L
Linus Torvalds 已提交
2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101

static int
fec_enet_open(struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);

	/* I should reset the ring buffers here, but I don't yet know
	 * a simple way to do that.
	 */
	fec_set_mac_address(dev);

	fep->sequence_done = 0;
	fep->link = 0;

	if (fep->phy) {
		mii_do_cmd(dev, fep->phy->ack_int);
		mii_do_cmd(dev, fep->phy->config);
		mii_do_cmd(dev, phy_cmd_config);  /* display configuration */

2102 2103 2104 2105 2106 2107
		/* Poll until the PHY tells us its configuration
		 * (not link state).
		 * Request is initiated by mii_do_cmd above, but answer
		 * comes by interrupt.
		 * This should take about 25 usec per register at 2.5 MHz,
		 * and we read approximately 5 registers.
L
Linus Torvalds 已提交
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
		 */
		while(!fep->sequence_done)
			schedule();

		mii_do_cmd(dev, fep->phy->startup);

		/* Set the initial link state to true. A lot of hardware
		 * based on this device does not implement a PHY interrupt,
		 * so we are never notified of link change.
		 */
		fep->link = 1;
	} else {
		fep->link = 1; /* lets just try it and see */
		/* no phy,  go full duplex,  it's most likely a hub chip */
		fec_restart(dev, 1);
	}

	netif_start_queue(dev);
	fep->opened = 1;
	return 0;		/* Success */
}

static int
fec_enet_close(struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);

	/* Don't know what to do yet.
	*/
	fep->opened = 0;
	netif_stop_queue(dev);
	fec_stop(dev);

	return 0;
}

/* Set or clear the multicast filter for this adaptor.
 * Skeleton taken from sunlance driver.
 * The CPM Ethernet implementation allows Multicast as well as individual
 * MAC address filtering.  Some of the drivers check to make sure it is
 * a group multicast address, and discard those that are not.  I guess I
 * will do the same for now, but just remove the test if you want
 * individual filtering as well (do the upper net layers want or support
 * this kind of feature?).
 */

#define HASH_BITS	6		/* #bits in hash */
#define CRC32_POLY	0xEDB88320

static void set_multicast_list(struct net_device *dev)
{
	struct fec_enet_private *fep;
	volatile fec_t *ep;
	struct dev_mc_list *dmi;
	unsigned int i, j, bit, data, crc;
	unsigned char hash;

	fep = netdev_priv(dev);
	ep = fep->hwp;

	if (dev->flags&IFF_PROMISC) {
		ep->fec_r_cntrl |= 0x0008;
	} else {

		ep->fec_r_cntrl &= ~0x0008;

		if (dev->flags & IFF_ALLMULTI) {
			/* Catch all multicast addresses, so set the
			 * filter to all 1's.
			 */
2178 2179
			ep->fec_grp_hash_table_high = 0xffffffff;
			ep->fec_grp_hash_table_low = 0xffffffff;
L
Linus Torvalds 已提交
2180 2181 2182
		} else {
			/* Clear filter and add the addresses in hash register.
			*/
2183 2184
			ep->fec_grp_hash_table_high = 0;
			ep->fec_grp_hash_table_low = 0;
2185

L
Linus Torvalds 已提交
2186 2187 2188 2189 2190 2191 2192 2193
			dmi = dev->mc_list;

			for (j = 0; j < dev->mc_count; j++, dmi = dmi->next)
			{
				/* Only support group multicast for now.
				*/
				if (!(dmi->dmi_addr[0] & 1))
					continue;
2194

L
Linus Torvalds 已提交
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212
				/* calculate crc32 value of mac address
				*/
				crc = 0xffffffff;

				for (i = 0; i < dmi->dmi_addrlen; i++)
				{
					data = dmi->dmi_addr[i];
					for (bit = 0; bit < 8; bit++, data >>= 1)
					{
						crc = (crc >> 1) ^
						(((crc ^ data) & 1) ? CRC32_POLY : 0);
					}
				}

				/* only upper 6 bits (HASH_BITS) are used
				   which point to specific bit in he hash registers
				*/
				hash = (crc >> (32 - HASH_BITS)) & 0x3f;
2213

L
Linus Torvalds 已提交
2214
				if (hash > 31)
2215
					ep->fec_grp_hash_table_high |= 1 << (hash - 32);
L
Linus Torvalds 已提交
2216
				else
2217
					ep->fec_grp_hash_table_low |= 1 << hash;
L
Linus Torvalds 已提交
2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
			}
		}
	}
}

/* Set a MAC change in hardware.
 */
static void
fec_set_mac_address(struct net_device *dev)
{
	volatile fec_t *fecp;

2230
	fecp = ((struct fec_enet_private *)netdev_priv(dev))->hwp;
L
Linus Torvalds 已提交
2231 2232

	/* Set station address. */
2233 2234 2235 2236
	fecp->fec_addr_low = dev->dev_addr[3] | (dev->dev_addr[2] << 8) |
		(dev->dev_addr[1] << 16) | (dev->dev_addr[0] << 24);
	fecp->fec_addr_high = (dev->dev_addr[5] << 16) |
		(dev->dev_addr[4] << 24);
L
Linus Torvalds 已提交
2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258

}

/* Initialize the FEC Ethernet on 860T (or ColdFire 5272).
 */
 /*
  * XXX:  We need to clean up on failure exits here.
  */
int __init fec_enet_init(struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	unsigned long	mem_addr;
	volatile cbd_t	*bdp;
	cbd_t		*cbd_base;
	volatile fec_t	*fecp;
	int 		i, j;
	static int	index = 0;

	/* Only allow us to be probed once. */
	if (index >= FEC_MAX_PORTS)
		return -ENXIO;

2259 2260 2261 2262 2263 2264 2265 2266
	/* Allocate memory for buffer descriptors.
	*/
	mem_addr = __get_free_page(GFP_KERNEL);
	if (mem_addr == 0) {
		printk("FEC: allocate descriptor memory failed?\n");
		return -ENOMEM;
	}

2267 2268 2269
	spin_lock_init(&fep->hw_lock);
	spin_lock_init(&fep->mii_lock);

L
Linus Torvalds 已提交
2270 2271 2272 2273 2274 2275
	/* Create an Ethernet device instance.
	*/
	fecp = (volatile fec_t *) fec_hw[index];

	fep->index = index;
	fep->hwp = fecp;
G
Greg Ungerer 已提交
2276
	fep->netdev = dev;
L
Linus Torvalds 已提交
2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367

	/* Whack a reset.  We should wait for this.
	*/
	fecp->fec_ecntrl = 1;
	udelay(10);

	/* Set the Ethernet address.  If using multiple Enets on the 8xx,
	 * this needs some work to get unique addresses.
	 *
	 * This is our default MAC address unless the user changes
	 * it via eth_mac_addr (our dev->set_mac_addr handler).
	 */
	fec_get_mac(dev);

	cbd_base = (cbd_t *)mem_addr;
	/* XXX: missing check for allocation failure */

	fec_uncache(mem_addr);

	/* Set receive and transmit descriptor base.
	*/
	fep->rx_bd_base = cbd_base;
	fep->tx_bd_base = cbd_base + RX_RING_SIZE;

	fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
	fep->cur_rx = fep->rx_bd_base;

	fep->skb_cur = fep->skb_dirty = 0;

	/* Initialize the receive buffer descriptors.
	*/
	bdp = fep->rx_bd_base;
	for (i=0; i<FEC_ENET_RX_PAGES; i++) {

		/* Allocate a page.
		*/
		mem_addr = __get_free_page(GFP_KERNEL);
		/* XXX: missing check for allocation failure */

		fec_uncache(mem_addr);

		/* Initialize the BD for every fragment in the page.
		*/
		for (j=0; j<FEC_ENET_RX_FRPPG; j++) {
			bdp->cbd_sc = BD_ENET_RX_EMPTY;
			bdp->cbd_bufaddr = __pa(mem_addr);
			mem_addr += FEC_ENET_RX_FRSIZE;
			bdp++;
		}
	}

	/* Set the last buffer to wrap.
	*/
	bdp--;
	bdp->cbd_sc |= BD_SC_WRAP;

	/* ...and the same for transmmit.
	*/
	bdp = fep->tx_bd_base;
	for (i=0, j=FEC_ENET_TX_FRPPG; i<TX_RING_SIZE; i++) {
		if (j >= FEC_ENET_TX_FRPPG) {
			mem_addr = __get_free_page(GFP_KERNEL);
			j = 1;
		} else {
			mem_addr += FEC_ENET_TX_FRSIZE;
			j++;
		}
		fep->tx_bounce[i] = (unsigned char *) mem_addr;

		/* Initialize the BD for every fragment in the page.
		*/
		bdp->cbd_sc = 0;
		bdp->cbd_bufaddr = 0;
		bdp++;
	}

	/* Set the last buffer to wrap.
	*/
	bdp--;
	bdp->cbd_sc |= BD_SC_WRAP;

	/* Set receive and transmit descriptor base.
	*/
	fecp->fec_r_des_start = __pa((uint)(fep->rx_bd_base));
	fecp->fec_x_des_start = __pa((uint)(fep->tx_bd_base));

	/* Install our interrupt handlers. This varies depending on
	 * the architecture.
	*/
	fec_request_intrs(dev);

2368 2369
	fecp->fec_grp_hash_table_high = 0;
	fecp->fec_grp_hash_table_low = 0;
2370 2371
	fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
	fecp->fec_ecntrl = 2;
2372
	fecp->fec_r_des_active = 0;
2373 2374 2375 2376
#ifndef CONFIG_M5272
	fecp->fec_hash_table_high = 0;
	fecp->fec_hash_table_low = 0;
#endif
2377

L
Linus Torvalds 已提交
2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
	dev->base_addr = (unsigned long)fecp;

	/* The FEC Ethernet specific entries in the device structure. */
	dev->open = fec_enet_open;
	dev->hard_start_xmit = fec_enet_start_xmit;
	dev->tx_timeout = fec_timeout;
	dev->watchdog_timeo = TX_TIMEOUT;
	dev->stop = fec_enet_close;
	dev->set_multicast_list = set_multicast_list;

	for (i=0; i<NMII-1; i++)
		mii_cmds[i].mii_next = &mii_cmds[i+1];
	mii_free = mii_cmds;

	/* setup MII interface */
	fec_set_mii(dev, fep);

2395 2396
	/* Clear and enable interrupts */
	fecp->fec_ievent = 0xffc00000;
2397
	fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII);
2398

L
Linus Torvalds 已提交
2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
	/* Queue up command to detect the PHY and initialize the
	 * remainder of the interface.
	 */
	fep->phy_id_done = 0;
	fep->phy_addr = 0;
	mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), mii_discover_phy);

	index++;
	return 0;
}

/* This function is called to start or restart the FEC during a link
 * change.  This only happens when switching between half and full
 * duplex.
 */
static void
fec_restart(struct net_device *dev, int duplex)
{
	struct fec_enet_private *fep;
	volatile cbd_t *bdp;
	volatile fec_t *fecp;
	int i;

	fep = netdev_priv(dev);
	fecp = fep->hwp;

	/* Whack a reset.  We should wait for this.
	*/
	fecp->fec_ecntrl = 1;
	udelay(10);

	/* Clear any outstanding interrupt.
	*/
2432
	fecp->fec_ievent = 0xffc00000;
L
Linus Torvalds 已提交
2433 2434 2435 2436
	fec_enable_phy_intr();

	/* Set station address.
	*/
2437
	fec_set_mac_address(dev);
L
Linus Torvalds 已提交
2438 2439 2440

	/* Reset all multicast.
	*/
2441 2442
	fecp->fec_grp_hash_table_high = 0;
	fecp->fec_grp_hash_table_low = 0;
L
Linus Torvalds 已提交
2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505

	/* Set maximum receive buffer size.
	*/
	fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;

	fec_localhw_setup();

	/* Set receive and transmit descriptor base.
	*/
	fecp->fec_r_des_start = __pa((uint)(fep->rx_bd_base));
	fecp->fec_x_des_start = __pa((uint)(fep->tx_bd_base));

	fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
	fep->cur_rx = fep->rx_bd_base;

	/* Reset SKB transmit buffers.
	*/
	fep->skb_cur = fep->skb_dirty = 0;
	for (i=0; i<=TX_RING_MOD_MASK; i++) {
		if (fep->tx_skbuff[i] != NULL) {
			dev_kfree_skb_any(fep->tx_skbuff[i]);
			fep->tx_skbuff[i] = NULL;
		}
	}

	/* Initialize the receive buffer descriptors.
	*/
	bdp = fep->rx_bd_base;
	for (i=0; i<RX_RING_SIZE; i++) {

		/* Initialize the BD for every fragment in the page.
		*/
		bdp->cbd_sc = BD_ENET_RX_EMPTY;
		bdp++;
	}

	/* Set the last buffer to wrap.
	*/
	bdp--;
	bdp->cbd_sc |= BD_SC_WRAP;

	/* ...and the same for transmmit.
	*/
	bdp = fep->tx_bd_base;
	for (i=0; i<TX_RING_SIZE; i++) {

		/* Initialize the BD for every fragment in the page.
		*/
		bdp->cbd_sc = 0;
		bdp->cbd_bufaddr = 0;
		bdp++;
	}

	/* Set the last buffer to wrap.
	*/
	bdp--;
	bdp->cbd_sc |= BD_SC_WRAP;

	/* Enable MII mode.
	*/
	if (duplex) {
		fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;/* MII enable */
		fecp->fec_x_cntrl = 0x04;		  /* FD enable */
2506
	} else {
L
Linus Torvalds 已提交
2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519
		/* MII enable|No Rcv on Xmit */
		fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x06;
		fecp->fec_x_cntrl = 0x00;
	}
	fep->full_duplex = duplex;

	/* Set MII speed.
	*/
	fecp->fec_mii_speed = fep->phy_speed;

	/* And last, enable the transmit and receive processing.
	*/
	fecp->fec_ecntrl = 2;
2520 2521 2522 2523
	fecp->fec_r_des_active = 0;

	/* Enable interrupts we wish to service.
	*/
2524
	fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII);
L
Linus Torvalds 已提交
2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
}

static void
fec_stop(struct net_device *dev)
{
	volatile fec_t *fecp;
	struct fec_enet_private *fep;

	fep = netdev_priv(dev);
	fecp = fep->hwp;

2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
	/*
	** We cannot expect a graceful transmit stop without link !!!
	*/
	if (fep->link)
		{
		fecp->fec_x_cntrl = 0x01;	/* Graceful transmit stop */
		udelay(10);
		if (!(fecp->fec_ievent & FEC_ENET_GRA))
			printk("fec_stop : Graceful transmit stop did not complete !\n");
		}
L
Linus Torvalds 已提交
2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563

	/* Whack a reset.  We should wait for this.
	*/
	fecp->fec_ecntrl = 1;
	udelay(10);

	/* Clear outstanding MII command interrupts.
	*/
	fecp->fec_ievent = FEC_ENET_MII;
	fec_enable_phy_intr();

	fecp->fec_imask = FEC_ENET_MII;
	fecp->fec_mii_speed = fep->phy_speed;
}

static int __init fec_enet_module_init(void)
{
	struct net_device *dev;
2564
	int i, err;
2565 2566

	printk("FEC ENET Version 0.2\n");
L
Linus Torvalds 已提交
2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581

	for (i = 0; (i < FEC_MAX_PORTS); i++) {
		dev = alloc_etherdev(sizeof(struct fec_enet_private));
		if (!dev)
			return -ENOMEM;
		err = fec_enet_init(dev);
		if (err) {
			free_netdev(dev);
			continue;
		}
		if (register_netdev(dev) != 0) {
			/* XXX: missing cleanup here */
			free_netdev(dev);
			return -EIO;
		}
2582

J
Johannes Berg 已提交
2583
		printk("%s: ethernet %pM\n", dev->name, dev->dev_addr);
L
Linus Torvalds 已提交
2584 2585 2586 2587 2588 2589 2590
	}
	return 0;
}

module_init(fec_enet_module_init);

MODULE_LICENSE("GPL");