kprobes.c 15.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7
/* arch/sparc64/kernel/kprobes.c
 *
 * Copyright (C) 2004 David S. Miller <davem@davemloft.net>
 */

#include <linux/kernel.h>
#include <linux/kprobes.h>
8
#include <linux/module.h>
9
#include <linux/kdebug.h>
L
Linus Torvalds 已提交
10
#include <asm/signal.h>
11
#include <asm/cacheflush.h>
12
#include <asm/uaccess.h>
L
Linus Torvalds 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

/* We do not have hardware single-stepping on sparc64.
 * So we implement software single-stepping with breakpoint
 * traps.  The top-level scheme is similar to that used
 * in the x86 kprobes implementation.
 *
 * In the kprobe->ainsn.insn[] array we store the original
 * instruction at index zero and a break instruction at
 * index one.
 *
 * When we hit a kprobe we:
 * - Run the pre-handler
 * - Remember "regs->tnpc" and interrupt level stored in
 *   "regs->tstate" so we can restore them later
 * - Disable PIL interrupts
 * - Set regs->tpc to point to kprobe->ainsn.insn[0]
 * - Set regs->tnpc to point to kprobe->ainsn.insn[1]
 * - Mark that we are actively in a kprobe
 *
 * At this point we wait for the second breakpoint at
 * kprobe->ainsn.insn[1] to hit.  When it does we:
 * - Run the post-handler
 * - Set regs->tpc to "remembered" regs->tnpc stored above,
 *   restore the PIL interrupt level in "regs->tstate" as well
 * - Make any adjustments necessary to regs->tnpc in order
 *   to handle relative branches correctly.  See below.
 * - Mark that we are no longer actively in a kprobe.
 */

42 43 44
DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);

45 46
struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};

47
int __kprobes arch_prepare_kprobe(struct kprobe *p)
L
Linus Torvalds 已提交
48 49
{
	p->ainsn.insn[0] = *p->addr;
50 51
	flushi(&p->ainsn.insn[0]);

L
Linus Torvalds 已提交
52
	p->ainsn.insn[1] = BREAKPOINT_INSTRUCTION_2;
53 54
	flushi(&p->ainsn.insn[1]);

55
	p->opcode = *p->addr;
56
	return 0;
57 58
}

59
void __kprobes arch_arm_kprobe(struct kprobe *p)
60 61 62 63 64
{
	*p->addr = BREAKPOINT_INSTRUCTION;
	flushi(p->addr);
}

65
void __kprobes arch_disarm_kprobe(struct kprobe *p)
66 67 68
{
	*p->addr = p->opcode;
	flushi(p->addr);
L
Linus Torvalds 已提交
69 70
}

71
static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
72
{
73 74 75 76
	kcb->prev_kprobe.kp = kprobe_running();
	kcb->prev_kprobe.status = kcb->kprobe_status;
	kcb->prev_kprobe.orig_tnpc = kcb->kprobe_orig_tnpc;
	kcb->prev_kprobe.orig_tstate_pil = kcb->kprobe_orig_tstate_pil;
77 78
}

79
static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
80
{
81 82 83 84
	__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
	kcb->kprobe_status = kcb->prev_kprobe.status;
	kcb->kprobe_orig_tnpc = kcb->prev_kprobe.orig_tnpc;
	kcb->kprobe_orig_tstate_pil = kcb->prev_kprobe.orig_tstate_pil;
85 86
}

87
static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
88
				struct kprobe_ctlblk *kcb)
L
Linus Torvalds 已提交
89
{
90 91 92
	__get_cpu_var(current_kprobe) = p;
	kcb->kprobe_orig_tnpc = regs->tnpc;
	kcb->kprobe_orig_tstate_pil = (regs->tstate & TSTATE_PIL);
93 94
}

95
static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs,
96
			struct kprobe_ctlblk *kcb)
97
{
L
Linus Torvalds 已提交
98 99 100 101 102
	regs->tstate |= TSTATE_PIL;

	/*single step inline, if it a breakpoint instruction*/
	if (p->opcode == BREAKPOINT_INSTRUCTION) {
		regs->tpc = (unsigned long) p->addr;
103
		regs->tnpc = kcb->kprobe_orig_tnpc;
L
Linus Torvalds 已提交
104 105 106 107 108 109
	} else {
		regs->tpc = (unsigned long) &p->ainsn.insn[0];
		regs->tnpc = (unsigned long) &p->ainsn.insn[1];
	}
}

110
static int __kprobes kprobe_handler(struct pt_regs *regs)
L
Linus Torvalds 已提交
111 112 113 114
{
	struct kprobe *p;
	void *addr = (void *) regs->tpc;
	int ret = 0;
115 116 117 118 119 120 121 122
	struct kprobe_ctlblk *kcb;

	/*
	 * We don't want to be preempted for the entire
	 * duration of kprobe processing
	 */
	preempt_disable();
	kcb = get_kprobe_ctlblk();
L
Linus Torvalds 已提交
123 124 125 126

	if (kprobe_running()) {
		p = get_kprobe(addr);
		if (p) {
127
			if (kcb->kprobe_status == KPROBE_HIT_SS) {
L
Linus Torvalds 已提交
128
				regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
129
					kcb->kprobe_orig_tstate_pil);
L
Linus Torvalds 已提交
130 131
				goto no_kprobe;
			}
132 133 134 135 136 137
			/* We have reentered the kprobe_handler(), since
			 * another probe was hit while within the handler.
			 * We here save the original kprobes variables and
			 * just single step on the instruction of the new probe
			 * without calling any user handlers.
			 */
138 139
			save_previous_kprobe(kcb);
			set_current_kprobe(p, regs, kcb);
140
			kprobes_inc_nmissed_count(p);
141 142
			kcb->kprobe_status = KPROBE_REENTER;
			prepare_singlestep(p, regs, kcb);
143
			return 1;
L
Linus Torvalds 已提交
144
		} else {
145 146 147 148 149 150 151 152
			if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) {
			/* The breakpoint instruction was removed by
			 * another cpu right after we hit, no further
			 * handling of this interrupt is appropriate
			 */
				ret = 1;
				goto no_kprobe;
			}
153
			p = __get_cpu_var(current_kprobe);
L
Linus Torvalds 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
			if (p->break_handler && p->break_handler(p, regs))
				goto ss_probe;
		}
		goto no_kprobe;
	}

	p = get_kprobe(addr);
	if (!p) {
		if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) {
			/*
			 * The breakpoint instruction was removed right
			 * after we hit it.  Another cpu has removed
			 * either a probepoint or a debugger breakpoint
			 * at this address.  In either case, no further
			 * handling of this interrupt is appropriate.
			 */
			ret = 1;
		}
		/* Not one of ours: let kernel handle it */
		goto no_kprobe;
	}

176 177
	set_current_kprobe(p, regs, kcb);
	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
L
Linus Torvalds 已提交
178 179 180 181
	if (p->pre_handler && p->pre_handler(p, regs))
		return 1;

ss_probe:
182 183
	prepare_singlestep(p, regs, kcb);
	kcb->kprobe_status = KPROBE_HIT_SS;
L
Linus Torvalds 已提交
184 185 186
	return 1;

no_kprobe:
187
	preempt_enable_no_resched();
L
Linus Torvalds 已提交
188 189 190 191 192 193
	return ret;
}

/* If INSN is a relative control transfer instruction,
 * return the corrected branch destination value.
 *
194 195 196 197
 * regs->tpc and regs->tnpc still hold the values of the
 * program counters at the time of trap due to the execution
 * of the BREAKPOINT_INSTRUCTION_2 at p->ainsn.insn[1]
 * 
L
Linus Torvalds 已提交
198
 */
199 200
static unsigned long __kprobes relbranch_fixup(u32 insn, struct kprobe *p,
					       struct pt_regs *regs)
L
Linus Torvalds 已提交
201
{
202 203
	unsigned long real_pc = (unsigned long) p->addr;

L
Linus Torvalds 已提交
204
	/* Branch not taken, no mods necessary.  */
205 206
	if (regs->tnpc == regs->tpc + 0x4UL)
		return real_pc + 0x8UL;
L
Linus Torvalds 已提交
207 208 209 210 211 212 213

	/* The three cases are call, branch w/prediction,
	 * and traditional branch.
	 */
	if ((insn & 0xc0000000) == 0x40000000 ||
	    (insn & 0xc1c00000) == 0x00400000 ||
	    (insn & 0xc1c00000) == 0x00800000) {
214 215 216 217
		unsigned long ainsn_addr;

		ainsn_addr = (unsigned long) &p->ainsn.insn[0];

L
Linus Torvalds 已提交
218 219 220 221
		/* The instruction did all the work for us
		 * already, just apply the offset to the correct
		 * instruction location.
		 */
222
		return (real_pc + (regs->tnpc - ainsn_addr));
L
Linus Torvalds 已提交
223 224
	}

225 226 227 228
	/* It is jmpl or some other absolute PC modification instruction,
	 * leave NPC as-is.
	 */
	return regs->tnpc;
L
Linus Torvalds 已提交
229 230 231 232 233
}

/* If INSN is an instruction which writes it's PC location
 * into a destination register, fix that up.
 */
234 235
static void __kprobes retpc_fixup(struct pt_regs *regs, u32 insn,
				  unsigned long real_pc)
L
Linus Torvalds 已提交
236 237 238
{
	unsigned long *slot = NULL;

239
	/* Simplest case is 'call', which always uses %o7 */
L
Linus Torvalds 已提交
240 241 242 243
	if ((insn & 0xc0000000) == 0x40000000) {
		slot = &regs->u_regs[UREG_I7];
	}

244
	/* 'jmpl' encodes the register inside of the opcode */
L
Linus Torvalds 已提交
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
	if ((insn & 0xc1f80000) == 0x81c00000) {
		unsigned long rd = ((insn >> 25) & 0x1f);

		if (rd <= 15) {
			slot = &regs->u_regs[rd];
		} else {
			/* Hard case, it goes onto the stack. */
			flushw_all();

			rd -= 16;
			slot = (unsigned long *)
				(regs->u_regs[UREG_FP] + STACK_BIAS);
			slot += rd;
		}
	}
	if (slot != NULL)
		*slot = real_pc;
}

/*
 * Called after single-stepping.  p->addr is the address of the
266
 * instruction which has been replaced by the breakpoint
L
Linus Torvalds 已提交
267 268 269
 * instruction.  To avoid the SMP problems that can occur when we
 * temporarily put back the original opcode to single-step, we
 * single-stepped a copy of the instruction.  The address of this
270
 * copy is &p->ainsn.insn[0].
L
Linus Torvalds 已提交
271 272 273 274
 *
 * This function prepares to return from the post-single-step
 * breakpoint trap.
 */
275 276
static void __kprobes resume_execution(struct kprobe *p,
		struct pt_regs *regs, struct kprobe_ctlblk *kcb)
L
Linus Torvalds 已提交
277 278 279
{
	u32 insn = p->ainsn.insn[0];

280 281 282
	regs->tnpc = relbranch_fixup(insn, p, regs);

	/* This assignment must occur after relbranch_fixup() */
283
	regs->tpc = kcb->kprobe_orig_tnpc;
284

L
Linus Torvalds 已提交
285 286 287
	retpc_fixup(regs, insn, (unsigned long) p->addr);

	regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
288
			kcb->kprobe_orig_tstate_pil);
L
Linus Torvalds 已提交
289 290
}

291
static int __kprobes post_kprobe_handler(struct pt_regs *regs)
L
Linus Torvalds 已提交
292
{
293 294 295 296
	struct kprobe *cur = kprobe_running();
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();

	if (!cur)
L
Linus Torvalds 已提交
297 298
		return 0;

299 300 301
	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
		kcb->kprobe_status = KPROBE_HIT_SSDONE;
		cur->post_handler(cur, regs, 0);
302
	}
L
Linus Torvalds 已提交
303

304
	resume_execution(cur, regs, kcb);
L
Linus Torvalds 已提交
305

306
	/*Restore back the original saved kprobes variables and continue. */
307 308
	if (kcb->kprobe_status == KPROBE_REENTER) {
		restore_previous_kprobe(kcb);
309 310
		goto out;
	}
311
	reset_current_kprobe();
312
out:
L
Linus Torvalds 已提交
313 314 315 316 317
	preempt_enable_no_resched();

	return 1;
}

318
int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
L
Linus Torvalds 已提交
319
{
320 321
	struct kprobe *cur = kprobe_running();
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
	const struct exception_table_entry *entry;

	switch(kcb->kprobe_status) {
	case KPROBE_HIT_SS:
	case KPROBE_REENTER:
		/*
		 * We are here because the instruction being single
		 * stepped caused a page fault. We reset the current
		 * kprobe and the tpc points back to the probe address
		 * and allow the page fault handler to continue as a
		 * normal page fault.
		 */
		regs->tpc = (unsigned long)cur->addr;
		regs->tnpc = kcb->kprobe_orig_tnpc;
		regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
				kcb->kprobe_orig_tstate_pil);
		if (kcb->kprobe_status == KPROBE_REENTER)
			restore_previous_kprobe(kcb);
		else
			reset_current_kprobe();
		preempt_enable_no_resched();
		break;
	case KPROBE_HIT_ACTIVE:
	case KPROBE_HIT_SSDONE:
		/*
		 * We increment the nmissed count for accounting,
		 * we can also use npre/npostfault count for accouting
		 * these specific fault cases.
		 */
		kprobes_inc_nmissed_count(cur);

		/*
		 * We come here because instructions in the pre/post
		 * handler caused the page_fault, this could happen
		 * if handler tries to access user space by
		 * copy_from_user(), get_user() etc. Let the
		 * user-specified handler try to fix it first.
		 */
		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
			return 1;
362

363 364 365 366
		/*
		 * In case the user-specified fault handler returned
		 * zero, try to fix up.
		 */
L
Linus Torvalds 已提交
367

368 369 370 371 372 373
		entry = search_exception_tables(regs->tpc);
		if (entry) {
			regs->tpc = entry->fixup;
			regs->tnpc = regs->tpc + 4;
			return 1;
		}
L
Linus Torvalds 已提交
374

375 376 377 378 379 380 381
		/*
		 * fixup_exception() could not handle it,
		 * Let do_page_fault() fix it.
		 */
		break;
	default:
		break;
L
Linus Torvalds 已提交
382
	}
383

L
Linus Torvalds 已提交
384 385 386 387 388 389
	return 0;
}

/*
 * Wrapper routine to for handling exceptions.
 */
390 391
int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
				       unsigned long val, void *data)
L
Linus Torvalds 已提交
392 393
{
	struct die_args *args = (struct die_args *)data;
394 395
	int ret = NOTIFY_DONE;

396 397 398
	if (args->regs && user_mode(args->regs))
		return ret;

L
Linus Torvalds 已提交
399 400 401
	switch (val) {
	case DIE_DEBUG:
		if (kprobe_handler(args->regs))
402
			ret = NOTIFY_STOP;
L
Linus Torvalds 已提交
403 404 405
		break;
	case DIE_DEBUG_2:
		if (post_kprobe_handler(args->regs))
406
			ret = NOTIFY_STOP;
L
Linus Torvalds 已提交
407 408 409 410
		break;
	default:
		break;
	}
411
	return ret;
L
Linus Torvalds 已提交
412 413
}

414 415
asmlinkage void __kprobes kprobe_trap(unsigned long trap_level,
				      struct pt_regs *regs)
L
Linus Torvalds 已提交
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
{
	BUG_ON(trap_level != 0x170 && trap_level != 0x171);

	if (user_mode(regs)) {
		local_irq_enable();
		bad_trap(regs, trap_level);
		return;
	}

	/* trap_level == 0x170 --> ta 0x70
	 * trap_level == 0x171 --> ta 0x71
	 */
	if (notify_die((trap_level == 0x170) ? DIE_DEBUG : DIE_DEBUG_2,
		       (trap_level == 0x170) ? "debug" : "debug_2",
		       regs, 0, trap_level, SIGTRAP) != NOTIFY_STOP)
		bad_trap(regs, trap_level);
}

/* Jprobes support.  */
435
int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
L
Linus Torvalds 已提交
436 437
{
	struct jprobe *jp = container_of(p, struct jprobe, kp);
438
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
L
Linus Torvalds 已提交
439

440
	memcpy(&(kcb->jprobe_saved_regs), regs, sizeof(*regs));
L
Linus Torvalds 已提交
441 442 443 444 445 446 447 448

	regs->tpc  = (unsigned long) jp->entry;
	regs->tnpc = ((unsigned long) jp->entry) + 0x4UL;
	regs->tstate |= TSTATE_PIL;

	return 1;
}

449
void __kprobes jprobe_return(void)
L
Linus Torvalds 已提交
450
{
451 452 453 454 455 456 457 458 459
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
	register unsigned long orig_fp asm("g1");

	orig_fp = kcb->jprobe_saved_regs.u_regs[UREG_FP];
	__asm__ __volatile__("\n"
"1:	cmp		%%sp, %0\n\t"
	"blu,a,pt	%%xcc, 1b\n\t"
	" restore\n\t"
	".globl		jprobe_return_trap_instruction\n"
L
Linus Torvalds 已提交
460
"jprobe_return_trap_instruction:\n\t"
461 462 463
	"ta		0x70"
	: /* no outputs */
	: "r" (orig_fp));
L
Linus Torvalds 已提交
464 465 466 467 468 469
}

extern void jprobe_return_trap_instruction(void);

extern void __show_regs(struct pt_regs * regs);

470
int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
L
Linus Torvalds 已提交
471 472
{
	u32 *addr = (u32 *) regs->tpc;
473
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
L
Linus Torvalds 已提交
474 475

	if (addr == (u32 *) jprobe_return_trap_instruction) {
476
		memcpy(regs, &(kcb->jprobe_saved_regs), sizeof(*regs));
477
		preempt_enable_no_resched();
L
Linus Torvalds 已提交
478 479 480 481
		return 1;
	}
	return 0;
}
482

483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
/* Called with kretprobe_lock held.  The value stored in the return
 * address register is actually 2 instructions before where the
 * callee will return to.  Sequences usually look something like this
 *
 *		call	some_function	<--- return register points here
 *		 nop			<--- call delay slot
 *		whatever		<--- where callee returns to
 *
 * To keep trampoline_probe_handler logic simpler, we normalize the
 * value kept in ri->ret_addr so we don't need to keep adjusting it
 * back and forth.
 */
void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
				      struct pt_regs *regs)
{
	ri->ret_addr = (kprobe_opcode_t *)(regs->u_regs[UREG_RETPC] + 8);

	/* Replace the return addr with trampoline addr */
	regs->u_regs[UREG_RETPC] =
		((unsigned long)kretprobe_trampoline) - 8;
}

/*
 * Called when the probe at kretprobe trampoline is hit
 */
int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
{
	struct kretprobe_instance *ri = NULL;
	struct hlist_head *head, empty_rp;
	struct hlist_node *node, *tmp;
	unsigned long flags, orig_ret_address = 0;
	unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;

	INIT_HLIST_HEAD(&empty_rp);
	spin_lock_irqsave(&kretprobe_lock, flags);
	head = kretprobe_inst_table_head(current);

	/*
	 * It is possible to have multiple instances associated with a given
	 * task either because an multiple functions in the call path
	 * have a return probe installed on them, and/or more then one return
	 * return probe was registered for a target function.
	 *
	 * We can handle this because:
	 *     - instances are always inserted at the head of the list
	 *     - when multiple return probes are registered for the same
	 *       function, the first instance's ret_addr will point to the
	 *       real return address, and all the rest will point to
	 *       kretprobe_trampoline
	 */
	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
		if (ri->task != current)
			/* another task is sharing our hash bucket */
			continue;

		if (ri->rp && ri->rp->handler)
			ri->rp->handler(ri, regs);

		orig_ret_address = (unsigned long)ri->ret_addr;
		recycle_rp_inst(ri, &empty_rp);

		if (orig_ret_address != trampoline_address)
			/*
			 * This is the real return address. Any other
			 * instances associated with this task are for
			 * other calls deeper on the call stack
			 */
			break;
	}

	kretprobe_assert(ri, orig_ret_address, trampoline_address);
	regs->tpc = orig_ret_address;
	regs->tnpc = orig_ret_address + 4;

	reset_current_kprobe();
	spin_unlock_irqrestore(&kretprobe_lock, flags);
	preempt_enable_no_resched();

	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
		hlist_del(&ri->hlist);
		kfree(ri);
	}
	/*
	 * By returning a non-zero value, we are telling
	 * kprobe_handler() that we don't want the post_handler
	 * to run (and have re-enabled preemption)
	 */
	return 1;
}

void kretprobe_trampoline_holder(void)
{
	asm volatile(".global kretprobe_trampoline\n"
		     "kretprobe_trampoline:\n"
		     "\tnop\n"
		     "\tnop\n");
}
static struct kprobe trampoline_p = {
	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
	.pre_handler = trampoline_probe_handler
};

int __init arch_init_kprobes(void)
586
{
587 588 589 590 591 592 593 594
	return register_kprobe(&trampoline_p);
}

int __kprobes arch_trampoline_kprobe(struct kprobe *p)
{
	if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline)
		return 1;

595 596
	return 0;
}