dm-crypt.c 22.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
/*
 * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
 *
 * This file is released under the GPL.
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/mempool.h>
#include <linux/slab.h>
#include <linux/crypto.h>
#include <linux/workqueue.h>
#include <asm/atomic.h>
#include <asm/scatterlist.h>
#include <asm/page.h>

#include "dm.h"

#define PFX	"crypt: "

/*
 * per bio private data
 */
struct crypt_io {
	struct dm_target *target;
	struct bio *bio;
	struct bio *first_clone;
	struct work_struct work;
	atomic_t pending;
	int error;
};

/*
 * context holding the current state of a multi-part conversion
 */
struct convert_context {
	struct bio *bio_in;
	struct bio *bio_out;
	unsigned int offset_in;
	unsigned int offset_out;
	unsigned int idx_in;
	unsigned int idx_out;
	sector_t sector;
	int write;
};

struct crypt_config;

struct crypt_iv_operations {
	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
	           const char *opts);
	void (*dtr)(struct crypt_config *cc);
	const char *(*status)(struct crypt_config *cc);
	int (*generator)(struct crypt_config *cc, u8 *iv, sector_t sector);
};

/*
 * Crypt: maps a linear range of a block device
 * and encrypts / decrypts at the same time.
 */
struct crypt_config {
	struct dm_dev *dev;
	sector_t start;

	/*
	 * pool for per bio private data and
	 * for encryption buffer pages
	 */
	mempool_t *io_pool;
	mempool_t *page_pool;

	/*
	 * crypto related data
	 */
	struct crypt_iv_operations *iv_gen_ops;
	char *iv_mode;
	void *iv_gen_private;
	sector_t iv_offset;
	unsigned int iv_size;

	struct crypto_tfm *tfm;
	unsigned int key_size;
	u8 key[0];
};

#define MIN_IOS        256
#define MIN_POOL_PAGES 32
#define MIN_BIO_PAGES  8

static kmem_cache_t *_crypt_io_pool;

/*
 * Mempool alloc and free functions for the page
 */
A
Al Viro 已提交
99
static void *mempool_alloc_page(gfp_t gfp_mask, void *data)
L
Linus Torvalds 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
{
	return alloc_page(gfp_mask);
}

static void mempool_free_page(void *page, void *data)
{
	__free_page(page);
}


/*
 * Different IV generation algorithms:
 *
 * plain: the initial vector is the 32-bit low-endian version of the sector
 *        number, padded with zeros if neccessary.
 *
 * ess_iv: "encrypted sector|salt initial vector", the sector number is
 *         encrypted with the bulk cipher using a salt as key. The salt
 *         should be derived from the bulk cipher's key via hashing.
 *
 * plumb: unimplemented, see:
 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
 */

static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
{
	memset(iv, 0, cc->iv_size);
	*(u32 *)iv = cpu_to_le32(sector & 0xffffffff);

	return 0;
}

static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
	                      const char *opts)
{
	struct crypto_tfm *essiv_tfm;
	struct crypto_tfm *hash_tfm;
	struct scatterlist sg;
	unsigned int saltsize;
	u8 *salt;

	if (opts == NULL) {
		ti->error = PFX "Digest algorithm missing for ESSIV mode";
		return -EINVAL;
	}

	/* Hash the cipher key with the given hash algorithm */
147
	hash_tfm = crypto_alloc_tfm(opts, CRYPTO_TFM_REQ_MAY_SLEEP);
L
Linus Torvalds 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
	if (hash_tfm == NULL) {
		ti->error = PFX "Error initializing ESSIV hash";
		return -EINVAL;
	}

	if (crypto_tfm_alg_type(hash_tfm) != CRYPTO_ALG_TYPE_DIGEST) {
		ti->error = PFX "Expected digest algorithm for ESSIV hash";
		crypto_free_tfm(hash_tfm);
		return -EINVAL;
	}

	saltsize = crypto_tfm_alg_digestsize(hash_tfm);
	salt = kmalloc(saltsize, GFP_KERNEL);
	if (salt == NULL) {
		ti->error = PFX "Error kmallocing salt storage in ESSIV";
		crypto_free_tfm(hash_tfm);
		return -ENOMEM;
	}

	sg.page = virt_to_page(cc->key);
	sg.offset = offset_in_page(cc->key);
	sg.length = cc->key_size;
	crypto_digest_digest(hash_tfm, &sg, 1, salt);
	crypto_free_tfm(hash_tfm);

	/* Setup the essiv_tfm with the given salt */
	essiv_tfm = crypto_alloc_tfm(crypto_tfm_alg_name(cc->tfm),
175 176
	                             CRYPTO_TFM_MODE_ECB |
	                             CRYPTO_TFM_REQ_MAY_SLEEP);
L
Linus Torvalds 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
	if (essiv_tfm == NULL) {
		ti->error = PFX "Error allocating crypto tfm for ESSIV";
		kfree(salt);
		return -EINVAL;
	}
	if (crypto_tfm_alg_blocksize(essiv_tfm)
	    != crypto_tfm_alg_ivsize(cc->tfm)) {
		ti->error = PFX "Block size of ESSIV cipher does "
			        "not match IV size of block cipher";
		crypto_free_tfm(essiv_tfm);
		kfree(salt);
		return -EINVAL;
	}
	if (crypto_cipher_setkey(essiv_tfm, salt, saltsize) < 0) {
		ti->error = PFX "Failed to set key for ESSIV cipher";
		crypto_free_tfm(essiv_tfm);
		kfree(salt);
		return -EINVAL;
	}
	kfree(salt);

	cc->iv_gen_private = (void *)essiv_tfm;
	return 0;
}

static void crypt_iv_essiv_dtr(struct crypt_config *cc)
{
	crypto_free_tfm((struct crypto_tfm *)cc->iv_gen_private);
	cc->iv_gen_private = NULL;
}

static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
{
	struct scatterlist sg = { NULL, };

	memset(iv, 0, cc->iv_size);
	*(u64 *)iv = cpu_to_le64(sector);

	sg.page = virt_to_page(iv);
	sg.offset = offset_in_page(iv);
	sg.length = cc->iv_size;
	crypto_cipher_encrypt((struct crypto_tfm *)cc->iv_gen_private,
	                      &sg, &sg, cc->iv_size);

	return 0;
}

static struct crypt_iv_operations crypt_iv_plain_ops = {
	.generator = crypt_iv_plain_gen
};

static struct crypt_iv_operations crypt_iv_essiv_ops = {
	.ctr       = crypt_iv_essiv_ctr,
	.dtr       = crypt_iv_essiv_dtr,
	.generator = crypt_iv_essiv_gen
};


static inline int
crypt_convert_scatterlist(struct crypt_config *cc, struct scatterlist *out,
                          struct scatterlist *in, unsigned int length,
                          int write, sector_t sector)
{
	u8 iv[cc->iv_size];
	int r;

	if (cc->iv_gen_ops) {
		r = cc->iv_gen_ops->generator(cc, iv, sector);
		if (r < 0)
			return r;

		if (write)
			r = crypto_cipher_encrypt_iv(cc->tfm, out, in, length, iv);
		else
			r = crypto_cipher_decrypt_iv(cc->tfm, out, in, length, iv);
	} else {
		if (write)
			r = crypto_cipher_encrypt(cc->tfm, out, in, length);
		else
			r = crypto_cipher_decrypt(cc->tfm, out, in, length);
	}

	return r;
}

static void
crypt_convert_init(struct crypt_config *cc, struct convert_context *ctx,
                   struct bio *bio_out, struct bio *bio_in,
                   sector_t sector, int write)
{
	ctx->bio_in = bio_in;
	ctx->bio_out = bio_out;
	ctx->offset_in = 0;
	ctx->offset_out = 0;
	ctx->idx_in = bio_in ? bio_in->bi_idx : 0;
	ctx->idx_out = bio_out ? bio_out->bi_idx : 0;
	ctx->sector = sector + cc->iv_offset;
	ctx->write = write;
}

/*
 * Encrypt / decrypt data from one bio to another one (can be the same one)
 */
static int crypt_convert(struct crypt_config *cc,
                         struct convert_context *ctx)
{
	int r = 0;

	while(ctx->idx_in < ctx->bio_in->bi_vcnt &&
	      ctx->idx_out < ctx->bio_out->bi_vcnt) {
		struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in);
		struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out);
		struct scatterlist sg_in = {
			.page = bv_in->bv_page,
			.offset = bv_in->bv_offset + ctx->offset_in,
			.length = 1 << SECTOR_SHIFT
		};
		struct scatterlist sg_out = {
			.page = bv_out->bv_page,
			.offset = bv_out->bv_offset + ctx->offset_out,
			.length = 1 << SECTOR_SHIFT
		};

		ctx->offset_in += sg_in.length;
		if (ctx->offset_in >= bv_in->bv_len) {
			ctx->offset_in = 0;
			ctx->idx_in++;
		}

		ctx->offset_out += sg_out.length;
		if (ctx->offset_out >= bv_out->bv_len) {
			ctx->offset_out = 0;
			ctx->idx_out++;
		}

		r = crypt_convert_scatterlist(cc, &sg_out, &sg_in, sg_in.length,
		                              ctx->write, ctx->sector);
		if (r < 0)
			break;

		ctx->sector++;
	}

	return r;
}

/*
 * Generate a new unfragmented bio with the given size
 * This should never violate the device limitations
 * May return a smaller bio when running out of pages
 */
static struct bio *
crypt_alloc_buffer(struct crypt_config *cc, unsigned int size,
                   struct bio *base_bio, unsigned int *bio_vec_idx)
{
	struct bio *bio;
	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
334
	gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
L
Linus Torvalds 已提交
335 336 337
	unsigned int i;

	/*
N
Nick Piggin 已提交
338 339
	 * Use __GFP_NOMEMALLOC to tell the VM to act less aggressively and
	 * to fail earlier.  This is not necessary but increases throughput.
L
Linus Torvalds 已提交
340 341 342
	 * FIXME: Is this really intelligent?
	 */
	if (base_bio)
N
Nick Piggin 已提交
343
		bio = bio_clone(base_bio, GFP_NOIO|__GFP_NOMEMALLOC);
L
Linus Torvalds 已提交
344
	else
N
Nick Piggin 已提交
345 346
		bio = bio_alloc(GFP_NOIO|__GFP_NOMEMALLOC, nr_iovecs);
	if (!bio)
L
Linus Torvalds 已提交
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
		return NULL;

	/* if the last bio was not complete, continue where that one ended */
	bio->bi_idx = *bio_vec_idx;
	bio->bi_vcnt = *bio_vec_idx;
	bio->bi_size = 0;
	bio->bi_flags &= ~(1 << BIO_SEG_VALID);

	/* bio->bi_idx pages have already been allocated */
	size -= bio->bi_idx * PAGE_SIZE;

	for(i = bio->bi_idx; i < nr_iovecs; i++) {
		struct bio_vec *bv = bio_iovec_idx(bio, i);

		bv->bv_page = mempool_alloc(cc->page_pool, gfp_mask);
		if (!bv->bv_page)
			break;

		/*
		 * if additional pages cannot be allocated without waiting,
		 * return a partially allocated bio, the caller will then try
		 * to allocate additional bios while submitting this partial bio
		 */
		if ((i - bio->bi_idx) == (MIN_BIO_PAGES - 1))
			gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;

		bv->bv_offset = 0;
		if (size > PAGE_SIZE)
			bv->bv_len = PAGE_SIZE;
		else
			bv->bv_len = size;

		bio->bi_size += bv->bv_len;
		bio->bi_vcnt++;
		size -= bv->bv_len;
	}

	if (!bio->bi_size) {
		bio_put(bio);
		return NULL;
	}

	/*
	 * Remember the last bio_vec allocated to be able
	 * to correctly continue after the splitting.
	 */
	*bio_vec_idx = bio->bi_vcnt;

	return bio;
}

static void crypt_free_buffer_pages(struct crypt_config *cc,
                                    struct bio *bio, unsigned int bytes)
{
	unsigned int i, start, end;
	struct bio_vec *bv;

	/*
	 * This is ugly, but Jens Axboe thinks that using bi_idx in the
	 * endio function is too dangerous at the moment, so I calculate the
	 * correct position using bi_vcnt and bi_size.
	 * The bv_offset and bv_len fields might already be modified but we
	 * know that we always allocated whole pages.
	 * A fix to the bi_idx issue in the kernel is in the works, so
	 * we will hopefully be able to revert to the cleaner solution soon.
	 */
	i = bio->bi_vcnt - 1;
	bv = bio_iovec_idx(bio, i);
	end = (i << PAGE_SHIFT) + (bv->bv_offset + bv->bv_len) - bio->bi_size;
	start = end - bytes;

	start >>= PAGE_SHIFT;
	if (!bio->bi_size)
		end = bio->bi_vcnt;
	else
		end >>= PAGE_SHIFT;

	for(i = start; i < end; i++) {
		bv = bio_iovec_idx(bio, i);
		BUG_ON(!bv->bv_page);
		mempool_free(bv->bv_page, cc->page_pool);
		bv->bv_page = NULL;
	}
}

/*
 * One of the bios was finished. Check for completion of
 * the whole request and correctly clean up the buffer.
 */
static void dec_pending(struct crypt_io *io, int error)
{
	struct crypt_config *cc = (struct crypt_config *) io->target->private;

	if (error < 0)
		io->error = error;

	if (!atomic_dec_and_test(&io->pending))
		return;

	if (io->first_clone)
		bio_put(io->first_clone);

	bio_endio(io->bio, io->bio->bi_size, io->error);

	mempool_free(io, cc->io_pool);
}

/*
 * kcryptd:
 *
 * Needed because it would be very unwise to do decryption in an
 * interrupt context, so bios returning from read requests get
 * queued here.
 */
static struct workqueue_struct *_kcryptd_workqueue;

static void kcryptd_do_work(void *data)
{
	struct crypt_io *io = (struct crypt_io *) data;
	struct crypt_config *cc = (struct crypt_config *) io->target->private;
	struct convert_context ctx;
	int r;

	crypt_convert_init(cc, &ctx, io->bio, io->bio,
	                   io->bio->bi_sector - io->target->begin, 0);
	r = crypt_convert(cc, &ctx);

	dec_pending(io, r);
}

static void kcryptd_queue_io(struct crypt_io *io)
{
	INIT_WORK(&io->work, kcryptd_do_work, io);
	queue_work(_kcryptd_workqueue, &io->work);
}

/*
 * Decode key from its hex representation
 */
static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
{
	char buffer[3];
	char *endp;
	unsigned int i;

	buffer[2] = '\0';

	for(i = 0; i < size; i++) {
		buffer[0] = *hex++;
		buffer[1] = *hex++;

		key[i] = (u8)simple_strtoul(buffer, &endp, 16);

		if (endp != &buffer[2])
			return -EINVAL;
	}

	if (*hex != '\0')
		return -EINVAL;

	return 0;
}

/*
 * Encode key into its hex representation
 */
static void crypt_encode_key(char *hex, u8 *key, unsigned int size)
{
	unsigned int i;

	for(i = 0; i < size; i++) {
		sprintf(hex, "%02x", *key);
		hex += 2;
		key++;
	}
}

/*
 * Construct an encryption mapping:
 * <cipher> <key> <iv_offset> <dev_path> <start>
 */
static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
{
	struct crypt_config *cc;
	struct crypto_tfm *tfm;
	char *tmp;
	char *cipher;
	char *chainmode;
	char *ivmode;
	char *ivopts;
	unsigned int crypto_flags;
	unsigned int key_size;

	if (argc != 5) {
		ti->error = PFX "Not enough arguments";
		return -EINVAL;
	}

	tmp = argv[0];
	cipher = strsep(&tmp, "-");
	chainmode = strsep(&tmp, "-");
	ivopts = strsep(&tmp, "-");
	ivmode = strsep(&ivopts, ":");

	if (tmp)
		DMWARN(PFX "Unexpected additional cipher options");

	key_size = strlen(argv[1]) >> 1;

	cc = kmalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
	if (cc == NULL) {
		ti->error =
			PFX "Cannot allocate transparent encryption context";
		return -ENOMEM;
	}

	cc->key_size = key_size;
	if ((!key_size && strcmp(argv[1], "-") != 0) ||
	    (key_size && crypt_decode_key(cc->key, argv[1], key_size) < 0)) {
		ti->error = PFX "Error decoding key";
		goto bad1;
	}

	/* Compatiblity mode for old dm-crypt cipher strings */
	if (!chainmode || (strcmp(chainmode, "plain") == 0 && !ivmode)) {
		chainmode = "cbc";
		ivmode = "plain";
	}

	/* Choose crypto_flags according to chainmode */
	if (strcmp(chainmode, "cbc") == 0)
		crypto_flags = CRYPTO_TFM_MODE_CBC;
	else if (strcmp(chainmode, "ecb") == 0)
		crypto_flags = CRYPTO_TFM_MODE_ECB;
	else {
		ti->error = PFX "Unknown chaining mode";
		goto bad1;
	}

	if (crypto_flags != CRYPTO_TFM_MODE_ECB && !ivmode) {
		ti->error = PFX "This chaining mode requires an IV mechanism";
		goto bad1;
	}

591
	tfm = crypto_alloc_tfm(cipher, crypto_flags | CRYPTO_TFM_REQ_MAY_SLEEP);
L
Linus Torvalds 已提交
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
	if (!tfm) {
		ti->error = PFX "Error allocating crypto tfm";
		goto bad1;
	}
	if (crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_CIPHER) {
		ti->error = PFX "Expected cipher algorithm";
		goto bad2;
	}

	cc->tfm = tfm;

	/*
	 * Choose ivmode. Valid modes: "plain", "essiv:<esshash>".
	 * See comments at iv code
	 */

	if (ivmode == NULL)
		cc->iv_gen_ops = NULL;
	else if (strcmp(ivmode, "plain") == 0)
		cc->iv_gen_ops = &crypt_iv_plain_ops;
	else if (strcmp(ivmode, "essiv") == 0)
		cc->iv_gen_ops = &crypt_iv_essiv_ops;
	else {
		ti->error = PFX "Invalid IV mode";
		goto bad2;
	}

	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr &&
	    cc->iv_gen_ops->ctr(cc, ti, ivopts) < 0)
		goto bad2;

	if (tfm->crt_cipher.cit_decrypt_iv && tfm->crt_cipher.cit_encrypt_iv)
		/* at least a 64 bit sector number should fit in our buffer */
		cc->iv_size = max(crypto_tfm_alg_ivsize(tfm),
		                  (unsigned int)(sizeof(u64) / sizeof(u8)));
	else {
		cc->iv_size = 0;
		if (cc->iv_gen_ops) {
			DMWARN(PFX "Selected cipher does not support IVs");
			if (cc->iv_gen_ops->dtr)
				cc->iv_gen_ops->dtr(cc);
			cc->iv_gen_ops = NULL;
		}
	}

	cc->io_pool = mempool_create(MIN_IOS, mempool_alloc_slab,
				     mempool_free_slab, _crypt_io_pool);
	if (!cc->io_pool) {
		ti->error = PFX "Cannot allocate crypt io mempool";
		goto bad3;
	}

	cc->page_pool = mempool_create(MIN_POOL_PAGES, mempool_alloc_page,
				       mempool_free_page, NULL);
	if (!cc->page_pool) {
		ti->error = PFX "Cannot allocate page mempool";
		goto bad4;
	}

	if (tfm->crt_cipher.cit_setkey(tfm, cc->key, key_size) < 0) {
		ti->error = PFX "Error setting key";
		goto bad5;
	}

	if (sscanf(argv[2], SECTOR_FORMAT, &cc->iv_offset) != 1) {
		ti->error = PFX "Invalid iv_offset sector";
		goto bad5;
	}

	if (sscanf(argv[4], SECTOR_FORMAT, &cc->start) != 1) {
		ti->error = PFX "Invalid device sector";
		goto bad5;
	}

	if (dm_get_device(ti, argv[3], cc->start, ti->len,
	                  dm_table_get_mode(ti->table), &cc->dev)) {
		ti->error = PFX "Device lookup failed";
		goto bad5;
	}

	if (ivmode && cc->iv_gen_ops) {
		if (ivopts)
			*(ivopts - 1) = ':';
		cc->iv_mode = kmalloc(strlen(ivmode) + 1, GFP_KERNEL);
		if (!cc->iv_mode) {
			ti->error = PFX "Error kmallocing iv_mode string";
			goto bad5;
		}
		strcpy(cc->iv_mode, ivmode);
	} else
		cc->iv_mode = NULL;

	ti->private = cc;
	return 0;

bad5:
	mempool_destroy(cc->page_pool);
bad4:
	mempool_destroy(cc->io_pool);
bad3:
	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
		cc->iv_gen_ops->dtr(cc);
bad2:
	crypto_free_tfm(tfm);
bad1:
	kfree(cc);
	return -EINVAL;
}

static void crypt_dtr(struct dm_target *ti)
{
	struct crypt_config *cc = (struct crypt_config *) ti->private;

	mempool_destroy(cc->page_pool);
	mempool_destroy(cc->io_pool);

708
	kfree(cc->iv_mode);
L
Linus Torvalds 已提交
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
		cc->iv_gen_ops->dtr(cc);
	crypto_free_tfm(cc->tfm);
	dm_put_device(ti, cc->dev);
	kfree(cc);
}

static int crypt_endio(struct bio *bio, unsigned int done, int error)
{
	struct crypt_io *io = (struct crypt_io *) bio->bi_private;
	struct crypt_config *cc = (struct crypt_config *) io->target->private;

	if (bio_data_dir(bio) == WRITE) {
		/*
		 * free the processed pages, even if
		 * it's only a partially completed write
		 */
		crypt_free_buffer_pages(cc, bio, done);
	}

	if (bio->bi_size)
		return 1;

	bio_put(bio);

	/*
	 * successful reads are decrypted by the worker thread
	 */
	if ((bio_data_dir(bio) == READ)
	    && bio_flagged(bio, BIO_UPTODATE)) {
		kcryptd_queue_io(io);
		return 0;
	}

	dec_pending(io, error);
	return error;
}

static inline struct bio *
crypt_clone(struct crypt_config *cc, struct crypt_io *io, struct bio *bio,
            sector_t sector, unsigned int *bvec_idx,
            struct convert_context *ctx)
{
	struct bio *clone;

	if (bio_data_dir(bio) == WRITE) {
		clone = crypt_alloc_buffer(cc, bio->bi_size,
                                 io->first_clone, bvec_idx);
		if (clone) {
			ctx->bio_out = clone;
			if (crypt_convert(cc, ctx) < 0) {
				crypt_free_buffer_pages(cc, clone,
				                        clone->bi_size);
				bio_put(clone);
				return NULL;
			}
		}
	} else {
		/*
		 * The block layer might modify the bvec array, so always
		 * copy the required bvecs because we need the original
		 * one in order to decrypt the whole bio data *afterwards*.
		 */
		clone = bio_alloc(GFP_NOIO, bio_segments(bio));
		if (clone) {
			clone->bi_idx = 0;
			clone->bi_vcnt = bio_segments(bio);
			clone->bi_size = bio->bi_size;
			memcpy(clone->bi_io_vec, bio_iovec(bio),
			       sizeof(struct bio_vec) * clone->bi_vcnt);
		}
	}

	if (!clone)
		return NULL;

	clone->bi_private = io;
	clone->bi_end_io = crypt_endio;
	clone->bi_bdev = cc->dev->bdev;
	clone->bi_sector = cc->start + sector;
	clone->bi_rw = bio->bi_rw;

	return clone;
}

static int crypt_map(struct dm_target *ti, struct bio *bio,
		     union map_info *map_context)
{
	struct crypt_config *cc = (struct crypt_config *) ti->private;
	struct crypt_io *io = mempool_alloc(cc->io_pool, GFP_NOIO);
	struct convert_context ctx;
	struct bio *clone;
	unsigned int remaining = bio->bi_size;
	sector_t sector = bio->bi_sector - ti->begin;
	unsigned int bvec_idx = 0;

	io->target = ti;
	io->bio = bio;
	io->first_clone = NULL;
	io->error = 0;
	atomic_set(&io->pending, 1); /* hold a reference */

	if (bio_data_dir(bio) == WRITE)
		crypt_convert_init(cc, &ctx, NULL, bio, sector, 1);

	/*
	 * The allocated buffers can be smaller than the whole bio,
	 * so repeat the whole process until all the data can be handled.
	 */
	while (remaining) {
		clone = crypt_clone(cc, io, bio, sector, &bvec_idx, &ctx);
		if (!clone)
			goto cleanup;

		if (!io->first_clone) {
			/*
			 * hold a reference to the first clone, because it
			 * holds the bio_vec array and that can't be freed
			 * before all other clones are released
			 */
			bio_get(clone);
			io->first_clone = clone;
		}
		atomic_inc(&io->pending);

		remaining -= clone->bi_size;
		sector += bio_sectors(clone);

		generic_make_request(clone);

		/* out of memory -> run queues */
		if (remaining)
			blk_congestion_wait(bio_data_dir(clone), HZ/100);
	}

	/* drop reference, clones could have returned before we reach this */
	dec_pending(io, 0);
	return 0;

cleanup:
	if (io->first_clone) {
		dec_pending(io, -ENOMEM);
		return 0;
	}

	/* if no bio has been dispatched yet, we can directly return the error */
	mempool_free(io, cc->io_pool);
	return -ENOMEM;
}

static int crypt_status(struct dm_target *ti, status_type_t type,
			char *result, unsigned int maxlen)
{
	struct crypt_config *cc = (struct crypt_config *) ti->private;
	const char *cipher;
	const char *chainmode = NULL;
	unsigned int sz = 0;

	switch (type) {
	case STATUSTYPE_INFO:
		result[0] = '\0';
		break;

	case STATUSTYPE_TABLE:
		cipher = crypto_tfm_alg_name(cc->tfm);

		switch(cc->tfm->crt_cipher.cit_mode) {
		case CRYPTO_TFM_MODE_CBC:
			chainmode = "cbc";
			break;
		case CRYPTO_TFM_MODE_ECB:
			chainmode = "ecb";
			break;
		default:
			BUG();
		}

		if (cc->iv_mode)
			DMEMIT("%s-%s-%s ", cipher, chainmode, cc->iv_mode);
		else
			DMEMIT("%s-%s ", cipher, chainmode);

		if (cc->key_size > 0) {
			if ((maxlen - sz) < ((cc->key_size << 1) + 1))
				return -ENOMEM;

			crypt_encode_key(result + sz, cc->key, cc->key_size);
			sz += cc->key_size << 1;
		} else {
			if (sz >= maxlen)
				return -ENOMEM;
			result[sz++] = '-';
		}

		DMEMIT(" " SECTOR_FORMAT " %s " SECTOR_FORMAT,
		       cc->iv_offset, cc->dev->name, cc->start);
		break;
	}
	return 0;
}

static struct target_type crypt_target = {
	.name   = "crypt",
	.version= {1, 1, 0},
	.module = THIS_MODULE,
	.ctr    = crypt_ctr,
	.dtr    = crypt_dtr,
	.map    = crypt_map,
	.status = crypt_status,
};

static int __init dm_crypt_init(void)
{
	int r;

	_crypt_io_pool = kmem_cache_create("dm-crypt_io",
	                                   sizeof(struct crypt_io),
	                                   0, 0, NULL, NULL);
	if (!_crypt_io_pool)
		return -ENOMEM;

	_kcryptd_workqueue = create_workqueue("kcryptd");
	if (!_kcryptd_workqueue) {
		r = -ENOMEM;
		DMERR(PFX "couldn't create kcryptd");
		goto bad1;
	}

	r = dm_register_target(&crypt_target);
	if (r < 0) {
		DMERR(PFX "register failed %d", r);
		goto bad2;
	}

	return 0;

bad2:
	destroy_workqueue(_kcryptd_workqueue);
bad1:
	kmem_cache_destroy(_crypt_io_pool);
	return r;
}

static void __exit dm_crypt_exit(void)
{
	int r = dm_unregister_target(&crypt_target);

	if (r < 0)
		DMERR(PFX "unregister failed %d", r);

	destroy_workqueue(_kcryptd_workqueue);
	kmem_cache_destroy(_crypt_io_pool);
}

module_init(dm_crypt_init);
module_exit(dm_crypt_exit);

MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
MODULE_LICENSE("GPL");