stats.h 7.4 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0 */
2 3

#ifdef CONFIG_SCHEDSTATS
4

5 6 7 8 9 10 11 12
/*
 * Expects runqueue lock to be held for atomicity of update
 */
static inline void
rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
{
	if (rq) {
		rq->rq_sched_info.run_delay += delta;
13
		rq->rq_sched_info.pcount++;
14 15 16 17 18 19 20 21 22 23
	}
}

/*
 * Expects runqueue lock to be held for atomicity of update
 */
static inline void
rq_sched_info_depart(struct rq *rq, unsigned long long delta)
{
	if (rq)
24
		rq->rq_cpu_time += delta;
25
}
26 27 28 29 30 31 32

static inline void
rq_sched_info_dequeued(struct rq *rq, unsigned long long delta)
{
	if (rq)
		rq->rq_sched_info.run_delay += delta;
}
33
#define   schedstat_enabled()		static_branch_unlikely(&sched_schedstats)
34
#define __schedstat_inc(var)		do { var++; } while (0)
35
#define   schedstat_inc(var)		do { if (schedstat_enabled()) { var++; } } while (0)
36
#define __schedstat_add(var, amt)	do { var += (amt); } while (0)
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
#define   schedstat_add(var, amt)	do { if (schedstat_enabled()) { var += (amt); } } while (0)
#define __schedstat_set(var, val)	do { var = (val); } while (0)
#define   schedstat_set(var, val)	do { if (schedstat_enabled()) { var = (val); } } while (0)
#define   schedstat_val(var)		(var)
#define   schedstat_val_or_zero(var)	((schedstat_enabled()) ? (var) : 0)

#else /* !CONFIG_SCHEDSTATS: */
static inline void rq_sched_info_arrive  (struct rq *rq, unsigned long long delta) { }
static inline void rq_sched_info_dequeued(struct rq *rq, unsigned long long delta) { }
static inline void rq_sched_info_depart  (struct rq *rq, unsigned long long delta) { }
# define   schedstat_enabled()		0
# define __schedstat_inc(var)		do { } while (0)
# define   schedstat_inc(var)		do { } while (0)
# define __schedstat_add(var, amt)	do { } while (0)
# define   schedstat_add(var, amt)	do { } while (0)
# define __schedstat_set(var, val)	do { } while (0)
# define   schedstat_set(var, val)	do { } while (0)
# define   schedstat_val(var)		0
# define   schedstat_val_or_zero(var)	0
56
#endif /* CONFIG_SCHEDSTATS */
57

58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
#ifdef CONFIG_PSI
/*
 * PSI tracks state that persists across sleeps, such as iowaits and
 * memory stalls. As a result, it has to distinguish between sleeps,
 * where a task's runnable state changes, and requeues, where a task
 * and its state are being moved between CPUs and runqueues.
 */
static inline void psi_enqueue(struct task_struct *p, bool wakeup)
{
	int clear = 0, set = TSK_RUNNING;

	if (psi_disabled)
		return;

	if (!wakeup || p->sched_psi_wake_requeue) {
		if (p->flags & PF_MEMSTALL)
			set |= TSK_MEMSTALL;
		if (p->sched_psi_wake_requeue)
			p->sched_psi_wake_requeue = 0;
	} else {
		if (p->in_iowait)
			clear |= TSK_IOWAIT;
	}

	psi_task_change(p, clear, set);
}

static inline void psi_dequeue(struct task_struct *p, bool sleep)
{
	int clear = TSK_RUNNING, set = 0;

	if (psi_disabled)
		return;

	if (!sleep) {
		if (p->flags & PF_MEMSTALL)
			clear |= TSK_MEMSTALL;
	} else {
		if (p->in_iowait)
			set |= TSK_IOWAIT;
	}

	psi_task_change(p, clear, set);
}

static inline void psi_ttwu_dequeue(struct task_struct *p)
{
	if (psi_disabled)
		return;
	/*
	 * Is the task being migrated during a wakeup? Make sure to
	 * deregister its sleep-persistent psi states from the old
	 * queue, and let psi_enqueue() know it has to requeue.
	 */
	if (unlikely(p->in_iowait || (p->flags & PF_MEMSTALL))) {
		struct rq_flags rf;
		struct rq *rq;
		int clear = 0;

		if (p->in_iowait)
			clear |= TSK_IOWAIT;
		if (p->flags & PF_MEMSTALL)
			clear |= TSK_MEMSTALL;

		rq = __task_rq_lock(p, &rf);
		psi_task_change(p, clear, 0);
		p->sched_psi_wake_requeue = 1;
		__task_rq_unlock(rq, &rf);
	}
}

static inline void psi_task_tick(struct rq *rq)
{
	if (psi_disabled)
		return;

	if (unlikely(rq->curr->flags & PF_MEMSTALL))
		psi_memstall_tick(rq->curr, cpu_of(rq));
}
#else /* CONFIG_PSI */
static inline void psi_enqueue(struct task_struct *p, bool wakeup) {}
static inline void psi_dequeue(struct task_struct *p, bool sleep) {}
static inline void psi_ttwu_dequeue(struct task_struct *p) {}
static inline void psi_task_tick(struct rq *rq) {}
#endif /* CONFIG_PSI */

144
#ifdef CONFIG_SCHED_INFO
145 146 147 148 149
static inline void sched_info_reset_dequeued(struct task_struct *t)
{
	t->sched_info.last_queued = 0;
}

150
/*
151
 * We are interested in knowing how long it was from the *first* time a
152 153 154
 * task was queued to the time that it finally hit a CPU, we call this routine
 * from dequeue_task() to account for possible rq->clock skew across CPUs. The
 * delta taken on each CPU would annul the skew.
155
 */
156
static inline void sched_info_dequeued(struct rq *rq, struct task_struct *t)
157
{
158
	unsigned long long now = rq_clock(rq), delta = 0;
159 160 161 162 163 164 165

	if (unlikely(sched_info_on()))
		if (t->sched_info.last_queued)
			delta = now - t->sched_info.last_queued;
	sched_info_reset_dequeued(t);
	t->sched_info.run_delay += delta;

166
	rq_sched_info_dequeued(rq, delta);
167 168 169
}

/*
170
 * Called when a task finally hits the CPU.  We can now calculate how
171 172 173
 * long it was waiting to run.  We also note when it began so that we
 * can keep stats on how long its timeslice is.
 */
174
static void sched_info_arrive(struct rq *rq, struct task_struct *t)
175
{
176
	unsigned long long now = rq_clock(rq), delta = 0;
177 178 179

	if (t->sched_info.last_queued)
		delta = now - t->sched_info.last_queued;
180
	sched_info_reset_dequeued(t);
181 182
	t->sched_info.run_delay += delta;
	t->sched_info.last_arrival = now;
183
	t->sched_info.pcount++;
184

185
	rq_sched_info_arrive(rq, delta);
186 187 188 189 190 191 192
}

/*
 * This function is only called from enqueue_task(), but also only updates
 * the timestamp if it is already not set.  It's assumed that
 * sched_info_dequeued() will clear that stamp when appropriate.
 */
193
static inline void sched_info_queued(struct rq *rq, struct task_struct *t)
194
{
195
	if (unlikely(sched_info_on())) {
196
		if (!t->sched_info.last_queued)
197
			t->sched_info.last_queued = rq_clock(rq);
198
	}
199 200 201
}

/*
202 203 204
 * Called when a process ceases being the active-running process involuntarily
 * due, typically, to expiring its time slice (this may also be called when
 * switching to the idle task).  Now we can calculate how long we ran.
205 206 207
 * Also, if the process is still in the TASK_RUNNING state, call
 * sched_info_queued() to mark that it has now again started waiting on
 * the runqueue.
208
 */
209
static inline void sched_info_depart(struct rq *rq, struct task_struct *t)
210
{
211
	unsigned long long delta = rq_clock(rq) - t->sched_info.last_arrival;
212

213
	rq_sched_info_depart(rq, delta);
214 215

	if (t->state == TASK_RUNNING)
216
		sched_info_queued(rq, t);
217 218 219 220 221 222 223 224
}

/*
 * Called when tasks are switched involuntarily due, typically, to expiring
 * their time slice.  (This may also be called when switching to or from
 * the idle task.)  We are only called when prev != next.
 */
static inline void
225
__sched_info_switch(struct rq *rq, struct task_struct *prev, struct task_struct *next)
226 227
{
	/*
228
	 * prev now departs the CPU.  It's not interesting to record
229 230 231 232
	 * stats about how efficient we were at scheduling the idle
	 * process, however.
	 */
	if (prev != rq->idle)
233
		sched_info_depart(rq, prev);
234 235

	if (next != rq->idle)
236
		sched_info_arrive(rq, next);
237
}
238

239
static inline void
240
sched_info_switch(struct rq *rq, struct task_struct *prev, struct task_struct *next)
241 242
{
	if (unlikely(sched_info_on()))
243
		__sched_info_switch(rq, prev, next);
244
}
245 246 247 248 249 250 251 252

#else /* !CONFIG_SCHED_INFO: */
# define sched_info_queued(rq, t)	do { } while (0)
# define sched_info_reset_dequeued(t)	do { } while (0)
# define sched_info_dequeued(rq, t)	do { } while (0)
# define sched_info_depart(rq, t)	do { } while (0)
# define sched_info_arrive(rq, next)	do { } while (0)
# define sched_info_switch(rq, t, next)	do { } while (0)
253
#endif /* CONFIG_SCHED_INFO */