fsl_ifc_nand.c 28.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
/*
 * Freescale Integrated Flash Controller NAND driver
 *
 * Copyright 2011-2012 Freescale Semiconductor, Inc
 *
 * Author: Dipen Dudhat <Dipen.Dudhat@freescale.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */

#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/nand_ecc.h>
#include <asm/fsl_ifc.h>

#define ERR_BYTE		0xFF /* Value returned for read
					bytes when read failed	*/
#define IFC_TIMEOUT_MSECS	500  /* Maximum number of mSecs to wait
					for IFC NAND Machine	*/

struct fsl_ifc_ctrl;

/* mtd information per set */
struct fsl_ifc_mtd {
	struct mtd_info mtd;
	struct nand_chip chip;
	struct fsl_ifc_ctrl *ctrl;

	struct device *dev;
	int bank;		/* Chip select bank number		*/
	unsigned int bufnum_mask; /* bufnum = page & bufnum_mask */
	u8 __iomem *vbase;      /* Chip select base virtual address	*/
};

/* overview of the fsl ifc controller */
struct fsl_ifc_nand_ctrl {
	struct nand_hw_control controller;
	struct fsl_ifc_mtd *chips[FSL_IFC_BANK_COUNT];

	u8 __iomem *addr;	/* Address of assigned IFC buffer	*/
	unsigned int page;	/* Last page written to / read from	*/
	unsigned int read_bytes;/* Number of bytes read during command	*/
	unsigned int column;	/* Saved column from SEQIN		*/
	unsigned int index;	/* Pointer to next byte to 'read'	*/
	unsigned int oob;	/* Non zero if operating on OOB data	*/
	unsigned int eccread;	/* Non zero for a full-page ECC read	*/
	unsigned int counter;	/* counter for the initializations	*/
};

static struct fsl_ifc_nand_ctrl *ifc_nand_ctrl;

/* 512-byte page with 4-bit ECC, 8-bit */
static struct nand_ecclayout oob_512_8bit_ecc4 = {
	.eccbytes = 8,
	.eccpos = {8, 9, 10, 11, 12, 13, 14, 15},
	.oobfree = { {0, 5}, {6, 2} },
};

/* 512-byte page with 4-bit ECC, 16-bit */
static struct nand_ecclayout oob_512_16bit_ecc4 = {
	.eccbytes = 8,
	.eccpos = {8, 9, 10, 11, 12, 13, 14, 15},
	.oobfree = { {2, 6}, },
};

/* 2048-byte page size with 4-bit ECC */
static struct nand_ecclayout oob_2048_ecc4 = {
	.eccbytes = 32,
	.eccpos = {
		8, 9, 10, 11, 12, 13, 14, 15,
		16, 17, 18, 19, 20, 21, 22, 23,
		24, 25, 26, 27, 28, 29, 30, 31,
		32, 33, 34, 35, 36, 37, 38, 39,
	},
	.oobfree = { {2, 6}, {40, 24} },
};

/* 4096-byte page size with 4-bit ECC */
static struct nand_ecclayout oob_4096_ecc4 = {
	.eccbytes = 64,
	.eccpos = {
		8, 9, 10, 11, 12, 13, 14, 15,
		16, 17, 18, 19, 20, 21, 22, 23,
		24, 25, 26, 27, 28, 29, 30, 31,
		32, 33, 34, 35, 36, 37, 38, 39,
		40, 41, 42, 43, 44, 45, 46, 47,
		48, 49, 50, 51, 52, 53, 54, 55,
		56, 57, 58, 59, 60, 61, 62, 63,
		64, 65, 66, 67, 68, 69, 70, 71,
	},
	.oobfree = { {2, 6}, {72, 56} },
};

/* 4096-byte page size with 8-bit ECC -- requires 218-byte OOB */
static struct nand_ecclayout oob_4096_ecc8 = {
	.eccbytes = 128,
	.eccpos = {
		8, 9, 10, 11, 12, 13, 14, 15,
		16, 17, 18, 19, 20, 21, 22, 23,
		24, 25, 26, 27, 28, 29, 30, 31,
		32, 33, 34, 35, 36, 37, 38, 39,
		40, 41, 42, 43, 44, 45, 46, 47,
		48, 49, 50, 51, 52, 53, 54, 55,
		56, 57, 58, 59, 60, 61, 62, 63,
		64, 65, 66, 67, 68, 69, 70, 71,
		72, 73, 74, 75, 76, 77, 78, 79,
		80, 81, 82, 83, 84, 85, 86, 87,
		88, 89, 90, 91, 92, 93, 94, 95,
		96, 97, 98, 99, 100, 101, 102, 103,
		104, 105, 106, 107, 108, 109, 110, 111,
		112, 113, 114, 115, 116, 117, 118, 119,
		120, 121, 122, 123, 124, 125, 126, 127,
		128, 129, 130, 131, 132, 133, 134, 135,
	},
	.oobfree = { {2, 6}, {136, 82} },
};


/*
 * Generic flash bbt descriptors
 */
static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };

static struct nand_bbt_descr bbt_main_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
		   NAND_BBT_2BIT | NAND_BBT_VERSION,
	.offs =	2, /* 0 on 8-bit small page */
	.len = 4,
	.veroffs = 6,
	.maxblocks = 4,
	.pattern = bbt_pattern,
};

static struct nand_bbt_descr bbt_mirror_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
		   NAND_BBT_2BIT | NAND_BBT_VERSION,
	.offs =	2, /* 0 on 8-bit small page */
	.len = 4,
	.veroffs = 6,
	.maxblocks = 4,
	.pattern = mirror_pattern,
};

/*
 * Set up the IFC hardware block and page address fields, and the ifc nand
 * structure addr field to point to the correct IFC buffer in memory
 */
static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
{
	struct nand_chip *chip = mtd->priv;
	struct fsl_ifc_mtd *priv = chip->priv;
	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
	struct fsl_ifc_regs __iomem *ifc = ctrl->regs;
	int buf_num;

	ifc_nand_ctrl->page = page_addr;
	/* Program ROW0/COL0 */
	out_be32(&ifc->ifc_nand.row0, page_addr);
	out_be32(&ifc->ifc_nand.col0, (oob ? IFC_NAND_COL_MS : 0) | column);

	buf_num = page_addr & priv->bufnum_mask;

	ifc_nand_ctrl->addr = priv->vbase + buf_num * (mtd->writesize * 2);
	ifc_nand_ctrl->index = column;

	/* for OOB data point to the second half of the buffer */
	if (oob)
		ifc_nand_ctrl->index += mtd->writesize;
}

static int is_blank(struct mtd_info *mtd, unsigned int bufnum)
{
	struct nand_chip *chip = mtd->priv;
	struct fsl_ifc_mtd *priv = chip->priv;
	u8 __iomem *addr = priv->vbase + bufnum * (mtd->writesize * 2);
	u32 __iomem *mainarea = (u32 *)addr;
	u8 __iomem *oob = addr + mtd->writesize;
	int i;

	for (i = 0; i < mtd->writesize / 4; i++) {
		if (__raw_readl(&mainarea[i]) != 0xffffffff)
			return 0;
	}

	for (i = 0; i < chip->ecc.layout->eccbytes; i++) {
		int pos = chip->ecc.layout->eccpos[i];

		if (__raw_readb(&oob[pos]) != 0xff)
			return 0;
	}

	return 1;
}

/* returns nonzero if entire page is blank */
static int check_read_ecc(struct mtd_info *mtd, struct fsl_ifc_ctrl *ctrl,
			  u32 *eccstat, unsigned int bufnum)
{
	u32 reg = eccstat[bufnum / 4];
	int errors;

	errors = (reg >> ((3 - bufnum % 4) * 8)) & 15;

	return errors;
}

/*
 * execute IFC NAND command and wait for it to complete
 */
static void fsl_ifc_run_command(struct mtd_info *mtd)
{
	struct nand_chip *chip = mtd->priv;
	struct fsl_ifc_mtd *priv = chip->priv;
	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
	struct fsl_ifc_nand_ctrl *nctrl = ifc_nand_ctrl;
	struct fsl_ifc_regs __iomem *ifc = ctrl->regs;
	u32 eccstat[4];
	int i;

	/* set the chip select for NAND Transaction */
	out_be32(&ifc->ifc_nand.nand_csel, priv->bank << IFC_NAND_CSEL_SHIFT);

	dev_vdbg(priv->dev,
			"%s: fir0=%08x fcr0=%08x\n",
			__func__,
			in_be32(&ifc->ifc_nand.nand_fir0),
			in_be32(&ifc->ifc_nand.nand_fcr0));

	ctrl->nand_stat = 0;

	/* start read/write seq */
	out_be32(&ifc->ifc_nand.nandseq_strt, IFC_NAND_SEQ_STRT_FIR_STRT);

	/* wait for command complete flag or timeout */
	wait_event_timeout(ctrl->nand_wait, ctrl->nand_stat,
			   IFC_TIMEOUT_MSECS * HZ/1000);

	/* ctrl->nand_stat will be updated from IRQ context */
	if (!ctrl->nand_stat)
		dev_err(priv->dev, "Controller is not responding\n");
	if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_FTOER)
		dev_err(priv->dev, "NAND Flash Timeout Error\n");
	if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_WPER)
		dev_err(priv->dev, "NAND Flash Write Protect Error\n");

	if (nctrl->eccread) {
		int errors;
		int bufnum = nctrl->page & priv->bufnum_mask;
		int sector = bufnum * chip->ecc.steps;
		int sector_end = sector + chip->ecc.steps - 1;

		for (i = sector / 4; i <= sector_end / 4; i++)
			eccstat[i] = in_be32(&ifc->ifc_nand.nand_eccstat[i]);

		for (i = sector; i <= sector_end; i++) {
			errors = check_read_ecc(mtd, ctrl, eccstat, i);

			if (errors == 15) {
				/*
				 * Uncorrectable error.
				 * OK only if the whole page is blank.
				 *
				 * We disable ECCER reporting due to...
				 * erratum IFC-A002770 -- so report it now if we
				 * see an uncorrectable error in ECCSTAT.
				 */
				if (!is_blank(mtd, bufnum))
					ctrl->nand_stat |=
						IFC_NAND_EVTER_STAT_ECCER;
				break;
			}

			mtd->ecc_stats.corrected += errors;
		}

		nctrl->eccread = 0;
	}
}

static void fsl_ifc_do_read(struct nand_chip *chip,
			    int oob,
			    struct mtd_info *mtd)
{
	struct fsl_ifc_mtd *priv = chip->priv;
	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
	struct fsl_ifc_regs __iomem *ifc = ctrl->regs;

	/* Program FIR/IFC_NAND_FCR0 for Small/Large page */
	if (mtd->writesize > 512) {
		out_be32(&ifc->ifc_nand.nand_fir0,
			 (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
			 (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
			 (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
			 (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP3_SHIFT) |
			 (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP4_SHIFT));
		out_be32(&ifc->ifc_nand.nand_fir1, 0x0);

		out_be32(&ifc->ifc_nand.nand_fcr0,
			(NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT) |
			(NAND_CMD_READSTART << IFC_NAND_FCR0_CMD1_SHIFT));
	} else {
		out_be32(&ifc->ifc_nand.nand_fir0,
			 (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
			 (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
			 (IFC_FIR_OP_RA0  << IFC_NAND_FIR0_OP2_SHIFT) |
			 (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP3_SHIFT));
		out_be32(&ifc->ifc_nand.nand_fir1, 0x0);

		if (oob)
			out_be32(&ifc->ifc_nand.nand_fcr0,
				 NAND_CMD_READOOB << IFC_NAND_FCR0_CMD0_SHIFT);
		else
			out_be32(&ifc->ifc_nand.nand_fcr0,
				NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT);
	}
}

/* cmdfunc send commands to the IFC NAND Machine */
static void fsl_ifc_cmdfunc(struct mtd_info *mtd, unsigned int command,
			     int column, int page_addr) {
	struct nand_chip *chip = mtd->priv;
	struct fsl_ifc_mtd *priv = chip->priv;
	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
	struct fsl_ifc_regs __iomem *ifc = ctrl->regs;

	/* clear the read buffer */
	ifc_nand_ctrl->read_bytes = 0;
	if (command != NAND_CMD_PAGEPROG)
		ifc_nand_ctrl->index = 0;

	switch (command) {
	/* READ0 read the entire buffer to use hardware ECC. */
	case NAND_CMD_READ0:
		out_be32(&ifc->ifc_nand.nand_fbcr, 0);
		set_addr(mtd, 0, page_addr, 0);

		ifc_nand_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
		ifc_nand_ctrl->index += column;

		if (chip->ecc.mode == NAND_ECC_HW)
			ifc_nand_ctrl->eccread = 1;

		fsl_ifc_do_read(chip, 0, mtd);
		fsl_ifc_run_command(mtd);
		return;

	/* READOOB reads only the OOB because no ECC is performed. */
	case NAND_CMD_READOOB:
		out_be32(&ifc->ifc_nand.nand_fbcr, mtd->oobsize - column);
		set_addr(mtd, column, page_addr, 1);

		ifc_nand_ctrl->read_bytes = mtd->writesize + mtd->oobsize;

		fsl_ifc_do_read(chip, 1, mtd);
		fsl_ifc_run_command(mtd);

		return;

	case NAND_CMD_READID:
379 380 381 382 383
	case NAND_CMD_PARAM: {
		int timing = IFC_FIR_OP_RB;
		if (command == NAND_CMD_PARAM)
			timing = IFC_FIR_OP_RBCD;

384 385 386
		out_be32(&ifc->ifc_nand.nand_fir0,
				(IFC_FIR_OP_CMD0 << IFC_NAND_FIR0_OP0_SHIFT) |
				(IFC_FIR_OP_UA  << IFC_NAND_FIR0_OP1_SHIFT) |
387
				(timing << IFC_NAND_FIR0_OP2_SHIFT));
388
		out_be32(&ifc->ifc_nand.nand_fcr0,
389 390 391 392 393 394 395 396 397
				command << IFC_NAND_FCR0_CMD0_SHIFT);
		out_be32(&ifc->ifc_nand.row3, column);

		/*
		 * although currently it's 8 bytes for READID, we always read
		 * the maximum 256 bytes(for PARAM)
		 */
		out_be32(&ifc->ifc_nand.nand_fbcr, 256);
		ifc_nand_ctrl->read_bytes = 256;
398 399 400 401

		set_addr(mtd, 0, 0, 0);
		fsl_ifc_run_command(mtd);
		return;
402
	}
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823

	/* ERASE1 stores the block and page address */
	case NAND_CMD_ERASE1:
		set_addr(mtd, 0, page_addr, 0);
		return;

	/* ERASE2 uses the block and page address from ERASE1 */
	case NAND_CMD_ERASE2:
		out_be32(&ifc->ifc_nand.nand_fir0,
			 (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
			 (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP1_SHIFT) |
			 (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP2_SHIFT));

		out_be32(&ifc->ifc_nand.nand_fcr0,
			 (NAND_CMD_ERASE1 << IFC_NAND_FCR0_CMD0_SHIFT) |
			 (NAND_CMD_ERASE2 << IFC_NAND_FCR0_CMD1_SHIFT));

		out_be32(&ifc->ifc_nand.nand_fbcr, 0);
		ifc_nand_ctrl->read_bytes = 0;
		fsl_ifc_run_command(mtd);
		return;

	/* SEQIN sets up the addr buffer and all registers except the length */
	case NAND_CMD_SEQIN: {
		u32 nand_fcr0;
		ifc_nand_ctrl->column = column;
		ifc_nand_ctrl->oob = 0;

		if (mtd->writesize > 512) {
			nand_fcr0 =
				(NAND_CMD_SEQIN << IFC_NAND_FCR0_CMD0_SHIFT) |
				(NAND_CMD_PAGEPROG << IFC_NAND_FCR0_CMD1_SHIFT);

			out_be32(&ifc->ifc_nand.nand_fir0,
				 (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
				 (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
				 (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
				 (IFC_FIR_OP_WBCD  << IFC_NAND_FIR0_OP3_SHIFT) |
				 (IFC_FIR_OP_CW1 << IFC_NAND_FIR0_OP4_SHIFT));
		} else {
			nand_fcr0 = ((NAND_CMD_PAGEPROG <<
					IFC_NAND_FCR0_CMD1_SHIFT) |
				    (NAND_CMD_SEQIN <<
					IFC_NAND_FCR0_CMD2_SHIFT));

			out_be32(&ifc->ifc_nand.nand_fir0,
				 (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
				 (IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP1_SHIFT) |
				 (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP2_SHIFT) |
				 (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP3_SHIFT) |
				 (IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP4_SHIFT));
			out_be32(&ifc->ifc_nand.nand_fir1,
				 (IFC_FIR_OP_CW1 << IFC_NAND_FIR1_OP5_SHIFT));

			if (column >= mtd->writesize)
				nand_fcr0 |=
				NAND_CMD_READOOB << IFC_NAND_FCR0_CMD0_SHIFT;
			else
				nand_fcr0 |=
				NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT;
		}

		if (column >= mtd->writesize) {
			/* OOB area --> READOOB */
			column -= mtd->writesize;
			ifc_nand_ctrl->oob = 1;
		}
		out_be32(&ifc->ifc_nand.nand_fcr0, nand_fcr0);
		set_addr(mtd, column, page_addr, ifc_nand_ctrl->oob);
		return;
	}

	/* PAGEPROG reuses all of the setup from SEQIN and adds the length */
	case NAND_CMD_PAGEPROG: {
		if (ifc_nand_ctrl->oob) {
			out_be32(&ifc->ifc_nand.nand_fbcr,
				ifc_nand_ctrl->index - ifc_nand_ctrl->column);
		} else {
			out_be32(&ifc->ifc_nand.nand_fbcr, 0);
		}

		fsl_ifc_run_command(mtd);
		return;
	}

	case NAND_CMD_STATUS:
		out_be32(&ifc->ifc_nand.nand_fir0,
				(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
				(IFC_FIR_OP_RB << IFC_NAND_FIR0_OP1_SHIFT));
		out_be32(&ifc->ifc_nand.nand_fcr0,
				NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT);
		out_be32(&ifc->ifc_nand.nand_fbcr, 1);
		set_addr(mtd, 0, 0, 0);
		ifc_nand_ctrl->read_bytes = 1;

		fsl_ifc_run_command(mtd);

		/*
		 * The chip always seems to report that it is
		 * write-protected, even when it is not.
		 */
		setbits8(ifc_nand_ctrl->addr, NAND_STATUS_WP);
		return;

	case NAND_CMD_RESET:
		out_be32(&ifc->ifc_nand.nand_fir0,
				IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT);
		out_be32(&ifc->ifc_nand.nand_fcr0,
				NAND_CMD_RESET << IFC_NAND_FCR0_CMD0_SHIFT);
		fsl_ifc_run_command(mtd);
		return;

	default:
		dev_err(priv->dev, "%s: error, unsupported command 0x%x.\n",
					__func__, command);
	}
}

static void fsl_ifc_select_chip(struct mtd_info *mtd, int chip)
{
	/* The hardware does not seem to support multiple
	 * chips per bank.
	 */
}

/*
 * Write buf to the IFC NAND Controller Data Buffer
 */
static void fsl_ifc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
{
	struct nand_chip *chip = mtd->priv;
	struct fsl_ifc_mtd *priv = chip->priv;
	unsigned int bufsize = mtd->writesize + mtd->oobsize;

	if (len <= 0) {
		dev_err(priv->dev, "%s: len %d bytes", __func__, len);
		return;
	}

	if ((unsigned int)len > bufsize - ifc_nand_ctrl->index) {
		dev_err(priv->dev,
			"%s: beyond end of buffer (%d requested, %u available)\n",
			__func__, len, bufsize - ifc_nand_ctrl->index);
		len = bufsize - ifc_nand_ctrl->index;
	}

	memcpy_toio(&ifc_nand_ctrl->addr[ifc_nand_ctrl->index], buf, len);
	ifc_nand_ctrl->index += len;
}

/*
 * Read a byte from either the IFC hardware buffer
 * read function for 8-bit buswidth
 */
static uint8_t fsl_ifc_read_byte(struct mtd_info *mtd)
{
	struct nand_chip *chip = mtd->priv;
	struct fsl_ifc_mtd *priv = chip->priv;

	/*
	 * If there are still bytes in the IFC buffer, then use the
	 * next byte.
	 */
	if (ifc_nand_ctrl->index < ifc_nand_ctrl->read_bytes)
		return in_8(&ifc_nand_ctrl->addr[ifc_nand_ctrl->index++]);

	dev_err(priv->dev, "%s: beyond end of buffer\n", __func__);
	return ERR_BYTE;
}

/*
 * Read two bytes from the IFC hardware buffer
 * read function for 16-bit buswith
 */
static uint8_t fsl_ifc_read_byte16(struct mtd_info *mtd)
{
	struct nand_chip *chip = mtd->priv;
	struct fsl_ifc_mtd *priv = chip->priv;
	uint16_t data;

	/*
	 * If there are still bytes in the IFC buffer, then use the
	 * next byte.
	 */
	if (ifc_nand_ctrl->index < ifc_nand_ctrl->read_bytes) {
		data = in_be16((uint16_t *)&ifc_nand_ctrl->
					addr[ifc_nand_ctrl->index]);
		ifc_nand_ctrl->index += 2;
		return (uint8_t) data;
	}

	dev_err(priv->dev, "%s: beyond end of buffer\n", __func__);
	return ERR_BYTE;
}

/*
 * Read from the IFC Controller Data Buffer
 */
static void fsl_ifc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
{
	struct nand_chip *chip = mtd->priv;
	struct fsl_ifc_mtd *priv = chip->priv;
	int avail;

	if (len < 0) {
		dev_err(priv->dev, "%s: len %d bytes", __func__, len);
		return;
	}

	avail = min((unsigned int)len,
			ifc_nand_ctrl->read_bytes - ifc_nand_ctrl->index);
	memcpy_fromio(buf, &ifc_nand_ctrl->addr[ifc_nand_ctrl->index], avail);
	ifc_nand_ctrl->index += avail;

	if (len > avail)
		dev_err(priv->dev,
			"%s: beyond end of buffer (%d requested, %d available)\n",
			__func__, len, avail);
}

/*
 * Verify buffer against the IFC Controller Data Buffer
 */
static int fsl_ifc_verify_buf(struct mtd_info *mtd,
			       const u_char *buf, int len)
{
	struct nand_chip *chip = mtd->priv;
	struct fsl_ifc_mtd *priv = chip->priv;
	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
	struct fsl_ifc_nand_ctrl *nctrl = ifc_nand_ctrl;
	int i;

	if (len < 0) {
		dev_err(priv->dev, "%s: write_buf of %d bytes", __func__, len);
		return -EINVAL;
	}

	if ((unsigned int)len > nctrl->read_bytes - nctrl->index) {
		dev_err(priv->dev,
			"%s: beyond end of buffer (%d requested, %u available)\n",
			__func__, len, nctrl->read_bytes - nctrl->index);

		nctrl->index = nctrl->read_bytes;
		return -EINVAL;
	}

	for (i = 0; i < len; i++)
		if (in_8(&nctrl->addr[nctrl->index + i]) != buf[i])
			break;

	nctrl->index += len;

	if (i != len)
		return -EIO;
	if (ctrl->nand_stat != IFC_NAND_EVTER_STAT_OPC)
		return -EIO;

	return 0;
}

/*
 * This function is called after Program and Erase Operations to
 * check for success or failure.
 */
static int fsl_ifc_wait(struct mtd_info *mtd, struct nand_chip *chip)
{
	struct fsl_ifc_mtd *priv = chip->priv;
	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
	struct fsl_ifc_regs __iomem *ifc = ctrl->regs;
	u32 nand_fsr;

	/* Use READ_STATUS command, but wait for the device to be ready */
	out_be32(&ifc->ifc_nand.nand_fir0,
		 (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
		 (IFC_FIR_OP_RDSTAT << IFC_NAND_FIR0_OP1_SHIFT));
	out_be32(&ifc->ifc_nand.nand_fcr0, NAND_CMD_STATUS <<
			IFC_NAND_FCR0_CMD0_SHIFT);
	out_be32(&ifc->ifc_nand.nand_fbcr, 1);
	set_addr(mtd, 0, 0, 0);
	ifc_nand_ctrl->read_bytes = 1;

	fsl_ifc_run_command(mtd);

	nand_fsr = in_be32(&ifc->ifc_nand.nand_fsr);

	/*
	 * The chip always seems to report that it is
	 * write-protected, even when it is not.
	 */
	return nand_fsr | NAND_STATUS_WP;
}

static int fsl_ifc_read_page(struct mtd_info *mtd,
			      struct nand_chip *chip,
			      uint8_t *buf, int page)
{
	struct fsl_ifc_mtd *priv = chip->priv;
	struct fsl_ifc_ctrl *ctrl = priv->ctrl;

	fsl_ifc_read_buf(mtd, buf, mtd->writesize);
	fsl_ifc_read_buf(mtd, chip->oob_poi, mtd->oobsize);

	if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_ECCER)
		dev_err(priv->dev, "NAND Flash ECC Uncorrectable Error\n");

	if (ctrl->nand_stat != IFC_NAND_EVTER_STAT_OPC)
		mtd->ecc_stats.failed++;

	return 0;
}

/* ECC will be calculated automatically, and errors will be detected in
 * waitfunc.
 */
static void fsl_ifc_write_page(struct mtd_info *mtd,
				struct nand_chip *chip,
				const uint8_t *buf)
{
	fsl_ifc_write_buf(mtd, buf, mtd->writesize);
	fsl_ifc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
}

static int fsl_ifc_chip_init_tail(struct mtd_info *mtd)
{
	struct nand_chip *chip = mtd->priv;
	struct fsl_ifc_mtd *priv = chip->priv;

	dev_dbg(priv->dev, "%s: nand->numchips = %d\n", __func__,
							chip->numchips);
	dev_dbg(priv->dev, "%s: nand->chipsize = %lld\n", __func__,
							chip->chipsize);
	dev_dbg(priv->dev, "%s: nand->pagemask = %8x\n", __func__,
							chip->pagemask);
	dev_dbg(priv->dev, "%s: nand->chip_delay = %d\n", __func__,
							chip->chip_delay);
	dev_dbg(priv->dev, "%s: nand->badblockpos = %d\n", __func__,
							chip->badblockpos);
	dev_dbg(priv->dev, "%s: nand->chip_shift = %d\n", __func__,
							chip->chip_shift);
	dev_dbg(priv->dev, "%s: nand->page_shift = %d\n", __func__,
							chip->page_shift);
	dev_dbg(priv->dev, "%s: nand->phys_erase_shift = %d\n", __func__,
							chip->phys_erase_shift);
	dev_dbg(priv->dev, "%s: nand->ecclayout = %p\n", __func__,
							chip->ecclayout);
	dev_dbg(priv->dev, "%s: nand->ecc.mode = %d\n", __func__,
							chip->ecc.mode);
	dev_dbg(priv->dev, "%s: nand->ecc.steps = %d\n", __func__,
							chip->ecc.steps);
	dev_dbg(priv->dev, "%s: nand->ecc.bytes = %d\n", __func__,
							chip->ecc.bytes);
	dev_dbg(priv->dev, "%s: nand->ecc.total = %d\n", __func__,
							chip->ecc.total);
	dev_dbg(priv->dev, "%s: nand->ecc.layout = %p\n", __func__,
							chip->ecc.layout);
	dev_dbg(priv->dev, "%s: mtd->flags = %08x\n", __func__, mtd->flags);
	dev_dbg(priv->dev, "%s: mtd->size = %lld\n", __func__, mtd->size);
	dev_dbg(priv->dev, "%s: mtd->erasesize = %d\n", __func__,
							mtd->erasesize);
	dev_dbg(priv->dev, "%s: mtd->writesize = %d\n", __func__,
							mtd->writesize);
	dev_dbg(priv->dev, "%s: mtd->oobsize = %d\n", __func__,
							mtd->oobsize);

	return 0;
}

static int fsl_ifc_chip_init(struct fsl_ifc_mtd *priv)
{
	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
	struct fsl_ifc_regs __iomem *ifc = ctrl->regs;
	struct nand_chip *chip = &priv->chip;
	struct nand_ecclayout *layout;
	u32 csor;

	/* Fill in fsl_ifc_mtd structure */
	priv->mtd.priv = chip;
	priv->mtd.owner = THIS_MODULE;

	/* fill in nand_chip structure */
	/* set up function call table */
	if ((in_be32(&ifc->cspr_cs[priv->bank].cspr)) & CSPR_PORT_SIZE_16)
		chip->read_byte = fsl_ifc_read_byte16;
	else
		chip->read_byte = fsl_ifc_read_byte;

	chip->write_buf = fsl_ifc_write_buf;
	chip->read_buf = fsl_ifc_read_buf;
	chip->verify_buf = fsl_ifc_verify_buf;
	chip->select_chip = fsl_ifc_select_chip;
	chip->cmdfunc = fsl_ifc_cmdfunc;
	chip->waitfunc = fsl_ifc_wait;

	chip->bbt_td = &bbt_main_descr;
	chip->bbt_md = &bbt_mirror_descr;

	out_be32(&ifc->ifc_nand.ncfgr, 0x0);

	/* set up nand options */
	chip->options = NAND_NO_READRDY | NAND_NO_AUTOINCR;
	chip->bbt_options = NAND_BBT_USE_FLASH;


	if (in_be32(&ifc->cspr_cs[priv->bank].cspr) & CSPR_PORT_SIZE_16) {
		chip->read_byte = fsl_ifc_read_byte16;
		chip->options |= NAND_BUSWIDTH_16;
	} else {
		chip->read_byte = fsl_ifc_read_byte;
	}

	chip->controller = &ifc_nand_ctrl->controller;
	chip->priv = priv;

	chip->ecc.read_page = fsl_ifc_read_page;
	chip->ecc.write_page = fsl_ifc_write_page;

	csor = in_be32(&ifc->csor_cs[priv->bank].csor);

	/* Hardware generates ECC per 512 Bytes */
	chip->ecc.size = 512;
	chip->ecc.bytes = 8;
824
	chip->ecc.strength = 4;
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083

	switch (csor & CSOR_NAND_PGS_MASK) {
	case CSOR_NAND_PGS_512:
		if (chip->options & NAND_BUSWIDTH_16) {
			layout = &oob_512_16bit_ecc4;
		} else {
			layout = &oob_512_8bit_ecc4;

			/* Avoid conflict with bad block marker */
			bbt_main_descr.offs = 0;
			bbt_mirror_descr.offs = 0;
		}

		priv->bufnum_mask = 15;
		break;

	case CSOR_NAND_PGS_2K:
		layout = &oob_2048_ecc4;
		priv->bufnum_mask = 3;
		break;

	case CSOR_NAND_PGS_4K:
		if ((csor & CSOR_NAND_ECC_MODE_MASK) ==
		    CSOR_NAND_ECC_MODE_4) {
			layout = &oob_4096_ecc4;
		} else {
			layout = &oob_4096_ecc8;
			chip->ecc.bytes = 16;
		}

		priv->bufnum_mask = 1;
		break;

	default:
		dev_err(priv->dev, "bad csor %#x: bad page size\n", csor);
		return -ENODEV;
	}

	/* Must also set CSOR_NAND_ECC_ENC_EN if DEC_EN set */
	if (csor & CSOR_NAND_ECC_DEC_EN) {
		chip->ecc.mode = NAND_ECC_HW;
		chip->ecc.layout = layout;
	} else {
		chip->ecc.mode = NAND_ECC_SOFT;
	}

	return 0;
}

static int fsl_ifc_chip_remove(struct fsl_ifc_mtd *priv)
{
	nand_release(&priv->mtd);

	kfree(priv->mtd.name);

	if (priv->vbase)
		iounmap(priv->vbase);

	ifc_nand_ctrl->chips[priv->bank] = NULL;
	dev_set_drvdata(priv->dev, NULL);
	kfree(priv);

	return 0;
}

static int match_bank(struct fsl_ifc_regs __iomem *ifc, int bank,
		      phys_addr_t addr)
{
	u32 cspr = in_be32(&ifc->cspr_cs[bank].cspr);

	if (!(cspr & CSPR_V))
		return 0;
	if ((cspr & CSPR_MSEL) != CSPR_MSEL_NAND)
		return 0;

	return (cspr & CSPR_BA) == convert_ifc_address(addr);
}

static DEFINE_MUTEX(fsl_ifc_nand_mutex);

static int __devinit fsl_ifc_nand_probe(struct platform_device *dev)
{
	struct fsl_ifc_regs __iomem *ifc;
	struct fsl_ifc_mtd *priv;
	struct resource res;
	static const char *part_probe_types[]
		= { "cmdlinepart", "RedBoot", "ofpart", NULL };
	int ret;
	int bank;
	struct device_node *node = dev->dev.of_node;
	struct mtd_part_parser_data ppdata;

	ppdata.of_node = dev->dev.of_node;
	if (!fsl_ifc_ctrl_dev || !fsl_ifc_ctrl_dev->regs)
		return -ENODEV;
	ifc = fsl_ifc_ctrl_dev->regs;

	/* get, allocate and map the memory resource */
	ret = of_address_to_resource(node, 0, &res);
	if (ret) {
		dev_err(&dev->dev, "%s: failed to get resource\n", __func__);
		return ret;
	}

	/* find which chip select it is connected to */
	for (bank = 0; bank < FSL_IFC_BANK_COUNT; bank++) {
		if (match_bank(ifc, bank, res.start))
			break;
	}

	if (bank >= FSL_IFC_BANK_COUNT) {
		dev_err(&dev->dev, "%s: address did not match any chip selects\n",
			__func__);
		return -ENODEV;
	}

	priv = devm_kzalloc(&dev->dev, sizeof(*priv), GFP_KERNEL);
	if (!priv)
		return -ENOMEM;

	mutex_lock(&fsl_ifc_nand_mutex);
	if (!fsl_ifc_ctrl_dev->nand) {
		ifc_nand_ctrl = kzalloc(sizeof(*ifc_nand_ctrl), GFP_KERNEL);
		if (!ifc_nand_ctrl) {
			dev_err(&dev->dev, "failed to allocate memory\n");
			mutex_unlock(&fsl_ifc_nand_mutex);
			return -ENOMEM;
		}

		ifc_nand_ctrl->read_bytes = 0;
		ifc_nand_ctrl->index = 0;
		ifc_nand_ctrl->addr = NULL;
		fsl_ifc_ctrl_dev->nand = ifc_nand_ctrl;

		spin_lock_init(&ifc_nand_ctrl->controller.lock);
		init_waitqueue_head(&ifc_nand_ctrl->controller.wq);
	} else {
		ifc_nand_ctrl = fsl_ifc_ctrl_dev->nand;
	}
	mutex_unlock(&fsl_ifc_nand_mutex);

	ifc_nand_ctrl->chips[bank] = priv;
	priv->bank = bank;
	priv->ctrl = fsl_ifc_ctrl_dev;
	priv->dev = &dev->dev;

	priv->vbase = ioremap(res.start, resource_size(&res));
	if (!priv->vbase) {
		dev_err(priv->dev, "%s: failed to map chip region\n", __func__);
		ret = -ENOMEM;
		goto err;
	}

	dev_set_drvdata(priv->dev, priv);

	out_be32(&ifc->ifc_nand.nand_evter_en,
			IFC_NAND_EVTER_EN_OPC_EN |
			IFC_NAND_EVTER_EN_FTOER_EN |
			IFC_NAND_EVTER_EN_WPER_EN);

	/* enable NAND Machine Interrupts */
	out_be32(&ifc->ifc_nand.nand_evter_intr_en,
			IFC_NAND_EVTER_INTR_OPCIR_EN |
			IFC_NAND_EVTER_INTR_FTOERIR_EN |
			IFC_NAND_EVTER_INTR_WPERIR_EN);

	priv->mtd.name = kasprintf(GFP_KERNEL, "%x.flash", (unsigned)res.start);
	if (!priv->mtd.name) {
		ret = -ENOMEM;
		goto err;
	}

	ret = fsl_ifc_chip_init(priv);
	if (ret)
		goto err;

	ret = nand_scan_ident(&priv->mtd, 1, NULL);
	if (ret)
		goto err;

	ret = fsl_ifc_chip_init_tail(&priv->mtd);
	if (ret)
		goto err;

	ret = nand_scan_tail(&priv->mtd);
	if (ret)
		goto err;

	/* First look for RedBoot table or partitions on the command
	 * line, these take precedence over device tree information */
	mtd_device_parse_register(&priv->mtd, part_probe_types, &ppdata,
						NULL, 0);

	dev_info(priv->dev, "IFC NAND device at 0x%llx, bank %d\n",
		 (unsigned long long)res.start, priv->bank);
	return 0;

err:
	fsl_ifc_chip_remove(priv);
	return ret;
}

static int fsl_ifc_nand_remove(struct platform_device *dev)
{
	struct fsl_ifc_mtd *priv = dev_get_drvdata(&dev->dev);

	fsl_ifc_chip_remove(priv);

	mutex_lock(&fsl_ifc_nand_mutex);
	ifc_nand_ctrl->counter--;
	if (!ifc_nand_ctrl->counter) {
		fsl_ifc_ctrl_dev->nand = NULL;
		kfree(ifc_nand_ctrl);
	}
	mutex_unlock(&fsl_ifc_nand_mutex);

	return 0;
}

static const struct of_device_id fsl_ifc_nand_match[] = {
	{
		.compatible = "fsl,ifc-nand",
	},
	{}
};

static struct platform_driver fsl_ifc_nand_driver = {
	.driver = {
		.name	= "fsl,ifc-nand",
		.owner = THIS_MODULE,
		.of_match_table = fsl_ifc_nand_match,
	},
	.probe       = fsl_ifc_nand_probe,
	.remove      = fsl_ifc_nand_remove,
};

static int __init fsl_ifc_nand_init(void)
{
	int ret;

	ret = platform_driver_register(&fsl_ifc_nand_driver);
	if (ret)
		printk(KERN_ERR "fsl-ifc: Failed to register platform"
				"driver\n");

	return ret;
}

static void __exit fsl_ifc_nand_exit(void)
{
	platform_driver_unregister(&fsl_ifc_nand_driver);
}

module_init(fsl_ifc_nand_init);
module_exit(fsl_ifc_nand_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Freescale");
MODULE_DESCRIPTION("Freescale Integrated Flash Controller MTD NAND driver");