mmu.h 7.0 KB
Newer Older
1 2 3
#ifndef __KVM_X86_MMU_H
#define __KVM_X86_MMU_H

4
#include <linux/kvm_host.h>
5
#include "kvm_cache_regs.h"
6

7 8 9 10 11 12
#define PT64_PT_BITS 9
#define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
#define PT32_PT_BITS 10
#define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)

#define PT_WRITABLE_SHIFT 1
13
#define PT_USER_SHIFT 2
14 15 16

#define PT_PRESENT_MASK (1ULL << 0)
#define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
17
#define PT_USER_MASK (1ULL << PT_USER_SHIFT)
18 19
#define PT_PWT_MASK (1ULL << 3)
#define PT_PCD_MASK (1ULL << 4)
20 21
#define PT_ACCESSED_SHIFT 5
#define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT)
22 23
#define PT_DIRTY_SHIFT 6
#define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT)
A
Avi Kivity 已提交
24 25
#define PT_PAGE_SIZE_SHIFT 7
#define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT)
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
#define PT_PAT_MASK (1ULL << 7)
#define PT_GLOBAL_MASK (1ULL << 8)
#define PT64_NX_SHIFT 63
#define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)

#define PT_PAT_SHIFT 7
#define PT_DIR_PAT_SHIFT 12
#define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)

#define PT32_DIR_PSE36_SIZE 4
#define PT32_DIR_PSE36_SHIFT 13
#define PT32_DIR_PSE36_MASK \
	(((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)

#define PT64_ROOT_LEVEL 4
#define PT32_ROOT_LEVEL 2
#define PT32E_ROOT_LEVEL 3

44 45 46
#define PT_PDPE_LEVEL 3
#define PT_DIRECTORY_LEVEL 2
#define PT_PAGE_TABLE_LEVEL 1
47
#define PT_MAX_HUGEPAGE_LEVEL (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES - 1)
48

49 50 51 52 53
static inline u64 rsvd_bits(int s, int e)
{
	return ((1ULL << (e - s + 1)) - 1) << s;
}

54
void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value);
55

56 57 58
void
reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context);

59
/*
60
 * Return values of handle_mmio_page_fault:
61
 * RET_MMIO_PF_EMULATE: it is a real mmio page fault, emulate the instruction
62 63 64
 *			directly.
 * RET_MMIO_PF_INVALID: invalid spte is detected then let the real page
 *			fault path update the mmio spte.
65
 * RET_MMIO_PF_RETRY: let CPU fault again on the address.
66
 * RET_MMIO_PF_BUG: a bug was detected (and a WARN was printed).
67 68 69
 */
enum {
	RET_MMIO_PF_EMULATE = 1,
70
	RET_MMIO_PF_INVALID = 2,
71 72 73 74
	RET_MMIO_PF_RETRY = 0,
	RET_MMIO_PF_BUG = -1
};

75
int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct);
76
void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu);
77 78
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
			     bool accessed_dirty);
79
bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu);
80

81 82
static inline unsigned int kvm_mmu_available_pages(struct kvm *kvm)
{
83 84 85 86 87
	if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
		return kvm->arch.n_max_mmu_pages -
			kvm->arch.n_used_mmu_pages;

	return 0;
88 89
}

90 91 92 93 94 95 96 97
static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu)
{
	if (likely(vcpu->arch.mmu.root_hpa != INVALID_PAGE))
		return 0;

	return kvm_mmu_load(vcpu);
}

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
/*
 * Currently, we have two sorts of write-protection, a) the first one
 * write-protects guest page to sync the guest modification, b) another one is
 * used to sync dirty bitmap when we do KVM_GET_DIRTY_LOG. The differences
 * between these two sorts are:
 * 1) the first case clears SPTE_MMU_WRITEABLE bit.
 * 2) the first case requires flushing tlb immediately avoiding corrupting
 *    shadow page table between all vcpus so it should be in the protection of
 *    mmu-lock. And the another case does not need to flush tlb until returning
 *    the dirty bitmap to userspace since it only write-protects the page
 *    logged in the bitmap, that means the page in the dirty bitmap is not
 *    missed, so it can flush tlb out of mmu-lock.
 *
 * So, there is the problem: the first case can meet the corrupted tlb caused
 * by another case which write-protects pages but without flush tlb
 * immediately. In order to making the first case be aware this problem we let
 * it flush tlb if we try to write-protect a spte whose SPTE_MMU_WRITEABLE bit
 * is set, it works since another case never touches SPTE_MMU_WRITEABLE bit.
 *
 * Anyway, whenever a spte is updated (only permission and status bits are
 * changed) we need to check whether the spte with SPTE_MMU_WRITEABLE becomes
 * readonly, if that happens, we need to flush tlb. Fortunately,
 * mmu_spte_update() has already handled it perfectly.
 *
 * The rules to use SPTE_MMU_WRITEABLE and PT_WRITABLE_MASK:
 * - if we want to see if it has writable tlb entry or if the spte can be
 *   writable on the mmu mapping, check SPTE_MMU_WRITEABLE, this is the most
 *   case, otherwise
 * - if we fix page fault on the spte or do write-protection by dirty logging,
 *   check PT_WRITABLE_MASK.
 *
 * TODO: introduce APIs to split these two cases.
 */
131 132 133 134 135 136 137 138 139 140
static inline int is_writable_pte(unsigned long pte)
{
	return pte & PT_WRITABLE_MASK;
}

static inline bool is_write_protection(struct kvm_vcpu *vcpu)
{
	return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
}

141
/*
142 143 144 145 146 147
 * Check if a given access (described through the I/D, W/R and U/S bits of a
 * page fault error code pfec) causes a permission fault with the given PTE
 * access rights (in ACC_* format).
 *
 * Return zero if the access does not fault; return the page fault error code
 * if the access faults.
148
 */
149
static inline u8 permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
150 151
				  unsigned pte_access, unsigned pte_pkey,
				  unsigned pfec)
152
{
F
Feng Wu 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
	int cpl = kvm_x86_ops->get_cpl(vcpu);
	unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);

	/*
	 * If CPL < 3, SMAP prevention are disabled if EFLAGS.AC = 1.
	 *
	 * If CPL = 3, SMAP applies to all supervisor-mode data accesses
	 * (these are implicit supervisor accesses) regardless of the value
	 * of EFLAGS.AC.
	 *
	 * This computes (cpl < 3) && (rflags & X86_EFLAGS_AC), leaving
	 * the result in X86_EFLAGS_AC. We then insert it in place of
	 * the PFERR_RSVD_MASK bit; this bit will always be zero in pfec,
	 * but it will be one in index if SMAP checks are being overridden.
	 * It is important to keep this branchless.
	 */
	unsigned long smap = (cpl - 3) & (rflags & X86_EFLAGS_AC);
	int index = (pfec >> 1) +
		    (smap >> (X86_EFLAGS_AC_BIT - PFERR_RSVD_BIT + 1));
172
	bool fault = (mmu->permissions[index] >> pte_access) & 1;
173
	u32 errcode = PFERR_PRESENT_MASK;
F
Feng Wu 已提交
174

175 176 177 178 179 180 181 182 183 184 185 186 187
	WARN_ON(pfec & (PFERR_PK_MASK | PFERR_RSVD_MASK));
	if (unlikely(mmu->pkru_mask)) {
		u32 pkru_bits, offset;

		/*
		* PKRU defines 32 bits, there are 16 domains and 2
		* attribute bits per domain in pkru.  pte_pkey is the
		* index of the protection domain, so pte_pkey * 2 is
		* is the index of the first bit for the domain.
		*/
		pkru_bits = (kvm_read_pkru(vcpu) >> (pte_pkey * 2)) & 3;

		/* clear present bit, replace PFEC.RSVD with ACC_USER_MASK. */
188
		offset = (pfec & ~1) +
189 190 191
			((pte_access & PT_USER_MASK) << (PFERR_RSVD_BIT - PT_USER_SHIFT));

		pkru_bits &= mmu->pkru_mask >> offset;
192
		errcode |= -pkru_bits & PFERR_PK_MASK;
193 194 195
		fault |= (pkru_bits != 0);
	}

196
	return -(u32)fault & errcode;
197
}
198

199
void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm);
X
Xiao Guangrong 已提交
200
void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end);
201 202 203

void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn);
void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn);
204 205
bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
				    struct kvm_memory_slot *slot, u64 gfn);
206
int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu);
207
#endif