process.c 28.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
/*
 *  Derived from "arch/i386/kernel/process.c"
 *    Copyright (C) 1995  Linus Torvalds
 *
 *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
 *  Paul Mackerras (paulus@cs.anu.edu.au)
 *
 *  PowerPC version
 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
 *
 *  This program is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License
 *  as published by the Free Software Foundation; either version
 *  2 of the License, or (at your option) any later version.
 */

#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/user.h>
#include <linux/elf.h>
#include <linux/init.h>
#include <linux/prctl.h>
#include <linux/init_task.h>
#include <linux/module.h>
#include <linux/kallsyms.h>
#include <linux/mqueue.h>
#include <linux/hardirq.h>
35
#include <linux/utsname.h>
36 37 38 39 40 41 42 43

#include <asm/pgtable.h>
#include <asm/uaccess.h>
#include <asm/system.h>
#include <asm/io.h>
#include <asm/processor.h>
#include <asm/mmu.h>
#include <asm/prom.h>
44
#include <asm/machdep.h>
45
#include <asm/time.h>
46
#include <asm/syscalls.h>
47 48 49
#ifdef CONFIG_PPC64
#include <asm/firmware.h>
#endif
50 51 52 53 54 55

extern unsigned long _get_SP(void);

#ifndef CONFIG_SMP
struct task_struct *last_task_used_math = NULL;
struct task_struct *last_task_used_altivec = NULL;
56
struct task_struct *last_task_used_vsx = NULL;
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
struct task_struct *last_task_used_spe = NULL;
#endif

/*
 * Make sure the floating-point register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_fp_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		/*
		 * We need to disable preemption here because if we didn't,
		 * another process could get scheduled after the regs->msr
		 * test but before we have finished saving the FP registers
		 * to the thread_struct.  That process could take over the
		 * FPU, and then when we get scheduled again we would store
		 * bogus values for the remaining FP registers.
		 */
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_FP) {
#ifdef CONFIG_SMP
			/*
			 * This should only ever be called for current or
			 * for a stopped child process.  Since we save away
			 * the FP register state on context switch on SMP,
			 * there is something wrong if a stopped child appears
			 * to still have its FP state in the CPU registers.
			 */
			BUG_ON(tsk != current);
#endif
87
			giveup_fpu(tsk);
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
		}
		preempt_enable();
	}
}

void enable_kernel_fp(void)
{
	WARN_ON(preemptible());

#ifdef CONFIG_SMP
	if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
		giveup_fpu(current);
	else
		giveup_fpu(NULL);	/* just enables FP for kernel */
#else
	giveup_fpu(last_task_used_math);
#endif /* CONFIG_SMP */
}
EXPORT_SYMBOL(enable_kernel_fp);

int dump_task_fpu(struct task_struct *tsk, elf_fpregset_t *fpregs)
{
110 111 112 113 114
#ifdef CONFIG_VSX
	int i;
	elf_fpreg_t *reg;
#endif

115 116 117 118
	if (!tsk->thread.regs)
		return 0;
	flush_fp_to_thread(current);

119 120 121 122 123 124
#ifdef CONFIG_VSX
	reg = (elf_fpreg_t *)fpregs;
	for (i = 0; i < ELF_NFPREG - 1; i++, reg++)
		*reg = tsk->thread.TS_FPR(i);
	memcpy(reg, &tsk->thread.fpscr, sizeof(elf_fpreg_t));
#else
125
	memcpy(fpregs, &tsk->thread.TS_FPR(0), sizeof(*fpregs));
126
#endif
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158

	return 1;
}

#ifdef CONFIG_ALTIVEC
void enable_kernel_altivec(void)
{
	WARN_ON(preemptible());

#ifdef CONFIG_SMP
	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
		giveup_altivec(current);
	else
		giveup_altivec(NULL);	/* just enable AltiVec for kernel - force */
#else
	giveup_altivec(last_task_used_altivec);
#endif /* CONFIG_SMP */
}
EXPORT_SYMBOL(enable_kernel_altivec);

/*
 * Make sure the VMX/Altivec register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_altivec_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_VEC) {
#ifdef CONFIG_SMP
			BUG_ON(tsk != current);
#endif
159
			giveup_altivec(tsk);
160 161 162 163 164
		}
		preempt_enable();
	}
}

165
int dump_task_altivec(struct task_struct *tsk, elf_vrreg_t *vrregs)
166
{
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
	/* ELF_NVRREG includes the VSCR and VRSAVE which we need to save
	 * separately, see below */
	const int nregs = ELF_NVRREG - 2;
	elf_vrreg_t *reg;
	u32 *dest;

	if (tsk == current)
		flush_altivec_to_thread(tsk);

	reg = (elf_vrreg_t *)vrregs;

	/* copy the 32 vr registers */
	memcpy(reg, &tsk->thread.vr[0], nregs * sizeof(*reg));
	reg += nregs;

	/* copy the vscr */
	memcpy(reg, &tsk->thread.vscr, sizeof(*reg));
	reg++;

	/* vrsave is stored in the high 32bit slot of the final 128bits */
	memset(reg, 0, sizeof(*reg));
	dest = (u32 *)reg;
	*dest = tsk->thread.vrsave;

191 192 193 194
	return 1;
}
#endif /* CONFIG_ALTIVEC */

195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
#ifdef CONFIG_VSX
#if 0
/* not currently used, but some crazy RAID module might want to later */
void enable_kernel_vsx(void)
{
	WARN_ON(preemptible());

#ifdef CONFIG_SMP
	if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
		giveup_vsx(current);
	else
		giveup_vsx(NULL);	/* just enable vsx for kernel - force */
#else
	giveup_vsx(last_task_used_vsx);
#endif /* CONFIG_SMP */
}
EXPORT_SYMBOL(enable_kernel_vsx);
#endif

void flush_vsx_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_VSX) {
#ifdef CONFIG_SMP
			BUG_ON(tsk != current);
#endif
			giveup_vsx(tsk);
		}
		preempt_enable();
	}
}

/*
 * This dumps the lower half 64bits of the first 32 VSX registers.
 * This needs to be called with dump_task_fp and dump_task_altivec to
 * get all the VSX state.
 */
int dump_task_vsx(struct task_struct *tsk, elf_vrreg_t *vrregs)
{
	elf_vrreg_t *reg;
	double buf[32];
	int i;

	if (tsk == current)
		flush_vsx_to_thread(tsk);

	reg = (elf_vrreg_t *)vrregs;

	for (i = 0; i < 32 ; i++)
		buf[i] = current->thread.fpr[i][TS_VSRLOWOFFSET];
	memcpy(reg, buf, sizeof(buf));

	return 1;
}
#endif /* CONFIG_VSX */

int dump_task_vector(struct task_struct *tsk, elf_vrregset_t *vrregs)
{
	int rc = 0;
	elf_vrreg_t *regs = (elf_vrreg_t *)vrregs;
#ifdef CONFIG_ALTIVEC
	rc = dump_task_altivec(tsk, regs);
	if (rc)
		return rc;
	regs += ELF_NVRREG;
#endif

#ifdef CONFIG_VSX
	rc = dump_task_vsx(tsk, regs);
#endif
	return rc;
}

269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
#ifdef CONFIG_SPE

void enable_kernel_spe(void)
{
	WARN_ON(preemptible());

#ifdef CONFIG_SMP
	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
		giveup_spe(current);
	else
		giveup_spe(NULL);	/* just enable SPE for kernel - force */
#else
	giveup_spe(last_task_used_spe);
#endif /* __SMP __ */
}
EXPORT_SYMBOL(enable_kernel_spe);

void flush_spe_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_SPE) {
#ifdef CONFIG_SMP
			BUG_ON(tsk != current);
#endif
294
			giveup_spe(tsk);
295 296 297 298 299 300 301 302 303 304 305 306 307 308
		}
		preempt_enable();
	}
}

int dump_spe(struct pt_regs *regs, elf_vrregset_t *evrregs)
{
	flush_spe_to_thread(current);
	/* We copy u32 evr[32] + u64 acc + u32 spefscr -> 35 */
	memcpy(evrregs, &current->thread.evr[0], sizeof(u32) * 35);
	return 1;
}
#endif /* CONFIG_SPE */

309
#ifndef CONFIG_SMP
310 311 312 313
/*
 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
 * and the current task has some state, discard it.
 */
314
void discard_lazy_cpu_state(void)
315 316 317 318 319 320 321 322
{
	preempt_disable();
	if (last_task_used_math == current)
		last_task_used_math = NULL;
#ifdef CONFIG_ALTIVEC
	if (last_task_used_altivec == current)
		last_task_used_altivec = NULL;
#endif /* CONFIG_ALTIVEC */
323 324 325 326
#ifdef CONFIG_VSX
	if (last_task_used_vsx == current)
		last_task_used_vsx = NULL;
#endif /* CONFIG_VSX */
327 328 329 330 331 332
#ifdef CONFIG_SPE
	if (last_task_used_spe == current)
		last_task_used_spe = NULL;
#endif
	preempt_enable();
}
333
#endif /* CONFIG_SMP */
334

335 336
static DEFINE_PER_CPU(unsigned long, current_dabr);

337 338
int set_dabr(unsigned long dabr)
{
339 340
	__get_cpu_var(current_dabr) = dabr;

341
#ifdef CONFIG_PPC_MERGE		/* XXX for now */
342 343
	if (ppc_md.set_dabr)
		return ppc_md.set_dabr(dabr);
344
#endif
345

346 347
	/* XXX should we have a CPU_FTR_HAS_DABR ? */
#if defined(CONFIG_PPC64) || defined(CONFIG_6xx)
348
	mtspr(SPRN_DABR, dabr);
349
#endif
350
	return 0;
351 352
}

353 354 355
#ifdef CONFIG_PPC64
DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
#endif
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390

struct task_struct *__switch_to(struct task_struct *prev,
	struct task_struct *new)
{
	struct thread_struct *new_thread, *old_thread;
	unsigned long flags;
	struct task_struct *last;

#ifdef CONFIG_SMP
	/* avoid complexity of lazy save/restore of fpu
	 * by just saving it every time we switch out if
	 * this task used the fpu during the last quantum.
	 *
	 * If it tries to use the fpu again, it'll trap and
	 * reload its fp regs.  So we don't have to do a restore
	 * every switch, just a save.
	 *  -- Cort
	 */
	if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
		giveup_fpu(prev);
#ifdef CONFIG_ALTIVEC
	/*
	 * If the previous thread used altivec in the last quantum
	 * (thus changing altivec regs) then save them.
	 * We used to check the VRSAVE register but not all apps
	 * set it, so we don't rely on it now (and in fact we need
	 * to save & restore VSCR even if VRSAVE == 0).  -- paulus
	 *
	 * On SMP we always save/restore altivec regs just to avoid the
	 * complexity of changing processors.
	 *  -- Cort
	 */
	if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
		giveup_altivec(prev);
#endif /* CONFIG_ALTIVEC */
391 392 393 394
#ifdef CONFIG_VSX
	if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
		giveup_vsx(prev);
#endif /* CONFIG_VSX */
395 396 397 398 399 400 401 402 403 404
#ifdef CONFIG_SPE
	/*
	 * If the previous thread used spe in the last quantum
	 * (thus changing spe regs) then save them.
	 *
	 * On SMP we always save/restore spe regs just to avoid the
	 * complexity of changing processors.
	 */
	if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
		giveup_spe(prev);
405 406 407 408 409 410 411 412 413 414
#endif /* CONFIG_SPE */

#else  /* CONFIG_SMP */
#ifdef CONFIG_ALTIVEC
	/* Avoid the trap.  On smp this this never happens since
	 * we don't set last_task_used_altivec -- Cort
	 */
	if (new->thread.regs && last_task_used_altivec == new)
		new->thread.regs->msr |= MSR_VEC;
#endif /* CONFIG_ALTIVEC */
415 416 417 418
#ifdef CONFIG_VSX
	if (new->thread.regs && last_task_used_vsx == new)
		new->thread.regs->msr |= MSR_VSX;
#endif /* CONFIG_VSX */
419
#ifdef CONFIG_SPE
420 421 422 423 424 425
	/* Avoid the trap.  On smp this this never happens since
	 * we don't set last_task_used_spe
	 */
	if (new->thread.regs && last_task_used_spe == new)
		new->thread.regs->msr |= MSR_SPE;
#endif /* CONFIG_SPE */
426

427 428
#endif /* CONFIG_SMP */

429
	if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr))
430 431 432 433
		set_dabr(new->thread.dabr);

	new_thread = &new->thread;
	old_thread = &current->thread;
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448

#ifdef CONFIG_PPC64
	/*
	 * Collect processor utilization data per process
	 */
	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
		long unsigned start_tb, current_tb;
		start_tb = old_thread->start_tb;
		cu->current_tb = current_tb = mfspr(SPRN_PURR);
		old_thread->accum_tb += (current_tb - start_tb);
		new_thread->start_tb = current_tb;
	}
#endif

449
	local_irq_save(flags);
450 451

	account_system_vtime(current);
452
	account_process_vtime(current);
453 454
	calculate_steal_time();

455 456 457 458 459 460
	/*
	 * We can't take a PMU exception inside _switch() since there is a
	 * window where the kernel stack SLB and the kernel stack are out
	 * of sync. Hard disable here.
	 */
	hard_irq_disable();
461 462 463 464 465 466 467
	last = _switch(old_thread, new_thread);

	local_irq_restore(flags);

	return last;
}

468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
static int instructions_to_print = 16;

static void show_instructions(struct pt_regs *regs)
{
	int i;
	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
			sizeof(int));

	printk("Instruction dump:");

	for (i = 0; i < instructions_to_print; i++) {
		int instr;

		if (!(i % 8))
			printk("\n");

484 485 486 487 488 489 490 491
#if !defined(CONFIG_BOOKE)
		/* If executing with the IMMU off, adjust pc rather
		 * than print XXXXXXXX.
		 */
		if (!(regs->msr & MSR_IR))
			pc = (unsigned long)phys_to_virt(pc);
#endif

492 493 494 495
		/* We use __get_user here *only* to avoid an OOPS on a
		 * bad address because the pc *should* only be a
		 * kernel address.
		 */
496 497
		if (!__kernel_text_address(pc) ||
		     __get_user(instr, (unsigned int __user *)pc)) {
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
			printk("XXXXXXXX ");
		} else {
			if (regs->nip == pc)
				printk("<%08x> ", instr);
			else
				printk("%08x ", instr);
		}

		pc += sizeof(int);
	}

	printk("\n");
}

static struct regbit {
	unsigned long bit;
	const char *name;
} msr_bits[] = {
	{MSR_EE,	"EE"},
	{MSR_PR,	"PR"},
	{MSR_FP,	"FP"},
519 520
	{MSR_VEC,	"VEC"},
	{MSR_VSX,	"VSX"},
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
	{MSR_ME,	"ME"},
	{MSR_IR,	"IR"},
	{MSR_DR,	"DR"},
	{0,		NULL}
};

static void printbits(unsigned long val, struct regbit *bits)
{
	const char *sep = "";

	printk("<");
	for (; bits->bit; ++bits)
		if (val & bits->bit) {
			printk("%s%s", sep, bits->name);
			sep = ",";
		}
	printk(">");
}

#ifdef CONFIG_PPC64
541
#define REG		"%016lx"
542 543 544
#define REGS_PER_LINE	4
#define LAST_VOLATILE	13
#else
545
#define REG		"%08lx"
546 547 548 549
#define REGS_PER_LINE	8
#define LAST_VOLATILE	12
#endif

550 551 552 553
void show_regs(struct pt_regs * regs)
{
	int i, trap;

554 555 556
	printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
	       regs->nip, regs->link, regs->ctr);
	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
557
	       regs, regs->trap, print_tainted(), init_utsname()->release);
558 559
	printk("MSR: "REG" ", regs->msr);
	printbits(regs->msr, msr_bits);
560
	printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
561 562
	trap = TRAP(regs);
	if (trap == 0x300 || trap == 0x600)
563 564 565
#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
		printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr);
#else
566
		printk("DAR: "REG", DSISR: "REG"\n", regs->dar, regs->dsisr);
567
#endif
568
	printk("TASK = %p[%d] '%s' THREAD: %p",
569
	       current, task_pid_nr(current), current->comm, task_thread_info(current));
570 571

#ifdef CONFIG_SMP
572
	printk(" CPU: %d", raw_smp_processor_id());
573 574 575
#endif /* CONFIG_SMP */

	for (i = 0;  i < 32;  i++) {
576
		if ((i % REGS_PER_LINE) == 0)
577
			printk("\n" KERN_INFO "GPR%02d: ", i);
578 579
		printk(REG " ", regs->gpr[i]);
		if (i == LAST_VOLATILE && !FULL_REGS(regs))
580 581 582 583 584 585 586 587
			break;
	}
	printk("\n");
#ifdef CONFIG_KALLSYMS
	/*
	 * Lookup NIP late so we have the best change of getting the
	 * above info out without failing
	 */
588
	printk("NIP ["REG"] ", regs->nip);
589
	print_symbol("%s\n", regs->nip);
590
	printk("LR ["REG"] ", regs->link);
591 592 593
	print_symbol("%s\n", regs->link);
#endif
	show_stack(current, (unsigned long *) regs->gpr[1]);
594 595
	if (!user_mode(regs))
		show_instructions(regs);
596 597 598 599
}

void exit_thread(void)
{
600
	discard_lazy_cpu_state();
601 602 603 604
}

void flush_thread(void)
{
605 606 607
#ifdef CONFIG_PPC64
	struct thread_info *t = current_thread_info();

608 609 610 611 612 613 614
	if (test_ti_thread_flag(t, TIF_ABI_PENDING)) {
		clear_ti_thread_flag(t, TIF_ABI_PENDING);
		if (test_ti_thread_flag(t, TIF_32BIT))
			clear_ti_thread_flag(t, TIF_32BIT);
		else
			set_ti_thread_flag(t, TIF_32BIT);
	}
615 616
#endif

617
	discard_lazy_cpu_state();
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637

	if (current->thread.dabr) {
		current->thread.dabr = 0;
		set_dabr(0);
	}
}

void
release_thread(struct task_struct *t)
{
}

/*
 * This gets called before we allocate a new thread and copy
 * the current task into it.
 */
void prepare_to_copy(struct task_struct *tsk)
{
	flush_fp_to_thread(current);
	flush_altivec_to_thread(current);
638
	flush_vsx_to_thread(current);
639 640 641 642 643 644
	flush_spe_to_thread(current);
}

/*
 * Copy a thread..
 */
645 646 647
int copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
		unsigned long unused, struct task_struct *p,
		struct pt_regs *regs)
648 649 650
{
	struct pt_regs *childregs, *kregs;
	extern void ret_from_fork(void);
A
Al Viro 已提交
651
	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
652 653 654 655 656 657 658 659 660

	CHECK_FULL_REGS(regs);
	/* Copy registers */
	sp -= sizeof(struct pt_regs);
	childregs = (struct pt_regs *) sp;
	*childregs = *regs;
	if ((childregs->msr & MSR_PR) == 0) {
		/* for kernel thread, set `current' and stackptr in new task */
		childregs->gpr[1] = sp + sizeof(struct pt_regs);
661
#ifdef CONFIG_PPC32
662
		childregs->gpr[2] = (unsigned long) p;
663
#else
A
Al Viro 已提交
664
		clear_tsk_thread_flag(p, TIF_32BIT);
665
#endif
666 667 668 669
		p->thread.regs = NULL;	/* no user register state */
	} else {
		childregs->gpr[1] = usp;
		p->thread.regs = childregs;
670 671 672 673 674 675 676 677
		if (clone_flags & CLONE_SETTLS) {
#ifdef CONFIG_PPC64
			if (!test_thread_flag(TIF_32BIT))
				childregs->gpr[13] = childregs->gpr[6];
			else
#endif
				childregs->gpr[2] = childregs->gpr[6];
		}
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
	}
	childregs->gpr[3] = 0;  /* Result from fork() */
	sp -= STACK_FRAME_OVERHEAD;

	/*
	 * The way this works is that at some point in the future
	 * some task will call _switch to switch to the new task.
	 * That will pop off the stack frame created below and start
	 * the new task running at ret_from_fork.  The new task will
	 * do some house keeping and then return from the fork or clone
	 * system call, using the stack frame created above.
	 */
	sp -= sizeof(struct pt_regs);
	kregs = (struct pt_regs *) sp;
	sp -= STACK_FRAME_OVERHEAD;
	p->thread.ksp = sp;
694 695
	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
				_ALIGN_UP(sizeof(struct thread_info), 16);
696

697 698
#ifdef CONFIG_PPC64
	if (cpu_has_feature(CPU_FTR_SLB)) {
P
Paul Mackerras 已提交
699
		unsigned long sp_vsid;
700
		unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
701

P
Paul Mackerras 已提交
702 703 704 705 706 707
		if (cpu_has_feature(CPU_FTR_1T_SEGMENT))
			sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
				<< SLB_VSID_SHIFT_1T;
		else
			sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
				<< SLB_VSID_SHIFT;
708
		sp_vsid |= SLB_VSID_KERNEL | llp;
709 710 711 712 713 714 715 716 717 718 719 720 721
		p->thread.ksp_vsid = sp_vsid;
	}

	/*
	 * The PPC64 ABI makes use of a TOC to contain function 
	 * pointers.  The function (ret_from_except) is actually a pointer
	 * to the TOC entry.  The first entry is a pointer to the actual
	 * function.
 	 */
	kregs->nip = *((unsigned long *)ret_from_fork);
#else
	kregs->nip = (unsigned long)ret_from_fork;
#endif
722 723 724 725 726 727 728

	return 0;
}

/*
 * Set up a thread for executing a new program
 */
729
void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
730
{
731 732 733 734
#ifdef CONFIG_PPC64
	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
#endif

735
	set_fs(USER_DS);
736 737 738 739 740 741

	/*
	 * If we exec out of a kernel thread then thread.regs will not be
	 * set.  Do it now.
	 */
	if (!current->thread.regs) {
A
Al Viro 已提交
742 743
		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
		current->thread.regs = regs - 1;
744 745
	}

746 747 748 749 750 751
	memset(regs->gpr, 0, sizeof(regs->gpr));
	regs->ctr = 0;
	regs->link = 0;
	regs->xer = 0;
	regs->ccr = 0;
	regs->gpr[1] = sp;
752

753 754 755 756 757 758 759
	/*
	 * We have just cleared all the nonvolatile GPRs, so make
	 * FULL_REGS(regs) return true.  This is necessary to allow
	 * ptrace to examine the thread immediately after exec.
	 */
	regs->trap &= ~1UL;

760 761 762
#ifdef CONFIG_PPC32
	regs->mq = 0;
	regs->nip = start;
763
	regs->msr = MSR_USER;
764
#else
S
Stephen Rothwell 已提交
765
	if (!test_thread_flag(TIF_32BIT)) {
766
		unsigned long entry, toc;
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785

		/* start is a relocated pointer to the function descriptor for
		 * the elf _start routine.  The first entry in the function
		 * descriptor is the entry address of _start and the second
		 * entry is the TOC value we need to use.
		 */
		__get_user(entry, (unsigned long __user *)start);
		__get_user(toc, (unsigned long __user *)start+1);

		/* Check whether the e_entry function descriptor entries
		 * need to be relocated before we can use them.
		 */
		if (load_addr != 0) {
			entry += load_addr;
			toc   += load_addr;
		}
		regs->nip = entry;
		regs->gpr[2] = toc;
		regs->msr = MSR_USER64;
S
Stephen Rothwell 已提交
786 787 788 789
	} else {
		regs->nip = start;
		regs->gpr[2] = 0;
		regs->msr = MSR_USER32;
790 791 792
	}
#endif

793
	discard_lazy_cpu_state();
794 795 796
#ifdef CONFIG_VSX
	current->thread.used_vsr = 0;
#endif
797
	memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
798
	current->thread.fpscr.val = 0;
799 800 801
#ifdef CONFIG_ALTIVEC
	memset(current->thread.vr, 0, sizeof(current->thread.vr));
	memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
802
	current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
	current->thread.vrsave = 0;
	current->thread.used_vr = 0;
#endif /* CONFIG_ALTIVEC */
#ifdef CONFIG_SPE
	memset(current->thread.evr, 0, sizeof(current->thread.evr));
	current->thread.acc = 0;
	current->thread.spefscr = 0;
	current->thread.used_spe = 0;
#endif /* CONFIG_SPE */
}

#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
		| PR_FP_EXC_RES | PR_FP_EXC_INV)

int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	/* This is a bit hairy.  If we are an SPE enabled  processor
	 * (have embedded fp) we store the IEEE exception enable flags in
	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
	 * mode (asyn, precise, disabled) for 'Classic' FP. */
	if (val & PR_FP_EXC_SW_ENABLE) {
#ifdef CONFIG_SPE
827 828 829 830 831 832 833
		if (cpu_has_feature(CPU_FTR_SPE)) {
			tsk->thread.fpexc_mode = val &
				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
			return 0;
		} else {
			return -EINVAL;
		}
834 835 836 837
#else
		return -EINVAL;
#endif
	}
838 839 840 841 842 843 844 845 846 847 848 849

	/* on a CONFIG_SPE this does not hurt us.  The bits that
	 * __pack_fe01 use do not overlap with bits used for
	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
	 * on CONFIG_SPE implementations are reserved so writing to
	 * them does not change anything */
	if (val > PR_FP_EXC_PRECISE)
		return -EINVAL;
	tsk->thread.fpexc_mode = __pack_fe01(val);
	if (regs != NULL && (regs->msr & MSR_FP) != 0)
		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
			| tsk->thread.fpexc_mode;
850 851 852 853 854 855 856 857 858
	return 0;
}

int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
{
	unsigned int val;

	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
#ifdef CONFIG_SPE
859 860 861 862
		if (cpu_has_feature(CPU_FTR_SPE))
			val = tsk->thread.fpexc_mode;
		else
			return -EINVAL;
863 864 865 866 867 868 869 870
#else
		return -EINVAL;
#endif
	else
		val = __unpack_fe01(tsk->thread.fpexc_mode);
	return put_user(val, (unsigned int __user *) adr);
}

871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
int set_endian(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (val == PR_ENDIAN_BIG)
		regs->msr &= ~MSR_LE;
	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
		regs->msr |= MSR_LE;
	else
		return -EINVAL;

	return 0;
}

int get_endian(struct task_struct *tsk, unsigned long adr)
{
	struct pt_regs *regs = tsk->thread.regs;
	unsigned int val;

	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
	    !cpu_has_feature(CPU_FTR_REAL_LE))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (regs->msr & MSR_LE) {
		if (cpu_has_feature(CPU_FTR_REAL_LE))
			val = PR_ENDIAN_LITTLE;
		else
			val = PR_ENDIAN_PPC_LITTLE;
	} else
		val = PR_ENDIAN_BIG;

	return put_user(val, (unsigned int __user *)adr);
}

915 916 917 918 919 920 921 922 923 924 925
int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
{
	tsk->thread.align_ctl = val;
	return 0;
}

int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
{
	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
}

926 927
#define TRUNC_PTR(x)	((typeof(x))(((unsigned long)(x)) & 0xffffffff))

928 929 930 931 932 933 934 935
int sys_clone(unsigned long clone_flags, unsigned long usp,
	      int __user *parent_tidp, void __user *child_threadptr,
	      int __user *child_tidp, int p6,
	      struct pt_regs *regs)
{
	CHECK_FULL_REGS(regs);
	if (usp == 0)
		usp = regs->gpr[1];	/* stack pointer for child */
936 937 938 939 940 941
#ifdef CONFIG_PPC64
	if (test_thread_flag(TIF_32BIT)) {
		parent_tidp = TRUNC_PTR(parent_tidp);
		child_tidp = TRUNC_PTR(child_tidp);
	}
#endif
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
 	return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp);
}

int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
	     unsigned long p4, unsigned long p5, unsigned long p6,
	     struct pt_regs *regs)
{
	CHECK_FULL_REGS(regs);
	return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
}

int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
	      unsigned long p4, unsigned long p5, unsigned long p6,
	      struct pt_regs *regs)
{
	CHECK_FULL_REGS(regs);
	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1],
			regs, 0, NULL, NULL);
}

int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
	       unsigned long a3, unsigned long a4, unsigned long a5,
	       struct pt_regs *regs)
{
	int error;
967
	char *filename;
968 969 970 971 972 973 974 975

	filename = getname((char __user *) a0);
	error = PTR_ERR(filename);
	if (IS_ERR(filename))
		goto out;
	flush_fp_to_thread(current);
	flush_altivec_to_thread(current);
	flush_spe_to_thread(current);
976 977
	error = do_execve(filename, (char __user * __user *) a1,
			  (char __user * __user *) a2, regs);
978 979 980 981 982
	putname(filename);
out:
	return error;
}

983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
#ifdef CONFIG_IRQSTACKS
static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
				  unsigned long nbytes)
{
	unsigned long stack_page;
	unsigned long cpu = task_cpu(p);

	/*
	 * Avoid crashing if the stack has overflowed and corrupted
	 * task_cpu(p), which is in the thread_info struct.
	 */
	if (cpu < NR_CPUS && cpu_possible(cpu)) {
		stack_page = (unsigned long) hardirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;

		stack_page = (unsigned long) softirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;
	}
	return 0;
}

#else
#define valid_irq_stack(sp, p, nb)	0
#endif /* CONFIG_IRQSTACKS */

1012
int validate_sp(unsigned long sp, struct task_struct *p,
1013 1014
		       unsigned long nbytes)
{
A
Al Viro 已提交
1015
	unsigned long stack_page = (unsigned long)task_stack_page(p);
1016 1017 1018 1019 1020

	if (sp >= stack_page + sizeof(struct thread_struct)
	    && sp <= stack_page + THREAD_SIZE - nbytes)
		return 1;

1021
	return valid_irq_stack(sp, p, nbytes);
1022 1023
}

1024 1025
EXPORT_SYMBOL(validate_sp);

1026 1027 1028 1029 1030 1031 1032 1033 1034
unsigned long get_wchan(struct task_struct *p)
{
	unsigned long ip, sp;
	int count = 0;

	if (!p || p == current || p->state == TASK_RUNNING)
		return 0;

	sp = p->thread.ksp;
1035
	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1036 1037 1038 1039
		return 0;

	do {
		sp = *(unsigned long *)sp;
1040
		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1041 1042
			return 0;
		if (count > 0) {
1043
			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1044 1045 1046 1047 1048 1049
			if (!in_sched_functions(ip))
				return ip;
		}
	} while (count++ < 16);
	return 0;
}
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071

static int kstack_depth_to_print = 64;

void show_stack(struct task_struct *tsk, unsigned long *stack)
{
	unsigned long sp, ip, lr, newsp;
	int count = 0;
	int firstframe = 1;

	sp = (unsigned long) stack;
	if (tsk == NULL)
		tsk = current;
	if (sp == 0) {
		if (tsk == current)
			asm("mr %0,1" : "=r" (sp));
		else
			sp = tsk->thread.ksp;
	}

	lr = 0;
	printk("Call Trace:\n");
	do {
1072
		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1073 1074 1075 1076
			return;

		stack = (unsigned long *) sp;
		newsp = stack[0];
1077
		ip = stack[STACK_FRAME_LR_SAVE];
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
		if (!firstframe || ip != lr) {
			printk("["REG"] ["REG"] ", sp, ip);
			print_symbol("%s", ip);
			if (firstframe)
				printk(" (unreliable)");
			printk("\n");
		}
		firstframe = 0;

		/*
		 * See if this is an exception frame.
		 * We look for the "regshere" marker in the current frame.
		 */
1091 1092
		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
			struct pt_regs *regs = (struct pt_regs *)
				(sp + STACK_FRAME_OVERHEAD);
			printk("--- Exception: %lx", regs->trap);
			print_symbol(" at %s\n", regs->nip);
			lr = regs->link;
			print_symbol("    LR = %s\n", lr);
			firstframe = 1;
		}

		sp = newsp;
	} while (count++ < kstack_depth_to_print);
}

void dump_stack(void)
{
	show_stack(current, NULL);
}
EXPORT_SYMBOL(dump_stack);
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142

#ifdef CONFIG_PPC64
void ppc64_runlatch_on(void)
{
	unsigned long ctrl;

	if (cpu_has_feature(CPU_FTR_CTRL) && !test_thread_flag(TIF_RUNLATCH)) {
		HMT_medium();

		ctrl = mfspr(SPRN_CTRLF);
		ctrl |= CTRL_RUNLATCH;
		mtspr(SPRN_CTRLT, ctrl);

		set_thread_flag(TIF_RUNLATCH);
	}
}

void ppc64_runlatch_off(void)
{
	unsigned long ctrl;

	if (cpu_has_feature(CPU_FTR_CTRL) && test_thread_flag(TIF_RUNLATCH)) {
		HMT_medium();

		clear_thread_flag(TIF_RUNLATCH);

		ctrl = mfspr(SPRN_CTRLF);
		ctrl &= ~CTRL_RUNLATCH;
		mtspr(SPRN_CTRLT, ctrl);
	}
}
#endif
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173

#if THREAD_SHIFT < PAGE_SHIFT

static struct kmem_cache *thread_info_cache;

struct thread_info *alloc_thread_info(struct task_struct *tsk)
{
	struct thread_info *ti;

	ti = kmem_cache_alloc(thread_info_cache, GFP_KERNEL);
	if (unlikely(ti == NULL))
		return NULL;
#ifdef CONFIG_DEBUG_STACK_USAGE
	memset(ti, 0, THREAD_SIZE);
#endif
	return ti;
}

void free_thread_info(struct thread_info *ti)
{
	kmem_cache_free(thread_info_cache, ti);
}

void thread_info_cache_init(void)
{
	thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
					      THREAD_SIZE, 0, NULL);
	BUG_ON(thread_info_cache == NULL);
}

#endif /* THREAD_SHIFT < PAGE_SHIFT */