ivtv-yuv.c 38.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
    yuv support

    Copyright (C) 2007  Ian Armstrong <ian@iarmst.demon.co.uk>

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */

#include "ivtv-driver.h"
#include "ivtv-udma.h"
23
#include "ivtv-yuv.h"
24

25 26 27 28 29 30 31 32 33 34
/* YUV buffer offsets */
const u32 yuv_offset[IVTV_YUV_BUFFERS] = {
	0x001a8600,
	0x00240400,
	0x002d8200,
	0x00370000,
	0x00029000,
	0x000C0E00,
	0x006B0400,
	0x00748200
35 36
};

37
static int ivtv_yuv_prep_user_dma(struct ivtv *itv, struct ivtv_user_dma *dma,
38
				  struct ivtv_dma_frame *args)
39 40 41
{
	struct ivtv_dma_page_info y_dma;
	struct ivtv_dma_page_info uv_dma;
42 43 44
	struct yuv_playback_info *yi = &itv->yuv_info;
	u8 frame = yi->draw_frame;
	struct yuv_frame_info *f = &yi->new_frame_info[frame];
45 46 47 48 49
	int i;
	int y_pages, uv_pages;
	unsigned long y_buffer_offset, uv_buffer_offset;
	int y_decode_height, uv_decode_height, y_size;

50
	y_buffer_offset = IVTV_DECODER_OFFSET + yuv_offset[frame];
51 52
	uv_buffer_offset = y_buffer_offset + IVTV_YUV_BUFFER_UV_OFFSET;

53
	y_decode_height = uv_decode_height = f->src_h + f->src_y;
54

55
	if (f->offset_y)
56 57 58 59 60 61 62 63 64 65 66 67
		y_buffer_offset += 720 * 16;

	if (y_decode_height & 15)
		y_decode_height = (y_decode_height + 16) & ~15;

	if (uv_decode_height & 31)
		uv_decode_height = (uv_decode_height + 32) & ~31;

	y_size = 720 * y_decode_height;

	/* Still in USE */
	if (dma->SG_length || dma->page_count) {
68 69 70
		IVTV_DEBUG_WARN
		    ("prep_user_dma: SG_length %d page_count %d still full?\n",
		     dma->SG_length, dma->page_count);
71 72 73 74 75 76 77
		return -EBUSY;
	}

	ivtv_udma_get_page_info (&y_dma, (unsigned long)args->y_source, 720 * y_decode_height);
	ivtv_udma_get_page_info (&uv_dma, (unsigned long)args->uv_source, 360 * uv_decode_height);

	/* Get user pages for DMA Xfer */
78 79 80
	y_pages = get_user_pages_unlocked(current, current->mm,
				y_dma.uaddr, y_dma.page_count, 0, 1,
				&dma->map[0]);
81 82
	uv_pages = 0; /* silence gcc. value is set and consumed only if: */
	if (y_pages == y_dma.page_count) {
83 84 85
		uv_pages = get_user_pages_unlocked(current, current->mm,
					uv_dma.uaddr, uv_dma.page_count, 0, 1,
					&dma->map[y_pages]);
86
	}
87

88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
	if (y_pages != y_dma.page_count || uv_pages != uv_dma.page_count) {
		int rc = -EFAULT;

		if (y_pages == y_dma.page_count) {
			IVTV_DEBUG_WARN
				("failed to map uv user pages, returned %d "
				 "expecting %d\n", uv_pages, uv_dma.page_count);

			if (uv_pages >= 0) {
				for (i = 0; i < uv_pages; i++)
					put_page(dma->map[y_pages + i]);
				rc = -EFAULT;
			} else {
				rc = uv_pages;
			}
		} else {
			IVTV_DEBUG_WARN
				("failed to map y user pages, returned %d "
				 "expecting %d\n", y_pages, y_dma.page_count);
107
		}
108 109 110 111 112 113 114 115 116 117 118 119 120
		if (y_pages >= 0) {
			for (i = 0; i < y_pages; i++)
				put_page(dma->map[i]);
			/*
			 * Inherit the -EFAULT from rc's
			 * initialization, but allow it to be
			 * overriden by uv_pages above if it was an
			 * actual errno.
			 */
		} else {
			rc = y_pages;
		}
		return rc;
121 122
	}

123 124
	dma->page_count = y_pages + uv_pages;

125
	/* Fill & map SG List */
126
	if (ivtv_udma_fill_sg_list (dma, &uv_dma, ivtv_udma_fill_sg_list (dma, &y_dma, 0)) < 0) {
127 128 129 130 131 132 133
		IVTV_DEBUG_WARN("could not allocate bounce buffers for highmem userspace buffers\n");
		for (i = 0; i < dma->page_count; i++) {
			put_page(dma->map[i]);
		}
		dma->page_count = 0;
		return -ENOMEM;
	}
134
	dma->SG_length = pci_map_sg(itv->pdev, dma->SGlist, dma->page_count, PCI_DMA_TODEVICE);
135 136

	/* Fill SG Array with new values */
137
	ivtv_udma_fill_sg_array(dma, y_buffer_offset, uv_buffer_offset, y_size);
138 139

	/* If we've offset the y plane, ensure top area is blanked */
140
	if (f->offset_y && yi->blanking_dmaptr) {
141
		dma->SGarray[dma->SG_length].size = cpu_to_le32(720*16);
142
		dma->SGarray[dma->SG_length].src = cpu_to_le32(yi->blanking_dmaptr);
143 144
		dma->SGarray[dma->SG_length].dst = cpu_to_le32(IVTV_DECODER_OFFSET + yuv_offset[frame]);
		dma->SG_length++;
145 146 147 148 149 150 151 152 153 154 155 156
	}

	/* Tag SG Array with Interrupt Bit */
	dma->SGarray[dma->SG_length - 1].size |= cpu_to_le32(0x80000000);

	ivtv_udma_sync_for_device(itv);
	return 0;
}

/* We rely on a table held in the firmware - Quick check. */
int ivtv_yuv_filter_check(struct ivtv *itv)
{
157
	int i, y, uv;
158

159 160 161
	for (i = 0, y = 16, uv = 4; i < 16; i++, y += 24, uv += 12) {
		if ((read_dec(IVTV_YUV_HORIZONTAL_FILTER_OFFSET + y) != i << 16) ||
		    (read_dec(IVTV_YUV_VERTICAL_FILTER_OFFSET + uv) != i << 16)) {
162 163 164 165 166 167 168 169 170
			IVTV_WARN ("YUV filter table not found in firmware.\n");
			return -1;
		}
	}
	return 0;
}

static void ivtv_yuv_filter(struct ivtv *itv, int h_filter, int v_filter_1, int v_filter_2)
{
171
	u32 i, line;
172 173 174

	/* If any filter is -1, then don't update it */
	if (h_filter > -1) {
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
		if (h_filter > 4)
			h_filter = 4;
		i = IVTV_YUV_HORIZONTAL_FILTER_OFFSET + (h_filter * 384);
		for (line = 0; line < 16; line++) {
			write_reg(read_dec(i), 0x02804);
			write_reg(read_dec(i), 0x0281c);
			i += 4;
			write_reg(read_dec(i), 0x02808);
			write_reg(read_dec(i), 0x02820);
			i += 4;
			write_reg(read_dec(i), 0x0280c);
			write_reg(read_dec(i), 0x02824);
			i += 4;
			write_reg(read_dec(i), 0x02810);
			write_reg(read_dec(i), 0x02828);
			i += 4;
			write_reg(read_dec(i), 0x02814);
			write_reg(read_dec(i), 0x0282c);
			i += 8;
194 195 196
			write_reg(0, 0x02818);
			write_reg(0, 0x02830);
		}
197
		IVTV_DEBUG_YUV("h_filter -> %d\n", h_filter);
198 199 200
	}

	if (v_filter_1 > -1) {
201 202 203 204 205 206 207 208
		if (v_filter_1 > 4)
			v_filter_1 = 4;
		i = IVTV_YUV_VERTICAL_FILTER_OFFSET + (v_filter_1 * 192);
		for (line = 0; line < 16; line++) {
			write_reg(read_dec(i), 0x02900);
			i += 4;
			write_reg(read_dec(i), 0x02904);
			i += 8;
209 210
			write_reg(0, 0x02908);
		}
211
		IVTV_DEBUG_YUV("v_filter_1 -> %d\n", v_filter_1);
212 213 214
	}

	if (v_filter_2 > -1) {
215 216 217 218 219 220 221 222
		if (v_filter_2 > 4)
			v_filter_2 = 4;
		i = IVTV_YUV_VERTICAL_FILTER_OFFSET + (v_filter_2 * 192);
		for (line = 0; line < 16; line++) {
			write_reg(read_dec(i), 0x0290c);
			i += 4;
			write_reg(read_dec(i), 0x02910);
			i += 8;
223 224
			write_reg(0, 0x02914);
		}
225
		IVTV_DEBUG_YUV("v_filter_2 -> %d\n", v_filter_2);
226 227 228
	}
}

229
static void ivtv_yuv_handle_horizontal(struct ivtv *itv, struct yuv_frame_info *f)
230
{
231
	struct yuv_playback_info *yi = &itv->yuv_info;
232 233 234 235 236 237 238 239
	u32 reg_2834, reg_2838, reg_283c;
	u32 reg_2844, reg_2854, reg_285c;
	u32 reg_2864, reg_2874, reg_2890;
	u32 reg_2870, reg_2870_base, reg_2870_offset;
	int x_cutoff;
	int h_filter;
	u32 master_width;

240 241 242
	IVTV_DEBUG_WARN
	    ("Adjust to width %d src_w %d dst_w %d src_x %d dst_x %d\n",
	     f->tru_w, f->src_w, f->dst_w, f->src_x, f->dst_x);
243 244

	/* How wide is the src image */
245
	x_cutoff = f->src_w + f->src_x;
246 247

	/* Set the display width */
248
	reg_2834 = f->dst_w;
249 250 251
	reg_2838 = reg_2834;

	/* Set the display position */
252
	reg_2890 = f->dst_x;
253 254 255 256 257 258 259 260 261 262

	/* Index into the image horizontally */
	reg_2870 = 0;

	/* 2870 is normally fudged to align video coords with osd coords.
	   If running full screen, it causes an unwanted left shift
	   Remove the fudge if we almost fill the screen.
	   Gradually adjust the offset to avoid the video 'snapping'
	   left/right if it gets dragged through this region.
	   Only do this if osd is full width. */
263 264 265 266 267
	if (f->vis_w == 720) {
		if ((f->tru_x - f->pan_x > -1) && (f->tru_x - f->pan_x <= 40) && (f->dst_w >= 680))
			reg_2870 = 10 - (f->tru_x - f->pan_x) / 4;
		else if ((f->tru_x - f->pan_x < 0) && (f->tru_x - f->pan_x >= -20) && (f->dst_w >= 660))
			reg_2870 = (10 + (f->tru_x - f->pan_x) / 2);
268

269
		if (f->dst_w >= f->src_w)
270 271 272 273 274
			reg_2870 = reg_2870 << 16 | reg_2870;
		else
			reg_2870 = ((reg_2870 & ~1) << 15) | (reg_2870 & ~1);
	}

275
	if (f->dst_w < f->src_w)
276 277 278 279 280
		reg_2870 = 0x000d000e - reg_2870;
	else
		reg_2870 = 0x0012000e - reg_2870;

	/* We're also using 2870 to shift the image left (src_x & negative dst_x) */
281
	reg_2870_offset = (f->src_x * ((f->dst_w << 21) / f->src_w)) >> 19;
282

283
	if (f->dst_w >= f->src_w) {
284
		x_cutoff &= ~1;
285 286 287
		master_width = (f->src_w * 0x00200000) / (f->dst_w);
		if (master_width * f->dst_w != f->src_w * 0x00200000)
			master_width++;
288 289 290 291 292 293 294 295 296 297
		reg_2834 = (reg_2834 << 16) | x_cutoff;
		reg_2838 = (reg_2838 << 16) | x_cutoff;
		reg_283c = master_width >> 2;
		reg_2844 = master_width >> 2;
		reg_2854 = master_width;
		reg_285c = master_width >> 1;
		reg_2864 = master_width >> 1;

		/* We also need to factor in the scaling
		   (src_w - dst_w) / (src_w / 4) */
298 299
		if (f->dst_w > f->src_w)
			reg_2870_base = ((f->dst_w - f->src_w)<<16) / (f->src_w <<14);
300 301 302 303 304
		else
			reg_2870_base = 0;

		reg_2870 += (((reg_2870_offset << 14) & 0xFFFF0000) | reg_2870_offset >> 2) + (reg_2870_base << 17 | reg_2870_base);
		reg_2874 = 0;
305 306 307 308
	} else if (f->dst_w < f->src_w / 2) {
		master_width = (f->src_w * 0x00080000) / f->dst_w;
		if (master_width * f->dst_w != f->src_w * 0x00080000)
			master_width++;
309 310 311 312 313 314 315
		reg_2834 = (reg_2834 << 16) | x_cutoff;
		reg_2838 = (reg_2838 << 16) | x_cutoff;
		reg_283c = master_width >> 2;
		reg_2844 = master_width >> 1;
		reg_2854 = master_width;
		reg_285c = master_width >> 1;
		reg_2864 = master_width >> 1;
316 317
		reg_2870 += ((reg_2870_offset << 15) & 0xFFFF0000) | reg_2870_offset;
		reg_2870 += (5 - (((f->src_w + f->src_w / 2) - 1) / f->dst_w)) << 16;
318
		reg_2874 = 0x00000012;
319 320 321 322
	} else {
		master_width = (f->src_w * 0x00100000) / f->dst_w;
		if (master_width * f->dst_w != f->src_w * 0x00100000)
			master_width++;
323 324 325 326 327 328 329
		reg_2834 = (reg_2834 << 16) | x_cutoff;
		reg_2838 = (reg_2838 << 16) | x_cutoff;
		reg_283c = master_width >> 2;
		reg_2844 = master_width >> 1;
		reg_2854 = master_width;
		reg_285c = master_width >> 1;
		reg_2864 = master_width >> 1;
330 331
		reg_2870 += ((reg_2870_offset << 14) & 0xFFFF0000) | reg_2870_offset >> 1;
		reg_2870 += (5 - (((f->src_w * 3) - 1) / f->dst_w)) << 16;
332 333 334 335
		reg_2874 = 0x00000001;
	}

	/* Select the horizontal filter */
336
	if (f->src_w == f->dst_w) {
337 338
		/* An exact size match uses filter 0 */
		h_filter = 0;
339
	} else {
340
		/* Figure out which filter to use */
341
		h_filter = ((f->src_w << 16) / f->dst_w) >> 15;
342 343
		h_filter = (h_filter >> 1) + (h_filter & 1);
		/* Only an exact size match can use filter 0 */
344
		h_filter += !h_filter;
345 346 347 348
	}

	write_reg(reg_2834, 0x02834);
	write_reg(reg_2838, 0x02838);
349 350
	IVTV_DEBUG_YUV("Update reg 0x2834 %08x->%08x 0x2838 %08x->%08x\n",
		       yi->reg_2834, reg_2834, yi->reg_2838, reg_2838);
351 352 353 354

	write_reg(reg_283c, 0x0283c);
	write_reg(reg_2844, 0x02844);

355 356
	IVTV_DEBUG_YUV("Update reg 0x283c %08x->%08x 0x2844 %08x->%08x\n",
		       yi->reg_283c, reg_283c, yi->reg_2844, reg_2844);
357 358 359

	write_reg(0x00080514, 0x02840);
	write_reg(0x00100514, 0x02848);
360 361
	IVTV_DEBUG_YUV("Update reg 0x2840 %08x->%08x 0x2848 %08x->%08x\n",
		       yi->reg_2840, 0x00080514, yi->reg_2848, 0x00100514);
362 363

	write_reg(reg_2854, 0x02854);
364 365
	IVTV_DEBUG_YUV("Update reg 0x2854 %08x->%08x \n",
		       yi->reg_2854, reg_2854);
366 367 368

	write_reg(reg_285c, 0x0285c);
	write_reg(reg_2864, 0x02864);
369 370
	IVTV_DEBUG_YUV("Update reg 0x285c %08x->%08x 0x2864 %08x->%08x\n",
		       yi->reg_285c, reg_285c, yi->reg_2864, reg_2864);
371 372

	write_reg(reg_2874, 0x02874);
373 374
	IVTV_DEBUG_YUV("Update reg 0x2874 %08x->%08x\n",
		       yi->reg_2874, reg_2874);
375 376

	write_reg(reg_2870, 0x02870);
377 378
	IVTV_DEBUG_YUV("Update reg 0x2870 %08x->%08x\n",
		       yi->reg_2870, reg_2870);
379

380 381 382
	write_reg(reg_2890, 0x02890);
	IVTV_DEBUG_YUV("Update reg 0x2890 %08x->%08x\n",
		       yi->reg_2890, reg_2890);
383 384

	/* Only update the filter if we really need to */
385 386 387
	if (h_filter != yi->h_filter) {
		ivtv_yuv_filter(itv, h_filter, -1, -1);
		yi->h_filter = h_filter;
388 389 390
	}
}

391
static void ivtv_yuv_handle_vertical(struct ivtv *itv, struct yuv_frame_info *f)
392
{
393
	struct yuv_playback_info *yi = &itv->yuv_info;
394 395 396 397 398 399 400
	u32 master_height;
	u32 reg_2918, reg_291c, reg_2920, reg_2928;
	u32 reg_2930, reg_2934, reg_293c;
	u32 reg_2940, reg_2944, reg_294c;
	u32 reg_2950, reg_2954, reg_2958, reg_295c;
	u32 reg_2960, reg_2964, reg_2968, reg_296c;
	u32 reg_289c;
401 402
	u32 src_major_y, src_minor_y;
	u32 src_major_uv, src_minor_uv;
403 404 405
	u32 reg_2964_base, reg_2968_base;
	int v_filter_1, v_filter_2;

406 407 408
	IVTV_DEBUG_WARN
	    ("Adjust to height %d src_h %d dst_h %d src_y %d dst_y %d\n",
	     f->tru_h, f->src_h, f->dst_h, f->src_y, f->dst_y);
409 410

	/* What scaling mode is being used... */
411 412
	IVTV_DEBUG_YUV("Scaling mode Y: %s\n",
		       f->interlaced_y ? "Interlaced" : "Progressive");
413

414 415
	IVTV_DEBUG_YUV("Scaling mode UV: %s\n",
		       f->interlaced_uv ? "Interlaced" : "Progressive");
416 417

	/* What is the source video being treated as... */
418 419
	IVTV_DEBUG_WARN("Source video: %s\n",
			f->interlaced ? "Interlaced" : "Progressive");
420 421 422

	/* We offset into the image using two different index methods, so split
	   the y source coord into two parts. */
423 424 425 426 427 428
	if (f->src_y < 8) {
		src_minor_uv = f->src_y;
		src_major_uv = 0;
	} else {
		src_minor_uv = 8;
		src_major_uv = f->src_y - 8;
429 430
	}

431 432
	src_minor_y = src_minor_uv;
	src_major_y = src_major_uv;
433

434 435
	if (f->offset_y)
		src_minor_y += 16;
436

437 438
	if (f->interlaced_y)
		reg_2918 = (f->dst_h << 16) | (f->src_h + src_minor_y);
439
	else
440
		reg_2918 = (f->dst_h << 16) | ((f->src_h + src_minor_y) << 1);
441

442 443
	if (f->interlaced_uv)
		reg_291c = (f->dst_h << 16) | ((f->src_h + src_minor_uv) >> 1);
444
	else
445
		reg_291c = (f->dst_h << 16) | (f->src_h + src_minor_uv);
446

447 448
	reg_2964_base = (src_minor_y * ((f->dst_h << 16) / f->src_h)) >> 14;
	reg_2968_base = (src_minor_uv * ((f->dst_h << 16) / f->src_h)) >> 14;
449

450 451 452 453
	if (f->dst_h / 2 >= f->src_h && !f->interlaced_y) {
		master_height = (f->src_h * 0x00400000) / f->dst_h;
		if ((f->src_h * 0x00400000) - (master_height * f->dst_h) >= f->dst_h / 2)
			master_height++;
454 455 456 457 458 459 460
		reg_2920 = master_height >> 2;
		reg_2928 = master_height >> 3;
		reg_2930 = master_height;
		reg_2940 = master_height >> 1;
		reg_2964_base >>= 3;
		reg_2968_base >>= 3;
		reg_296c = 0x00000000;
461 462
	} else if (f->dst_h >= f->src_h) {
		master_height = (f->src_h * 0x00400000) / f->dst_h;
463 464 465 466 467 468
		master_height = (master_height >> 1) + (master_height & 1);
		reg_2920 = master_height >> 2;
		reg_2928 = master_height >> 2;
		reg_2930 = master_height;
		reg_2940 = master_height >> 1;
		reg_296c = 0x00000000;
469
		if (f->interlaced_y) {
470
			reg_2964_base >>= 3;
471 472
		} else {
			reg_296c++;
473 474
			reg_2964_base >>= 2;
		}
475 476
		if (f->interlaced_uv)
			reg_2928 >>= 1;
477
		reg_2968_base >>= 3;
478 479
	} else if (f->dst_h >= f->src_h / 2) {
		master_height = (f->src_h * 0x00200000) / f->dst_h;
480 481 482 483 484 485
		master_height = (master_height >> 1) + (master_height & 1);
		reg_2920 = master_height >> 2;
		reg_2928 = master_height >> 2;
		reg_2930 = master_height;
		reg_2940 = master_height;
		reg_296c = 0x00000101;
486
		if (f->interlaced_y) {
487
			reg_2964_base >>= 2;
488 489
		} else {
			reg_296c++;
490 491
			reg_2964_base >>= 1;
		}
492 493
		if (f->interlaced_uv)
			reg_2928 >>= 1;
494
		reg_2968_base >>= 2;
495 496
	} else {
		master_height = (f->src_h * 0x00100000) / f->dst_h;
497 498 499 500 501 502 503 504 505 506 507 508
		master_height = (master_height >> 1) + (master_height & 1);
		reg_2920 = master_height >> 2;
		reg_2928 = master_height >> 2;
		reg_2930 = master_height;
		reg_2940 = master_height;
		reg_2964_base >>= 1;
		reg_2968_base >>= 2;
		reg_296c = 0x00000102;
	}

	/* FIXME These registers change depending on scaled / unscaled output
	   We really need to work out what they should be */
509
	if (f->src_h == f->dst_h) {
510 511 512 513
		reg_2934 = 0x00020000;
		reg_293c = 0x00100000;
		reg_2944 = 0x00040000;
		reg_294c = 0x000b0000;
514
	} else {
515 516 517 518 519 520 521
		reg_2934 = 0x00000FF0;
		reg_293c = 0x00000FF0;
		reg_2944 = 0x00000FF0;
		reg_294c = 0x00000FF0;
	}

	/* The first line to be displayed */
522 523 524
	reg_2950 = 0x00010000 + src_major_y;
	if (f->interlaced_y)
		reg_2950 += 0x00010000;
525 526
	reg_2954 = reg_2950 + 1;

527 528 529
	reg_2958 = 0x00010000 + (src_major_y >> 1);
	if (f->interlaced_uv)
		reg_2958 += 0x00010000;
530 531
	reg_295c = reg_2958 + 1;

532
	if (yi->decode_height == 480)
533 534 535 536
		reg_289c = 0x011e0017;
	else
		reg_289c = 0x01500017;

537 538
	if (f->dst_y < 0)
		reg_289c = (reg_289c - ((f->dst_y & ~1)<<15))-(f->dst_y >>1);
539
	else
540
		reg_289c = (reg_289c + ((f->dst_y & ~1)<<15))+(f->dst_y >>1);
541 542 543

	/* How much of the source to decode.
	   Take into account the source offset */
544 545
	reg_2960 = ((src_minor_y + f->src_h + src_major_y) - 1) |
		(((src_minor_uv + f->src_h + src_major_uv - 1) & ~1) << 15);
546 547

	/* Calculate correct value for register 2964 */
548
	if (f->src_h == f->dst_h) {
549
		reg_2964 = 1;
550 551
	} else {
		reg_2964 = 2 + ((f->dst_h << 1) / f->src_h);
552 553 554 555 556 557 558 559 560 561 562 563 564 565
		reg_2964 = (reg_2964 >> 1) + (reg_2964 & 1);
	}
	reg_2968 = (reg_2964 << 16) + reg_2964 + (reg_2964 >> 1);
	reg_2964 = (reg_2964 << 16) + reg_2964 + (reg_2964 * 46 / 94);

	/* Okay, we've wasted time working out the correct value,
	   but if we use it, it fouls the the window alignment.
	   Fudge it to what we want... */
	reg_2964 = 0x00010001 + ((reg_2964 & 0x0000FFFF) - (reg_2964 >> 16));
	reg_2968 = 0x00010001 + ((reg_2968 & 0x0000FFFF) - (reg_2968 >> 16));

	/* Deviate further from what it should be. I find the flicker headache
	   inducing so try to reduce it slightly. Leave 2968 as-is otherwise
	   colours foul. */
566 567
	if ((reg_2964 != 0x00010001) && (f->dst_h / 2 <= f->src_h))
		reg_2964 = (reg_2964 & 0xFFFF0000) + ((reg_2964 & 0x0000FFFF) / 2);
568

569 570 571 572
	if (!f->interlaced_y)
		reg_2964 -= 0x00010001;
	if (!f->interlaced_uv)
		reg_2968 -= 0x00010001;
573 574 575 576 577

	reg_2964 += ((reg_2964_base << 16) | reg_2964_base);
	reg_2968 += ((reg_2968_base << 16) | reg_2968_base);

	/* Select the vertical filter */
578
	if (f->src_h == f->dst_h) {
579 580 581
		/* An exact size match uses filter 0/1 */
		v_filter_1 = 0;
		v_filter_2 = 1;
582
	} else {
583
		/* Figure out which filter to use */
584
		v_filter_1 = ((f->src_h << 16) / f->dst_h) >> 15;
585 586
		v_filter_1 = (v_filter_1 >> 1) + (v_filter_1 & 1);
		/* Only an exact size match can use filter 0 */
587
		v_filter_1 += !v_filter_1;
588 589 590 591 592
		v_filter_2 = v_filter_1;
	}

	write_reg(reg_2934, 0x02934);
	write_reg(reg_293c, 0x0293c);
593 594
	IVTV_DEBUG_YUV("Update reg 0x2934 %08x->%08x 0x293c %08x->%08x\n",
		       yi->reg_2934, reg_2934, yi->reg_293c, reg_293c);
595 596
	write_reg(reg_2944, 0x02944);
	write_reg(reg_294c, 0x0294c);
597 598
	IVTV_DEBUG_YUV("Update reg 0x2944 %08x->%08x 0x294c %08x->%08x\n",
		       yi->reg_2944, reg_2944, yi->reg_294c, reg_294c);
599 600 601

	/* Ensure 2970 is 0 (does it ever change ?) */
/*	write_reg(0,0x02970); */
602
/*	IVTV_DEBUG_YUV("Update reg 0x2970 %08x->%08x\n", yi->reg_2970, 0); */
603 604 605

	write_reg(reg_2930, 0x02938);
	write_reg(reg_2930, 0x02930);
606 607
	IVTV_DEBUG_YUV("Update reg 0x2930 %08x->%08x 0x2938 %08x->%08x\n",
		       yi->reg_2930, reg_2930, yi->reg_2938, reg_2930);
608 609

	write_reg(reg_2928, 0x02928);
610 611 612
	write_reg(reg_2928 + 0x514, 0x0292C);
	IVTV_DEBUG_YUV("Update reg 0x2928 %08x->%08x 0x292c %08x->%08x\n",
		       yi->reg_2928, reg_2928, yi->reg_292c, reg_2928 + 0x514);
613 614

	write_reg(reg_2920, 0x02920);
615 616 617
	write_reg(reg_2920 + 0x514, 0x02924);
	IVTV_DEBUG_YUV("Update reg 0x2920 %08x->%08x 0x2924 %08x->%08x\n",
		       yi->reg_2920, reg_2920, yi->reg_2924, reg_2920 + 0x514);
618

619 620 621 622
	write_reg(reg_2918, 0x02918);
	write_reg(reg_291c, 0x0291C);
	IVTV_DEBUG_YUV("Update reg 0x2918 %08x->%08x 0x291C %08x->%08x\n",
		       yi->reg_2918, reg_2918, yi->reg_291c, reg_291c);
623 624

	write_reg(reg_296c, 0x0296c);
625 626
	IVTV_DEBUG_YUV("Update reg 0x296c %08x->%08x\n",
		       yi->reg_296c, reg_296c);
627 628 629

	write_reg(reg_2940, 0x02948);
	write_reg(reg_2940, 0x02940);
630 631
	IVTV_DEBUG_YUV("Update reg 0x2940 %08x->%08x 0x2948 %08x->%08x\n",
		       yi->reg_2940, reg_2940, yi->reg_2948, reg_2940);
632 633 634

	write_reg(reg_2950, 0x02950);
	write_reg(reg_2954, 0x02954);
635 636
	IVTV_DEBUG_YUV("Update reg 0x2950 %08x->%08x 0x2954 %08x->%08x\n",
		       yi->reg_2950, reg_2950, yi->reg_2954, reg_2954);
637 638 639

	write_reg(reg_2958, 0x02958);
	write_reg(reg_295c, 0x0295C);
640 641
	IVTV_DEBUG_YUV("Update reg 0x2958 %08x->%08x 0x295C %08x->%08x\n",
		       yi->reg_2958, reg_2958, yi->reg_295c, reg_295c);
642 643

	write_reg(reg_2960, 0x02960);
644 645
	IVTV_DEBUG_YUV("Update reg 0x2960 %08x->%08x \n",
		       yi->reg_2960, reg_2960);
646 647 648

	write_reg(reg_2964, 0x02964);
	write_reg(reg_2968, 0x02968);
649 650
	IVTV_DEBUG_YUV("Update reg 0x2964 %08x->%08x 0x2968 %08x->%08x\n",
		       yi->reg_2964, reg_2964, yi->reg_2968, reg_2968);
651

652 653 654
	write_reg(reg_289c, 0x0289c);
	IVTV_DEBUG_YUV("Update reg 0x289c %08x->%08x\n",
		       yi->reg_289c, reg_289c);
655 656

	/* Only update filter 1 if we really need to */
657 658 659
	if (v_filter_1 != yi->v_filter_1) {
		ivtv_yuv_filter(itv, -1, v_filter_1, -1);
		yi->v_filter_1 = v_filter_1;
660 661 662
	}

	/* Only update filter 2 if we really need to */
663 664 665
	if (v_filter_2 != yi->v_filter_2) {
		ivtv_yuv_filter(itv, -1, -1, v_filter_2);
		yi->v_filter_2 = v_filter_2;
666 667 668 669
	}
}

/* Modify the supplied coordinate information to fit the visible osd area */
670
static u32 ivtv_yuv_window_setup(struct ivtv *itv, struct yuv_frame_info *f)
671
{
672 673
	struct yuv_frame_info *of = &itv->yuv_info.old_frame_info;
	int osd_crop;
674 675 676 677
	u32 osd_scale;
	u32 yuv_update = 0;

	/* Sorry, but no negative coords for src */
678 679 680 681
	if (f->src_x < 0)
		f->src_x = 0;
	if (f->src_y < 0)
		f->src_y = 0;
682 683

	/* Can only reduce width down to 1/4 original size */
684 685 686 687 688
	if ((osd_crop = f->src_w - 4 * f->dst_w) > 0) {
		f->src_x += osd_crop / 2;
		f->src_w = (f->src_w - osd_crop) & ~3;
		f->dst_w = f->src_w / 4;
		f->dst_w += f->dst_w & 1;
689 690 691
	}

	/* Can only reduce height down to 1/4 original size */
692 693 694 695
	if (f->src_h / f->dst_h >= 2) {
		/* Overflow may be because we're running progressive,
		   so force mode switch */
		f->interlaced_y = 1;
696
		/* Make sure we're still within limits for interlace */
697
		if ((osd_crop = f->src_h - 4 * f->dst_h) > 0) {
698
			/* If we reach here we'll have to force the height. */
699 700 701 702
			f->src_y += osd_crop / 2;
			f->src_h = (f->src_h - osd_crop) & ~3;
			f->dst_h = f->src_h / 4;
			f->dst_h += f->dst_h & 1;
703 704 705 706
		}
	}

	/* If there's nothing to safe to display, we may as well stop now */
707
	if ((int)f->dst_w <= 2 || (int)f->dst_h <= 2 ||
708
	    (int)f->src_w <= 2 || (int)f->src_h <= 2) {
709
		return IVTV_YUV_UPDATE_INVALID;
710 711 712
	}

	/* Ensure video remains inside OSD area */
713
	osd_scale = (f->src_h << 16) / f->dst_h;
714

715
	if ((osd_crop = f->pan_y - f->dst_y) > 0) {
716
		/* Falls off the upper edge - crop */
717 718 719 720 721 722
		f->src_y += (osd_scale * osd_crop) >> 16;
		f->src_h -= (osd_scale * osd_crop) >> 16;
		f->dst_h -= osd_crop;
		f->dst_y = 0;
	} else {
		f->dst_y -= f->pan_y;
723 724
	}

725
	if ((osd_crop = f->dst_h + f->dst_y - f->vis_h) > 0) {
726
		/* Falls off the lower edge - crop */
727 728
		f->dst_h -= osd_crop;
		f->src_h -= (osd_scale * osd_crop) >> 16;
729 730
	}

731
	osd_scale = (f->src_w << 16) / f->dst_w;
732

733
	if ((osd_crop = f->pan_x - f->dst_x) > 0) {
734
		/* Fall off the left edge - crop */
735 736 737 738 739 740
		f->src_x += (osd_scale * osd_crop) >> 16;
		f->src_w -= (osd_scale * osd_crop) >> 16;
		f->dst_w -= osd_crop;
		f->dst_x = 0;
	} else {
		f->dst_x -= f->pan_x;
741 742
	}

743
	if ((osd_crop = f->dst_w + f->dst_x - f->vis_w) > 0) {
744
		/* Falls off the right edge - crop */
745 746
		f->dst_w -= osd_crop;
		f->src_w -= (osd_scale * osd_crop) >> 16;
747 748
	}

749 750 751 752 753
	if (itv->yuv_info.track_osd) {
		/* The OSD can be moved. Track to it */
		f->dst_x += itv->yuv_info.osd_x_offset;
		f->dst_y += itv->yuv_info.osd_y_offset;
	}
754 755 756

	/* Width & height for both src & dst must be even.
	   Same for coordinates. */
757 758
	f->dst_w &= ~1;
	f->dst_x &= ~1;
759

760 761
	f->src_w += f->src_x & 1;
	f->src_x &= ~1;
762

763 764
	f->src_w &= ~1;
	f->dst_w &= ~1;
765

766 767
	f->dst_h &= ~1;
	f->dst_y &= ~1;
768

769 770
	f->src_h += f->src_y & 1;
	f->src_y &= ~1;
771

772 773
	f->src_h &= ~1;
	f->dst_h &= ~1;
774

775 776 777 778 779 780 781
	/* Due to rounding, we may have reduced the output size to <1/4 of
	   the source. Check again, but this time just resize. Don't change
	   source coordinates */
	if (f->dst_w < f->src_w / 4) {
		f->src_w &= ~3;
		f->dst_w = f->src_w / 4;
		f->dst_w += f->dst_w & 1;
782
	}
783 784 785 786
	if (f->dst_h < f->src_h / 4) {
		f->src_h &= ~3;
		f->dst_h = f->src_h / 4;
		f->dst_h += f->dst_h & 1;
787 788 789
	}

	/* Check again. If there's nothing to safe to display, stop now */
790
	if ((int)f->dst_w <= 2 || (int)f->dst_h <= 2 ||
791
	    (int)f->src_w <= 2 || (int)f->src_h <= 2) {
792
		return IVTV_YUV_UPDATE_INVALID;
793 794 795
	}

	/* Both x offset & width are linked, so they have to be done together */
796
	if ((of->dst_w != f->dst_w) || (of->src_w != f->src_w) ||
797 798
	    (of->dst_x != f->dst_x) || (of->src_x != f->src_x) ||
	    (of->pan_x != f->pan_x) || (of->vis_w != f->vis_w)) {
799 800 801
		yuv_update |= IVTV_YUV_UPDATE_HORIZONTAL;
	}

802
	if ((of->src_h != f->src_h) || (of->dst_h != f->dst_h) ||
803 804 805 806 807
	    (of->dst_y != f->dst_y) || (of->src_y != f->src_y) ||
	    (of->pan_y != f->pan_y) || (of->vis_h != f->vis_h) ||
	    (of->lace_mode != f->lace_mode) ||
	    (of->interlaced_y != f->interlaced_y) ||
	    (of->interlaced_uv != f->interlaced_uv)) {
808 809 810 811 812 813 814
		yuv_update |= IVTV_YUV_UPDATE_VERTICAL;
	}

	return yuv_update;
}

/* Update the scaling register to the requested value */
815
void ivtv_yuv_work_handler(struct ivtv *itv)
816
{
817 818 819
	struct yuv_playback_info *yi = &itv->yuv_info;
	struct yuv_frame_info f;
	int frame = yi->update_frame;
820 821
	u32 yuv_update;

822
	IVTV_DEBUG_YUV("Update yuv registers for frame %d\n", frame);
823
	f = yi->new_frame_info[frame];
824

825 826 827 828 829 830 831 832 833 834 835 836 837
	if (yi->track_osd) {
		/* Snapshot the osd pan info */
		f.pan_x = yi->osd_x_pan;
		f.pan_y = yi->osd_y_pan;
		f.vis_w = yi->osd_vis_w;
		f.vis_h = yi->osd_vis_h;
	} else {
		/* Not tracking the osd, so assume full screen */
		f.pan_x = 0;
		f.pan_y = 0;
		f.vis_w = 720;
		f.vis_h = yi->decode_height;
	}
838 839

	/* Calculate the display window coordinates. Exit if nothing left */
840
	if (!(yuv_update = ivtv_yuv_window_setup(itv, &f)))
841 842
		return;

843 844 845 846
	if (yuv_update & IVTV_YUV_UPDATE_INVALID) {
		write_reg(0x01008080, 0x2898);
	} else if (yuv_update) {
		write_reg(0x00108080, 0x2898);
847

848
		if (yuv_update & IVTV_YUV_UPDATE_HORIZONTAL)
849
			ivtv_yuv_handle_horizontal(itv, &f);
850 851

		if (yuv_update & IVTV_YUV_UPDATE_VERTICAL)
852
			ivtv_yuv_handle_vertical(itv, &f);
853
	}
854
	yi->old_frame_info = f;
855 856
}

857
static void ivtv_yuv_init(struct ivtv *itv)
858
{
859 860
	struct yuv_playback_info *yi = &itv->yuv_info;

861 862 863
	IVTV_DEBUG_YUV("ivtv_yuv_init\n");

	/* Take a snapshot of the current register settings */
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
	yi->reg_2834 = read_reg(0x02834);
	yi->reg_2838 = read_reg(0x02838);
	yi->reg_283c = read_reg(0x0283c);
	yi->reg_2840 = read_reg(0x02840);
	yi->reg_2844 = read_reg(0x02844);
	yi->reg_2848 = read_reg(0x02848);
	yi->reg_2854 = read_reg(0x02854);
	yi->reg_285c = read_reg(0x0285c);
	yi->reg_2864 = read_reg(0x02864);
	yi->reg_2870 = read_reg(0x02870);
	yi->reg_2874 = read_reg(0x02874);
	yi->reg_2898 = read_reg(0x02898);
	yi->reg_2890 = read_reg(0x02890);

	yi->reg_289c = read_reg(0x0289c);
	yi->reg_2918 = read_reg(0x02918);
	yi->reg_291c = read_reg(0x0291c);
	yi->reg_2920 = read_reg(0x02920);
	yi->reg_2924 = read_reg(0x02924);
	yi->reg_2928 = read_reg(0x02928);
	yi->reg_292c = read_reg(0x0292c);
	yi->reg_2930 = read_reg(0x02930);
	yi->reg_2934 = read_reg(0x02934);
	yi->reg_2938 = read_reg(0x02938);
	yi->reg_293c = read_reg(0x0293c);
	yi->reg_2940 = read_reg(0x02940);
	yi->reg_2944 = read_reg(0x02944);
	yi->reg_2948 = read_reg(0x02948);
	yi->reg_294c = read_reg(0x0294c);
	yi->reg_2950 = read_reg(0x02950);
	yi->reg_2954 = read_reg(0x02954);
	yi->reg_2958 = read_reg(0x02958);
	yi->reg_295c = read_reg(0x0295c);
	yi->reg_2960 = read_reg(0x02960);
	yi->reg_2964 = read_reg(0x02964);
	yi->reg_2968 = read_reg(0x02968);
	yi->reg_296c = read_reg(0x0296c);
	yi->reg_2970 = read_reg(0x02970);

	yi->v_filter_1 = -1;
	yi->v_filter_2 = -1;
	yi->h_filter = -1;
906 907

	/* Set some valid size info */
908 909
	yi->osd_x_offset = read_reg(0x02a04) & 0x00000FFF;
	yi->osd_y_offset = (read_reg(0x02a04) >> 16) & 0x00000FFF;
910 911 912 913

	/* Bit 2 of reg 2878 indicates current decoder output format
	   0 : NTSC    1 : PAL */
	if (read_reg(0x2878) & 4)
914
		yi->decode_height = 576;
915
	else
916
		yi->decode_height = 480;
917

918 919 920
	if (!itv->osd_info) {
		yi->osd_vis_w = 720 - yi->osd_x_offset;
		yi->osd_vis_h = yi->decode_height - yi->osd_y_offset;
921
	} else {
922 923 924 925
		/* If no visible size set, assume full size */
		if (!yi->osd_vis_w)
			yi->osd_vis_w = 720 - yi->osd_x_offset;

926
		if (!yi->osd_vis_h) {
927
			yi->osd_vis_h = yi->decode_height - yi->osd_y_offset;
928
		} else if (yi->osd_vis_h + yi->osd_y_offset > yi->decode_height) {
929
			/* If output video standard has changed, requested height may
930 931 932 933 934
			   not be legal */
			IVTV_DEBUG_WARN("Clipping yuv output - fb size (%d) exceeds video standard limit (%d)\n",
					yi->osd_vis_h + yi->osd_y_offset,
					yi->decode_height);
			yi->osd_vis_h = yi->decode_height - yi->osd_y_offset;
935 936
		}
	}
937 938

	/* We need a buffer for blanking when Y plane is offset - non-fatal if we can't get one */
939
	yi->blanking_ptr = kzalloc(720 * 16, GFP_KERNEL|__GFP_NOWARN);
940
	if (yi->blanking_ptr) {
941
		yi->blanking_dmaptr = pci_map_single(itv->pdev, yi->blanking_ptr, 720*16, PCI_DMA_TODEVICE);
942
	} else {
943 944
		yi->blanking_dmaptr = 0;
		IVTV_DEBUG_WARN("Failed to allocate yuv blanking buffer\n");
945 946 947 948 949 950
	}

	/* Enable YUV decoder output */
	write_reg_sync(0x01, IVTV_REG_VDM);

	set_bit(IVTV_F_I_DECODING_YUV, &itv->i_flags);
951
	atomic_set(&yi->next_dma_frame, 0);
952 953
}

954
/* Get next available yuv buffer on PVR350 */
955
static void ivtv_yuv_next_free(struct ivtv *itv)
956
{
957 958
	int draw, display;
	struct yuv_playback_info *yi = &itv->yuv_info;
959

960 961
	if (atomic_read(&yi->next_dma_frame) == -1)
		ivtv_yuv_init(itv);
962

963 964
	draw = atomic_read(&yi->next_fill_frame);
	display = atomic_read(&yi->next_dma_frame);
965

966 967
	if (display > draw)
		display -= IVTV_YUV_BUFFERS;
968

969 970 971 972 973 974 975 976 977
	if (draw - display >= yi->max_frames_buffered)
		draw = (u8)(draw - 1) % IVTV_YUV_BUFFERS;
	else
		yi->new_frame_info[draw].update = 0;

	yi->draw_frame = draw;
}

/* Set up frame according to ivtv_dma_frame parameters */
978
static void ivtv_yuv_setup_frame(struct ivtv *itv, struct ivtv_dma_frame *args)
979 980 981
{
	struct yuv_playback_info *yi = &itv->yuv_info;
	u8 frame = yi->draw_frame;
982 983 984 985
	u8 last_frame = (u8)(frame - 1) % IVTV_YUV_BUFFERS;
	struct yuv_frame_info *nf = &yi->new_frame_info[frame];
	struct yuv_frame_info *of = &yi->new_frame_info[last_frame];
	int lace_threshold = yi->lace_threshold;
986 987

	/* Preserve old update flag in case we're overwriting a queued frame */
988
	int update = nf->update;
989 990

	/* Take a snapshot of the yuv coordinate information */
991 992 993 994 995 996 997 998 999 1000 1001
	nf->src_x = args->src.left;
	nf->src_y = args->src.top;
	nf->src_w = args->src.width;
	nf->src_h = args->src.height;
	nf->dst_x = args->dst.left;
	nf->dst_y = args->dst.top;
	nf->dst_w = args->dst.width;
	nf->dst_h = args->dst.height;
	nf->tru_x = args->dst.left;
	nf->tru_w = args->src_width;
	nf->tru_h = args->src_height;
1002

1003
	/* Are we going to offset the Y plane */
1004
	nf->offset_y = (nf->tru_h + nf->src_x < 512 - 16) ? 1 : 0;
1005

1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
	nf->update = 0;
	nf->interlaced_y = 0;
	nf->interlaced_uv = 0;
	nf->delay = 0;
	nf->sync_field = 0;
	nf->lace_mode = yi->lace_mode & IVTV_YUV_MODE_MASK;

	if (lace_threshold < 0)
		lace_threshold = yi->decode_height - 1;

	/* Work out the lace settings */
	switch (nf->lace_mode) {
	case IVTV_YUV_MODE_PROGRESSIVE: /* Progressive mode */
		nf->interlaced = 0;
		if (nf->tru_h < 512 || (nf->tru_h > 576 && nf->tru_h < 1021))
			nf->interlaced_y = 0;
		else
			nf->interlaced_y = 1;

		if (nf->tru_h < 1021 && (nf->dst_h >= nf->src_h / 2))
			nf->interlaced_uv = 0;
		else
			nf->interlaced_uv = 1;
		break;

	case IVTV_YUV_MODE_AUTO:
		if (nf->tru_h <= lace_threshold || nf->tru_h > 576 || nf->tru_w > 720) {
			nf->interlaced = 0;
			if ((nf->tru_h < 512) ||
1035 1036
			    (nf->tru_h > 576 && nf->tru_h < 1021) ||
			    (nf->tru_w > 720 && nf->tru_h < 1021))
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
				nf->interlaced_y = 0;
			else
				nf->interlaced_y = 1;
			if (nf->tru_h < 1021 && (nf->dst_h >= nf->src_h / 2))
				nf->interlaced_uv = 0;
			else
				nf->interlaced_uv = 1;
		} else {
			nf->interlaced = 1;
			nf->interlaced_y = 1;
			nf->interlaced_uv = 1;
		}
		break;

	case IVTV_YUV_MODE_INTERLACED: /* Interlace mode */
	default:
		nf->interlaced = 1;
		nf->interlaced_y = 1;
		nf->interlaced_uv = 1;
		break;
1057 1058
	}

1059 1060 1061
	if (memcmp(&yi->old_frame_info_args, nf, sizeof(*nf))) {
		yi->old_frame_info_args = *nf;
		nf->update = 1;
1062
		IVTV_DEBUG_YUV("Requesting reg update for frame %d\n", frame);
1063
	}
1064

1065 1066 1067
	nf->update |= update;
	nf->sync_field = yi->lace_sync_field;
	nf->delay = nf->sync_field != of->sync_field;
1068 1069 1070 1071 1072 1073 1074 1075 1076
}

/* Frame is complete & ready for display */
void ivtv_yuv_frame_complete(struct ivtv *itv)
{
	atomic_set(&itv->yuv_info.next_fill_frame,
			(itv->yuv_info.draw_frame + 1) % IVTV_YUV_BUFFERS);
}

1077
static int ivtv_yuv_udma_frame(struct ivtv *itv, struct ivtv_dma_frame *args)
1078 1079 1080 1081
{
	DEFINE_WAIT(wait);
	int rc = 0;
	int got_sig = 0;
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
	/* DMA the frame */
	mutex_lock(&itv->udma.lock);

	if ((rc = ivtv_yuv_prep_user_dma(itv, &itv->udma, args)) != 0) {
		mutex_unlock(&itv->udma.lock);
		return rc;
	}

	ivtv_udma_prepare(itv);
	prepare_to_wait(&itv->dma_waitq, &wait, TASK_INTERRUPTIBLE);
	/* if no UDMA is pending and no UDMA is in progress, then the DMA
1093
	   is finished */
1094 1095
	while (test_bit(IVTV_F_I_UDMA_PENDING, &itv->i_flags) ||
	       test_bit(IVTV_F_I_UDMA, &itv->i_flags)) {
1096
		/* don't interrupt if the DMA is in progress but break off
1097
		   a still pending DMA. */
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
		got_sig = signal_pending(current);
		if (got_sig && test_and_clear_bit(IVTV_F_I_UDMA_PENDING, &itv->i_flags))
			break;
		got_sig = 0;
		schedule();
	}
	finish_wait(&itv->dma_waitq, &wait);

	/* Unmap Last DMA Xfer */
	ivtv_udma_unmap(itv);

	if (got_sig) {
		IVTV_DEBUG_INFO("User stopped YUV UDMA\n");
		mutex_unlock(&itv->udma.lock);
		return -EINTR;
	}

1115
	ivtv_yuv_frame_complete(itv);
1116 1117 1118 1119 1120

	mutex_unlock(&itv->udma.lock);
	return rc;
}

1121 1122 1123 1124 1125 1126 1127 1128 1129
/* Setup frame according to V4L2 parameters */
void ivtv_yuv_setup_stream_frame(struct ivtv *itv)
{
	struct yuv_playback_info *yi = &itv->yuv_info;
	struct ivtv_dma_frame dma_args;

	ivtv_yuv_next_free(itv);

	/* Copy V4L2 parameters to an ivtv_dma_frame struct... */
1130 1131
	dma_args.y_source = NULL;
	dma_args.uv_source = NULL;
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
	dma_args.src.left = 0;
	dma_args.src.top = 0;
	dma_args.src.width = yi->v4l2_src_w;
	dma_args.src.height = yi->v4l2_src_h;
	dma_args.dst = yi->main_rect;
	dma_args.src_width = yi->v4l2_src_w;
	dma_args.src_height = yi->v4l2_src_h;

	/* ... and use the same setup routine as ivtv_yuv_prep_frame */
	ivtv_yuv_setup_frame(itv, &dma_args);

	if (!itv->dma_data_req_offset)
		itv->dma_data_req_offset = yuv_offset[yi->draw_frame];
}

/* Attempt to dma a frame from a user buffer */
1148
int ivtv_yuv_udma_stream_frame(struct ivtv *itv, void __user *src)
1149 1150 1151
{
	struct yuv_playback_info *yi = &itv->yuv_info;
	struct ivtv_dma_frame dma_args;
1152
	int res;
1153 1154 1155 1156 1157 1158

	ivtv_yuv_setup_stream_frame(itv);

	/* We only need to supply source addresses for this */
	dma_args.y_source = src;
	dma_args.uv_source = src + 720 * ((yi->v4l2_src_h + 31) & ~31);
1159 1160 1161 1162 1163 1164 1165
	/* Wait for frame DMA. Note that serialize_lock is locked,
	   so to allow other processes to access the driver while
	   we are waiting unlock first and later lock again. */
	mutex_unlock(&itv->serialize_lock);
	res = ivtv_yuv_udma_frame(itv, &dma_args);
	mutex_lock(&itv->serialize_lock);
	return res;
1166 1167 1168 1169 1170
}

/* IVTV_IOC_DMA_FRAME ioctl handler */
int ivtv_yuv_prep_frame(struct ivtv *itv, struct ivtv_dma_frame *args)
{
1171
	int res;
1172

1173
/*	IVTV_DEBUG_INFO("yuv_prep_frame\n"); */
1174 1175
	ivtv_yuv_next_free(itv);
	ivtv_yuv_setup_frame(itv, args);
1176 1177 1178 1179 1180 1181 1182
	/* Wait for frame DMA. Note that serialize_lock is locked,
	   so to allow other processes to access the driver while
	   we are waiting unlock first and later lock again. */
	mutex_unlock(&itv->serialize_lock);
	res = ivtv_yuv_udma_frame(itv, args);
	mutex_lock(&itv->serialize_lock);
	return res;
1183 1184
}

1185 1186
void ivtv_yuv_close(struct ivtv *itv)
{
1187
	struct yuv_playback_info *yi = &itv->yuv_info;
1188 1189 1190
	int h_filter, v_filter_1, v_filter_2;

	IVTV_DEBUG_YUV("ivtv_yuv_close\n");
1191
	mutex_unlock(&itv->serialize_lock);
1192
	ivtv_waitq(&itv->vsync_waitq);
1193
	mutex_lock(&itv->serialize_lock);
1194

1195
	yi->running = 0;
1196 1197
	atomic_set(&yi->next_dma_frame, -1);
	atomic_set(&yi->next_fill_frame, 0);
1198 1199 1200 1201 1202 1203

	/* Reset registers we have changed so mpeg playback works */

	/* If we fully restore this register, the display may remain active.
	   Restore, but set one bit to blank the video. Firmware will always
	   clear this bit when needed, so not a problem. */
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
	write_reg(yi->reg_2898 | 0x01000000, 0x2898);

	write_reg(yi->reg_2834, 0x02834);
	write_reg(yi->reg_2838, 0x02838);
	write_reg(yi->reg_283c, 0x0283c);
	write_reg(yi->reg_2840, 0x02840);
	write_reg(yi->reg_2844, 0x02844);
	write_reg(yi->reg_2848, 0x02848);
	write_reg(yi->reg_2854, 0x02854);
	write_reg(yi->reg_285c, 0x0285c);
	write_reg(yi->reg_2864, 0x02864);
	write_reg(yi->reg_2870, 0x02870);
	write_reg(yi->reg_2874, 0x02874);
	write_reg(yi->reg_2890, 0x02890);
	write_reg(yi->reg_289c, 0x0289c);

	write_reg(yi->reg_2918, 0x02918);
	write_reg(yi->reg_291c, 0x0291c);
	write_reg(yi->reg_2920, 0x02920);
	write_reg(yi->reg_2924, 0x02924);
	write_reg(yi->reg_2928, 0x02928);
	write_reg(yi->reg_292c, 0x0292c);
	write_reg(yi->reg_2930, 0x02930);
	write_reg(yi->reg_2934, 0x02934);
	write_reg(yi->reg_2938, 0x02938);
	write_reg(yi->reg_293c, 0x0293c);
	write_reg(yi->reg_2940, 0x02940);
	write_reg(yi->reg_2944, 0x02944);
	write_reg(yi->reg_2948, 0x02948);
	write_reg(yi->reg_294c, 0x0294c);
	write_reg(yi->reg_2950, 0x02950);
	write_reg(yi->reg_2954, 0x02954);
	write_reg(yi->reg_2958, 0x02958);
	write_reg(yi->reg_295c, 0x0295c);
	write_reg(yi->reg_2960, 0x02960);
	write_reg(yi->reg_2964, 0x02964);
	write_reg(yi->reg_2968, 0x02968);
	write_reg(yi->reg_296c, 0x0296c);
	write_reg(yi->reg_2970, 0x02970);
1243 1244 1245 1246

	/* Prepare to restore filters */

	/* First the horizontal filter */
1247
	if ((yi->reg_2834 & 0x0000FFFF) == (yi->reg_2834 >> 16)) {
1248 1249
		/* An exact size match uses filter 0 */
		h_filter = 0;
1250
	} else {
1251
		/* Figure out which filter to use */
1252
		h_filter = ((yi->reg_2834 << 16) / (yi->reg_2834 >> 16)) >> 15;
1253 1254
		h_filter = (h_filter >> 1) + (h_filter & 1);
		/* Only an exact size match can use filter 0. */
1255
		h_filter += !h_filter;
1256 1257 1258
	}

	/* Now the vertical filter */
1259
	if ((yi->reg_2918 & 0x0000FFFF) == (yi->reg_2918 >> 16)) {
1260 1261 1262
		/* An exact size match uses filter 0/1 */
		v_filter_1 = 0;
		v_filter_2 = 1;
1263
	} else {
1264
		/* Figure out which filter to use */
1265
		v_filter_1 = ((yi->reg_2918 << 16) / (yi->reg_2918 >> 16)) >> 15;
1266 1267
		v_filter_1 = (v_filter_1 >> 1) + (v_filter_1 & 1);
		/* Only an exact size match can use filter 0 */
1268
		v_filter_1 += !v_filter_1;
1269 1270 1271 1272
		v_filter_2 = v_filter_1;
	}

	/* Now restore the filters */
1273
	ivtv_yuv_filter(itv, h_filter, v_filter_1, v_filter_2);
1274 1275 1276 1277 1278 1279 1280 1281

	/* and clear a few registers */
	write_reg(0, 0x02814);
	write_reg(0, 0x0282c);
	write_reg(0, 0x02904);
	write_reg(0, 0x02910);

	/* Release the blanking buffer */
1282 1283 1284
	if (yi->blanking_ptr) {
		kfree(yi->blanking_ptr);
		yi->blanking_ptr = NULL;
1285
		pci_unmap_single(itv->pdev, yi->blanking_dmaptr, 720*16, PCI_DMA_TODEVICE);
1286 1287 1288
	}

	/* Invalidate the old dimension information */
1289 1290 1291 1292
	yi->old_frame_info.src_w = 0;
	yi->old_frame_info.src_h = 0;
	yi->old_frame_info_args.src_w = 0;
	yi->old_frame_info_args.src_h = 0;
1293 1294 1295 1296

	/* All done. */
	clear_bit(IVTV_F_I_DECODING_YUV, &itv->i_flags);
}