sched_rt.c 22.0 KB
Newer Older
I
Ingo Molnar 已提交
1 2 3 4 5
/*
 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
 * policies)
 */

S
Steven Rostedt 已提交
6
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
7

8
static inline int rt_overloaded(struct rq *rq)
S
Steven Rostedt 已提交
9
{
10
	return atomic_read(&rq->rd->rto_count);
S
Steven Rostedt 已提交
11
}
I
Ingo Molnar 已提交
12

S
Steven Rostedt 已提交
13 14
static inline void rt_set_overload(struct rq *rq)
{
15
	cpu_set(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
16 17 18 19 20 21 22 23
	/*
	 * Make sure the mask is visible before we set
	 * the overload count. That is checked to determine
	 * if we should look at the mask. It would be a shame
	 * if we looked at the mask, but the mask was not
	 * updated yet.
	 */
	wmb();
24
	atomic_inc(&rq->rd->rto_count);
S
Steven Rostedt 已提交
25
}
I
Ingo Molnar 已提交
26

S
Steven Rostedt 已提交
27 28 29
static inline void rt_clear_overload(struct rq *rq)
{
	/* the order here really doesn't matter */
30 31
	atomic_dec(&rq->rd->rto_count);
	cpu_clear(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
32
}
33 34 35

static void update_rt_migration(struct rq *rq)
{
36
	if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
37 38 39 40 41
		if (!rq->rt.overloaded) {
			rt_set_overload(rq);
			rq->rt.overloaded = 1;
		}
	} else if (rq->rt.overloaded) {
42
		rt_clear_overload(rq);
43 44
		rq->rt.overloaded = 0;
	}
45
}
S
Steven Rostedt 已提交
46 47
#endif /* CONFIG_SMP */

I
Ingo Molnar 已提交
48 49 50 51
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
A
Alexey Dobriyan 已提交
52
static void update_curr_rt(struct rq *rq)
I
Ingo Molnar 已提交
53 54 55 56 57 58 59
{
	struct task_struct *curr = rq->curr;
	u64 delta_exec;

	if (!task_has_rt_policy(curr))
		return;

60
	delta_exec = rq->clock - curr->se.exec_start;
I
Ingo Molnar 已提交
61 62
	if (unlikely((s64)delta_exec < 0))
		delta_exec = 0;
I
Ingo Molnar 已提交
63 64

	schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
I
Ingo Molnar 已提交
65 66

	curr->se.sum_exec_runtime += delta_exec;
67
	curr->se.exec_start = rq->clock;
68
	cpuacct_charge(curr, delta_exec);
I
Ingo Molnar 已提交
69 70
}

71 72 73 74
static inline void inc_rt_tasks(struct task_struct *p, struct rq *rq)
{
	WARN_ON(!rt_task(p));
	rq->rt.rt_nr_running++;
75 76 77
#ifdef CONFIG_SMP
	if (p->prio < rq->rt.highest_prio)
		rq->rt.highest_prio = p->prio;
78 79 80 81
	if (p->nr_cpus_allowed > 1)
		rq->rt.rt_nr_migratory++;

	update_rt_migration(rq);
82
#endif /* CONFIG_SMP */
83 84 85 86 87 88 89
}

static inline void dec_rt_tasks(struct task_struct *p, struct rq *rq)
{
	WARN_ON(!rt_task(p));
	WARN_ON(!rq->rt.rt_nr_running);
	rq->rt.rt_nr_running--;
90 91 92 93 94 95 96 97 98 99 100 101 102
#ifdef CONFIG_SMP
	if (rq->rt.rt_nr_running) {
		struct rt_prio_array *array;

		WARN_ON(p->prio < rq->rt.highest_prio);
		if (p->prio == rq->rt.highest_prio) {
			/* recalculate */
			array = &rq->rt.active;
			rq->rt.highest_prio =
				sched_find_first_bit(array->bitmap);
		} /* otherwise leave rq->highest prio alone */
	} else
		rq->rt.highest_prio = MAX_RT_PRIO;
103 104 105 106
	if (p->nr_cpus_allowed > 1)
		rq->rt.rt_nr_migratory--;

	update_rt_migration(rq);
107
#endif /* CONFIG_SMP */
108 109
}

110
static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
I
Ingo Molnar 已提交
111 112 113 114 115
{
	struct rt_prio_array *array = &rq->rt.active;

	list_add_tail(&p->run_list, array->queue + p->prio);
	__set_bit(p->prio, array->bitmap);
116
	inc_cpu_load(rq, p->se.load.weight);
117 118

	inc_rt_tasks(p, rq);
I
Ingo Molnar 已提交
119 120 121 122 123
}

/*
 * Adding/removing a task to/from a priority array:
 */
124
static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
I
Ingo Molnar 已提交
125 126 127
{
	struct rt_prio_array *array = &rq->rt.active;

128
	update_curr_rt(rq);
I
Ingo Molnar 已提交
129 130 131 132

	list_del(&p->run_list);
	if (list_empty(array->queue + p->prio))
		__clear_bit(p->prio, array->bitmap);
133
	dec_cpu_load(rq, p->se.load.weight);
134 135

	dec_rt_tasks(p, rq);
I
Ingo Molnar 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149
}

/*
 * Put task to the end of the run list without the overhead of dequeue
 * followed by enqueue.
 */
static void requeue_task_rt(struct rq *rq, struct task_struct *p)
{
	struct rt_prio_array *array = &rq->rt.active;

	list_move_tail(&p->run_list, array->queue + p->prio);
}

static void
150
yield_task_rt(struct rq *rq)
I
Ingo Molnar 已提交
151
{
152
	requeue_task_rt(rq, rq->curr);
I
Ingo Molnar 已提交
153 154
}

155
#ifdef CONFIG_SMP
156 157
static int find_lowest_rq(struct task_struct *task);

158 159
static int select_task_rq_rt(struct task_struct *p, int sync)
{
160 161 162
	struct rq *rq = task_rq(p);

	/*
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
	 * If the current task is an RT task, then
	 * try to see if we can wake this RT task up on another
	 * runqueue. Otherwise simply start this RT task
	 * on its current runqueue.
	 *
	 * We want to avoid overloading runqueues. Even if
	 * the RT task is of higher priority than the current RT task.
	 * RT tasks behave differently than other tasks. If
	 * one gets preempted, we try to push it off to another queue.
	 * So trying to keep a preempting RT task on the same
	 * cache hot CPU will force the running RT task to
	 * a cold CPU. So we waste all the cache for the lower
	 * RT task in hopes of saving some of a RT task
	 * that is just being woken and probably will have
	 * cold cache anyway.
178
	 */
179 180
	if (unlikely(rt_task(rq->curr)) &&
	    (p->nr_cpus_allowed > 1)) {
181 182 183 184 185 186 187 188 189
		int cpu = find_lowest_rq(p);

		return (cpu == -1) ? task_cpu(p) : cpu;
	}

	/*
	 * Otherwise, just let it ride on the affined RQ and the
	 * post-schedule router will push the preempted task away
	 */
190 191 192 193
	return task_cpu(p);
}
#endif /* CONFIG_SMP */

I
Ingo Molnar 已提交
194 195 196 197 198 199 200 201 202
/*
 * Preempt the current task with a newly woken task if needed:
 */
static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
{
	if (p->prio < rq->curr->prio)
		resched_task(rq->curr);
}

203
static struct task_struct *pick_next_task_rt(struct rq *rq)
I
Ingo Molnar 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216
{
	struct rt_prio_array *array = &rq->rt.active;
	struct task_struct *next;
	struct list_head *queue;
	int idx;

	idx = sched_find_first_bit(array->bitmap);
	if (idx >= MAX_RT_PRIO)
		return NULL;

	queue = array->queue + idx;
	next = list_entry(queue->next, struct task_struct, run_list);

217
	next->se.exec_start = rq->clock;
I
Ingo Molnar 已提交
218 219 220 221

	return next;
}

222
static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
I
Ingo Molnar 已提交
223
{
224
	update_curr_rt(rq);
I
Ingo Molnar 已提交
225 226 227
	p->se.exec_start = 0;
}

228
#ifdef CONFIG_SMP
S
Steven Rostedt 已提交
229 230 231 232 233 234
/* Only try algorithms three times */
#define RT_MAX_TRIES 3

static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);

235 236 237
static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
{
	if (!task_running(rq, p) &&
238 239
	    (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
	    (p->nr_cpus_allowed > 1))
240 241 242 243
		return 1;
	return 0;
}

S
Steven Rostedt 已提交
244
/* Return the second highest RT task, NULL otherwise */
245
static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
S
Steven Rostedt 已提交
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
{
	struct rt_prio_array *array = &rq->rt.active;
	struct task_struct *next;
	struct list_head *queue;
	int idx;

	if (likely(rq->rt.rt_nr_running < 2))
		return NULL;

	idx = sched_find_first_bit(array->bitmap);
	if (unlikely(idx >= MAX_RT_PRIO)) {
		WARN_ON(1); /* rt_nr_running is bad */
		return NULL;
	}

	queue = array->queue + idx;
262 263
	BUG_ON(list_empty(queue));

S
Steven Rostedt 已提交
264
	next = list_entry(queue->next, struct task_struct, run_list);
265 266
	if (unlikely(pick_rt_task(rq, next, cpu)))
		goto out;
S
Steven Rostedt 已提交
267 268 269

	if (queue->next->next != queue) {
		/* same prio task */
270 271
		next = list_entry(queue->next->next, struct task_struct,
				  run_list);
272 273
		if (pick_rt_task(rq, next, cpu))
			goto out;
S
Steven Rostedt 已提交
274 275
	}

276
 retry:
S
Steven Rostedt 已提交
277 278
	/* slower, but more flexible */
	idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
279
	if (unlikely(idx >= MAX_RT_PRIO))
S
Steven Rostedt 已提交
280 281 282
		return NULL;

	queue = array->queue + idx;
283 284 285 286 287 288 289 290
	BUG_ON(list_empty(queue));

	list_for_each_entry(next, queue, run_list) {
		if (pick_rt_task(rq, next, cpu))
			goto out;
	}

	goto retry;
S
Steven Rostedt 已提交
291

292
 out:
S
Steven Rostedt 已提交
293 294 295 296 297
	return next;
}

static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);

G
Gregory Haskins 已提交
298
static int find_lowest_cpus(struct task_struct *task, cpumask_t *lowest_mask)
S
Steven Rostedt 已提交
299
{
G
Gregory Haskins 已提交
300
	int       lowest_prio = -1;
301
	int       lowest_cpu  = -1;
G
Gregory Haskins 已提交
302
	int       count       = 0;
303
	int       cpu;
S
Steven Rostedt 已提交
304

305
	cpus_and(*lowest_mask, task_rq(task)->rd->online, task->cpus_allowed);
S
Steven Rostedt 已提交
306

307 308 309
	/*
	 * Scan each rq for the lowest prio.
	 */
310
	for_each_cpu_mask(cpu, *lowest_mask) {
311
		struct rq *rq = cpu_rq(cpu);
S
Steven Rostedt 已提交
312

313 314
		/* We look for lowest RT prio or non-rt CPU */
		if (rq->rt.highest_prio >= MAX_RT_PRIO) {
315 316 317 318 319 320 321 322 323
			/*
			 * if we already found a low RT queue
			 * and now we found this non-rt queue
			 * clear the mask and set our bit.
			 * Otherwise just return the queue as is
			 * and the count==1 will cause the algorithm
			 * to use the first bit found.
			 */
			if (lowest_cpu != -1) {
G
Gregory Haskins 已提交
324
				cpus_clear(*lowest_mask);
325 326
				cpu_set(rq->cpu, *lowest_mask);
			}
G
Gregory Haskins 已提交
327
			return 1;
328 329 330
		}

		/* no locking for now */
G
Gregory Haskins 已提交
331 332 333 334 335
		if ((rq->rt.highest_prio > task->prio)
		    && (rq->rt.highest_prio >= lowest_prio)) {
			if (rq->rt.highest_prio > lowest_prio) {
				/* new low - clear old data */
				lowest_prio = rq->rt.highest_prio;
336 337
				lowest_cpu = cpu;
				count = 0;
G
Gregory Haskins 已提交
338
			}
G
Gregory Haskins 已提交
339
			count++;
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
		} else
			cpu_clear(cpu, *lowest_mask);
	}

	/*
	 * Clear out all the set bits that represent
	 * runqueues that were of higher prio than
	 * the lowest_prio.
	 */
	if (lowest_cpu > 0) {
		/*
		 * Perhaps we could add another cpumask op to
		 * zero out bits. Like cpu_zero_bits(cpumask, nrbits);
		 * Then that could be optimized to use memset and such.
		 */
		for_each_cpu_mask(cpu, *lowest_mask) {
			if (cpu >= lowest_cpu)
				break;
			cpu_clear(cpu, *lowest_mask);
S
Steven Rostedt 已提交
359
		}
360 361
	}

G
Gregory Haskins 已提交
362
	return count;
G
Gregory Haskins 已提交
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
}

static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
{
	int first;

	/* "this_cpu" is cheaper to preempt than a remote processor */
	if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
		return this_cpu;

	first = first_cpu(*mask);
	if (first != NR_CPUS)
		return first;

	return -1;
}

static int find_lowest_rq(struct task_struct *task)
{
	struct sched_domain *sd;
	cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
	int this_cpu = smp_processor_id();
	int cpu      = task_cpu(task);
G
Gregory Haskins 已提交
386 387 388 389
	int count    = find_lowest_cpus(task, lowest_mask);

	if (!count)
		return -1; /* No targets found */
G
Gregory Haskins 已提交
390

G
Gregory Haskins 已提交
391 392 393 394 395 396
	/*
	 * There is no sense in performing an optimal search if only one
	 * target is found.
	 */
	if (count == 1)
		return first_cpu(*lowest_mask);
G
Gregory Haskins 已提交
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435

	/*
	 * At this point we have built a mask of cpus representing the
	 * lowest priority tasks in the system.  Now we want to elect
	 * the best one based on our affinity and topology.
	 *
	 * We prioritize the last cpu that the task executed on since
	 * it is most likely cache-hot in that location.
	 */
	if (cpu_isset(cpu, *lowest_mask))
		return cpu;

	/*
	 * Otherwise, we consult the sched_domains span maps to figure
	 * out which cpu is logically closest to our hot cache data.
	 */
	if (this_cpu == cpu)
		this_cpu = -1; /* Skip this_cpu opt if the same */

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_AFFINE) {
			cpumask_t domain_mask;
			int       best_cpu;

			cpus_and(domain_mask, sd->span, *lowest_mask);

			best_cpu = pick_optimal_cpu(this_cpu,
						    &domain_mask);
			if (best_cpu != -1)
				return best_cpu;
		}
	}

	/*
	 * And finally, if there were no matches within the domains
	 * just give the caller *something* to work with from the compatible
	 * locations.
	 */
	return pick_optimal_cpu(this_cpu, lowest_mask);
436 437 438
}

/* Will lock the rq it finds */
439
static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
440 441 442
{
	struct rq *lowest_rq = NULL;
	int tries;
443
	int cpu;
S
Steven Rostedt 已提交
444

445 446 447
	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
		cpu = find_lowest_rq(task);

448
		if ((cpu == -1) || (cpu == rq->cpu))
S
Steven Rostedt 已提交
449 450
			break;

451 452
		lowest_rq = cpu_rq(cpu);

S
Steven Rostedt 已提交
453
		/* if the prio of this runqueue changed, try again */
454
		if (double_lock_balance(rq, lowest_rq)) {
S
Steven Rostedt 已提交
455 456 457 458 459 460
			/*
			 * We had to unlock the run queue. In
			 * the mean time, task could have
			 * migrated already or had its affinity changed.
			 * Also make sure that it wasn't scheduled on its rq.
			 */
461
			if (unlikely(task_rq(task) != rq ||
462 463
				     !cpu_isset(lowest_rq->cpu,
						task->cpus_allowed) ||
464
				     task_running(rq, task) ||
S
Steven Rostedt 已提交
465
				     !task->se.on_rq)) {
466

S
Steven Rostedt 已提交
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
				spin_unlock(&lowest_rq->lock);
				lowest_rq = NULL;
				break;
			}
		}

		/* If this rq is still suitable use it. */
		if (lowest_rq->rt.highest_prio > task->prio)
			break;

		/* try again */
		spin_unlock(&lowest_rq->lock);
		lowest_rq = NULL;
	}

	return lowest_rq;
}

/*
 * If the current CPU has more than one RT task, see if the non
 * running task can migrate over to a CPU that is running a task
 * of lesser priority.
 */
490
static int push_rt_task(struct rq *rq)
S
Steven Rostedt 已提交
491 492 493 494 495 496
{
	struct task_struct *next_task;
	struct rq *lowest_rq;
	int ret = 0;
	int paranoid = RT_MAX_TRIES;

G
Gregory Haskins 已提交
497 498 499
	if (!rq->rt.overloaded)
		return 0;

500
	next_task = pick_next_highest_task_rt(rq, -1);
S
Steven Rostedt 已提交
501 502 503 504
	if (!next_task)
		return 0;

 retry:
505
	if (unlikely(next_task == rq->curr)) {
506
		WARN_ON(1);
S
Steven Rostedt 已提交
507
		return 0;
508
	}
S
Steven Rostedt 已提交
509 510 511 512 513 514

	/*
	 * It's possible that the next_task slipped in of
	 * higher priority than current. If that's the case
	 * just reschedule current.
	 */
515 516
	if (unlikely(next_task->prio < rq->curr->prio)) {
		resched_task(rq->curr);
S
Steven Rostedt 已提交
517 518 519
		return 0;
	}

520
	/* We might release rq lock */
S
Steven Rostedt 已提交
521 522 523
	get_task_struct(next_task);

	/* find_lock_lowest_rq locks the rq if found */
524
	lowest_rq = find_lock_lowest_rq(next_task, rq);
S
Steven Rostedt 已提交
525 526 527
	if (!lowest_rq) {
		struct task_struct *task;
		/*
528
		 * find lock_lowest_rq releases rq->lock
S
Steven Rostedt 已提交
529 530 531
		 * so it is possible that next_task has changed.
		 * If it has, then try again.
		 */
532
		task = pick_next_highest_task_rt(rq, -1);
S
Steven Rostedt 已提交
533 534 535 536 537 538 539 540
		if (unlikely(task != next_task) && task && paranoid--) {
			put_task_struct(next_task);
			next_task = task;
			goto retry;
		}
		goto out;
	}

541
	deactivate_task(rq, next_task, 0);
S
Steven Rostedt 已提交
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
	set_task_cpu(next_task, lowest_rq->cpu);
	activate_task(lowest_rq, next_task, 0);

	resched_task(lowest_rq->curr);

	spin_unlock(&lowest_rq->lock);

	ret = 1;
out:
	put_task_struct(next_task);

	return ret;
}

/*
 * TODO: Currently we just use the second highest prio task on
 *       the queue, and stop when it can't migrate (or there's
 *       no more RT tasks).  There may be a case where a lower
 *       priority RT task has a different affinity than the
 *       higher RT task. In this case the lower RT task could
 *       possibly be able to migrate where as the higher priority
 *       RT task could not.  We currently ignore this issue.
 *       Enhancements are welcome!
 */
static void push_rt_tasks(struct rq *rq)
{
	/* push_rt_task will return true if it moved an RT */
	while (push_rt_task(rq))
		;
}

573 574
static int pull_rt_task(struct rq *this_rq)
{
I
Ingo Molnar 已提交
575 576
	int this_cpu = this_rq->cpu, ret = 0, cpu;
	struct task_struct *p, *next;
577 578
	struct rq *src_rq;

579
	if (likely(!rt_overloaded(this_rq)))
580 581 582 583
		return 0;

	next = pick_next_task_rt(this_rq);

584
	for_each_cpu_mask(cpu, this_rq->rd->rto_mask) {
585 586 587 588 589 590 591 592 593 594 595 596 597
		if (this_cpu == cpu)
			continue;

		src_rq = cpu_rq(cpu);
		if (unlikely(src_rq->rt.rt_nr_running <= 1)) {
			/*
			 * It is possible that overlapping cpusets
			 * will miss clearing a non overloaded runqueue.
			 * Clear it now.
			 */
			if (double_lock_balance(this_rq, src_rq)) {
				/* unlocked our runqueue lock */
				struct task_struct *old_next = next;
I
Ingo Molnar 已提交
598

599 600 601 602
				next = pick_next_task_rt(this_rq);
				if (next != old_next)
					ret = 1;
			}
I
Ingo Molnar 已提交
603
			if (likely(src_rq->rt.rt_nr_running <= 1)) {
604 605 606 607 608
				/*
				 * Small chance that this_rq->curr changed
				 * but it's really harmless here.
				 */
				rt_clear_overload(this_rq);
I
Ingo Molnar 已提交
609
			} else {
610 611 612 613 614 615
				/*
				 * Heh, the src_rq is now overloaded, since
				 * we already have the src_rq lock, go straight
				 * to pulling tasks from it.
				 */
				goto try_pulling;
I
Ingo Molnar 已提交
616
			}
617 618 619 620 621 622 623 624 625 626 627 628 629
			spin_unlock(&src_rq->lock);
			continue;
		}

		/*
		 * We can potentially drop this_rq's lock in
		 * double_lock_balance, and another CPU could
		 * steal our next task - hence we must cause
		 * the caller to recalculate the next task
		 * in that case:
		 */
		if (double_lock_balance(this_rq, src_rq)) {
			struct task_struct *old_next = next;
I
Ingo Molnar 已提交
630

631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
			next = pick_next_task_rt(this_rq);
			if (next != old_next)
				ret = 1;
		}

		/*
		 * Are there still pullable RT tasks?
		 */
		if (src_rq->rt.rt_nr_running <= 1) {
			spin_unlock(&src_rq->lock);
			continue;
		}

 try_pulling:
		p = pick_next_highest_task_rt(src_rq, this_cpu);

		/*
		 * Do we have an RT task that preempts
		 * the to-be-scheduled task?
		 */
		if (p && (!next || (p->prio < next->prio))) {
			WARN_ON(p == src_rq->curr);
			WARN_ON(!p->se.on_rq);

			/*
			 * There's a chance that p is higher in priority
			 * than what's currently running on its cpu.
			 * This is just that p is wakeing up and hasn't
			 * had a chance to schedule. We only pull
			 * p if it is lower in priority than the
			 * current task on the run queue or
			 * this_rq next task is lower in prio than
			 * the current task on that rq.
			 */
			if (p->prio < src_rq->curr->prio ||
			    (next && next->prio < src_rq->curr->prio))
I
Ingo Molnar 已提交
667
				goto out;
668 669 670 671 672 673 674 675 676 677 678

			ret = 1;

			deactivate_task(src_rq, p, 0);
			set_task_cpu(p, this_cpu);
			activate_task(this_rq, p, 0);
			/*
			 * We continue with the search, just in
			 * case there's an even higher prio task
			 * in another runqueue. (low likelyhood
			 * but possible)
I
Ingo Molnar 已提交
679
			 *
680 681 682 683 684 685 686
			 * Update next so that we won't pick a task
			 * on another cpu with a priority lower (or equal)
			 * than the one we just picked.
			 */
			next = p;

		}
I
Ingo Molnar 已提交
687
 out:
688 689 690 691 692 693
		spin_unlock(&src_rq->lock);
	}

	return ret;
}

694
static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
695 696
{
	/* Try to pull RT tasks here if we lower this rq's prio */
697
	if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
698 699 700
		pull_rt_task(rq);
}

701
static void post_schedule_rt(struct rq *rq)
S
Steven Rostedt 已提交
702 703 704 705 706 707 708 709
{
	/*
	 * If we have more than one rt_task queued, then
	 * see if we can push the other rt_tasks off to other CPUS.
	 * Note we may release the rq lock, and since
	 * the lock was owned by prev, we need to release it
	 * first via finish_lock_switch and then reaquire it here.
	 */
G
Gregory Haskins 已提交
710
	if (unlikely(rq->rt.overloaded)) {
S
Steven Rostedt 已提交
711 712 713 714 715 716
		spin_lock_irq(&rq->lock);
		push_rt_tasks(rq);
		spin_unlock_irq(&rq->lock);
	}
}

717

718
static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
719
{
720
	if (!task_running(rq, p) &&
G
Gregory Haskins 已提交
721 722
	    (p->prio >= rq->rt.highest_prio) &&
	    rq->rt.overloaded)
723 724 725
		push_rt_tasks(rq);
}

P
Peter Williams 已提交
726
static unsigned long
I
Ingo Molnar 已提交
727
load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
728 729 730
		unsigned long max_load_move,
		struct sched_domain *sd, enum cpu_idle_type idle,
		int *all_pinned, int *this_best_prio)
I
Ingo Molnar 已提交
731
{
732 733
	/* don't touch RT tasks */
	return 0;
734 735 736 737 738 739
}

static int
move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
		 struct sched_domain *sd, enum cpu_idle_type idle)
{
740 741
	/* don't touch RT tasks */
	return 0;
I
Ingo Molnar 已提交
742
}
743

744 745 746 747 748 749 750 751 752 753 754 755 756
static void set_cpus_allowed_rt(struct task_struct *p, cpumask_t *new_mask)
{
	int weight = cpus_weight(*new_mask);

	BUG_ON(!rt_task(p));

	/*
	 * Update the migration status of the RQ if we have an RT task
	 * which is running AND changing its weight value.
	 */
	if (p->se.on_rq && (weight != p->nr_cpus_allowed)) {
		struct rq *rq = task_rq(p);

757
		if ((p->nr_cpus_allowed <= 1) && (weight > 1)) {
758
			rq->rt.rt_nr_migratory++;
759
		} else if ((p->nr_cpus_allowed > 1) && (weight <= 1)) {
760 761 762 763 764 765 766 767 768 769
			BUG_ON(!rq->rt.rt_nr_migratory);
			rq->rt.rt_nr_migratory--;
		}

		update_rt_migration(rq);
	}

	p->cpus_allowed    = *new_mask;
	p->nr_cpus_allowed = weight;
}
770

771 772 773 774 775 776 777 778 779 780 781 782 783
/* Assumes rq->lock is held */
static void join_domain_rt(struct rq *rq)
{
	if (rq->rt.overloaded)
		rt_set_overload(rq);
}

/* Assumes rq->lock is held */
static void leave_domain_rt(struct rq *rq)
{
	if (rq->rt.overloaded)
		rt_clear_overload(rq);
}
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857

/*
 * When switch from the rt queue, we bring ourselves to a position
 * that we might want to pull RT tasks from other runqueues.
 */
static void switched_from_rt(struct rq *rq, struct task_struct *p,
			   int running)
{
	/*
	 * If there are other RT tasks then we will reschedule
	 * and the scheduling of the other RT tasks will handle
	 * the balancing. But if we are the last RT task
	 * we may need to handle the pulling of RT tasks
	 * now.
	 */
	if (!rq->rt.rt_nr_running)
		pull_rt_task(rq);
}
#endif /* CONFIG_SMP */

/*
 * When switching a task to RT, we may overload the runqueue
 * with RT tasks. In this case we try to push them off to
 * other runqueues.
 */
static void switched_to_rt(struct rq *rq, struct task_struct *p,
			   int running)
{
	int check_resched = 1;

	/*
	 * If we are already running, then there's nothing
	 * that needs to be done. But if we are not running
	 * we may need to preempt the current running task.
	 * If that current running task is also an RT task
	 * then see if we can move to another run queue.
	 */
	if (!running) {
#ifdef CONFIG_SMP
		if (rq->rt.overloaded && push_rt_task(rq) &&
		    /* Don't resched if we changed runqueues */
		    rq != task_rq(p))
			check_resched = 0;
#endif /* CONFIG_SMP */
		if (check_resched && p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

/*
 * Priority of the task has changed. This may cause
 * us to initiate a push or pull.
 */
static void prio_changed_rt(struct rq *rq, struct task_struct *p,
			    int oldprio, int running)
{
	if (running) {
#ifdef CONFIG_SMP
		/*
		 * If our priority decreases while running, we
		 * may need to pull tasks to this runqueue.
		 */
		if (oldprio < p->prio)
			pull_rt_task(rq);
		/*
		 * If there's a higher priority task waiting to run
		 * then reschedule.
		 */
		if (p->prio > rq->rt.highest_prio)
			resched_task(p);
#else
		/* For UP simply resched on drop of prio */
		if (oldprio < p->prio)
			resched_task(p);
S
Steven Rostedt 已提交
858
#endif /* CONFIG_SMP */
859 860 861 862 863 864 865 866 867 868 869
	} else {
		/*
		 * This task is not running, but if it is
		 * greater than the current running task
		 * then reschedule.
		 */
		if (p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

I
Ingo Molnar 已提交
870 871 872

static void task_tick_rt(struct rq *rq, struct task_struct *p)
{
873 874
	update_curr_rt(rq);

I
Ingo Molnar 已提交
875 876 877 878 879 880 881 882 883 884
	/*
	 * RR tasks need a special form of timeslice management.
	 * FIFO tasks have no timeslices.
	 */
	if (p->policy != SCHED_RR)
		return;

	if (--p->time_slice)
		return;

D
Dmitry Adamushko 已提交
885
	p->time_slice = DEF_TIMESLICE;
I
Ingo Molnar 已提交
886

887 888 889 890 891 892 893 894
	/*
	 * Requeue to the end of queue if we are not the only element
	 * on the queue:
	 */
	if (p->run_list.prev != p->run_list.next) {
		requeue_task_rt(rq, p);
		set_tsk_need_resched(p);
	}
I
Ingo Molnar 已提交
895 896
}

897 898 899 900 901 902 903
static void set_curr_task_rt(struct rq *rq)
{
	struct task_struct *p = rq->curr;

	p->se.exec_start = rq->clock;
}

904 905
const struct sched_class rt_sched_class = {
	.next			= &fair_sched_class,
I
Ingo Molnar 已提交
906 907 908
	.enqueue_task		= enqueue_task_rt,
	.dequeue_task		= dequeue_task_rt,
	.yield_task		= yield_task_rt,
909 910 911
#ifdef CONFIG_SMP
	.select_task_rq		= select_task_rq_rt,
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
912 913 914 915 916 917

	.check_preempt_curr	= check_preempt_curr_rt,

	.pick_next_task		= pick_next_task_rt,
	.put_prev_task		= put_prev_task_rt,

918
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
919
	.load_balance		= load_balance_rt,
920
	.move_one_task		= move_one_task_rt,
921
	.set_cpus_allowed       = set_cpus_allowed_rt,
922 923
	.join_domain            = join_domain_rt,
	.leave_domain           = leave_domain_rt,
924 925 926
	.pre_schedule		= pre_schedule_rt,
	.post_schedule		= post_schedule_rt,
	.task_wake_up		= task_wake_up_rt,
927
	.switched_from		= switched_from_rt,
928
#endif
I
Ingo Molnar 已提交
929

930
	.set_curr_task          = set_curr_task_rt,
I
Ingo Molnar 已提交
931
	.task_tick		= task_tick_rt,
932 933 934

	.prio_changed		= prio_changed_rt,
	.switched_to		= switched_to_rt,
I
Ingo Molnar 已提交
935
};