tx.c 30.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
/****************************************************************************
 * Driver for Solarflare Solarstorm network controllers and boards
 * Copyright 2005-2006 Fen Systems Ltd.
 * Copyright 2005-2008 Solarflare Communications Inc.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/pci.h>
#include <linux/tcp.h>
#include <linux/ip.h>
#include <linux/in.h>
#include <linux/if_ether.h>
#include <linux/highmem.h>
#include "net_driver.h"
#include "tx.h"
#include "efx.h"
#include "falcon.h"
#include "workarounds.h"

/*
 * TX descriptor ring full threshold
 *
 * The tx_queue descriptor ring fill-level must fall below this value
 * before we restart the netif queue
 */
#define EFX_NETDEV_TX_THRESHOLD(_tx_queue)	\
	(_tx_queue->efx->type->txd_ring_mask / 2u)

/* We want to be able to nest calls to netif_stop_queue(), since each
 * channel can have an individual stop on the queue.
 */
void efx_stop_queue(struct efx_nic *efx)
{
	spin_lock_bh(&efx->netif_stop_lock);
	EFX_TRACE(efx, "stop TX queue\n");

	atomic_inc(&efx->netif_stop_count);
	netif_stop_queue(efx->net_dev);

	spin_unlock_bh(&efx->netif_stop_lock);
}

/* Wake netif's TX queue
 * We want to be able to nest calls to netif_stop_queue(), since each
 * channel can have an individual stop on the queue.
 */
inline void efx_wake_queue(struct efx_nic *efx)
{
	local_bh_disable();
	if (atomic_dec_and_lock(&efx->netif_stop_count,
				&efx->netif_stop_lock)) {
		EFX_TRACE(efx, "waking TX queue\n");
		netif_wake_queue(efx->net_dev);
		spin_unlock(&efx->netif_stop_lock);
	}
	local_bh_enable();
}

static inline void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
				      struct efx_tx_buffer *buffer)
{
	if (buffer->unmap_len) {
		struct pci_dev *pci_dev = tx_queue->efx->pci_dev;
67 68
		dma_addr_t unmap_addr = (buffer->dma_addr + buffer->len -
					 buffer->unmap_len);
69
		if (buffer->unmap_single)
70 71
			pci_unmap_single(pci_dev, unmap_addr, buffer->unmap_len,
					 PCI_DMA_TODEVICE);
72
		else
73 74
			pci_unmap_page(pci_dev, unmap_addr, buffer->unmap_len,
				       PCI_DMA_TODEVICE);
75 76 77 78 79 80 81 82 83 84 85 86
		buffer->unmap_len = 0;
		buffer->unmap_single = 0;
	}

	if (buffer->skb) {
		dev_kfree_skb_any((struct sk_buff *) buffer->skb);
		buffer->skb = NULL;
		EFX_TRACE(tx_queue->efx, "TX queue %d transmission id %x "
			  "complete\n", tx_queue->queue, read_ptr);
	}
}

B
Ben Hutchings 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
/**
 * struct efx_tso_header - a DMA mapped buffer for packet headers
 * @next: Linked list of free ones.
 *	The list is protected by the TX queue lock.
 * @dma_unmap_len: Length to unmap for an oversize buffer, or 0.
 * @dma_addr: The DMA address of the header below.
 *
 * This controls the memory used for a TSO header.  Use TSOH_DATA()
 * to find the packet header data.  Use TSOH_SIZE() to calculate the
 * total size required for a given packet header length.  TSO headers
 * in the free list are exactly %TSOH_STD_SIZE bytes in size.
 */
struct efx_tso_header {
	union {
		struct efx_tso_header *next;
		size_t unmap_len;
	};
	dma_addr_t dma_addr;
};

static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
			       const struct sk_buff *skb);
static void efx_fini_tso(struct efx_tx_queue *tx_queue);
static void efx_tsoh_heap_free(struct efx_tx_queue *tx_queue,
			       struct efx_tso_header *tsoh);

static inline void efx_tsoh_free(struct efx_tx_queue *tx_queue,
				 struct efx_tx_buffer *buffer)
{
	if (buffer->tsoh) {
		if (likely(!buffer->tsoh->unmap_len)) {
			buffer->tsoh->next = tx_queue->tso_headers_free;
			tx_queue->tso_headers_free = buffer->tsoh;
		} else {
			efx_tsoh_heap_free(tx_queue, buffer->tsoh);
		}
		buffer->tsoh = NULL;
	}
}

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158

/*
 * Add a socket buffer to a TX queue
 *
 * This maps all fragments of a socket buffer for DMA and adds them to
 * the TX queue.  The queue's insert pointer will be incremented by
 * the number of fragments in the socket buffer.
 *
 * If any DMA mapping fails, any mapped fragments will be unmapped,
 * the queue's insert pointer will be restored to its original value.
 *
 * Returns NETDEV_TX_OK or NETDEV_TX_BUSY
 * You must hold netif_tx_lock() to call this function.
 */
static inline int efx_enqueue_skb(struct efx_tx_queue *tx_queue,
				  const struct sk_buff *skb)
{
	struct efx_nic *efx = tx_queue->efx;
	struct pci_dev *pci_dev = efx->pci_dev;
	struct efx_tx_buffer *buffer;
	skb_frag_t *fragment;
	struct page *page;
	int page_offset;
	unsigned int len, unmap_len = 0, fill_level, insert_ptr, misalign;
	dma_addr_t dma_addr, unmap_addr = 0;
	unsigned int dma_len;
	unsigned unmap_single;
	int q_space, i = 0;
	int rc = NETDEV_TX_OK;

	EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);

B
Ben Hutchings 已提交
159 160 161
	if (skb_shinfo((struct sk_buff *)skb)->gso_size)
		return efx_enqueue_skb_tso(tx_queue, skb);

162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
	/* Get size of the initial fragment */
	len = skb_headlen(skb);

	fill_level = tx_queue->insert_count - tx_queue->old_read_count;
	q_space = efx->type->txd_ring_mask - 1 - fill_level;

	/* Map for DMA.  Use pci_map_single rather than pci_map_page
	 * since this is more efficient on machines with sparse
	 * memory.
	 */
	unmap_single = 1;
	dma_addr = pci_map_single(pci_dev, skb->data, len, PCI_DMA_TODEVICE);

	/* Process all fragments */
	while (1) {
177
		if (unlikely(pci_dma_mapping_error(pci_dev, dma_addr)))
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
			goto pci_err;

		/* Store fields for marking in the per-fragment final
		 * descriptor */
		unmap_len = len;
		unmap_addr = dma_addr;

		/* Add to TX queue, splitting across DMA boundaries */
		do {
			if (unlikely(q_space-- <= 0)) {
				/* It might be that completions have
				 * happened since the xmit path last
				 * checked.  Update the xmit path's
				 * copy of read_count.
				 */
				++tx_queue->stopped;
				/* This memory barrier protects the
				 * change of stopped from the access
				 * of read_count. */
				smp_mb();
				tx_queue->old_read_count =
					*(volatile unsigned *)
					&tx_queue->read_count;
				fill_level = (tx_queue->insert_count
					      - tx_queue->old_read_count);
				q_space = (efx->type->txd_ring_mask - 1 -
					   fill_level);
				if (unlikely(q_space-- <= 0))
					goto stop;
				smp_mb();
				--tx_queue->stopped;
			}

			insert_ptr = (tx_queue->insert_count &
				      efx->type->txd_ring_mask);
			buffer = &tx_queue->buffer[insert_ptr];
B
Ben Hutchings 已提交
214 215
			efx_tsoh_free(tx_queue, buffer);
			EFX_BUG_ON_PARANOID(buffer->tsoh);
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
			EFX_BUG_ON_PARANOID(buffer->skb);
			EFX_BUG_ON_PARANOID(buffer->len);
			EFX_BUG_ON_PARANOID(buffer->continuation != 1);
			EFX_BUG_ON_PARANOID(buffer->unmap_len);

			dma_len = (((~dma_addr) & efx->type->tx_dma_mask) + 1);
			if (likely(dma_len > len))
				dma_len = len;

			misalign = (unsigned)dma_addr & efx->type->bug5391_mask;
			if (misalign && dma_len + misalign > 512)
				dma_len = 512 - misalign;

			/* Fill out per descriptor fields */
			buffer->len = dma_len;
			buffer->dma_addr = dma_addr;
			len -= dma_len;
			dma_addr += dma_len;
			++tx_queue->insert_count;
		} while (len);

		/* Transfer ownership of the unmapping to the final buffer */
		buffer->unmap_single = unmap_single;
		buffer->unmap_len = unmap_len;
		unmap_len = 0;

		/* Get address and size of next fragment */
		if (i >= skb_shinfo(skb)->nr_frags)
			break;
		fragment = &skb_shinfo(skb)->frags[i];
		len = fragment->size;
		page = fragment->page;
		page_offset = fragment->page_offset;
		i++;
		/* Map for DMA */
		unmap_single = 0;
		dma_addr = pci_map_page(pci_dev, page, page_offset, len,
					PCI_DMA_TODEVICE);
	}

	/* Transfer ownership of the skb to the final buffer */
	buffer->skb = skb;
	buffer->continuation = 0;

	/* Pass off to hardware */
	falcon_push_buffers(tx_queue);

	return NETDEV_TX_OK;

 pci_err:
	EFX_ERR_RL(efx, " TX queue %d could not map skb with %d bytes %d "
		   "fragments for DMA\n", tx_queue->queue, skb->len,
		   skb_shinfo(skb)->nr_frags + 1);

	/* Mark the packet as transmitted, and free the SKB ourselves */
	dev_kfree_skb_any((struct sk_buff *)skb);
	goto unwind;

 stop:
	rc = NETDEV_TX_BUSY;

	if (tx_queue->stopped == 1)
		efx_stop_queue(efx);

 unwind:
	/* Work backwards until we hit the original insert pointer value */
	while (tx_queue->insert_count != tx_queue->write_count) {
		--tx_queue->insert_count;
		insert_ptr = tx_queue->insert_count & efx->type->txd_ring_mask;
		buffer = &tx_queue->buffer[insert_ptr];
		efx_dequeue_buffer(tx_queue, buffer);
		buffer->len = 0;
	}

	/* Free the fragment we were mid-way through pushing */
291 292 293 294 295 296 297 298
	if (unmap_len) {
		if (unmap_single)
			pci_unmap_single(pci_dev, unmap_addr, unmap_len,
					 PCI_DMA_TODEVICE);
		else
			pci_unmap_page(pci_dev, unmap_addr, unmap_len,
				       PCI_DMA_TODEVICE);
	}
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375

	return rc;
}

/* Remove packets from the TX queue
 *
 * This removes packets from the TX queue, up to and including the
 * specified index.
 */
static inline void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
				       unsigned int index)
{
	struct efx_nic *efx = tx_queue->efx;
	unsigned int stop_index, read_ptr;
	unsigned int mask = tx_queue->efx->type->txd_ring_mask;

	stop_index = (index + 1) & mask;
	read_ptr = tx_queue->read_count & mask;

	while (read_ptr != stop_index) {
		struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
		if (unlikely(buffer->len == 0)) {
			EFX_ERR(tx_queue->efx, "TX queue %d spurious TX "
				"completion id %x\n", tx_queue->queue,
				read_ptr);
			efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
			return;
		}

		efx_dequeue_buffer(tx_queue, buffer);
		buffer->continuation = 1;
		buffer->len = 0;

		++tx_queue->read_count;
		read_ptr = tx_queue->read_count & mask;
	}
}

/* Initiate a packet transmission on the specified TX queue.
 * Note that returning anything other than NETDEV_TX_OK will cause the
 * OS to free the skb.
 *
 * This function is split out from efx_hard_start_xmit to allow the
 * loopback test to direct packets via specific TX queues.  It is
 * therefore a non-static inline, so as not to penalise performance
 * for non-loopback transmissions.
 *
 * Context: netif_tx_lock held
 */
inline int efx_xmit(struct efx_nic *efx,
		    struct efx_tx_queue *tx_queue, struct sk_buff *skb)
{
	int rc;

	/* Map fragments for DMA and add to TX queue */
	rc = efx_enqueue_skb(tx_queue, skb);
	if (unlikely(rc != NETDEV_TX_OK))
		goto out;

	/* Update last TX timer */
	efx->net_dev->trans_start = jiffies;

 out:
	return rc;
}

/* Initiate a packet transmission.  We use one channel per CPU
 * (sharing when we have more CPUs than channels).  On Falcon, the TX
 * completion events will be directed back to the CPU that transmitted
 * the packet, which should be cache-efficient.
 *
 * Context: non-blocking.
 * Note that returning anything other than NETDEV_TX_OK will cause the
 * OS to free the skb.
 */
int efx_hard_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
{
376
	struct efx_nic *efx = netdev_priv(net_dev);
377 378 379 380 381 382 383 384
	struct efx_tx_queue *tx_queue;

	if (likely(skb->ip_summed == CHECKSUM_PARTIAL))
		tx_queue = &efx->tx_queue[EFX_TX_QUEUE_OFFLOAD_CSUM];
	else
		tx_queue = &efx->tx_queue[EFX_TX_QUEUE_NO_CSUM];

	return efx_xmit(efx, tx_queue, skb);
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
}

void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
{
	unsigned fill_level;
	struct efx_nic *efx = tx_queue->efx;

	EFX_BUG_ON_PARANOID(index > efx->type->txd_ring_mask);

	efx_dequeue_buffers(tx_queue, index);

	/* See if we need to restart the netif queue.  This barrier
	 * separates the update of read_count from the test of
	 * stopped. */
	smp_mb();
	if (unlikely(tx_queue->stopped)) {
		fill_level = tx_queue->insert_count - tx_queue->read_count;
		if (fill_level < EFX_NETDEV_TX_THRESHOLD(tx_queue)) {
403
			EFX_BUG_ON_PARANOID(!efx_dev_registered(efx));
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427

			/* Do this under netif_tx_lock(), to avoid racing
			 * with efx_xmit(). */
			netif_tx_lock(efx->net_dev);
			if (tx_queue->stopped) {
				tx_queue->stopped = 0;
				efx_wake_queue(efx);
			}
			netif_tx_unlock(efx->net_dev);
		}
	}
}

int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
{
	struct efx_nic *efx = tx_queue->efx;
	unsigned int txq_size;
	int i, rc;

	EFX_LOG(efx, "creating TX queue %d\n", tx_queue->queue);

	/* Allocate software ring */
	txq_size = (efx->type->txd_ring_mask + 1) * sizeof(*tx_queue->buffer);
	tx_queue->buffer = kzalloc(txq_size, GFP_KERNEL);
428 429
	if (!tx_queue->buffer)
		return -ENOMEM;
430 431 432 433 434 435
	for (i = 0; i <= efx->type->txd_ring_mask; ++i)
		tx_queue->buffer[i].continuation = 1;

	/* Allocate hardware ring */
	rc = falcon_probe_tx(tx_queue);
	if (rc)
436
		goto fail;
437 438 439

	return 0;

440
 fail:
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
	kfree(tx_queue->buffer);
	tx_queue->buffer = NULL;
	return rc;
}

int efx_init_tx_queue(struct efx_tx_queue *tx_queue)
{
	EFX_LOG(tx_queue->efx, "initialising TX queue %d\n", tx_queue->queue);

	tx_queue->insert_count = 0;
	tx_queue->write_count = 0;
	tx_queue->read_count = 0;
	tx_queue->old_read_count = 0;
	BUG_ON(tx_queue->stopped);

	/* Set up TX descriptor ring */
	return falcon_init_tx(tx_queue);
}

void efx_release_tx_buffers(struct efx_tx_queue *tx_queue)
{
	struct efx_tx_buffer *buffer;

	if (!tx_queue->buffer)
		return;

	/* Free any buffers left in the ring */
	while (tx_queue->read_count != tx_queue->write_count) {
		buffer = &tx_queue->buffer[tx_queue->read_count &
					   tx_queue->efx->type->txd_ring_mask];
		efx_dequeue_buffer(tx_queue, buffer);
		buffer->continuation = 1;
		buffer->len = 0;

		++tx_queue->read_count;
	}
}

void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
{
	EFX_LOG(tx_queue->efx, "shutting down TX queue %d\n", tx_queue->queue);

	/* Flush TX queue, remove descriptor ring */
	falcon_fini_tx(tx_queue);

	efx_release_tx_buffers(tx_queue);

B
Ben Hutchings 已提交
488 489 490
	/* Free up TSO header cache */
	efx_fini_tso(tx_queue);

491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
	/* Release queue's stop on port, if any */
	if (tx_queue->stopped) {
		tx_queue->stopped = 0;
		efx_wake_queue(tx_queue->efx);
	}
}

void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
{
	EFX_LOG(tx_queue->efx, "destroying TX queue %d\n", tx_queue->queue);
	falcon_remove_tx(tx_queue);

	kfree(tx_queue->buffer);
	tx_queue->buffer = NULL;
}


B
Ben Hutchings 已提交
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
/* Efx TCP segmentation acceleration.
 *
 * Why?  Because by doing it here in the driver we can go significantly
 * faster than the GSO.
 *
 * Requires TX checksum offload support.
 */

/* Number of bytes inserted at the start of a TSO header buffer,
 * similar to NET_IP_ALIGN.
 */
#if defined(__i386__) || defined(__x86_64__)
#define TSOH_OFFSET	0
#else
#define TSOH_OFFSET	NET_IP_ALIGN
#endif

#define TSOH_BUFFER(tsoh)	((u8 *)(tsoh + 1) + TSOH_OFFSET)

/* Total size of struct efx_tso_header, buffer and padding */
#define TSOH_SIZE(hdr_len)					\
	(sizeof(struct efx_tso_header) + TSOH_OFFSET + hdr_len)

/* Size of blocks on free list.  Larger blocks must be allocated from
 * the heap.
 */
#define TSOH_STD_SIZE		128

#define PTR_DIFF(p1, p2)  ((u8 *)(p1) - (u8 *)(p2))
#define ETH_HDR_LEN(skb)  (skb_network_header(skb) - (skb)->data)
#define SKB_TCP_OFF(skb)  PTR_DIFF(tcp_hdr(skb), (skb)->data)
#define SKB_IPV4_OFF(skb) PTR_DIFF(ip_hdr(skb), (skb)->data)

/**
 * struct tso_state - TSO state for an SKB
 * @remaining_len: Bytes of data we've yet to segment
 * @seqnum: Current sequence number
 * @packet_space: Remaining space in current packet
 * @ifc: Input fragment cursor.
 *	Where we are in the current fragment of the incoming SKB.  These
 *	values get updated in place when we split a fragment over
 *	multiple packets.
 * @p: Parameters.
 *	These values are set once at the start of the TSO send and do
 *	not get changed as the routine progresses.
 *
 * The state used during segmentation.  It is put into this data structure
 * just to make it easy to pass into inline functions.
 */
struct tso_state {
	unsigned remaining_len;
	unsigned seqnum;
	unsigned packet_space;

	struct {
		/* DMA address of current position */
		dma_addr_t dma_addr;
		/* Remaining length */
		unsigned int len;
		/* DMA address and length of the whole fragment */
		unsigned int unmap_len;
		dma_addr_t unmap_addr;
570
		unsigned int unmap_single;
B
Ben Hutchings 已提交
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
	} ifc;

	struct {
		/* The number of bytes of header */
		unsigned int header_length;

		/* The number of bytes to put in each outgoing segment. */
		int full_packet_size;

		/* Current IPv4 ID, host endian. */
		unsigned ipv4_id;
	} p;
};


/*
 * Verify that our various assumptions about sk_buffs and the conditions
 * under which TSO will be attempted hold true.
 */
static inline void efx_tso_check_safe(const struct sk_buff *skb)
{
	EFX_BUG_ON_PARANOID(skb->protocol != htons(ETH_P_IP));
	EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto !=
			    skb->protocol);
	EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP);
	EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data)
			     + (tcp_hdr(skb)->doff << 2u)) >
			    skb_headlen(skb));
}


/*
 * Allocate a page worth of efx_tso_header structures, and string them
 * into the tx_queue->tso_headers_free linked list. Return 0 or -ENOMEM.
 */
static int efx_tsoh_block_alloc(struct efx_tx_queue *tx_queue)
{

	struct pci_dev *pci_dev = tx_queue->efx->pci_dev;
	struct efx_tso_header *tsoh;
	dma_addr_t dma_addr;
	u8 *base_kva, *kva;

	base_kva = pci_alloc_consistent(pci_dev, PAGE_SIZE, &dma_addr);
	if (base_kva == NULL) {
		EFX_ERR(tx_queue->efx, "Unable to allocate page for TSO"
			" headers\n");
		return -ENOMEM;
	}

	/* pci_alloc_consistent() allocates pages. */
	EFX_BUG_ON_PARANOID(dma_addr & (PAGE_SIZE - 1u));

	for (kva = base_kva; kva < base_kva + PAGE_SIZE; kva += TSOH_STD_SIZE) {
		tsoh = (struct efx_tso_header *)kva;
		tsoh->dma_addr = dma_addr + (TSOH_BUFFER(tsoh) - base_kva);
		tsoh->next = tx_queue->tso_headers_free;
		tx_queue->tso_headers_free = tsoh;
	}

	return 0;
}


/* Free up a TSO header, and all others in the same page. */
static void efx_tsoh_block_free(struct efx_tx_queue *tx_queue,
				struct efx_tso_header *tsoh,
				struct pci_dev *pci_dev)
{
	struct efx_tso_header **p;
	unsigned long base_kva;
	dma_addr_t base_dma;

	base_kva = (unsigned long)tsoh & PAGE_MASK;
	base_dma = tsoh->dma_addr & PAGE_MASK;

	p = &tx_queue->tso_headers_free;
648
	while (*p != NULL) {
B
Ben Hutchings 已提交
649 650 651 652
		if (((unsigned long)*p & PAGE_MASK) == base_kva)
			*p = (*p)->next;
		else
			p = &(*p)->next;
653
	}
B
Ben Hutchings 已提交
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669

	pci_free_consistent(pci_dev, PAGE_SIZE, (void *)base_kva, base_dma);
}

static struct efx_tso_header *
efx_tsoh_heap_alloc(struct efx_tx_queue *tx_queue, size_t header_len)
{
	struct efx_tso_header *tsoh;

	tsoh = kmalloc(TSOH_SIZE(header_len), GFP_ATOMIC | GFP_DMA);
	if (unlikely(!tsoh))
		return NULL;

	tsoh->dma_addr = pci_map_single(tx_queue->efx->pci_dev,
					TSOH_BUFFER(tsoh), header_len,
					PCI_DMA_TODEVICE);
670 671
	if (unlikely(pci_dma_mapping_error(tx_queue->efx->pci_dev,
					   tsoh->dma_addr))) {
B
Ben Hutchings 已提交
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
		kfree(tsoh);
		return NULL;
	}

	tsoh->unmap_len = header_len;
	return tsoh;
}

static void
efx_tsoh_heap_free(struct efx_tx_queue *tx_queue, struct efx_tso_header *tsoh)
{
	pci_unmap_single(tx_queue->efx->pci_dev,
			 tsoh->dma_addr, tsoh->unmap_len,
			 PCI_DMA_TODEVICE);
	kfree(tsoh);
}

/**
 * efx_tx_queue_insert - push descriptors onto the TX queue
 * @tx_queue:		Efx TX queue
 * @dma_addr:		DMA address of fragment
 * @len:		Length of fragment
694
 * @final_buffer:	The final buffer inserted into the queue
B
Ben Hutchings 已提交
695 696 697 698 699 700
 *
 * Push descriptors onto the TX queue.  Return 0 on success or 1 if
 * @tx_queue full.
 */
static int efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
			       dma_addr_t dma_addr, unsigned len,
701
			       struct efx_tx_buffer **final_buffer)
B
Ben Hutchings 已提交
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
{
	struct efx_tx_buffer *buffer;
	struct efx_nic *efx = tx_queue->efx;
	unsigned dma_len, fill_level, insert_ptr, misalign;
	int q_space;

	EFX_BUG_ON_PARANOID(len <= 0);

	fill_level = tx_queue->insert_count - tx_queue->old_read_count;
	/* -1 as there is no way to represent all descriptors used */
	q_space = efx->type->txd_ring_mask - 1 - fill_level;

	while (1) {
		if (unlikely(q_space-- <= 0)) {
			/* It might be that completions have happened
			 * since the xmit path last checked.  Update
			 * the xmit path's copy of read_count.
			 */
			++tx_queue->stopped;
			/* This memory barrier protects the change of
			 * stopped from the access of read_count. */
			smp_mb();
			tx_queue->old_read_count =
				*(volatile unsigned *)&tx_queue->read_count;
			fill_level = (tx_queue->insert_count
				      - tx_queue->old_read_count);
			q_space = efx->type->txd_ring_mask - 1 - fill_level;
729 730
			if (unlikely(q_space-- <= 0)) {
				*final_buffer = NULL;
B
Ben Hutchings 已提交
731
				return 1;
732
			}
B
Ben Hutchings 已提交
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
			smp_mb();
			--tx_queue->stopped;
		}

		insert_ptr = tx_queue->insert_count & efx->type->txd_ring_mask;
		buffer = &tx_queue->buffer[insert_ptr];
		++tx_queue->insert_count;

		EFX_BUG_ON_PARANOID(tx_queue->insert_count -
				    tx_queue->read_count >
				    efx->type->txd_ring_mask);

		efx_tsoh_free(tx_queue, buffer);
		EFX_BUG_ON_PARANOID(buffer->len);
		EFX_BUG_ON_PARANOID(buffer->unmap_len);
		EFX_BUG_ON_PARANOID(buffer->skb);
		EFX_BUG_ON_PARANOID(buffer->continuation != 1);
		EFX_BUG_ON_PARANOID(buffer->tsoh);

		buffer->dma_addr = dma_addr;

		/* Ensure we do not cross a boundary unsupported by H/W */
		dma_len = (~dma_addr & efx->type->tx_dma_mask) + 1;

		misalign = (unsigned)dma_addr & efx->type->bug5391_mask;
		if (misalign && dma_len + misalign > 512)
			dma_len = 512 - misalign;

		/* If there is enough space to send then do so */
		if (dma_len >= len)
			break;

		buffer->len = dma_len; /* Don't set the other members */
		dma_addr += dma_len;
		len -= dma_len;
	}

	EFX_BUG_ON_PARANOID(!len);
	buffer->len = len;
772
	*final_buffer = buffer;
B
Ben Hutchings 已提交
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
	return 0;
}


/*
 * Put a TSO header into the TX queue.
 *
 * This is special-cased because we know that it is small enough to fit in
 * a single fragment, and we know it doesn't cross a page boundary.  It
 * also allows us to not worry about end-of-packet etc.
 */
static inline void efx_tso_put_header(struct efx_tx_queue *tx_queue,
				      struct efx_tso_header *tsoh, unsigned len)
{
	struct efx_tx_buffer *buffer;

	buffer = &tx_queue->buffer[tx_queue->insert_count &
				   tx_queue->efx->type->txd_ring_mask];
	efx_tsoh_free(tx_queue, buffer);
	EFX_BUG_ON_PARANOID(buffer->len);
	EFX_BUG_ON_PARANOID(buffer->unmap_len);
	EFX_BUG_ON_PARANOID(buffer->skb);
	EFX_BUG_ON_PARANOID(buffer->continuation != 1);
	EFX_BUG_ON_PARANOID(buffer->tsoh);
	buffer->len = len;
	buffer->dma_addr = tsoh->dma_addr;
	buffer->tsoh = tsoh;

	++tx_queue->insert_count;
}


/* Remove descriptors put into a tx_queue. */
static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue)
{
	struct efx_tx_buffer *buffer;
809
	dma_addr_t unmap_addr;
B
Ben Hutchings 已提交
810 811 812 813 814 815 816 817 818 819 820

	/* Work backwards until we hit the original insert pointer value */
	while (tx_queue->insert_count != tx_queue->write_count) {
		--tx_queue->insert_count;
		buffer = &tx_queue->buffer[tx_queue->insert_count &
					   tx_queue->efx->type->txd_ring_mask];
		efx_tsoh_free(tx_queue, buffer);
		EFX_BUG_ON_PARANOID(buffer->skb);
		buffer->len = 0;
		buffer->continuation = 1;
		if (buffer->unmap_len) {
821 822
			unmap_addr = (buffer->dma_addr + buffer->len -
				      buffer->unmap_len);
823 824
			if (buffer->unmap_single)
				pci_unmap_single(tx_queue->efx->pci_dev,
825
						 unmap_addr, buffer->unmap_len,
826 827 828
						 PCI_DMA_TODEVICE);
			else
				pci_unmap_page(tx_queue->efx->pci_dev,
829
					       unmap_addr, buffer->unmap_len,
830
					       PCI_DMA_TODEVICE);
B
Ben Hutchings 已提交
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
			buffer->unmap_len = 0;
		}
	}
}


/* Parse the SKB header and initialise state. */
static inline void tso_start(struct tso_state *st, const struct sk_buff *skb)
{
	/* All ethernet/IP/TCP headers combined size is TCP header size
	 * plus offset of TCP header relative to start of packet.
	 */
	st->p.header_length = ((tcp_hdr(skb)->doff << 2u)
			       + PTR_DIFF(tcp_hdr(skb), skb->data));
	st->p.full_packet_size = (st->p.header_length
				  + skb_shinfo(skb)->gso_size);

	st->p.ipv4_id = ntohs(ip_hdr(skb)->id);
	st->seqnum = ntohl(tcp_hdr(skb)->seq);

	EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg);
	EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn);
	EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst);

	st->packet_space = st->p.full_packet_size;
	st->remaining_len = skb->len - st->p.header_length;
857 858
	st->ifc.unmap_len = 0;
	st->ifc.unmap_single = 0;
B
Ben Hutchings 已提交
859 860 861
}

static inline int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
862
				   skb_frag_t *frag)
B
Ben Hutchings 已提交
863
{
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
	st->ifc.unmap_addr = pci_map_page(efx->pci_dev, frag->page,
					  frag->page_offset, frag->size,
					  PCI_DMA_TODEVICE);
	if (likely(!pci_dma_mapping_error(efx->pci_dev, st->ifc.unmap_addr))) {
		st->ifc.unmap_single = 0;
		st->ifc.unmap_len = frag->size;
		st->ifc.len = frag->size;
		st->ifc.dma_addr = st->ifc.unmap_addr;
		return 0;
	}
	return -ENOMEM;
}

static inline int
tso_get_head_fragment(struct tso_state *st, struct efx_nic *efx,
		      const struct sk_buff *skb)
{
	int hl = st->p.header_length;
	int len = skb_headlen(skb) - hl;
B
Ben Hutchings 已提交
883

884 885
	st->ifc.unmap_addr = pci_map_single(efx->pci_dev, skb->data + hl,
					    len, PCI_DMA_TODEVICE);
886
	if (likely(!pci_dma_mapping_error(efx->pci_dev, st->ifc.unmap_addr))) {
887
		st->ifc.unmap_single = 1;
B
Ben Hutchings 已提交
888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
		st->ifc.unmap_len = len;
		st->ifc.len = len;
		st->ifc.dma_addr = st->ifc.unmap_addr;
		return 0;
	}
	return -ENOMEM;
}


/**
 * tso_fill_packet_with_fragment - form descriptors for the current fragment
 * @tx_queue:		Efx TX queue
 * @skb:		Socket buffer
 * @st:			TSO state
 *
 * Form descriptors for the current fragment, until we reach the end
 * of fragment or end-of-packet.  Return 0 on success, 1 if not enough
 * space in @tx_queue.
 */
static inline int tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
						const struct sk_buff *skb,
						struct tso_state *st)
{
911
	struct efx_tx_buffer *buffer;
B
Ben Hutchings 已提交
912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
	int n, end_of_packet, rc;

	if (st->ifc.len == 0)
		return 0;
	if (st->packet_space == 0)
		return 0;

	EFX_BUG_ON_PARANOID(st->ifc.len <= 0);
	EFX_BUG_ON_PARANOID(st->packet_space <= 0);

	n = min(st->ifc.len, st->packet_space);

	st->packet_space -= n;
	st->remaining_len -= n;
	st->ifc.len -= n;

928 929 930 931 932
	rc = efx_tx_queue_insert(tx_queue, st->ifc.dma_addr, n, &buffer);
	if (likely(rc == 0)) {
		if (st->remaining_len == 0)
			/* Transfer ownership of the skb */
			buffer->skb = skb;
B
Ben Hutchings 已提交
933

934 935
		end_of_packet = st->remaining_len == 0 || st->packet_space == 0;
		buffer->continuation = !end_of_packet;
B
Ben Hutchings 已提交
936

937 938 939 940 941 942 943 944 945
		if (st->ifc.len == 0) {
			/* Transfer ownership of the pci mapping */
			buffer->unmap_len = st->ifc.unmap_len;
			buffer->unmap_single = st->ifc.unmap_single;
			st->ifc.unmap_len = 0;
		}
	}

	st->ifc.dma_addr += n;
B
Ben Hutchings 已提交
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
	return rc;
}


/**
 * tso_start_new_packet - generate a new header and prepare for the new packet
 * @tx_queue:		Efx TX queue
 * @skb:		Socket buffer
 * @st:			TSO state
 *
 * Generate a new header and prepare for the new packet.  Return 0 on
 * success, or -1 if failed to alloc header.
 */
static inline int tso_start_new_packet(struct efx_tx_queue *tx_queue,
				       const struct sk_buff *skb,
				       struct tso_state *st)
{
	struct efx_tso_header *tsoh;
	struct iphdr *tsoh_iph;
	struct tcphdr *tsoh_th;
	unsigned ip_length;
	u8 *header;

	/* Allocate a DMA-mapped header buffer. */
	if (likely(TSOH_SIZE(st->p.header_length) <= TSOH_STD_SIZE)) {
971
		if (tx_queue->tso_headers_free == NULL) {
B
Ben Hutchings 已提交
972 973
			if (efx_tsoh_block_alloc(tx_queue))
				return -1;
974
		}
B
Ben Hutchings 已提交
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
		EFX_BUG_ON_PARANOID(!tx_queue->tso_headers_free);
		tsoh = tx_queue->tso_headers_free;
		tx_queue->tso_headers_free = tsoh->next;
		tsoh->unmap_len = 0;
	} else {
		tx_queue->tso_long_headers++;
		tsoh = efx_tsoh_heap_alloc(tx_queue, st->p.header_length);
		if (unlikely(!tsoh))
			return -1;
	}

	header = TSOH_BUFFER(tsoh);
	tsoh_th = (struct tcphdr *)(header + SKB_TCP_OFF(skb));
	tsoh_iph = (struct iphdr *)(header + SKB_IPV4_OFF(skb));

	/* Copy and update the headers. */
	memcpy(header, skb->data, st->p.header_length);

	tsoh_th->seq = htonl(st->seqnum);
	st->seqnum += skb_shinfo(skb)->gso_size;
	if (st->remaining_len > skb_shinfo(skb)->gso_size) {
		/* This packet will not finish the TSO burst. */
		ip_length = st->p.full_packet_size - ETH_HDR_LEN(skb);
		tsoh_th->fin = 0;
		tsoh_th->psh = 0;
	} else {
		/* This packet will be the last in the TSO burst. */
		ip_length = (st->p.header_length - ETH_HDR_LEN(skb)
			     + st->remaining_len);
		tsoh_th->fin = tcp_hdr(skb)->fin;
		tsoh_th->psh = tcp_hdr(skb)->psh;
	}
	tsoh_iph->tot_len = htons(ip_length);

	/* Linux leaves suitable gaps in the IP ID space for us to fill. */
	tsoh_iph->id = htons(st->p.ipv4_id);
	st->p.ipv4_id++;

	st->packet_space = skb_shinfo(skb)->gso_size;
	++tx_queue->tso_packets;

	/* Form a descriptor for this header. */
	efx_tso_put_header(tx_queue, tsoh, st->p.header_length);

	return 0;
}


/**
 * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
 * @tx_queue:		Efx TX queue
 * @skb:		Socket buffer
 *
 * Context: You must hold netif_tx_lock() to call this function.
 *
 * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
 * @skb was not enqueued.  In all cases @skb is consumed.  Return
 * %NETDEV_TX_OK or %NETDEV_TX_BUSY.
 */
static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
			       const struct sk_buff *skb)
{
1037
	struct efx_nic *efx = tx_queue->efx;
B
Ben Hutchings 已提交
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
	int frag_i, rc, rc2 = NETDEV_TX_OK;
	struct tso_state state;

	/* Verify TSO is safe - these checks should never fail. */
	efx_tso_check_safe(skb);

	EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);

	tso_start(&state, skb);

	/* Assume that skb header area contains exactly the headers, and
	 * all payload is in the frag list.
	 */
	if (skb_headlen(skb) == state.p.header_length) {
		/* Grab the first payload fragment. */
		EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1);
		frag_i = 0;
1055 1056
		rc = tso_get_fragment(&state, efx,
				      skb_shinfo(skb)->frags + frag_i);
B
Ben Hutchings 已提交
1057 1058 1059
		if (rc)
			goto mem_err;
	} else {
1060
		rc = tso_get_head_fragment(&state, efx, skb);
B
Ben Hutchings 已提交
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
		if (rc)
			goto mem_err;
		frag_i = -1;
	}

	if (tso_start_new_packet(tx_queue, skb, &state) < 0)
		goto mem_err;

	while (1) {
		rc = tso_fill_packet_with_fragment(tx_queue, skb, &state);
		if (unlikely(rc))
			goto stop;

		/* Move onto the next fragment? */
		if (state.ifc.len == 0) {
			if (++frag_i >= skb_shinfo(skb)->nr_frags)
				/* End of payload reached. */
				break;
1079 1080
			rc = tso_get_fragment(&state, efx,
					      skb_shinfo(skb)->frags + frag_i);
B
Ben Hutchings 已提交
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
			if (rc)
				goto mem_err;
		}

		/* Start at new packet? */
		if (state.packet_space == 0 &&
		    tso_start_new_packet(tx_queue, skb, &state) < 0)
			goto mem_err;
	}

	/* Pass off to hardware */
	falcon_push_buffers(tx_queue);

	tx_queue->tso_bursts++;
	return NETDEV_TX_OK;

 mem_err:
1098
	EFX_ERR(efx, "Out of memory for TSO headers, or PCI mapping error\n");
B
Ben Hutchings 已提交
1099 1100 1101 1102 1103 1104 1105 1106
	dev_kfree_skb_any((struct sk_buff *)skb);
	goto unwind;

 stop:
	rc2 = NETDEV_TX_BUSY;

	/* Stop the queue if it wasn't stopped before. */
	if (tx_queue->stopped == 1)
1107
		efx_stop_queue(efx);
B
Ben Hutchings 已提交
1108 1109

 unwind:
1110
	/* Free the DMA mapping we were in the process of writing out */
1111 1112 1113 1114 1115 1116 1117 1118
	if (state.ifc.unmap_len) {
		if (state.ifc.unmap_single)
			pci_unmap_single(efx->pci_dev, state.ifc.unmap_addr,
					 state.ifc.unmap_len, PCI_DMA_TODEVICE);
		else
			pci_unmap_page(efx->pci_dev, state.ifc.unmap_addr,
				       state.ifc.unmap_len, PCI_DMA_TODEVICE);
	}
1119

B
Ben Hutchings 已提交
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
	efx_enqueue_unwind(tx_queue);
	return rc2;
}


/*
 * Free up all TSO datastructures associated with tx_queue. This
 * routine should be called only once the tx_queue is both empty and
 * will no longer be used.
 */
static void efx_fini_tso(struct efx_tx_queue *tx_queue)
{
	unsigned i;

1134
	if (tx_queue->buffer) {
B
Ben Hutchings 已提交
1135 1136
		for (i = 0; i <= tx_queue->efx->type->txd_ring_mask; ++i)
			efx_tsoh_free(tx_queue, &tx_queue->buffer[i]);
1137
	}
B
Ben Hutchings 已提交
1138 1139 1140 1141 1142

	while (tx_queue->tso_headers_free != NULL)
		efx_tsoh_block_free(tx_queue, tx_queue->tso_headers_free,
				    tx_queue->efx->pci_dev);
}