nic.c 57.7 KB
Newer Older
1 2 3
/****************************************************************************
 * Driver for Solarflare Solarstorm network controllers and boards
 * Copyright 2005-2006 Fen Systems Ltd.
4
 * Copyright 2006-2009 Solarflare Communications Inc.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/pci.h>
#include <linux/module.h>
#include <linux/seq_file.h>
#include "net_driver.h"
#include "bitfield.h"
#include "efx.h"
#include "nic.h"
#include "regs.h"
#include "io.h"
#include "workarounds.h"

/**************************************************************************
 *
 * Configurable values
 *
 **************************************************************************
 */

/* This is set to 16 for a good reason.  In summary, if larger than
 * 16, the descriptor cache holds more than a default socket
 * buffer's worth of packets (for UDP we can only have at most one
 * socket buffer's worth outstanding).  This combined with the fact
 * that we only get 1 TX event per descriptor cache means the NIC
 * goes idle.
 */
#define TX_DC_ENTRIES 16
#define TX_DC_ENTRIES_ORDER 1

#define RX_DC_ENTRIES 64
#define RX_DC_ENTRIES_ORDER 3

/* RX FIFO XOFF watermark
 *
 * When the amount of the RX FIFO increases used increases past this
 * watermark send XOFF. Only used if RX flow control is enabled (ethtool -A)
 * This also has an effect on RX/TX arbitration
 */
int efx_nic_rx_xoff_thresh = -1;
module_param_named(rx_xoff_thresh_bytes, efx_nic_rx_xoff_thresh, int, 0644);
MODULE_PARM_DESC(rx_xoff_thresh_bytes, "RX fifo XOFF threshold");

/* RX FIFO XON watermark
 *
 * When the amount of the RX FIFO used decreases below this
 * watermark send XON. Only used if TX flow control is enabled (ethtool -A)
 * This also has an effect on RX/TX arbitration
 */
int efx_nic_rx_xon_thresh = -1;
module_param_named(rx_xon_thresh_bytes, efx_nic_rx_xon_thresh, int, 0644);
MODULE_PARM_DESC(rx_xon_thresh_bytes, "RX fifo XON threshold");

/* If EFX_MAX_INT_ERRORS internal errors occur within
 * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
 * disable it.
 */
#define EFX_INT_ERROR_EXPIRE 3600
#define EFX_MAX_INT_ERRORS 5

/* We poll for events every FLUSH_INTERVAL ms, and check FLUSH_POLL_COUNT times
 */
#define EFX_FLUSH_INTERVAL 10
#define EFX_FLUSH_POLL_COUNT 100

/* Size and alignment of special buffers (4KB) */
#define EFX_BUF_SIZE 4096

/* Depth of RX flush request fifo */
#define EFX_RX_FLUSH_COUNT 4

82 83
/* Generated event code for efx_generate_test_event() */
#define EFX_CHANNEL_MAGIC_TEST(_channel)	\
84 85
	(0x00010100 + (_channel)->channel)

86 87 88 89
/* Generated event code for efx_generate_fill_event() */
#define EFX_CHANNEL_MAGIC_FILL(_channel)	\
	(0x00010200 + (_channel)->channel)

90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
/**************************************************************************
 *
 * Solarstorm hardware access
 *
 **************************************************************************/

static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
				     unsigned int index)
{
	efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
			value, index);
}

/* Read the current event from the event queue */
static inline efx_qword_t *efx_event(struct efx_channel *channel,
				     unsigned int index)
{
	return (((efx_qword_t *) (channel->eventq.addr)) + index);
}

/* See if an event is present
 *
 * We check both the high and low dword of the event for all ones.  We
 * wrote all ones when we cleared the event, and no valid event can
 * have all ones in either its high or low dwords.  This approach is
 * robust against reordering.
 *
 * Note that using a single 64-bit comparison is incorrect; even
 * though the CPU read will be atomic, the DMA write may not be.
 */
static inline int efx_event_present(efx_qword_t *event)
{
	return (!(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
		  EFX_DWORD_IS_ALL_ONES(event->dword[1])));
}

static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
				     const efx_oword_t *mask)
{
	return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
		((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
}

int efx_nic_test_registers(struct efx_nic *efx,
			   const struct efx_nic_register_test *regs,
			   size_t n_regs)
{
	unsigned address = 0, i, j;
	efx_oword_t mask, imask, original, reg, buf;

	/* Falcon should be in loopback to isolate the XMAC from the PHY */
	WARN_ON(!LOOPBACK_INTERNAL(efx));

	for (i = 0; i < n_regs; ++i) {
		address = regs[i].address;
		mask = imask = regs[i].mask;
		EFX_INVERT_OWORD(imask);

		efx_reado(efx, &original, address);

		/* bit sweep on and off */
		for (j = 0; j < 128; j++) {
			if (!EFX_EXTRACT_OWORD32(mask, j, j))
				continue;

			/* Test this testable bit can be set in isolation */
			EFX_AND_OWORD(reg, original, mask);
			EFX_SET_OWORD32(reg, j, j, 1);

			efx_writeo(efx, &reg, address);
			efx_reado(efx, &buf, address);

			if (efx_masked_compare_oword(&reg, &buf, &mask))
				goto fail;

			/* Test this testable bit can be cleared in isolation */
			EFX_OR_OWORD(reg, original, mask);
			EFX_SET_OWORD32(reg, j, j, 0);

			efx_writeo(efx, &reg, address);
			efx_reado(efx, &buf, address);

			if (efx_masked_compare_oword(&reg, &buf, &mask))
				goto fail;
		}

		efx_writeo(efx, &original, address);
	}

	return 0;

fail:
182 183 184 185
	netif_err(efx, hw, efx->net_dev,
		  "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
		  " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
		  EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
	return -EIO;
}

/**************************************************************************
 *
 * Special buffer handling
 * Special buffers are used for event queues and the TX and RX
 * descriptor rings.
 *
 *************************************************************************/

/*
 * Initialise a special buffer
 *
 * This will define a buffer (previously allocated via
 * efx_alloc_special_buffer()) in the buffer table, allowing
 * it to be used for event queues, descriptor rings etc.
 */
static void
efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
{
	efx_qword_t buf_desc;
	int index;
	dma_addr_t dma_addr;
	int i;

	EFX_BUG_ON_PARANOID(!buffer->addr);

	/* Write buffer descriptors to NIC */
	for (i = 0; i < buffer->entries; i++) {
		index = buffer->index + i;
		dma_addr = buffer->dma_addr + (i * 4096);
218 219 220
		netif_dbg(efx, probe, efx->net_dev,
			  "mapping special buffer %d at %llx\n",
			  index, (unsigned long long)dma_addr);
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
		EFX_POPULATE_QWORD_3(buf_desc,
				     FRF_AZ_BUF_ADR_REGION, 0,
				     FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
				     FRF_AZ_BUF_OWNER_ID_FBUF, 0);
		efx_write_buf_tbl(efx, &buf_desc, index);
	}
}

/* Unmaps a buffer and clears the buffer table entries */
static void
efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
{
	efx_oword_t buf_tbl_upd;
	unsigned int start = buffer->index;
	unsigned int end = (buffer->index + buffer->entries - 1);

	if (!buffer->entries)
		return;

240 241
	netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
		  buffer->index, buffer->index + buffer->entries - 1);
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265

	EFX_POPULATE_OWORD_4(buf_tbl_upd,
			     FRF_AZ_BUF_UPD_CMD, 0,
			     FRF_AZ_BUF_CLR_CMD, 1,
			     FRF_AZ_BUF_CLR_END_ID, end,
			     FRF_AZ_BUF_CLR_START_ID, start);
	efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
}

/*
 * Allocate a new special buffer
 *
 * This allocates memory for a new buffer, clears it and allocates a
 * new buffer ID range.  It does not write into the buffer table.
 *
 * This call will allocate 4KB buffers, since 8KB buffers can't be
 * used for event queues and descriptor rings.
 */
static int efx_alloc_special_buffer(struct efx_nic *efx,
				    struct efx_special_buffer *buffer,
				    unsigned int len)
{
	len = ALIGN(len, EFX_BUF_SIZE);

266 267
	buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
					  &buffer->dma_addr, GFP_KERNEL);
268 269 270 271 272 273 274 275 276 277 278 279 280
	if (!buffer->addr)
		return -ENOMEM;
	buffer->len = len;
	buffer->entries = len / EFX_BUF_SIZE;
	BUG_ON(buffer->dma_addr & (EFX_BUF_SIZE - 1));

	/* All zeros is a potentially valid event so memset to 0xff */
	memset(buffer->addr, 0xff, len);

	/* Select new buffer ID */
	buffer->index = efx->next_buffer_table;
	efx->next_buffer_table += buffer->entries;

281 282 283 284 285 286
	netif_dbg(efx, probe, efx->net_dev,
		  "allocating special buffers %d-%d at %llx+%x "
		  "(virt %p phys %llx)\n", buffer->index,
		  buffer->index + buffer->entries - 1,
		  (u64)buffer->dma_addr, len,
		  buffer->addr, (u64)virt_to_phys(buffer->addr));
287 288 289 290 291 292 293 294 295 296

	return 0;
}

static void
efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
{
	if (!buffer->addr)
		return;

297 298 299 300 301 302
	netif_dbg(efx, hw, efx->net_dev,
		  "deallocating special buffers %d-%d at %llx+%x "
		  "(virt %p phys %llx)\n", buffer->index,
		  buffer->index + buffer->entries - 1,
		  (u64)buffer->dma_addr, buffer->len,
		  buffer->addr, (u64)virt_to_phys(buffer->addr));
303

304 305
	dma_free_coherent(&efx->pci_dev->dev, buffer->len, buffer->addr,
			  buffer->dma_addr);
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
	buffer->addr = NULL;
	buffer->entries = 0;
}

/**************************************************************************
 *
 * Generic buffer handling
 * These buffers are used for interrupt status and MAC stats
 *
 **************************************************************************/

int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
			 unsigned int len)
{
	buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
					    &buffer->dma_addr);
	if (!buffer->addr)
		return -ENOMEM;
	buffer->len = len;
	memset(buffer->addr, 0, len);
	return 0;
}

void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
{
	if (buffer->addr) {
		pci_free_consistent(efx->pci_dev, buffer->len,
				    buffer->addr, buffer->dma_addr);
		buffer->addr = NULL;
	}
}

/**************************************************************************
 *
 * TX path
 *
 **************************************************************************/

/* Returns a pointer to the specified transmit descriptor in the TX
 * descriptor queue belonging to the specified channel.
 */
static inline efx_qword_t *
efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
{
	return (((efx_qword_t *) (tx_queue->txd.addr)) + index);
}

/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
static inline void efx_notify_tx_desc(struct efx_tx_queue *tx_queue)
{
	unsigned write_ptr;
	efx_dword_t reg;

359
	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
	EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
	efx_writed_page(tx_queue->efx, &reg,
			FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
}


/* For each entry inserted into the software descriptor ring, create a
 * descriptor in the hardware TX descriptor ring (in host memory), and
 * write a doorbell.
 */
void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
{

	struct efx_tx_buffer *buffer;
	efx_qword_t *txd;
	unsigned write_ptr;

	BUG_ON(tx_queue->write_count == tx_queue->insert_count);

	do {
380
		write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
		buffer = &tx_queue->buffer[write_ptr];
		txd = efx_tx_desc(tx_queue, write_ptr);
		++tx_queue->write_count;

		/* Create TX descriptor ring entry */
		EFX_POPULATE_QWORD_4(*txd,
				     FSF_AZ_TX_KER_CONT, buffer->continuation,
				     FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
				     FSF_AZ_TX_KER_BUF_REGION, 0,
				     FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
	} while (tx_queue->write_count != tx_queue->insert_count);

	wmb(); /* Ensure descriptors are written before they are fetched */
	efx_notify_tx_desc(tx_queue);
}

/* Allocate hardware resources for a TX queue */
int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
{
	struct efx_nic *efx = tx_queue->efx;
401 402 403
	unsigned entries;

	entries = tx_queue->ptr_mask + 1;
404
	return efx_alloc_special_buffer(efx, &tx_queue->txd,
405
					entries * sizeof(efx_qword_t));
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
}

void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
{
	efx_oword_t tx_desc_ptr;
	struct efx_nic *efx = tx_queue->efx;

	tx_queue->flushed = FLUSH_NONE;

	/* Pin TX descriptor ring */
	efx_init_special_buffer(efx, &tx_queue->txd);

	/* Push TX descriptor ring to card */
	EFX_POPULATE_OWORD_10(tx_desc_ptr,
			      FRF_AZ_TX_DESCQ_EN, 1,
			      FRF_AZ_TX_ISCSI_DDIG_EN, 0,
			      FRF_AZ_TX_ISCSI_HDIG_EN, 0,
			      FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
			      FRF_AZ_TX_DESCQ_EVQ_ID,
			      tx_queue->channel->channel,
			      FRF_AZ_TX_DESCQ_OWNER_ID, 0,
			      FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
			      FRF_AZ_TX_DESCQ_SIZE,
			      __ffs(tx_queue->txd.entries),
			      FRF_AZ_TX_DESCQ_TYPE, 0,
			      FRF_BZ_TX_NON_IP_DROP_DIS, 1);

	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
B
Ben Hutchings 已提交
434
		int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
435 436 437 438 439 440 441 442 443 444 445 446
		EFX_SET_OWORD_FIELD(tx_desc_ptr, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
		EFX_SET_OWORD_FIELD(tx_desc_ptr, FRF_BZ_TX_TCP_CHKSM_DIS,
				    !csum);
	}

	efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
			 tx_queue->queue);

	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
		efx_oword_t reg;

		/* Only 128 bits in this register */
B
Ben Hutchings 已提交
447
		BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);
448 449

		efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
B
Ben Hutchings 已提交
450
		if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
			clear_bit_le(tx_queue->queue, (void *)&reg);
		else
			set_bit_le(tx_queue->queue, (void *)&reg);
		efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
	}
}

static void efx_flush_tx_queue(struct efx_tx_queue *tx_queue)
{
	struct efx_nic *efx = tx_queue->efx;
	efx_oword_t tx_flush_descq;

	tx_queue->flushed = FLUSH_PENDING;

	/* Post a flush command */
	EFX_POPULATE_OWORD_2(tx_flush_descq,
			     FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
			     FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
	efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
}

void efx_nic_fini_tx(struct efx_tx_queue *tx_queue)
{
	struct efx_nic *efx = tx_queue->efx;
	efx_oword_t tx_desc_ptr;

	/* The queue should have been flushed */
	WARN_ON(tx_queue->flushed != FLUSH_DONE);

	/* Remove TX descriptor ring from card */
	EFX_ZERO_OWORD(tx_desc_ptr);
	efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
			 tx_queue->queue);

	/* Unpin TX descriptor ring */
	efx_fini_special_buffer(efx, &tx_queue->txd);
}

/* Free buffers backing TX queue */
void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
{
	efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
}

/**************************************************************************
 *
 * RX path
 *
 **************************************************************************/

/* Returns a pointer to the specified descriptor in the RX descriptor queue */
static inline efx_qword_t *
efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
{
	return (((efx_qword_t *) (rx_queue->rxd.addr)) + index);
}

/* This creates an entry in the RX descriptor queue */
static inline void
efx_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
{
	struct efx_rx_buffer *rx_buf;
	efx_qword_t *rxd;

	rxd = efx_rx_desc(rx_queue, index);
	rx_buf = efx_rx_buffer(rx_queue, index);
	EFX_POPULATE_QWORD_3(*rxd,
			     FSF_AZ_RX_KER_BUF_SIZE,
			     rx_buf->len -
			     rx_queue->efx->type->rx_buffer_padding,
			     FSF_AZ_RX_KER_BUF_REGION, 0,
			     FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
}

/* This writes to the RX_DESC_WPTR register for the specified receive
 * descriptor ring.
 */
void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
{
530
	struct efx_nic *efx = rx_queue->efx;
531 532 533 534
	efx_dword_t reg;
	unsigned write_ptr;

	while (rx_queue->notified_count != rx_queue->added_count) {
535 536 537
		efx_build_rx_desc(
			rx_queue,
			rx_queue->notified_count & rx_queue->ptr_mask);
538 539 540 541
		++rx_queue->notified_count;
	}

	wmb();
542
	write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
543
	EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
544
	efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
545
			efx_rx_queue_index(rx_queue));
546 547 548 549 550
}

int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
{
	struct efx_nic *efx = rx_queue->efx;
551 552 553
	unsigned entries;

	entries = rx_queue->ptr_mask + 1;
554
	return efx_alloc_special_buffer(efx, &rx_queue->rxd,
555
					entries * sizeof(efx_qword_t));
556 557 558 559 560 561 562 563 564
}

void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
{
	efx_oword_t rx_desc_ptr;
	struct efx_nic *efx = rx_queue->efx;
	bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
	bool iscsi_digest_en = is_b0;

565 566
	netif_dbg(efx, hw, efx->net_dev,
		  "RX queue %d ring in special buffers %d-%d\n",
567
		  efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
568
		  rx_queue->rxd.index + rx_queue->rxd.entries - 1);
569 570 571 572 573 574 575 576 577 578 579 580

	rx_queue->flushed = FLUSH_NONE;

	/* Pin RX descriptor ring */
	efx_init_special_buffer(efx, &rx_queue->rxd);

	/* Push RX descriptor ring to card */
	EFX_POPULATE_OWORD_10(rx_desc_ptr,
			      FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
			      FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
			      FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
			      FRF_AZ_RX_DESCQ_EVQ_ID,
581
			      efx_rx_queue_channel(rx_queue)->channel,
582
			      FRF_AZ_RX_DESCQ_OWNER_ID, 0,
583 584
			      FRF_AZ_RX_DESCQ_LABEL,
			      efx_rx_queue_index(rx_queue),
585 586 587 588 589 590 591
			      FRF_AZ_RX_DESCQ_SIZE,
			      __ffs(rx_queue->rxd.entries),
			      FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
			      /* For >=B0 this is scatter so disable */
			      FRF_AZ_RX_DESCQ_JUMBO, !is_b0,
			      FRF_AZ_RX_DESCQ_EN, 1);
	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
592
			 efx_rx_queue_index(rx_queue));
593 594 595 596 597 598 599 600 601 602 603 604
}

static void efx_flush_rx_queue(struct efx_rx_queue *rx_queue)
{
	struct efx_nic *efx = rx_queue->efx;
	efx_oword_t rx_flush_descq;

	rx_queue->flushed = FLUSH_PENDING;

	/* Post a flush command */
	EFX_POPULATE_OWORD_2(rx_flush_descq,
			     FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
605 606
			     FRF_AZ_RX_FLUSH_DESCQ,
			     efx_rx_queue_index(rx_queue));
607 608 609 610 611 612 613 614 615 616 617 618 619 620
	efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
}

void efx_nic_fini_rx(struct efx_rx_queue *rx_queue)
{
	efx_oword_t rx_desc_ptr;
	struct efx_nic *efx = rx_queue->efx;

	/* The queue should already have been flushed */
	WARN_ON(rx_queue->flushed != FLUSH_DONE);

	/* Remove RX descriptor ring from card */
	EFX_ZERO_OWORD(rx_desc_ptr);
	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
621
			 efx_rx_queue_index(rx_queue));
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674

	/* Unpin RX descriptor ring */
	efx_fini_special_buffer(efx, &rx_queue->rxd);
}

/* Free buffers backing RX queue */
void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
{
	efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
}

/**************************************************************************
 *
 * Event queue processing
 * Event queues are processed by per-channel tasklets.
 *
 **************************************************************************/

/* Update a channel's event queue's read pointer (RPTR) register
 *
 * This writes the EVQ_RPTR_REG register for the specified channel's
 * event queue.
 */
void efx_nic_eventq_read_ack(struct efx_channel *channel)
{
	efx_dword_t reg;
	struct efx_nic *efx = channel->efx;

	EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR, channel->eventq_read_ptr);
	efx_writed_table(efx, &reg, efx->type->evq_rptr_tbl_base,
			 channel->channel);
}

/* Use HW to insert a SW defined event */
void efx_generate_event(struct efx_channel *channel, efx_qword_t *event)
{
	efx_oword_t drv_ev_reg;

	BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
		     FRF_AZ_DRV_EV_DATA_WIDTH != 64);
	drv_ev_reg.u32[0] = event->u32[0];
	drv_ev_reg.u32[1] = event->u32[1];
	drv_ev_reg.u32[2] = 0;
	drv_ev_reg.u32[3] = 0;
	EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, channel->channel);
	efx_writeo(channel->efx, &drv_ev_reg, FR_AZ_DRV_EV);
}

/* Handle a transmit completion event
 *
 * The NIC batches TX completion events; the message we receive is of
 * the form "complete all TX events up to this index".
 */
675
static int
676 677 678 679 680 681
efx_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
{
	unsigned int tx_ev_desc_ptr;
	unsigned int tx_ev_q_label;
	struct efx_tx_queue *tx_queue;
	struct efx_nic *efx = channel->efx;
682
	int tx_packets = 0;
683 684 685 686 687

	if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
		/* Transmit completion */
		tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
688 689
		tx_queue = efx_channel_get_tx_queue(
			channel, tx_ev_q_label % EFX_TXQ_TYPES);
690
		tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
691
			      tx_queue->ptr_mask);
692
		channel->irq_mod_score += tx_packets;
693 694 695 696
		efx_xmit_done(tx_queue, tx_ev_desc_ptr);
	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
		/* Rewrite the FIFO write pointer */
		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
697 698
		tx_queue = efx_channel_get_tx_queue(
			channel, tx_ev_q_label % EFX_TXQ_TYPES);
699 700 701 702 703 704 705 706 707 708

		if (efx_dev_registered(efx))
			netif_tx_lock(efx->net_dev);
		efx_notify_tx_desc(tx_queue);
		if (efx_dev_registered(efx))
			netif_tx_unlock(efx->net_dev);
	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
		   EFX_WORKAROUND_10727(efx)) {
		efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
	} else {
709 710 711 712
		netif_err(efx, tx_err, efx->net_dev,
			  "channel %d unexpected TX event "
			  EFX_QWORD_FMT"\n", channel->channel,
			  EFX_QWORD_VAL(*event));
713
	}
714 715

	return tx_packets;
716 717 718 719 720 721 722 723
}

/* Detect errors included in the rx_evt_pkt_ok bit. */
static void efx_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
				 const efx_qword_t *event,
				 bool *rx_ev_pkt_ok,
				 bool *discard)
{
724
	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
	struct efx_nic *efx = rx_queue->efx;
	bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
	bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
	bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
	bool rx_ev_other_err, rx_ev_pause_frm;
	bool rx_ev_hdr_type, rx_ev_mcast_pkt;
	unsigned rx_ev_pkt_type;

	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
	rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
	rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
	rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
						 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
	rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
						  FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
	rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
						   FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
	rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
	rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
	rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
			  0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
	rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);

	/* Every error apart from tobe_disc and pause_frm */
	rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
			   rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
			   rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);

	/* Count errors that are not in MAC stats.  Ignore expected
	 * checksum errors during self-test. */
	if (rx_ev_frm_trunc)
757
		++channel->n_rx_frm_trunc;
758
	else if (rx_ev_tobe_disc)
759
		++channel->n_rx_tobe_disc;
760 761
	else if (!efx->loopback_selftest) {
		if (rx_ev_ip_hdr_chksum_err)
762
			++channel->n_rx_ip_hdr_chksum_err;
763
		else if (rx_ev_tcp_udp_chksum_err)
764
			++channel->n_rx_tcp_udp_chksum_err;
765 766 767 768 769 770 771 772 773 774 775
	}

	/* The frame must be discarded if any of these are true. */
	*discard = (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
		    rx_ev_tobe_disc | rx_ev_pause_frm);

	/* TOBE_DISC is expected on unicast mismatches; don't print out an
	 * error message.  FRM_TRUNC indicates RXDP dropped the packet due
	 * to a FIFO overflow.
	 */
#ifdef EFX_ENABLE_DEBUG
776 777 778 779
	if (rx_ev_other_err && net_ratelimit()) {
		netif_dbg(efx, rx_err, efx->net_dev,
			  " RX queue %d unexpected RX event "
			  EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
780
			  efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
781 782 783 784 785 786 787 788 789 790
			  rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
			  rx_ev_ip_hdr_chksum_err ?
			  " [IP_HDR_CHKSUM_ERR]" : "",
			  rx_ev_tcp_udp_chksum_err ?
			  " [TCP_UDP_CHKSUM_ERR]" : "",
			  rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
			  rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
			  rx_ev_drib_nib ? " [DRIB_NIB]" : "",
			  rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
			  rx_ev_pause_frm ? " [PAUSE]" : "");
791 792 793 794 795 796 797 798 799 800 801
	}
#endif
}

/* Handle receive events that are not in-order. */
static void
efx_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
{
	struct efx_nic *efx = rx_queue->efx;
	unsigned expected, dropped;

802 803
	expected = rx_queue->removed_count & rx_queue->ptr_mask;
	dropped = (index - expected) & rx_queue->ptr_mask;
804 805 806
	netif_info(efx, rx_err, efx->net_dev,
		   "dropped %d events (index=%d expected=%d)\n",
		   dropped, index, expected);
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837

	efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
			   RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
}

/* Handle a packet received event
 *
 * The NIC gives a "discard" flag if it's a unicast packet with the
 * wrong destination address
 * Also "is multicast" and "matches multicast filter" flags can be used to
 * discard non-matching multicast packets.
 */
static void
efx_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
{
	unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
	unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
	unsigned expected_ptr;
	bool rx_ev_pkt_ok, discard = false, checksummed;
	struct efx_rx_queue *rx_queue;
	struct efx_nic *efx = channel->efx;

	/* Basic packet information */
	rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
	rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT));
	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP) != 1);
	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
		channel->channel);

838
	rx_queue = efx_channel_get_rx_queue(channel);
839 840

	rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
841
	expected_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
	if (unlikely(rx_ev_desc_ptr != expected_ptr))
		efx_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);

	if (likely(rx_ev_pkt_ok)) {
		/* If packet is marked as OK and packet type is TCP/IP or
		 * UDP/IP, then we can rely on the hardware checksum.
		 */
		checksummed =
			likely(efx->rx_checksum_enabled) &&
			(rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP ||
			 rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP);
	} else {
		efx_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok, &discard);
		checksummed = false;
	}

	/* Detect multicast packets that didn't match the filter */
	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
	if (rx_ev_mcast_pkt) {
		unsigned int rx_ev_mcast_hash_match =
			EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);

		if (unlikely(!rx_ev_mcast_hash_match)) {
			++channel->n_rx_mcast_mismatch;
			discard = true;
		}
	}

	channel->irq_mod_score += 2;

	/* Handle received packet */
	efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt,
		      checksummed, discard);
}

877 878 879 880 881 882 883 884 885 886 887 888 889
static void
efx_handle_generated_event(struct efx_channel *channel, efx_qword_t *event)
{
	struct efx_nic *efx = channel->efx;
	unsigned code;

	code = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
	if (code == EFX_CHANNEL_MAGIC_TEST(channel))
		++channel->magic_count;
	else if (code == EFX_CHANNEL_MAGIC_FILL(channel))
		/* The queue must be empty, so we won't receive any rx
		 * events, so efx_process_channel() won't refill the
		 * queue. Refill it here */
890
		efx_fast_push_rx_descriptors(efx_channel_get_rx_queue(channel));
891
	else
892 893 894
		netif_dbg(efx, hw, efx->net_dev, "channel %d received "
			  "generated event "EFX_QWORD_FMT"\n",
			  channel->channel, EFX_QWORD_VAL(*event));
895 896
}

897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
/* Global events are basically PHY events */
static void
efx_handle_global_event(struct efx_channel *channel, efx_qword_t *event)
{
	struct efx_nic *efx = channel->efx;
	bool handled = false;

	if (EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) ||
	    EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) ||
	    EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR)) {
		/* Ignored */
		handled = true;
	}

	if ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) &&
	    EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) {
		efx->xmac_poll_required = true;
		handled = true;
	}

	if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1 ?
	    EFX_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) :
	    EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) {
920 921 922
		netif_err(efx, rx_err, efx->net_dev,
			  "channel %d seen global RX_RESET event. Resetting.\n",
			  channel->channel);
923 924 925 926 927 928 929 930

		atomic_inc(&efx->rx_reset);
		efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
				   RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
		handled = true;
	}

	if (!handled)
931 932 933 934
		netif_err(efx, hw, efx->net_dev,
			  "channel %d unknown global event "
			  EFX_QWORD_FMT "\n", channel->channel,
			  EFX_QWORD_VAL(*event));
935 936 937 938 939 940 941 942 943 944 945 946 947 948
}

static void
efx_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
{
	struct efx_nic *efx = channel->efx;
	unsigned int ev_sub_code;
	unsigned int ev_sub_data;

	ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
	ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);

	switch (ev_sub_code) {
	case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
949 950
		netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
			   channel->channel, ev_sub_data);
951 952
		break;
	case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
953 954
		netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
			   channel->channel, ev_sub_data);
955 956
		break;
	case FSE_AZ_EVQ_INIT_DONE_EV:
957 958 959
		netif_dbg(efx, hw, efx->net_dev,
			  "channel %d EVQ %d initialised\n",
			  channel->channel, ev_sub_data);
960 961
		break;
	case FSE_AZ_SRM_UPD_DONE_EV:
962 963
		netif_vdbg(efx, hw, efx->net_dev,
			   "channel %d SRAM update done\n", channel->channel);
964 965
		break;
	case FSE_AZ_WAKE_UP_EV:
966 967 968
		netif_vdbg(efx, hw, efx->net_dev,
			   "channel %d RXQ %d wakeup event\n",
			   channel->channel, ev_sub_data);
969 970
		break;
	case FSE_AZ_TIMER_EV:
971 972 973
		netif_vdbg(efx, hw, efx->net_dev,
			   "channel %d RX queue %d timer expired\n",
			   channel->channel, ev_sub_data);
974 975
		break;
	case FSE_AA_RX_RECOVER_EV:
976 977
		netif_err(efx, rx_err, efx->net_dev,
			  "channel %d seen DRIVER RX_RESET event. "
978 979 980 981 982 983 984 985
			"Resetting.\n", channel->channel);
		atomic_inc(&efx->rx_reset);
		efx_schedule_reset(efx,
				   EFX_WORKAROUND_6555(efx) ?
				   RESET_TYPE_RX_RECOVERY :
				   RESET_TYPE_DISABLE);
		break;
	case FSE_BZ_RX_DSC_ERROR_EV:
986 987 988
		netif_err(efx, rx_err, efx->net_dev,
			  "RX DMA Q %d reports descriptor fetch error."
			  " RX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
989 990 991
		efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
		break;
	case FSE_BZ_TX_DSC_ERROR_EV:
992 993 994
		netif_err(efx, tx_err, efx->net_dev,
			  "TX DMA Q %d reports descriptor fetch error."
			  " TX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
995 996 997
		efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
		break;
	default:
998 999 1000 1001
		netif_vdbg(efx, hw, efx->net_dev,
			   "channel %d unknown driver event code %d "
			   "data %04x\n", channel->channel, ev_sub_code,
			   ev_sub_data);
1002 1003 1004 1005
		break;
	}
}

1006
int efx_nic_process_eventq(struct efx_channel *channel, int budget)
1007
{
1008
	struct efx_nic *efx = channel->efx;
1009 1010 1011
	unsigned int read_ptr;
	efx_qword_t event, *p_event;
	int ev_code;
1012 1013
	int tx_packets = 0;
	int spent = 0;
1014 1015 1016

	read_ptr = channel->eventq_read_ptr;

1017
	for (;;) {
1018 1019 1020 1021 1022 1023 1024
		p_event = efx_event(channel, read_ptr);
		event = *p_event;

		if (!efx_event_present(&event))
			/* End of events */
			break;

1025 1026 1027
		netif_vdbg(channel->efx, intr, channel->efx->net_dev,
			   "channel %d event is "EFX_QWORD_FMT"\n",
			   channel->channel, EFX_QWORD_VAL(event));
1028 1029 1030 1031

		/* Clear this event by marking it all ones */
		EFX_SET_QWORD(*p_event);

1032
		/* Increment read pointer */
1033
		read_ptr = (read_ptr + 1) & channel->eventq_mask;
1034

1035 1036 1037 1038 1039
		ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);

		switch (ev_code) {
		case FSE_AZ_EV_CODE_RX_EV:
			efx_handle_rx_event(channel, &event);
1040 1041
			if (++spent == budget)
				goto out;
1042 1043
			break;
		case FSE_AZ_EV_CODE_TX_EV:
1044
			tx_packets += efx_handle_tx_event(channel, &event);
1045
			if (tx_packets > efx->txq_entries) {
1046 1047 1048
				spent = budget;
				goto out;
			}
1049 1050
			break;
		case FSE_AZ_EV_CODE_DRV_GEN_EV:
1051
			efx_handle_generated_event(channel, &event);
1052 1053 1054 1055 1056 1057 1058
			break;
		case FSE_AZ_EV_CODE_GLOBAL_EV:
			efx_handle_global_event(channel, &event);
			break;
		case FSE_AZ_EV_CODE_DRIVER_EV:
			efx_handle_driver_event(channel, &event);
			break;
1059 1060 1061
		case FSE_CZ_EV_CODE_MCDI_EV:
			efx_mcdi_process_event(channel, &event);
			break;
1062
		default:
1063 1064 1065 1066
			netif_err(channel->efx, hw, channel->efx->net_dev,
				  "channel %d unknown event type %d (data "
				  EFX_QWORD_FMT ")\n", channel->channel,
				  ev_code, EFX_QWORD_VAL(event));
1067
		}
1068
	}
1069

1070
out:
1071
	channel->eventq_read_ptr = read_ptr;
1072
	return spent;
1073 1074 1075 1076 1077 1078 1079
}


/* Allocate buffer table entries for event queue */
int efx_nic_probe_eventq(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;
1080 1081 1082
	unsigned entries;

	entries = channel->eventq_mask + 1;
1083
	return efx_alloc_special_buffer(efx, &channel->eventq,
1084
					entries * sizeof(efx_qword_t));
1085 1086 1087 1088
}

void efx_nic_init_eventq(struct efx_channel *channel)
{
1089
	efx_oword_t reg;
1090 1091
	struct efx_nic *efx = channel->efx;

1092 1093 1094 1095
	netif_dbg(efx, hw, efx->net_dev,
		  "channel %d event queue in special buffers %d-%d\n",
		  channel->channel, channel->eventq.index,
		  channel->eventq.index + channel->eventq.entries - 1);
1096

1097 1098 1099 1100 1101 1102 1103 1104
	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
		EFX_POPULATE_OWORD_3(reg,
				     FRF_CZ_TIMER_Q_EN, 1,
				     FRF_CZ_HOST_NOTIFY_MODE, 0,
				     FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
		efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
	}

1105 1106 1107 1108 1109 1110 1111
	/* Pin event queue buffer */
	efx_init_special_buffer(efx, &channel->eventq);

	/* Fill event queue with all ones (i.e. empty events) */
	memset(channel->eventq.addr, 0xff, channel->eventq.len);

	/* Push event queue to card */
1112
	EFX_POPULATE_OWORD_3(reg,
1113 1114 1115
			     FRF_AZ_EVQ_EN, 1,
			     FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
			     FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1116
	efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1117 1118 1119 1120 1121 1122 1123
			 channel->channel);

	efx->type->push_irq_moderation(channel);
}

void efx_nic_fini_eventq(struct efx_channel *channel)
{
1124
	efx_oword_t reg;
1125 1126 1127
	struct efx_nic *efx = channel->efx;

	/* Remove event queue from card */
1128 1129
	EFX_ZERO_OWORD(reg);
	efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1130
			 channel->channel);
1131 1132
	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
		efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144

	/* Unpin event queue */
	efx_fini_special_buffer(efx, &channel->eventq);
}

/* Free buffers backing event queue */
void efx_nic_remove_eventq(struct efx_channel *channel)
{
	efx_free_special_buffer(channel->efx, &channel->eventq);
}


1145
void efx_nic_generate_test_event(struct efx_channel *channel)
1146
{
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
	unsigned int magic = EFX_CHANNEL_MAGIC_TEST(channel);
	efx_qword_t test_event;

	EFX_POPULATE_QWORD_2(test_event, FSF_AZ_EV_CODE,
			     FSE_AZ_EV_CODE_DRV_GEN_EV,
			     FSF_AZ_DRV_GEN_EV_MAGIC, magic);
	efx_generate_event(channel, &test_event);
}

void efx_nic_generate_fill_event(struct efx_channel *channel)
{
	unsigned int magic = EFX_CHANNEL_MAGIC_FILL(channel);
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
	efx_qword_t test_event;

	EFX_POPULATE_QWORD_2(test_event, FSF_AZ_EV_CODE,
			     FSE_AZ_EV_CODE_DRV_GEN_EV,
			     FSF_AZ_DRV_GEN_EV_MAGIC, magic);
	efx_generate_event(channel, &test_event);
}

/**************************************************************************
 *
 * Flush handling
 *
 **************************************************************************/


static void efx_poll_flush_events(struct efx_nic *efx)
{
1176
	struct efx_channel *channel = efx_get_channel(efx, 0);
1177 1178 1179
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	unsigned int read_ptr = channel->eventq_read_ptr;
1180
	unsigned int end_ptr = (read_ptr - 1) & channel->eventq_mask;
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196

	do {
		efx_qword_t *event = efx_event(channel, read_ptr);
		int ev_code, ev_sub_code, ev_queue;
		bool ev_failed;

		if (!efx_event_present(event))
			break;

		ev_code = EFX_QWORD_FIELD(*event, FSF_AZ_EV_CODE);
		ev_sub_code = EFX_QWORD_FIELD(*event,
					      FSF_AZ_DRIVER_EV_SUBCODE);
		if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
		    ev_sub_code == FSE_AZ_TX_DESCQ_FLS_DONE_EV) {
			ev_queue = EFX_QWORD_FIELD(*event,
						   FSF_AZ_DRIVER_EV_SUBDATA);
B
Ben Hutchings 已提交
1197
			if (ev_queue < EFX_TXQ_TYPES * efx->n_tx_channels) {
1198 1199 1200
				tx_queue = efx_get_tx_queue(
					efx, ev_queue / EFX_TXQ_TYPES,
					ev_queue % EFX_TXQ_TYPES);
1201 1202 1203 1204 1205 1206 1207 1208
				tx_queue->flushed = FLUSH_DONE;
			}
		} else if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
			   ev_sub_code == FSE_AZ_RX_DESCQ_FLS_DONE_EV) {
			ev_queue = EFX_QWORD_FIELD(
				*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
			ev_failed = EFX_QWORD_FIELD(
				*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
B
Ben Hutchings 已提交
1209
			if (ev_queue < efx->n_rx_channels) {
1210
				rx_queue = efx_get_rx_queue(efx, ev_queue);
1211 1212 1213 1214 1215 1216 1217 1218 1219
				rx_queue->flushed =
					ev_failed ? FLUSH_FAILED : FLUSH_DONE;
			}
		}

		/* We're about to destroy the queue anyway, so
		 * it's ok to throw away every non-flush event */
		EFX_SET_QWORD(*event);

1220
		read_ptr = (read_ptr + 1) & channel->eventq_mask;
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
	} while (read_ptr != end_ptr);

	channel->eventq_read_ptr = read_ptr;
}

/* Handle tx and rx flushes at the same time, since they run in
 * parallel in the hardware and there's no reason for us to
 * serialise them */
int efx_nic_flush_queues(struct efx_nic *efx)
{
1231
	struct efx_channel *channel;
1232 1233 1234 1235 1236 1237 1238 1239
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int i, tx_pending, rx_pending;

	/* If necessary prepare the hardware for flushing */
	efx->type->prepare_flush(efx);

	/* Flush all tx queues in parallel */
1240 1241 1242 1243
	efx_for_each_channel(channel, efx) {
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_flush_tx_queue(tx_queue);
	}
1244 1245 1246 1247 1248

	/* The hardware supports four concurrent rx flushes, each of which may
	 * need to be retried if there is an outstanding descriptor fetch */
	for (i = 0; i < EFX_FLUSH_POLL_COUNT; ++i) {
		rx_pending = tx_pending = 0;
1249 1250 1251 1252
		efx_for_each_channel(channel, efx) {
			efx_for_each_channel_rx_queue(rx_queue, channel) {
				if (rx_queue->flushed == FLUSH_PENDING)
					++rx_pending;
1253 1254
			}
		}
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
		efx_for_each_channel(channel, efx) {
			efx_for_each_channel_rx_queue(rx_queue, channel) {
				if (rx_pending == EFX_RX_FLUSH_COUNT)
					break;
				if (rx_queue->flushed == FLUSH_FAILED ||
				    rx_queue->flushed == FLUSH_NONE) {
					efx_flush_rx_queue(rx_queue);
					++rx_pending;
				}
			}
			efx_for_each_channel_tx_queue(tx_queue, channel) {
				if (tx_queue->flushed != FLUSH_DONE)
					++tx_pending;
			}
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
		}

		if (rx_pending == 0 && tx_pending == 0)
			return 0;

		msleep(EFX_FLUSH_INTERVAL);
		efx_poll_flush_events(efx);
	}

	/* Mark the queues as all flushed. We're going to return failure
	 * leading to a reset, or fake up success anyway */
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
	efx_for_each_channel(channel, efx) {
		efx_for_each_channel_tx_queue(tx_queue, channel) {
			if (tx_queue->flushed != FLUSH_DONE)
				netif_err(efx, hw, efx->net_dev,
					  "tx queue %d flush command timed out\n",
					  tx_queue->queue);
			tx_queue->flushed = FLUSH_DONE;
		}
		efx_for_each_channel_rx_queue(rx_queue, channel) {
			if (rx_queue->flushed != FLUSH_DONE)
				netif_err(efx, hw, efx->net_dev,
					  "rx queue %d flush command timed out\n",
					  efx_rx_queue_index(rx_queue));
			rx_queue->flushed = FLUSH_DONE;
		}
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
	}

	return -ETIMEDOUT;
}

/**************************************************************************
 *
 * Hardware interrupts
 * The hardware interrupt handler does very little work; all the event
 * queue processing is carried out by per-channel tasklets.
 *
 **************************************************************************/

/* Enable/disable/generate interrupts */
static inline void efx_nic_interrupts(struct efx_nic *efx,
				      bool enabled, bool force)
{
	efx_oword_t int_en_reg_ker;
1313 1314

	EFX_POPULATE_OWORD_3(int_en_reg_ker,
1315
			     FRF_AZ_KER_INT_LEVE_SEL, efx->fatal_irq_level,
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
			     FRF_AZ_KER_INT_KER, force,
			     FRF_AZ_DRV_INT_EN_KER, enabled);
	efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
}

void efx_nic_enable_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
	wmb(); /* Ensure interrupt vector is clear before interrupts enabled */

	/* Enable interrupts */
	efx_nic_interrupts(efx, true, false);

	/* Force processing of all the channels to get the EVQ RPTRs up to
	   date */
	efx_for_each_channel(channel, efx)
		efx_schedule_channel(channel);
}

void efx_nic_disable_interrupts(struct efx_nic *efx)
{
	/* Disable interrupts */
	efx_nic_interrupts(efx, false, false);
}

/* Generate a test interrupt
 * Interrupt must already have been enabled, otherwise nasty things
 * may happen.
 */
void efx_nic_generate_interrupt(struct efx_nic *efx)
{
	efx_nic_interrupts(efx, true, true);
}

/* Process a fatal interrupt
 * Disable bus mastering ASAP and schedule a reset
 */
irqreturn_t efx_nic_fatal_interrupt(struct efx_nic *efx)
{
	struct falcon_nic_data *nic_data = efx->nic_data;
	efx_oword_t *int_ker = efx->irq_status.addr;
	efx_oword_t fatal_intr;
	int error, mem_perr;

	efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
	error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);

1365 1366 1367 1368
	netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
		  EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
		  EFX_OWORD_VAL(fatal_intr),
		  error ? "disabling bus mastering" : "no recognised error");
1369 1370

	/* If this is a memory parity error dump which blocks are offending */
1371 1372
	mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
		    EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1373 1374 1375
	if (mem_perr) {
		efx_oword_t reg;
		efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1376 1377 1378
		netif_err(efx, hw, efx->net_dev,
			  "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
			  EFX_OWORD_VAL(reg));
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
	}

	/* Disable both devices */
	pci_clear_master(efx->pci_dev);
	if (efx_nic_is_dual_func(efx))
		pci_clear_master(nic_data->pci_dev2);
	efx_nic_disable_interrupts(efx);

	/* Count errors and reset or disable the NIC accordingly */
	if (efx->int_error_count == 0 ||
	    time_after(jiffies, efx->int_error_expire)) {
		efx->int_error_count = 0;
		efx->int_error_expire =
			jiffies + EFX_INT_ERROR_EXPIRE * HZ;
	}
	if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1395 1396
		netif_err(efx, hw, efx->net_dev,
			  "SYSTEM ERROR - reset scheduled\n");
1397 1398
		efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
	} else {
1399 1400 1401
		netif_err(efx, hw, efx->net_dev,
			  "SYSTEM ERROR - max number of errors seen."
			  "NIC will be disabled\n");
1402 1403
		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
	}
1404

1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
	return IRQ_HANDLED;
}

/* Handle a legacy interrupt
 * Acknowledges the interrupt and schedule event queue processing.
 */
static irqreturn_t efx_legacy_interrupt(int irq, void *dev_id)
{
	struct efx_nic *efx = dev_id;
	efx_oword_t *int_ker = efx->irq_status.addr;
	irqreturn_t result = IRQ_NONE;
	struct efx_channel *channel;
	efx_dword_t reg;
	u32 queues;
	int syserr;

	/* Read the ISR which also ACKs the interrupts */
	efx_readd(efx, &reg, FR_BZ_INT_ISR0);
	queues = EFX_EXTRACT_DWORD(reg, 0, 31);

	/* Check to see if we have a serious error condition */
1426 1427 1428 1429 1430
	if (queues & (1U << efx->fatal_irq_level)) {
		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
		if (unlikely(syserr))
			return efx_nic_fatal_interrupt(efx);
	}
1431

1432 1433 1434 1435 1436 1437 1438
	if (queues != 0) {
		if (EFX_WORKAROUND_15783(efx))
			efx->irq_zero_count = 0;

		/* Schedule processing of any interrupting queues */
		efx_for_each_channel(channel, efx) {
			if (queues & 1)
1439
				efx_schedule_channel(channel);
1440
			queues >>= 1;
1441
		}
1442 1443
		result = IRQ_HANDLED;

1444
	} else if (EFX_WORKAROUND_15783(efx)) {
1445 1446
		efx_qword_t *event;

1447 1448 1449 1450 1451 1452
		/* We can't return IRQ_HANDLED more than once on seeing ISR=0
		 * because this might be a shared interrupt. */
		if (efx->irq_zero_count++ == 0)
			result = IRQ_HANDLED;

		/* Ensure we schedule or rearm all event queues */
1453 1454 1455 1456
		efx_for_each_channel(channel, efx) {
			event = efx_event(channel, channel->eventq_read_ptr);
			if (efx_event_present(event))
				efx_schedule_channel(channel);
1457 1458
			else
				efx_nic_eventq_read_ack(channel);
1459
		}
1460 1461 1462 1463
	}

	if (result == IRQ_HANDLED) {
		efx->last_irq_cpu = raw_smp_processor_id();
1464 1465 1466
		netif_vdbg(efx, intr, efx->net_dev,
			   "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
			   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
	}

	return result;
}

/* Handle an MSI interrupt
 *
 * Handle an MSI hardware interrupt.  This routine schedules event
 * queue processing.  No interrupt acknowledgement cycle is necessary.
 * Also, we never need to check that the interrupt is for us, since
 * MSI interrupts cannot be shared.
 */
static irqreturn_t efx_msi_interrupt(int irq, void *dev_id)
{
1481
	struct efx_channel *channel = *(struct efx_channel **)dev_id;
1482 1483 1484 1485 1486
	struct efx_nic *efx = channel->efx;
	efx_oword_t *int_ker = efx->irq_status.addr;
	int syserr;

	efx->last_irq_cpu = raw_smp_processor_id();
1487 1488 1489
	netif_vdbg(efx, intr, efx->net_dev,
		   "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
		   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1490 1491

	/* Check to see if we have a serious error condition */
1492 1493 1494 1495 1496
	if (channel->channel == efx->fatal_irq_level) {
		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
		if (unlikely(syserr))
			return efx_nic_fatal_interrupt(efx);
	}
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507

	/* Schedule processing of the channel */
	efx_schedule_channel(channel);

	return IRQ_HANDLED;
}


/* Setup RSS indirection table.
 * This maps from the hash value of the packet to RXQ
 */
1508
void efx_nic_push_rx_indir_table(struct efx_nic *efx)
1509
{
1510
	size_t i = 0;
1511 1512 1513 1514 1515
	efx_dword_t dword;

	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
		return;

1516 1517 1518 1519
	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
		     FR_BZ_RX_INDIRECTION_TBL_ROWS);

	for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1520
		EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1521 1522
				     efx->rx_indir_table[i]);
		efx_writed_table(efx, &dword, FR_BZ_RX_INDIRECTION_TBL, i);
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
	}
}

/* Hook interrupt handler(s)
 * Try MSI and then legacy interrupts.
 */
int efx_nic_init_interrupt(struct efx_nic *efx)
{
	struct efx_channel *channel;
	int rc;

	if (!EFX_INT_MODE_USE_MSI(efx)) {
		irq_handler_t handler;
		if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
			handler = efx_legacy_interrupt;
		else
			handler = falcon_legacy_interrupt_a1;

		rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
				 efx->name, efx);
		if (rc) {
1544 1545 1546
			netif_err(efx, drv, efx->net_dev,
				  "failed to hook legacy IRQ %d\n",
				  efx->pci_dev->irq);
1547 1548 1549 1550 1551 1552 1553 1554 1555
			goto fail1;
		}
		return 0;
	}

	/* Hook MSI or MSI-X interrupt */
	efx_for_each_channel(channel, efx) {
		rc = request_irq(channel->irq, efx_msi_interrupt,
				 IRQF_PROBE_SHARED, /* Not shared */
1556 1557
				 efx->channel_name[channel->channel],
				 &efx->channel[channel->channel]);
1558
		if (rc) {
1559 1560
			netif_err(efx, drv, efx->net_dev,
				  "failed to hook IRQ %d\n", channel->irq);
1561 1562 1563 1564 1565 1566 1567 1568
			goto fail2;
		}
	}

	return 0;

 fail2:
	efx_for_each_channel(channel, efx)
1569
		free_irq(channel->irq, &efx->channel[channel->channel]);
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
 fail1:
	return rc;
}

void efx_nic_fini_interrupt(struct efx_nic *efx)
{
	struct efx_channel *channel;
	efx_oword_t reg;

	/* Disable MSI/MSI-X interrupts */
	efx_for_each_channel(channel, efx) {
		if (channel->irq)
1582
			free_irq(channel->irq, &efx->channel[channel->channel]);
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
	}

	/* ACK legacy interrupt */
	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
		efx_reado(efx, &reg, FR_BZ_INT_ISR0);
	else
		falcon_irq_ack_a1(efx);

	/* Disable legacy interrupt */
	if (efx->legacy_irq)
		free_irq(efx->legacy_irq, efx);
}

u32 efx_nic_fpga_ver(struct efx_nic *efx)
{
	efx_oword_t altera_build;
	efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
	return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
}

void efx_nic_init_common(struct efx_nic *efx)
{
	efx_oword_t temp;

	/* Set positions of descriptor caches in SRAM. */
	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR,
			     efx->type->tx_dc_base / 8);
	efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR,
			     efx->type->rx_dc_base / 8);
	efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);

	/* Set TX descriptor cache size. */
	BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
	EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
	efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);

	/* Set RX descriptor cache size.  Set low watermark to size-8, as
	 * this allows most efficient prefetching.
	 */
	BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
	efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
	efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);

	/* Program INT_KER address */
	EFX_POPULATE_OWORD_2(temp,
			     FRF_AZ_NORM_INT_VEC_DIS_KER,
			     EFX_INT_MODE_USE_MSI(efx),
			     FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
	efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);

1636 1637 1638 1639 1640 1641 1642
	if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
		/* Use an interrupt level unused by event queues */
		efx->fatal_irq_level = 0x1f;
	else
		/* Use a valid MSI-X vector */
		efx->fatal_irq_level = 0;

1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
	/* Enable all the genuinely fatal interrupts.  (They are still
	 * masked by the overall interrupt mask, controlled by
	 * falcon_interrupts()).
	 *
	 * Note: All other fatal interrupts are enabled
	 */
	EFX_POPULATE_OWORD_3(temp,
			     FRF_AZ_ILL_ADR_INT_KER_EN, 1,
			     FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
			     FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1653 1654
	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
		EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1655 1656 1657
	EFX_INVERT_OWORD(temp);
	efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);

1658
	efx_nic_push_rx_indir_table(efx);
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672

	/* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
	 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
	 */
	efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 0);
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
	/* Enable SW_EV to inherit in char driver - assume harmless here */
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
	/* Prefetch threshold 2 => fetch when descriptor cache half empty */
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1673 1674
	/* Disable hardware watchdog which can misfire */
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1675 1676 1677 1678 1679
	/* Squash TX of packets of 16 bytes or less */
	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
		EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
	efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
}
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851

/* Register dump */

#define REGISTER_REVISION_A	1
#define REGISTER_REVISION_B	2
#define REGISTER_REVISION_C	3
#define REGISTER_REVISION_Z	3	/* latest revision */

struct efx_nic_reg {
	u32 offset:24;
	u32 min_revision:2, max_revision:2;
};

#define REGISTER(name, min_rev, max_rev) {				\
	FR_ ## min_rev ## max_rev ## _ ## name,				\
	REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev	\
}
#define REGISTER_AA(name) REGISTER(name, A, A)
#define REGISTER_AB(name) REGISTER(name, A, B)
#define REGISTER_AZ(name) REGISTER(name, A, Z)
#define REGISTER_BB(name) REGISTER(name, B, B)
#define REGISTER_BZ(name) REGISTER(name, B, Z)
#define REGISTER_CZ(name) REGISTER(name, C, Z)

static const struct efx_nic_reg efx_nic_regs[] = {
	REGISTER_AZ(ADR_REGION),
	REGISTER_AZ(INT_EN_KER),
	REGISTER_BZ(INT_EN_CHAR),
	REGISTER_AZ(INT_ADR_KER),
	REGISTER_BZ(INT_ADR_CHAR),
	/* INT_ACK_KER is WO */
	/* INT_ISR0 is RC */
	REGISTER_AZ(HW_INIT),
	REGISTER_CZ(USR_EV_CFG),
	REGISTER_AB(EE_SPI_HCMD),
	REGISTER_AB(EE_SPI_HADR),
	REGISTER_AB(EE_SPI_HDATA),
	REGISTER_AB(EE_BASE_PAGE),
	REGISTER_AB(EE_VPD_CFG0),
	/* EE_VPD_SW_CNTL and EE_VPD_SW_DATA are not used */
	/* PMBX_DBG_IADDR and PBMX_DBG_IDATA are indirect */
	/* PCIE_CORE_INDIRECT is indirect */
	REGISTER_AB(NIC_STAT),
	REGISTER_AB(GPIO_CTL),
	REGISTER_AB(GLB_CTL),
	/* FATAL_INTR_KER and FATAL_INTR_CHAR are partly RC */
	REGISTER_BZ(DP_CTRL),
	REGISTER_AZ(MEM_STAT),
	REGISTER_AZ(CS_DEBUG),
	REGISTER_AZ(ALTERA_BUILD),
	REGISTER_AZ(CSR_SPARE),
	REGISTER_AB(PCIE_SD_CTL0123),
	REGISTER_AB(PCIE_SD_CTL45),
	REGISTER_AB(PCIE_PCS_CTL_STAT),
	/* DEBUG_DATA_OUT is not used */
	/* DRV_EV is WO */
	REGISTER_AZ(EVQ_CTL),
	REGISTER_AZ(EVQ_CNT1),
	REGISTER_AZ(EVQ_CNT2),
	REGISTER_AZ(BUF_TBL_CFG),
	REGISTER_AZ(SRM_RX_DC_CFG),
	REGISTER_AZ(SRM_TX_DC_CFG),
	REGISTER_AZ(SRM_CFG),
	/* BUF_TBL_UPD is WO */
	REGISTER_AZ(SRM_UPD_EVQ),
	REGISTER_AZ(SRAM_PARITY),
	REGISTER_AZ(RX_CFG),
	REGISTER_BZ(RX_FILTER_CTL),
	/* RX_FLUSH_DESCQ is WO */
	REGISTER_AZ(RX_DC_CFG),
	REGISTER_AZ(RX_DC_PF_WM),
	REGISTER_BZ(RX_RSS_TKEY),
	/* RX_NODESC_DROP is RC */
	REGISTER_AA(RX_SELF_RST),
	/* RX_DEBUG, RX_PUSH_DROP are not used */
	REGISTER_CZ(RX_RSS_IPV6_REG1),
	REGISTER_CZ(RX_RSS_IPV6_REG2),
	REGISTER_CZ(RX_RSS_IPV6_REG3),
	/* TX_FLUSH_DESCQ is WO */
	REGISTER_AZ(TX_DC_CFG),
	REGISTER_AA(TX_CHKSM_CFG),
	REGISTER_AZ(TX_CFG),
	/* TX_PUSH_DROP is not used */
	REGISTER_AZ(TX_RESERVED),
	REGISTER_BZ(TX_PACE),
	/* TX_PACE_DROP_QID is RC */
	REGISTER_BB(TX_VLAN),
	REGISTER_BZ(TX_IPFIL_PORTEN),
	REGISTER_AB(MD_TXD),
	REGISTER_AB(MD_RXD),
	REGISTER_AB(MD_CS),
	REGISTER_AB(MD_PHY_ADR),
	REGISTER_AB(MD_ID),
	/* MD_STAT is RC */
	REGISTER_AB(MAC_STAT_DMA),
	REGISTER_AB(MAC_CTRL),
	REGISTER_BB(GEN_MODE),
	REGISTER_AB(MAC_MC_HASH_REG0),
	REGISTER_AB(MAC_MC_HASH_REG1),
	REGISTER_AB(GM_CFG1),
	REGISTER_AB(GM_CFG2),
	/* GM_IPG and GM_HD are not used */
	REGISTER_AB(GM_MAX_FLEN),
	/* GM_TEST is not used */
	REGISTER_AB(GM_ADR1),
	REGISTER_AB(GM_ADR2),
	REGISTER_AB(GMF_CFG0),
	REGISTER_AB(GMF_CFG1),
	REGISTER_AB(GMF_CFG2),
	REGISTER_AB(GMF_CFG3),
	REGISTER_AB(GMF_CFG4),
	REGISTER_AB(GMF_CFG5),
	REGISTER_BB(TX_SRC_MAC_CTL),
	REGISTER_AB(XM_ADR_LO),
	REGISTER_AB(XM_ADR_HI),
	REGISTER_AB(XM_GLB_CFG),
	REGISTER_AB(XM_TX_CFG),
	REGISTER_AB(XM_RX_CFG),
	REGISTER_AB(XM_MGT_INT_MASK),
	REGISTER_AB(XM_FC),
	REGISTER_AB(XM_PAUSE_TIME),
	REGISTER_AB(XM_TX_PARAM),
	REGISTER_AB(XM_RX_PARAM),
	/* XM_MGT_INT_MSK (note no 'A') is RC */
	REGISTER_AB(XX_PWR_RST),
	REGISTER_AB(XX_SD_CTL),
	REGISTER_AB(XX_TXDRV_CTL),
	/* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */
	/* XX_CORE_STAT is partly RC */
};

struct efx_nic_reg_table {
	u32 offset:24;
	u32 min_revision:2, max_revision:2;
	u32 step:6, rows:21;
};

#define REGISTER_TABLE_DIMENSIONS(_, offset, min_rev, max_rev, step, rows) { \
	offset,								\
	REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev,	\
	step, rows							\
}
#define REGISTER_TABLE(name, min_rev, max_rev) 				\
	REGISTER_TABLE_DIMENSIONS(					\
		name, FR_ ## min_rev ## max_rev ## _ ## name,		\
		min_rev, max_rev,					\
		FR_ ## min_rev ## max_rev ## _ ## name ## _STEP,	\
		FR_ ## min_rev ## max_rev ## _ ## name ## _ROWS)
#define REGISTER_TABLE_AA(name) REGISTER_TABLE(name, A, A)
#define REGISTER_TABLE_AZ(name) REGISTER_TABLE(name, A, Z)
#define REGISTER_TABLE_BB(name) REGISTER_TABLE(name, B, B)
#define REGISTER_TABLE_BZ(name) REGISTER_TABLE(name, B, Z)
#define REGISTER_TABLE_BB_CZ(name)					\
	REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, B, B,		\
				  FR_BZ_ ## name ## _STEP,		\
				  FR_BB_ ## name ## _ROWS),		\
	REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, C, Z,		\
				  FR_BZ_ ## name ## _STEP,		\
				  FR_CZ_ ## name ## _ROWS)
#define REGISTER_TABLE_CZ(name) REGISTER_TABLE(name, C, Z)

static const struct efx_nic_reg_table efx_nic_reg_tables[] = {
	/* DRIVER is not used */
	/* EVQ_RPTR, TIMER_COMMAND, USR_EV and {RX,TX}_DESC_UPD are WO */
	REGISTER_TABLE_BB(TX_IPFIL_TBL),
	REGISTER_TABLE_BB(TX_SRC_MAC_TBL),
	REGISTER_TABLE_AA(RX_DESC_PTR_TBL_KER),
	REGISTER_TABLE_BB_CZ(RX_DESC_PTR_TBL),
	REGISTER_TABLE_AA(TX_DESC_PTR_TBL_KER),
	REGISTER_TABLE_BB_CZ(TX_DESC_PTR_TBL),
	REGISTER_TABLE_AA(EVQ_PTR_TBL_KER),
	REGISTER_TABLE_BB_CZ(EVQ_PTR_TBL),
1852
	/* We can't reasonably read all of the buffer table (up to 8MB!).
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
	 * However this driver will only use a few entries.  Reading
	 * 1K entries allows for some expansion of queue count and
	 * size before we need to change the version. */
	REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL_KER, FR_AA_BUF_FULL_TBL_KER,
				  A, A, 8, 1024),
	REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL, FR_BZ_BUF_FULL_TBL,
				  B, Z, 8, 1024),
	REGISTER_TABLE_CZ(RX_MAC_FILTER_TBL0),
	REGISTER_TABLE_BB_CZ(TIMER_TBL),
	REGISTER_TABLE_BB_CZ(TX_PACE_TBL),
	REGISTER_TABLE_BZ(RX_INDIRECTION_TBL),
	/* TX_FILTER_TBL0 is huge and not used by this driver */
	REGISTER_TABLE_CZ(TX_MAC_FILTER_TBL0),
	REGISTER_TABLE_CZ(MC_TREG_SMEM),
	/* MSIX_PBA_TABLE is not mapped */
	/* SRM_DBG is not mapped (and is redundant with BUF_FLL_TBL) */
1869
	REGISTER_TABLE_BZ(RX_FILTER_TBL0),
1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
};

size_t efx_nic_get_regs_len(struct efx_nic *efx)
{
	const struct efx_nic_reg *reg;
	const struct efx_nic_reg_table *table;
	size_t len = 0;

	for (reg = efx_nic_regs;
	     reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
	     reg++)
		if (efx->type->revision >= reg->min_revision &&
		    efx->type->revision <= reg->max_revision)
			len += sizeof(efx_oword_t);

	for (table = efx_nic_reg_tables;
	     table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
	     table++)
		if (efx->type->revision >= table->min_revision &&
		    efx->type->revision <= table->max_revision)
			len += table->rows * min_t(size_t, table->step, 16);

	return len;
}

void efx_nic_get_regs(struct efx_nic *efx, void *buf)
{
	const struct efx_nic_reg *reg;
	const struct efx_nic_reg_table *table;

	for (reg = efx_nic_regs;
	     reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
	     reg++) {
		if (efx->type->revision >= reg->min_revision &&
		    efx->type->revision <= reg->max_revision) {
			efx_reado(efx, (efx_oword_t *)buf, reg->offset);
			buf += sizeof(efx_oword_t);
		}
	}

	for (table = efx_nic_reg_tables;
	     table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
	     table++) {
		size_t size, i;

		if (!(efx->type->revision >= table->min_revision &&
		      efx->type->revision <= table->max_revision))
			continue;

		size = min_t(size_t, table->step, 16);

		for (i = 0; i < table->rows; i++) {
			switch (table->step) {
			case 4: /* 32-bit register or SRAM */
				efx_readd_table(efx, buf, table->offset, i);
				break;
			case 8: /* 64-bit SRAM */
				efx_sram_readq(efx,
					       efx->membase + table->offset,
					       buf, i);
				break;
			case 16: /* 128-bit register */
				efx_reado_table(efx, buf, table->offset, i);
				break;
			case 32: /* 128-bit register, interleaved */
				efx_reado_table(efx, buf, table->offset, 2 * i);
				break;
			default:
				WARN_ON(1);
				return;
			}
			buf += size;
		}
	}
}