perf_event.c 16.6 KB
Newer Older
1 2 3 4 5 6
#undef DEBUG

/*
 * ARM performance counter support.
 *
 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
7
 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
8
 *
9 10 11 12 13 14 15 16
 * This code is based on the sparc64 perf event code, which is in turn based
 * on the x86 code. Callchain code is based on the ARM OProfile backtrace
 * code.
 */
#define pr_fmt(fmt) "hw perfevents: " fmt

#include <linux/interrupt.h>
#include <linux/kernel.h>
17
#include <linux/module.h>
18
#include <linux/perf_event.h>
19
#include <linux/platform_device.h>
20 21 22 23 24 25 26 27 28
#include <linux/spinlock.h>
#include <linux/uaccess.h>

#include <asm/cputype.h>
#include <asm/irq.h>
#include <asm/irq_regs.h>
#include <asm/pmu.h>
#include <asm/stacktrace.h>

29
static struct platform_device *pmu_device;
30 31 32 33 34

/*
 * Hardware lock to serialize accesses to PMU registers. Needed for the
 * read/modify/write sequences.
 */
35
static DEFINE_RAW_SPINLOCK(pmu_lock);
36 37 38 39 40

/*
 * ARMv6 supports a maximum of 3 events, starting from index 1. If we add
 * another platform that supports more, we need to increase this to be the
 * largest of all platforms.
41 42 43 44
 *
 * ARMv7 supports up to 32 events:
 *  cycle counter CCNT + 31 events counters CNT0..30.
 *  Cortex-A8 has 1+4 counters, Cortex-A9 has 1+6 counters.
45
 */
46
#define ARMPMU_MAX_HWEVENTS		33
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

/* The events for a given CPU. */
struct cpu_hw_events {
	/*
	 * The events that are active on the CPU for the given index. Index 0
	 * is reserved.
	 */
	struct perf_event	*events[ARMPMU_MAX_HWEVENTS];

	/*
	 * A 1 bit for an index indicates that the counter is being used for
	 * an event. A 0 means that the counter can be used.
	 */
	unsigned long		used_mask[BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)];

	/*
	 * A 1 bit for an index indicates that the counter is actively being
	 * used.
	 */
	unsigned long		active_mask[BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)];
};
68
static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
69

70
struct arm_pmu {
71
	enum arm_perf_pmu_ids id;
72
	const char	*name;
73 74 75 76 77 78 79 80 81
	irqreturn_t	(*handle_irq)(int irq_num, void *dev);
	void		(*enable)(struct hw_perf_event *evt, int idx);
	void		(*disable)(struct hw_perf_event *evt, int idx);
	int		(*get_event_idx)(struct cpu_hw_events *cpuc,
					 struct hw_perf_event *hwc);
	u32		(*read_counter)(int idx);
	void		(*write_counter)(int idx, u32 val);
	void		(*start)(void);
	void		(*stop)(void);
82 83 84 85 86
	const unsigned	(*cache_map)[PERF_COUNT_HW_CACHE_MAX]
				    [PERF_COUNT_HW_CACHE_OP_MAX]
				    [PERF_COUNT_HW_CACHE_RESULT_MAX];
	const unsigned	(*event_map)[PERF_COUNT_HW_MAX];
	u32		raw_event_mask;
87 88 89 90 91 92 93
	int		num_events;
	u64		max_period;
};

/* Set at runtime when we know what CPU type we are. */
static const struct arm_pmu *armpmu;

94 95 96 97 98 99 100 101 102 103 104 105
enum arm_perf_pmu_ids
armpmu_get_pmu_id(void)
{
	int id = -ENODEV;

	if (armpmu != NULL)
		id = armpmu->id;

	return id;
}
EXPORT_SYMBOL_GPL(armpmu_get_pmu_id);

106 107 108 109 110 111 112 113 114 115 116 117
int
armpmu_get_max_events(void)
{
	int max_events = 0;

	if (armpmu != NULL)
		max_events = armpmu->num_events;

	return max_events;
}
EXPORT_SYMBOL_GPL(armpmu_get_max_events);

118 119 120 121 122 123
int perf_num_counters(void)
{
	return armpmu_get_max_events();
}
EXPORT_SYMBOL_GPL(perf_num_counters);

124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
#define HW_OP_UNSUPPORTED		0xFFFF

#define C(_x) \
	PERF_COUNT_HW_CACHE_##_x

#define CACHE_OP_UNSUPPORTED		0xFFFF

static int
armpmu_map_cache_event(u64 config)
{
	unsigned int cache_type, cache_op, cache_result, ret;

	cache_type = (config >>  0) & 0xff;
	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
		return -EINVAL;

	cache_op = (config >>  8) & 0xff;
	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
		return -EINVAL;

	cache_result = (config >> 16) & 0xff;
	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
		return -EINVAL;

148
	ret = (int)(*armpmu->cache_map)[cache_type][cache_op][cache_result];
149 150 151 152 153 154 155

	if (ret == CACHE_OP_UNSUPPORTED)
		return -ENOENT;

	return ret;
}

156 157 158 159 160 161 162 163 164 165 166 167 168
static int
armpmu_map_event(u64 config)
{
	int mapping = (*armpmu->event_map)[config];
	return mapping == HW_OP_UNSUPPORTED ? -EOPNOTSUPP : mapping;
}

static int
armpmu_map_raw_event(u64 config)
{
	return (int)(config & armpmu->raw_event_mask);
}

169 170 171 172 173
static int
armpmu_event_set_period(struct perf_event *event,
			struct hw_perf_event *hwc,
			int idx)
{
174
	s64 left = local64_read(&hwc->period_left);
175 176 177 178 179
	s64 period = hwc->sample_period;
	int ret = 0;

	if (unlikely(left <= -period)) {
		left = period;
180
		local64_set(&hwc->period_left, left);
181 182 183 184 185 186
		hwc->last_period = period;
		ret = 1;
	}

	if (unlikely(left <= 0)) {
		left += period;
187
		local64_set(&hwc->period_left, left);
188 189 190 191 192 193 194
		hwc->last_period = period;
		ret = 1;
	}

	if (left > (s64)armpmu->max_period)
		left = armpmu->max_period;

195
	local64_set(&hwc->prev_count, (u64)-left);
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210

	armpmu->write_counter(idx, (u64)(-left) & 0xffffffff);

	perf_event_update_userpage(event);

	return ret;
}

static u64
armpmu_event_update(struct perf_event *event,
		    struct hw_perf_event *hwc,
		    int idx)
{
	int shift = 64 - 32;
	s64 prev_raw_count, new_raw_count;
211
	u64 delta;
212 213

again:
214
	prev_raw_count = local64_read(&hwc->prev_count);
215 216
	new_raw_count = armpmu->read_counter(idx);

217
	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
218 219 220 221 222 223
			     new_raw_count) != prev_raw_count)
		goto again;

	delta = (new_raw_count << shift) - (prev_raw_count << shift);
	delta >>= shift;

224 225
	local64_add(delta, &event->count);
	local64_sub(delta, &hwc->period_left);
226 227 228 229 230

	return new_raw_count;
}

static void
P
Peter Zijlstra 已提交
231
armpmu_read(struct perf_event *event)
232 233 234
{
	struct hw_perf_event *hwc = &event->hw;

P
Peter Zijlstra 已提交
235 236 237
	/* Don't read disabled counters! */
	if (hwc->idx < 0)
		return;
238

P
Peter Zijlstra 已提交
239
	armpmu_event_update(event, hwc, hwc->idx);
240 241 242
}

static void
P
Peter Zijlstra 已提交
243
armpmu_stop(struct perf_event *event, int flags)
244 245 246
{
	struct hw_perf_event *hwc = &event->hw;

P
Peter Zijlstra 已提交
247
	if (!armpmu)
248 249
		return;

P
Peter Zijlstra 已提交
250 251 252 253 254 255 256 257 258 259
	/*
	 * ARM pmu always has to update the counter, so ignore
	 * PERF_EF_UPDATE, see comments in armpmu_start().
	 */
	if (!(hwc->state & PERF_HES_STOPPED)) {
		armpmu->disable(hwc, hwc->idx);
		barrier(); /* why? */
		armpmu_event_update(event, hwc, hwc->idx);
		hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
	}
260 261 262
}

static void
P
Peter Zijlstra 已提交
263
armpmu_start(struct perf_event *event, int flags)
264 265 266
{
	struct hw_perf_event *hwc = &event->hw;

P
Peter Zijlstra 已提交
267 268 269 270 271 272 273 274 275 276 277
	if (!armpmu)
		return;

	/*
	 * ARM pmu always has to reprogram the period, so ignore
	 * PERF_EF_RELOAD, see the comment below.
	 */
	if (flags & PERF_EF_RELOAD)
		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));

	hwc->state = 0;
278 279
	/*
	 * Set the period again. Some counters can't be stopped, so when we
P
Peter Zijlstra 已提交
280
	 * were stopped we simply disabled the IRQ source and the counter
281 282 283 284 285 286 287 288
	 * may have been left counting. If we don't do this step then we may
	 * get an interrupt too soon or *way* too late if the overflow has
	 * happened since disabling.
	 */
	armpmu_event_set_period(event, hwc, hwc->idx);
	armpmu->enable(hwc, hwc->idx);
}

P
Peter Zijlstra 已提交
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
static void
armpmu_del(struct perf_event *event, int flags)
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	struct hw_perf_event *hwc = &event->hw;
	int idx = hwc->idx;

	WARN_ON(idx < 0);

	clear_bit(idx, cpuc->active_mask);
	armpmu_stop(event, PERF_EF_UPDATE);
	cpuc->events[idx] = NULL;
	clear_bit(idx, cpuc->used_mask);

	perf_event_update_userpage(event);
}

306
static int
P
Peter Zijlstra 已提交
307
armpmu_add(struct perf_event *event, int flags)
308 309 310 311 312 313
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	struct hw_perf_event *hwc = &event->hw;
	int idx;
	int err = 0;

P
Peter Zijlstra 已提交
314
	perf_pmu_disable(event->pmu);
315

316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
	/* If we don't have a space for the counter then finish early. */
	idx = armpmu->get_event_idx(cpuc, hwc);
	if (idx < 0) {
		err = idx;
		goto out;
	}

	/*
	 * If there is an event in the counter we are going to use then make
	 * sure it is disabled.
	 */
	event->hw.idx = idx;
	armpmu->disable(hwc, idx);
	cpuc->events[idx] = event;
	set_bit(idx, cpuc->active_mask);

P
Peter Zijlstra 已提交
332 333 334
	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
	if (flags & PERF_EF_START)
		armpmu_start(event, PERF_EF_RELOAD);
335 336 337 338 339

	/* Propagate our changes to the userspace mapping. */
	perf_event_update_userpage(event);

out:
P
Peter Zijlstra 已提交
340
	perf_pmu_enable(event->pmu);
341 342 343
	return err;
}

344
static struct pmu pmu;
345 346 347 348 349 350 351

static int
validate_event(struct cpu_hw_events *cpuc,
	       struct perf_event *event)
{
	struct hw_perf_event fake_event = event->hw;

352 353
	if (event->pmu != &pmu || event->state <= PERF_EVENT_STATE_OFF)
		return 1;
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382

	return armpmu->get_event_idx(cpuc, &fake_event) >= 0;
}

static int
validate_group(struct perf_event *event)
{
	struct perf_event *sibling, *leader = event->group_leader;
	struct cpu_hw_events fake_pmu;

	memset(&fake_pmu, 0, sizeof(fake_pmu));

	if (!validate_event(&fake_pmu, leader))
		return -ENOSPC;

	list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
		if (!validate_event(&fake_pmu, sibling))
			return -ENOSPC;
	}

	if (!validate_event(&fake_pmu, event))
		return -ENOSPC;

	return 0;
}

static int
armpmu_reserve_hardware(void)
{
383
	int i, err = -ENODEV, irq;
384

385 386
	pmu_device = reserve_pmu(ARM_PMU_DEVICE_CPU);
	if (IS_ERR(pmu_device)) {
387
		pr_warning("unable to reserve pmu\n");
388
		return PTR_ERR(pmu_device);
389 390
	}

391
	init_pmu(ARM_PMU_DEVICE_CPU);
392

393
	if (pmu_device->num_resources < 1) {
394 395 396 397
		pr_err("no irqs for PMUs defined\n");
		return -ENODEV;
	}

398 399 400 401 402 403
	for (i = 0; i < pmu_device->num_resources; ++i) {
		irq = platform_get_irq(pmu_device, i);
		if (irq < 0)
			continue;

		err = request_irq(irq, armpmu->handle_irq,
404 405
				  IRQF_DISABLED | IRQF_NOBALANCING,
				  "armpmu", NULL);
406
		if (err) {
407 408
			pr_warning("unable to request IRQ%d for ARM perf "
				"counters\n", irq);
409 410 411 412 413
			break;
		}
	}

	if (err) {
414 415 416 417 418 419 420
		for (i = i - 1; i >= 0; --i) {
			irq = platform_get_irq(pmu_device, i);
			if (irq >= 0)
				free_irq(irq, NULL);
		}
		release_pmu(pmu_device);
		pmu_device = NULL;
421 422 423 424 425 426 427 428
	}

	return err;
}

static void
armpmu_release_hardware(void)
{
429
	int i, irq;
430

431 432 433 434 435
	for (i = pmu_device->num_resources - 1; i >= 0; --i) {
		irq = platform_get_irq(pmu_device, i);
		if (irq >= 0)
			free_irq(irq, NULL);
	}
436 437
	armpmu->stop();

438 439
	release_pmu(pmu_device);
	pmu_device = NULL;
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
}

static atomic_t active_events = ATOMIC_INIT(0);
static DEFINE_MUTEX(pmu_reserve_mutex);

static void
hw_perf_event_destroy(struct perf_event *event)
{
	if (atomic_dec_and_mutex_lock(&active_events, &pmu_reserve_mutex)) {
		armpmu_release_hardware();
		mutex_unlock(&pmu_reserve_mutex);
	}
}

static int
__hw_perf_event_init(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;
	int mapping, err;

	/* Decode the generic type into an ARM event identifier. */
	if (PERF_TYPE_HARDWARE == event->attr.type) {
462
		mapping = armpmu_map_event(event->attr.config);
463 464 465
	} else if (PERF_TYPE_HW_CACHE == event->attr.type) {
		mapping = armpmu_map_cache_event(event->attr.config);
	} else if (PERF_TYPE_RAW == event->attr.type) {
466
		mapping = armpmu_map_raw_event(event->attr.config);
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
	} else {
		pr_debug("event type %x not supported\n", event->attr.type);
		return -EOPNOTSUPP;
	}

	if (mapping < 0) {
		pr_debug("event %x:%llx not supported\n", event->attr.type,
			 event->attr.config);
		return mapping;
	}

	/*
	 * Check whether we need to exclude the counter from certain modes.
	 * The ARM performance counters are on all of the time so if someone
	 * has asked us for some excludes then we have to fail.
	 */
	if (event->attr.exclude_kernel || event->attr.exclude_user ||
	    event->attr.exclude_hv || event->attr.exclude_idle) {
		pr_debug("ARM performance counters do not support "
			 "mode exclusion\n");
		return -EPERM;
	}

	/*
	 * We don't assign an index until we actually place the event onto
	 * hardware. Use -1 to signify that we haven't decided where to put it
	 * yet. For SMP systems, each core has it's own PMU so we can't do any
	 * clever allocation or constraints checking at this point.
	 */
	hwc->idx = -1;

	/*
	 * Store the event encoding into the config_base field. config and
	 * event_base are unused as the only 2 things we need to know are
	 * the event mapping and the counter to use. The counter to use is
	 * also the indx and the config_base is the event type.
	 */
	hwc->config_base	    = (unsigned long)mapping;
	hwc->config		    = 0;
	hwc->event_base		    = 0;

	if (!hwc->sample_period) {
		hwc->sample_period  = armpmu->max_period;
		hwc->last_period    = hwc->sample_period;
511
		local64_set(&hwc->period_left, hwc->sample_period);
512 513 514 515 516 517 518 519 520 521 522 523
	}

	err = 0;
	if (event->group_leader != event) {
		err = validate_group(event);
		if (err)
			return -EINVAL;
	}

	return err;
}

524
static int armpmu_event_init(struct perf_event *event)
525 526 527
{
	int err = 0;

528 529 530 531 532 533 534 535 536 537
	switch (event->attr.type) {
	case PERF_TYPE_RAW:
	case PERF_TYPE_HARDWARE:
	case PERF_TYPE_HW_CACHE:
		break;

	default:
		return -ENOENT;
	}

538
	if (!armpmu)
539
		return -ENODEV;
540 541 542 543

	event->destroy = hw_perf_event_destroy;

	if (!atomic_inc_not_zero(&active_events)) {
544
		if (atomic_read(&active_events) > armpmu->num_events) {
545
			atomic_dec(&active_events);
546
			return -ENOSPC;
547 548 549 550 551 552 553 554 555 556 557 558 559
		}

		mutex_lock(&pmu_reserve_mutex);
		if (atomic_read(&active_events) == 0) {
			err = armpmu_reserve_hardware();
		}

		if (!err)
			atomic_inc(&active_events);
		mutex_unlock(&pmu_reserve_mutex);
	}

	if (err)
560
		return err;
561 562 563 564 565

	err = __hw_perf_event_init(event);
	if (err)
		hw_perf_event_destroy(event);

566
	return err;
567 568
}

P
Peter Zijlstra 已提交
569
static void armpmu_enable(struct pmu *pmu)
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
{
	/* Enable all of the perf events on hardware. */
	int idx;
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);

	if (!armpmu)
		return;

	for (idx = 0; idx <= armpmu->num_events; ++idx) {
		struct perf_event *event = cpuc->events[idx];

		if (!event)
			continue;

		armpmu->enable(&event->hw, idx);
	}

	armpmu->start();
}

P
Peter Zijlstra 已提交
590
static void armpmu_disable(struct pmu *pmu)
591 592 593 594 595
{
	if (armpmu)
		armpmu->stop();
}

P
Peter Zijlstra 已提交
596
static struct pmu pmu = {
P
Peter Zijlstra 已提交
597 598 599 600 601 602 603 604
	.pmu_enable	= armpmu_enable,
	.pmu_disable	= armpmu_disable,
	.event_init	= armpmu_event_init,
	.add		= armpmu_add,
	.del		= armpmu_del,
	.start		= armpmu_start,
	.stop		= armpmu_stop,
	.read		= armpmu_read,
P
Peter Zijlstra 已提交
605 606
};

607 608 609 610
/* Include the PMU-specific implementations. */
#include "perf_event_xscale.c"
#include "perf_event_v6.c"
#include "perf_event_v7.c"
611

612 613 614 615 616 617 618
static int __init
init_hw_perf_events(void)
{
	unsigned long cpuid = read_cpuid_id();
	unsigned long implementor = (cpuid & 0xFF000000) >> 24;
	unsigned long part_number = (cpuid & 0xFFF0);

619
	/* ARM Ltd CPUs. */
620 621 622 623 624
	if (0x41 == implementor) {
		switch (part_number) {
		case 0xB360:	/* ARM1136 */
		case 0xB560:	/* ARM1156 */
		case 0xB760:	/* ARM1176 */
625
			armpmu = armv6pmu_init();
626 627
			break;
		case 0xB020:	/* ARM11mpcore */
628
			armpmu = armv6mpcore_pmu_init();
629
			break;
630
		case 0xC080:	/* Cortex-A8 */
631
			armpmu = armv7_a8_pmu_init();
632 633
			break;
		case 0xC090:	/* Cortex-A9 */
634
			armpmu = armv7_a9_pmu_init();
635
			break;
636 637 638 639 640 641
		}
	/* Intel CPUs [xscale]. */
	} else if (0x69 == implementor) {
		part_number = (cpuid >> 13) & 0x7;
		switch (part_number) {
		case 1:
642
			armpmu = xscale1pmu_init();
643 644
			break;
		case 2:
645
			armpmu = xscale2pmu_init();
646
			break;
647 648 649
		}
	}

650
	if (armpmu) {
651
		pr_info("enabled with %s PMU driver, %d counters available\n",
652
			armpmu->name, armpmu->num_events);
653 654 655
	} else {
		pr_info("no hardware support available\n");
	}
656

P
Peter Zijlstra 已提交
657
	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
658

659 660
	return 0;
}
661
early_initcall(init_hw_perf_events);
662 663 664 665 666 667 668 669 670 671 672 673 674 675

/*
 * Callchain handling code.
 */

/*
 * The registers we're interested in are at the end of the variable
 * length saved register structure. The fp points at the end of this
 * structure so the address of this struct is:
 * (struct frame_tail *)(xxx->fp)-1
 *
 * This code has been adapted from the ARM OProfile support.
 */
struct frame_tail {
676 677 678
	struct frame_tail __user *fp;
	unsigned long sp;
	unsigned long lr;
679 680 681 682 683 684
} __attribute__((packed));

/*
 * Get the return address for a single stackframe and return a pointer to the
 * next frame tail.
 */
685 686
static struct frame_tail __user *
user_backtrace(struct frame_tail __user *tail,
687 688 689 690 691 692 693 694 695 696
	       struct perf_callchain_entry *entry)
{
	struct frame_tail buftail;

	/* Also check accessibility of one struct frame_tail beyond */
	if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
		return NULL;
	if (__copy_from_user_inatomic(&buftail, tail, sizeof(buftail)))
		return NULL;

697
	perf_callchain_store(entry, buftail.lr);
698 699 700 701 702

	/*
	 * Frame pointers should strictly progress back up the stack
	 * (towards higher addresses).
	 */
703
	if (tail + 1 >= buftail.fp)
704 705 706 707 708
		return NULL;

	return buftail.fp - 1;
}

709 710
void
perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
711
{
712
	struct frame_tail __user *tail;
713 714


715
	tail = (struct frame_tail __user *)regs->ARM_fp - 1;
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730

	while (tail && !((unsigned long)tail & 0x3))
		tail = user_backtrace(tail, entry);
}

/*
 * Gets called by walk_stackframe() for every stackframe. This will be called
 * whist unwinding the stackframe and is like a subroutine return so we use
 * the PC.
 */
static int
callchain_trace(struct stackframe *fr,
		void *data)
{
	struct perf_callchain_entry *entry = data;
731
	perf_callchain_store(entry, fr->pc);
732 733 734
	return 0;
}

735 736
void
perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
737 738 739 740 741 742 743 744 745
{
	struct stackframe fr;

	fr.fp = regs->ARM_fp;
	fr.sp = regs->ARM_sp;
	fr.lr = regs->ARM_lr;
	fr.pc = regs->ARM_pc;
	walk_stackframe(&fr, callchain_trace, entry);
}