slab.h 16.7 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2 3
 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
 *
C
Christoph Lameter 已提交
4
 * (C) SGI 2006, Christoph Lameter
5 6
 * 	Cleaned up and restructured to ease the addition of alternative
 * 	implementations of SLAB allocators.
L
Linus Torvalds 已提交
7 8 9 10 11
 */

#ifndef _LINUX_SLAB_H
#define	_LINUX_SLAB_H

12 13
#include <linux/gfp.h>
#include <linux/types.h>
G
Glauber Costa 已提交
14 15
#include <linux/workqueue.h>

L
Linus Torvalds 已提交
16

17 18 19
/*
 * Flags to pass to kmem_cache_create().
 * The ones marked DEBUG are only valid if CONFIG_SLAB_DEBUG is set.
L
Linus Torvalds 已提交
20
 */
C
Christoph Lameter 已提交
21 22 23 24
#define SLAB_DEBUG_FREE		0x00000100UL	/* DEBUG: Perform (expensive) checks on free */
#define SLAB_RED_ZONE		0x00000400UL	/* DEBUG: Red zone objs in a cache */
#define SLAB_POISON		0x00000800UL	/* DEBUG: Poison objects */
#define SLAB_HWCACHE_ALIGN	0x00002000UL	/* Align objs on cache lines */
25 26 27
#define SLAB_CACHE_DMA		0x00004000UL	/* Use GFP_DMA memory */
#define SLAB_STORE_USER		0x00010000UL	/* DEBUG: Store the last owner for bug hunting */
#define SLAB_PANIC		0x00040000UL	/* Panic if kmem_cache_create() fails */
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
/*
 * SLAB_DESTROY_BY_RCU - **WARNING** READ THIS!
 *
 * This delays freeing the SLAB page by a grace period, it does _NOT_
 * delay object freeing. This means that if you do kmem_cache_free()
 * that memory location is free to be reused at any time. Thus it may
 * be possible to see another object there in the same RCU grace period.
 *
 * This feature only ensures the memory location backing the object
 * stays valid, the trick to using this is relying on an independent
 * object validation pass. Something like:
 *
 *  rcu_read_lock()
 * again:
 *  obj = lockless_lookup(key);
 *  if (obj) {
 *    if (!try_get_ref(obj)) // might fail for free objects
 *      goto again;
 *
 *    if (obj->key != key) { // not the object we expected
 *      put_ref(obj);
 *      goto again;
 *    }
 *  }
 *  rcu_read_unlock();
 *
 * See also the comment on struct slab_rcu in mm/slab.c.
 */
56
#define SLAB_DESTROY_BY_RCU	0x00080000UL	/* Defer freeing slabs to RCU */
57
#define SLAB_MEM_SPREAD		0x00100000UL	/* Spread some memory over cpuset */
C
Christoph Lameter 已提交
58
#define SLAB_TRACE		0x00200000UL	/* Trace allocations and frees */
L
Linus Torvalds 已提交
59

60 61 62 63 64 65 66
/* Flag to prevent checks on free */
#ifdef CONFIG_DEBUG_OBJECTS
# define SLAB_DEBUG_OBJECTS	0x00400000UL
#else
# define SLAB_DEBUG_OBJECTS	0x00000000UL
#endif

67 68
#define SLAB_NOLEAKTRACE	0x00800000UL	/* Avoid kmemleak tracing */

V
Vegard Nossum 已提交
69 70 71 72 73 74
/* Don't track use of uninitialized memory */
#ifdef CONFIG_KMEMCHECK
# define SLAB_NOTRACK		0x01000000UL
#else
# define SLAB_NOTRACK		0x00000000UL
#endif
75 76 77 78 79
#ifdef CONFIG_FAILSLAB
# define SLAB_FAILSLAB		0x02000000UL	/* Fault injection mark */
#else
# define SLAB_FAILSLAB		0x00000000UL
#endif
V
Vegard Nossum 已提交
80

81 82 83
/* The following flags affect the page allocator grouping pages by mobility */
#define SLAB_RECLAIM_ACCOUNT	0x00020000UL		/* Objects are reclaimable */
#define SLAB_TEMPORARY		SLAB_RECLAIM_ACCOUNT	/* Objects are short-lived */
84 85 86 87 88 89 90 91 92 93
/*
 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
 *
 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
 *
 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
 * Both make kfree a no-op.
 */
#define ZERO_SIZE_PTR ((void *)16)

94
#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
95 96
				(unsigned long)ZERO_SIZE_PTR)

97

98
struct mem_cgroup;
99 100 101 102
/*
 * struct kmem_cache related prototypes
 */
void __init kmem_cache_init(void);
C
Christoph Lameter 已提交
103
int slab_is_available(void);
L
Linus Torvalds 已提交
104

105
struct kmem_cache *kmem_cache_create(const char *, size_t, size_t,
106
			unsigned long,
107
			void (*)(void *));
108 109
struct kmem_cache *
kmem_cache_create_memcg(struct mem_cgroup *, const char *, size_t, size_t,
G
Glauber Costa 已提交
110
			unsigned long, void (*)(void *), struct kmem_cache *);
111 112 113 114
void kmem_cache_destroy(struct kmem_cache *);
int kmem_cache_shrink(struct kmem_cache *);
void kmem_cache_free(struct kmem_cache *, void *);

115 116 117 118 119 120 121 122 123 124
/*
 * Please use this macro to create slab caches. Simply specify the
 * name of the structure and maybe some flags that are listed above.
 *
 * The alignment of the struct determines object alignment. If you
 * f.e. add ____cacheline_aligned_in_smp to the struct declaration
 * then the objects will be properly aligned in SMP configurations.
 */
#define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
		sizeof(struct __struct), __alignof__(struct __struct),\
125
		(__flags), NULL)
126

127 128 129 130 131 132 133 134 135
/*
 * Common kmalloc functions provided by all allocators
 */
void * __must_check __krealloc(const void *, size_t, gfp_t);
void * __must_check krealloc(const void *, size_t, gfp_t);
void kfree(const void *);
void kzfree(const void *);
size_t ksize(const void *);

136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
#ifdef CONFIG_SLOB
/*
 * Common fields provided in kmem_cache by all slab allocators
 * This struct is either used directly by the allocator (SLOB)
 * or the allocator must include definitions for all fields
 * provided in kmem_cache_common in their definition of kmem_cache.
 *
 * Once we can do anonymous structs (C11 standard) we could put a
 * anonymous struct definition in these allocators so that the
 * separate allocations in the kmem_cache structure of SLAB and
 * SLUB is no longer needed.
 */
struct kmem_cache {
	unsigned int object_size;/* The original size of the object */
	unsigned int size;	/* The aligned/padded/added on size  */
	unsigned int align;	/* Alignment as calculated */
	unsigned long flags;	/* Active flags on the slab */
	const char *name;	/* Slab name for sysfs */
	int refcount;		/* Use counter */
	void (*ctor)(void *);	/* Called on object slot creation */
	struct list_head list;	/* List of all slab caches on the system */
};

#define KMALLOC_MAX_SIZE (1UL << 30)

#include <linux/slob_def.h>

#else /* CONFIG_SLOB */

165
/*
166 167 168 169 170 171
 * Kmalloc array related definitions
 */

#ifdef CONFIG_SLAB
/*
 * The largest kmalloc size supported by the SLAB allocators is
172 173 174 175 176 177 178
 * 32 megabyte (2^25) or the maximum allocatable page order if that is
 * less than 32 MB.
 *
 * WARNING: Its not easy to increase this value since the allocators have
 * to do various tricks to work around compiler limitations in order to
 * ensure proper constant folding.
 */
179 180
#define KMALLOC_SHIFT_HIGH	((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
				(MAX_ORDER + PAGE_SHIFT - 1) : 25)
181 182 183 184 185 186 187 188 189 190 191
#define KMALLOC_SHIFT_MAX	KMALLOC_SHIFT_HIGH
#define KMALLOC_SHIFT_LOW	5
#else
/*
 * SLUB allocates up to order 2 pages directly and otherwise
 * passes the request to the page allocator.
 */
#define KMALLOC_SHIFT_HIGH	(PAGE_SHIFT + 1)
#define KMALLOC_SHIFT_MAX	(MAX_ORDER + PAGE_SHIFT)
#define KMALLOC_SHIFT_LOW	3
#endif
192

193 194 195 196 197 198
/* Maximum allocatable size */
#define KMALLOC_MAX_SIZE	(1UL << KMALLOC_SHIFT_MAX)
/* Maximum size for which we actually use a slab cache */
#define KMALLOC_MAX_CACHE_SIZE	(1UL << KMALLOC_SHIFT_HIGH)
/* Maximum order allocatable via the slab allocagtor */
#define KMALLOC_MAX_ORDER	(KMALLOC_SHIFT_MAX - PAGE_SHIFT)
199

200 201 202 203 204 205
/*
 * Kmalloc subsystem.
 */
#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
#else
206
#define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
207 208
#endif

209 210 211 212 213
extern struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
#ifdef CONFIG_ZONE_DMA
extern struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
#endif

214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
/*
 * Figure out which kmalloc slab an allocation of a certain size
 * belongs to.
 * 0 = zero alloc
 * 1 =  65 .. 96 bytes
 * 2 = 120 .. 192 bytes
 * n = 2^(n-1) .. 2^n -1
 */
static __always_inline int kmalloc_index(size_t size)
{
	if (!size)
		return 0;

	if (size <= KMALLOC_MIN_SIZE)
		return KMALLOC_SHIFT_LOW;

	if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
		return 1;
	if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
		return 2;
	if (size <=          8) return 3;
	if (size <=         16) return 4;
	if (size <=         32) return 5;
	if (size <=         64) return 6;
	if (size <=        128) return 7;
	if (size <=        256) return 8;
	if (size <=        512) return 9;
	if (size <=       1024) return 10;
	if (size <=   2 * 1024) return 11;
	if (size <=   4 * 1024) return 12;
	if (size <=   8 * 1024) return 13;
	if (size <=  16 * 1024) return 14;
	if (size <=  32 * 1024) return 15;
	if (size <=  64 * 1024) return 16;
	if (size <= 128 * 1024) return 17;
	if (size <= 256 * 1024) return 18;
	if (size <= 512 * 1024) return 19;
	if (size <= 1024 * 1024) return 20;
	if (size <=  2 * 1024 * 1024) return 21;
	if (size <=  4 * 1024 * 1024) return 22;
	if (size <=  8 * 1024 * 1024) return 23;
	if (size <=  16 * 1024 * 1024) return 24;
	if (size <=  32 * 1024 * 1024) return 25;
	if (size <=  64 * 1024 * 1024) return 26;
	BUG();

	/* Will never be reached. Needed because the compiler may complain */
	return -1;
}

#ifdef CONFIG_SLAB
#include <linux/slab_def.h>
#elif defined(CONFIG_SLUB)
#include <linux/slub_def.h>
#else
#error "Unknown slab allocator"
#endif

/*
 * Determine size used for the nth kmalloc cache.
 * return size or 0 if a kmalloc cache for that
 * size does not exist
 */
static __always_inline int kmalloc_size(int n)
{
	if (n > 2)
		return 1 << n;

	if (n == 1 && KMALLOC_MIN_SIZE <= 32)
		return 96;

	if (n == 2 && KMALLOC_MIN_SIZE <= 64)
		return 192;

	return 0;
}
#endif /* !CONFIG_SLOB */

292 293 294 295 296
/*
 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
 * alignment larger than the alignment of a 64-bit integer.
 * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that.
 */
297 298 299 300 301 302
#ifdef ARCH_DMA_MINALIGN
#define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
#else
#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
#endif

303 304 305 306 307
/*
 * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
 * Intended for arches that get misalignment faults even for 64 bit integer
 * aligned buffers.
 */
308 309 310
#ifndef ARCH_SLAB_MINALIGN
#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
#endif
G
Glauber Costa 已提交
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
/*
 * This is the main placeholder for memcg-related information in kmem caches.
 * struct kmem_cache will hold a pointer to it, so the memory cost while
 * disabled is 1 pointer. The runtime cost while enabled, gets bigger than it
 * would otherwise be if that would be bundled in kmem_cache: we'll need an
 * extra pointer chase. But the trade off clearly lays in favor of not
 * penalizing non-users.
 *
 * Both the root cache and the child caches will have it. For the root cache,
 * this will hold a dynamically allocated array large enough to hold
 * information about the currently limited memcgs in the system.
 *
 * Child caches will hold extra metadata needed for its operation. Fields are:
 *
 * @memcg: pointer to the memcg this cache belongs to
326 327
 * @list: list_head for the list of all caches in this memcg
 * @root_cache: pointer to the global, root cache, this cache was derived from
G
Glauber Costa 已提交
328 329 330 331
 * @dead: set to true after the memcg dies; the cache may still be around.
 * @nr_pages: number of pages that belongs to this cache.
 * @destroy: worker to be called whenever we are ready, or believe we may be
 *           ready, to destroy this cache.
G
Glauber Costa 已提交
332 333 334 335 336
 */
struct memcg_cache_params {
	bool is_root_cache;
	union {
		struct kmem_cache *memcg_caches[0];
337 338 339 340
		struct {
			struct mem_cgroup *memcg;
			struct list_head list;
			struct kmem_cache *root_cache;
G
Glauber Costa 已提交
341 342 343
			bool dead;
			atomic_t nr_pages;
			struct work_struct destroy;
344
		};
G
Glauber Costa 已提交
345 346 347
	};
};

348 349
int memcg_update_all_caches(int num_memcgs);

350 351 352 353
struct seq_file;
int cache_show(struct kmem_cache *s, struct seq_file *m);
void print_slabinfo_header(struct seq_file *m);

354
/**
X
Xi Wang 已提交
355
 * kmalloc_array - allocate memory for an array.
356 357 358
 * @n: number of elements.
 * @size: element size.
 * @flags: the type of memory to allocate.
359 360 361 362 363 364 365
 *
 * The @flags argument may be one of:
 *
 * %GFP_USER - Allocate memory on behalf of user.  May sleep.
 *
 * %GFP_KERNEL - Allocate normal kernel ram.  May sleep.
 *
P
Paul Mundt 已提交
366
 * %GFP_ATOMIC - Allocation will not sleep.  May use emergency pools.
367 368 369 370 371 372 373 374
 *   For example, use this inside interrupt handlers.
 *
 * %GFP_HIGHUSER - Allocate pages from high memory.
 *
 * %GFP_NOIO - Do not do any I/O at all while trying to get memory.
 *
 * %GFP_NOFS - Do not make any fs calls while trying to get memory.
 *
P
Paul Mundt 已提交
375 376 377 378 379 380 381 382
 * %GFP_NOWAIT - Allocation will not sleep.
 *
 * %GFP_THISNODE - Allocate node-local memory only.
 *
 * %GFP_DMA - Allocation suitable for DMA.
 *   Should only be used for kmalloc() caches. Otherwise, use a
 *   slab created with SLAB_DMA.
 *
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
 * Also it is possible to set different flags by OR'ing
 * in one or more of the following additional @flags:
 *
 * %__GFP_COLD - Request cache-cold pages instead of
 *   trying to return cache-warm pages.
 *
 * %__GFP_HIGH - This allocation has high priority and may use emergency pools.
 *
 * %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail
 *   (think twice before using).
 *
 * %__GFP_NORETRY - If memory is not immediately available,
 *   then give up at once.
 *
 * %__GFP_NOWARN - If allocation fails, don't issue any warnings.
 *
 * %__GFP_REPEAT - If allocation fails initially, try once more before failing.
P
Paul Mundt 已提交
400 401 402 403
 *
 * There are other flags available as well, but these are not intended
 * for general use, and so are not documented here. For a full list of
 * potential flags, always refer to linux/gfp.h.
404
 */
X
Xi Wang 已提交
405
static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags)
L
Linus Torvalds 已提交
406
{
X
Xi Wang 已提交
407
	if (size != 0 && n > SIZE_MAX / size)
P
Paul Mundt 已提交
408
		return NULL;
X
Xi Wang 已提交
409 410 411 412 413 414 415 416 417 418 419 420
	return __kmalloc(n * size, flags);
}

/**
 * kcalloc - allocate memory for an array. The memory is set to zero.
 * @n: number of elements.
 * @size: element size.
 * @flags: the type of memory to allocate (see kmalloc).
 */
static inline void *kcalloc(size_t n, size_t size, gfp_t flags)
{
	return kmalloc_array(n, size, flags | __GFP_ZERO);
L
Linus Torvalds 已提交
421 422
}

P
Paul Mundt 已提交
423 424 425 426 427 428 429 430 431 432 433
#if !defined(CONFIG_NUMA) && !defined(CONFIG_SLOB)
/**
 * kmalloc_node - allocate memory from a specific node
 * @size: how many bytes of memory are required.
 * @flags: the type of memory to allocate (see kcalloc).
 * @node: node to allocate from.
 *
 * kmalloc() for non-local nodes, used to allocate from a specific node
 * if available. Equivalent to kmalloc() in the non-NUMA single-node
 * case.
 */
C
Christoph Lameter 已提交
434 435 436 437 438 439 440 441 442
static inline void *kmalloc_node(size_t size, gfp_t flags, int node)
{
	return kmalloc(size, flags);
}

static inline void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __kmalloc(size, flags);
}
P
Paul Mundt 已提交
443 444 445 446 447 448 449 450 451

void *kmem_cache_alloc(struct kmem_cache *, gfp_t);

static inline void *kmem_cache_alloc_node(struct kmem_cache *cachep,
					gfp_t flags, int node)
{
	return kmem_cache_alloc(cachep, flags);
}
#endif /* !CONFIG_NUMA && !CONFIG_SLOB */
C
Christoph Lameter 已提交
452

453 454 455 456 457 458 459 460
/*
 * kmalloc_track_caller is a special version of kmalloc that records the
 * calling function of the routine calling it for slab leak tracking instead
 * of just the calling function (confusing, eh?).
 * It's useful when the call to kmalloc comes from a widely-used standard
 * allocator where we care about the real place the memory allocation
 * request comes from.
 */
461
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB) || \
462 463
	(defined(CONFIG_SLAB) && defined(CONFIG_TRACING)) || \
	(defined(CONFIG_SLOB) && defined(CONFIG_TRACING))
464
extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long);
465
#define kmalloc_track_caller(size, flags) \
466
	__kmalloc_track_caller(size, flags, _RET_IP_)
467 468 469 470
#else
#define kmalloc_track_caller(size, flags) \
	__kmalloc(size, flags)
#endif /* DEBUG_SLAB */
L
Linus Torvalds 已提交
471

472
#ifdef CONFIG_NUMA
473 474 475 476 477 478 479 480
/*
 * kmalloc_node_track_caller is a special version of kmalloc_node that
 * records the calling function of the routine calling it for slab leak
 * tracking instead of just the calling function (confusing, eh?).
 * It's useful when the call to kmalloc_node comes from a widely-used
 * standard allocator where we care about the real place the memory
 * allocation request comes from.
 */
481
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB) || \
482 483
	(defined(CONFIG_SLAB) && defined(CONFIG_TRACING)) || \
	(defined(CONFIG_SLOB) && defined(CONFIG_TRACING))
484
extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long);
485 486
#define kmalloc_node_track_caller(size, flags, node) \
	__kmalloc_node_track_caller(size, flags, node, \
487
			_RET_IP_)
488 489 490
#else
#define kmalloc_node_track_caller(size, flags, node) \
	__kmalloc_node(size, flags, node)
491
#endif
492

493 494 495 496
#else /* CONFIG_NUMA */

#define kmalloc_node_track_caller(size, flags, node) \
	kmalloc_track_caller(size, flags)
497

P
Pascal Terjan 已提交
498
#endif /* CONFIG_NUMA */
499

500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
/*
 * Shortcuts
 */
static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
{
	return kmem_cache_alloc(k, flags | __GFP_ZERO);
}

/**
 * kzalloc - allocate memory. The memory is set to zero.
 * @size: how many bytes of memory are required.
 * @flags: the type of memory to allocate (see kmalloc).
 */
static inline void *kzalloc(size_t size, gfp_t flags)
{
	return kmalloc(size, flags | __GFP_ZERO);
}

J
Jeff Layton 已提交
518 519 520 521 522 523 524 525 526 527 528
/**
 * kzalloc_node - allocate zeroed memory from a particular memory node.
 * @size: how many bytes of memory are required.
 * @flags: the type of memory to allocate (see kmalloc).
 * @node: memory node from which to allocate
 */
static inline void *kzalloc_node(size_t size, gfp_t flags, int node)
{
	return kmalloc_node(size, flags | __GFP_ZERO, node);
}

529 530 531 532 533 534 535 536
/*
 * Determine the size of a slab object
 */
static inline unsigned int kmem_cache_size(struct kmem_cache *s)
{
	return s->object_size;
}

537 538
void __init kmem_cache_init_late(void);

L
Linus Torvalds 已提交
539
#endif	/* _LINUX_SLAB_H */