spi-sh-msiof.c 34.3 KB
Newer Older
1 2 3 4
/*
 * SuperH MSIOF SPI Master Interface
 *
 * Copyright (c) 2009 Magnus Damm
5
 * Copyright (C) 2014 Glider bvba
6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 */

13 14 15
#include <linux/bitmap.h>
#include <linux/clk.h>
#include <linux/completion.h>
16
#include <linux/delay.h>
17 18
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
19 20
#include <linux/err.h>
#include <linux/gpio.h>
21
#include <linux/interrupt.h>
22 23
#include <linux/io.h>
#include <linux/kernel.h>
24
#include <linux/module.h>
25
#include <linux/of.h>
26
#include <linux/of_device.h>
27 28
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
29
#include <linux/sh_dma.h>
30

31
#include <linux/spi/sh_msiof.h>
32 33 34 35
#include <linux/spi/spi.h>

#include <asm/unaligned.h>

36 37 38 39

struct sh_msiof_chipdata {
	u16 tx_fifo_size;
	u16 rx_fifo_size;
40
	u16 master_flags;
41 42
};

43
struct sh_msiof_spi_priv {
44
	struct spi_master *master;
45 46 47
	void __iomem *mapbase;
	struct clk *clk;
	struct platform_device *pdev;
48
	const struct sh_msiof_chipdata *chipdata;
49 50
	struct sh_msiof_spi_info *info;
	struct completion done;
51 52
	unsigned int tx_fifo_size;
	unsigned int rx_fifo_size;
53 54 55 56
	void *tx_dma_page;
	void *rx_dma_page;
	dma_addr_t tx_dma_addr;
	dma_addr_t rx_dma_addr;
57 58
};

59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
#define TMDR1	0x00	/* Transmit Mode Register 1 */
#define TMDR2	0x04	/* Transmit Mode Register 2 */
#define TMDR3	0x08	/* Transmit Mode Register 3 */
#define RMDR1	0x10	/* Receive Mode Register 1 */
#define RMDR2	0x14	/* Receive Mode Register 2 */
#define RMDR3	0x18	/* Receive Mode Register 3 */
#define TSCR	0x20	/* Transmit Clock Select Register */
#define RSCR	0x22	/* Receive Clock Select Register (SH, A1, APE6) */
#define CTR	0x28	/* Control Register */
#define FCTR	0x30	/* FIFO Control Register */
#define STR	0x40	/* Status Register */
#define IER	0x44	/* Interrupt Enable Register */
#define TDR1	0x48	/* Transmit Control Data Register 1 (SH, A1) */
#define TDR2	0x4c	/* Transmit Control Data Register 2 (SH, A1) */
#define TFDR	0x50	/* Transmit FIFO Data Register */
#define RDR1	0x58	/* Receive Control Data Register 1 (SH, A1) */
#define RDR2	0x5c	/* Receive Control Data Register 2 (SH, A1) */
#define RFDR	0x60	/* Receive FIFO Data Register */

/* TMDR1 and RMDR1 */
#define MDR1_TRMD	 0x80000000 /* Transfer Mode (1 = Master mode) */
#define MDR1_SYNCMD_MASK 0x30000000 /* SYNC Mode */
#define MDR1_SYNCMD_SPI	 0x20000000 /*   Level mode/SPI */
#define MDR1_SYNCMD_LR	 0x30000000 /*   L/R mode */
#define MDR1_SYNCAC_SHIFT	 25 /* Sync Polarity (1 = Active-low) */
#define MDR1_BITLSB_SHIFT	 24 /* MSB/LSB First (1 = LSB first) */
85 86
#define MDR1_DTDL_SHIFT		 20 /* Data Pin Bit Delay for MSIOF_SYNC */
#define MDR1_SYNCDL_SHIFT	 16 /* Frame Sync Signal Timing Delay */
87
#define MDR1_FLD_MASK	 0x0000000c /* Frame Sync Signal Interval (0-3) */
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
#define MDR1_FLD_SHIFT		  2
#define MDR1_XXSTP	 0x00000001 /* Transmission/Reception Stop on FIFO */
/* TMDR1 */
#define TMDR1_PCON	 0x40000000 /* Transfer Signal Connection */

/* TMDR2 and RMDR2 */
#define MDR2_BITLEN1(i)	(((i) - 1) << 24) /* Data Size (8-32 bits) */
#define MDR2_WDLEN1(i)	(((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */
#define MDR2_GRPMASK1	0x00000001 /* Group Output Mask 1 (SH, A1) */

/* TSCR and RSCR */
#define SCR_BRPS_MASK	    0x1f00 /* Prescaler Setting (1-32) */
#define SCR_BRPS(i)	(((i) - 1) << 8)
#define SCR_BRDV_MASK	    0x0007 /* Baud Rate Generator's Division Ratio */
#define SCR_BRDV_DIV_2	    0x0000
#define SCR_BRDV_DIV_4	    0x0001
#define SCR_BRDV_DIV_8	    0x0002
#define SCR_BRDV_DIV_16	    0x0003
#define SCR_BRDV_DIV_32	    0x0004
#define SCR_BRDV_DIV_1	    0x0007

/* CTR */
#define CTR_TSCKIZ_MASK	0xc0000000 /* Transmit Clock I/O Polarity Select */
#define CTR_TSCKIZ_SCK	0x80000000 /*   Disable SCK when TX disabled */
#define CTR_TSCKIZ_POL_SHIFT	30 /*   Transmit Clock Polarity */
#define CTR_RSCKIZ_MASK	0x30000000 /* Receive Clock Polarity Select */
#define CTR_RSCKIZ_SCK	0x20000000 /*   Must match CTR_TSCKIZ_SCK */
#define CTR_RSCKIZ_POL_SHIFT	28 /*   Receive Clock Polarity */
#define CTR_TEDG_SHIFT		27 /* Transmit Timing (1 = falling edge) */
#define CTR_REDG_SHIFT		26 /* Receive Timing (1 = falling edge) */
#define CTR_TXDIZ_MASK	0x00c00000 /* Pin Output When TX is Disabled */
#define CTR_TXDIZ_LOW	0x00000000 /*   0 */
#define CTR_TXDIZ_HIGH	0x00400000 /*   1 */
#define CTR_TXDIZ_HIZ	0x00800000 /*   High-impedance */
#define CTR_TSCKE	0x00008000 /* Transmit Serial Clock Output Enable */
#define CTR_TFSE	0x00004000 /* Transmit Frame Sync Signal Output Enable */
#define CTR_TXE		0x00000200 /* Transmit Enable */
#define CTR_RXE		0x00000100 /* Receive Enable */

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
/* FCTR */
#define FCTR_TFWM_MASK	0xe0000000 /* Transmit FIFO Watermark */
#define FCTR_TFWM_64	0x00000000 /*  Transfer Request when 64 empty stages */
#define FCTR_TFWM_32	0x20000000 /*  Transfer Request when 32 empty stages */
#define FCTR_TFWM_24	0x40000000 /*  Transfer Request when 24 empty stages */
#define FCTR_TFWM_16	0x60000000 /*  Transfer Request when 16 empty stages */
#define FCTR_TFWM_12	0x80000000 /*  Transfer Request when 12 empty stages */
#define FCTR_TFWM_8	0xa0000000 /*  Transfer Request when 8 empty stages */
#define FCTR_TFWM_4	0xc0000000 /*  Transfer Request when 4 empty stages */
#define FCTR_TFWM_1	0xe0000000 /*  Transfer Request when 1 empty stage */
#define FCTR_TFUA_MASK	0x07f00000 /* Transmit FIFO Usable Area */
#define FCTR_TFUA_SHIFT		20
#define FCTR_TFUA(i)	((i) << FCTR_TFUA_SHIFT)
#define FCTR_RFWM_MASK	0x0000e000 /* Receive FIFO Watermark */
#define FCTR_RFWM_1	0x00000000 /*  Transfer Request when 1 valid stages */
#define FCTR_RFWM_4	0x00002000 /*  Transfer Request when 4 valid stages */
#define FCTR_RFWM_8	0x00004000 /*  Transfer Request when 8 valid stages */
#define FCTR_RFWM_16	0x00006000 /*  Transfer Request when 16 valid stages */
#define FCTR_RFWM_32	0x00008000 /*  Transfer Request when 32 valid stages */
#define FCTR_RFWM_64	0x0000a000 /*  Transfer Request when 64 valid stages */
#define FCTR_RFWM_128	0x0000c000 /*  Transfer Request when 128 valid stages */
#define FCTR_RFWM_256	0x0000e000 /*  Transfer Request when 256 valid stages */
#define FCTR_RFUA_MASK	0x00001ff0 /* Receive FIFO Usable Area (0x40 = full) */
#define FCTR_RFUA_SHIFT		 4
#define FCTR_RFUA(i)	((i) << FCTR_RFUA_SHIFT)

/* STR */
#define STR_TFEMP	0x20000000 /* Transmit FIFO Empty */
#define STR_TDREQ	0x10000000 /* Transmit Data Transfer Request */
156
#define STR_TEOF	0x00800000 /* Frame Transmission End */
157 158 159 160 161
#define STR_TFSERR	0x00200000 /* Transmit Frame Synchronization Error */
#define STR_TFOVF	0x00100000 /* Transmit FIFO Overflow */
#define STR_TFUDF	0x00080000 /* Transmit FIFO Underflow */
#define STR_RFFUL	0x00002000 /* Receive FIFO Full */
#define STR_RDREQ	0x00001000 /* Receive Data Transfer Request */
162
#define STR_REOF	0x00000080 /* Frame Reception End */
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
#define STR_RFSERR	0x00000020 /* Receive Frame Synchronization Error */
#define STR_RFUDF	0x00000010 /* Receive FIFO Underflow */
#define STR_RFOVF	0x00000008 /* Receive FIFO Overflow */

/* IER */
#define IER_TDMAE	0x80000000 /* Transmit Data DMA Transfer Req. Enable */
#define IER_TFEMPE	0x20000000 /* Transmit FIFO Empty Enable */
#define IER_TDREQE	0x10000000 /* Transmit Data Transfer Request Enable */
#define IER_TEOFE	0x00800000 /* Frame Transmission End Enable */
#define IER_TFSERRE	0x00200000 /* Transmit Frame Sync Error Enable */
#define IER_TFOVFE	0x00100000 /* Transmit FIFO Overflow Enable */
#define IER_TFUDFE	0x00080000 /* Transmit FIFO Underflow Enable */
#define IER_RDMAE	0x00008000 /* Receive Data DMA Transfer Req. Enable */
#define IER_RFFULE	0x00002000 /* Receive FIFO Full Enable */
#define IER_RDREQE	0x00001000 /* Receive Data Transfer Request Enable */
#define IER_REOFE	0x00000080 /* Frame Reception End Enable */
#define IER_RFSERRE	0x00000020 /* Receive Frame Sync Error Enable */
#define IER_RFUDFE	0x00000010 /* Receive FIFO Underflow Enable */
#define IER_RFOVFE	0x00000008 /* Receive FIFO Overflow Enable */
182

183

184
static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
185 186 187 188 189 190 191 192 193 194 195
{
	switch (reg_offs) {
	case TSCR:
	case RSCR:
		return ioread16(p->mapbase + reg_offs);
	default:
		return ioread32(p->mapbase + reg_offs);
	}
}

static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
196
			   u32 value)
197 198 199 200 201 202 203 204 205 206 207 208 209
{
	switch (reg_offs) {
	case TSCR:
	case RSCR:
		iowrite16(value, p->mapbase + reg_offs);
		break;
	default:
		iowrite32(value, p->mapbase + reg_offs);
		break;
	}
}

static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
210
				    u32 clr, u32 set)
211
{
212 213
	u32 mask = clr | set;
	u32 data;
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
	int k;

	data = sh_msiof_read(p, CTR);
	data &= ~clr;
	data |= set;
	sh_msiof_write(p, CTR, data);

	for (k = 100; k > 0; k--) {
		if ((sh_msiof_read(p, CTR) & mask) == set)
			break;

		udelay(10);
	}

	return k > 0 ? 0 : -ETIMEDOUT;
}

static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
{
	struct sh_msiof_spi_priv *p = data;

	/* just disable the interrupt and wake up */
	sh_msiof_write(p, IER, 0);
	complete(&p->done);

	return IRQ_HANDLED;
}

static struct {
	unsigned short div;
244 245 246 247 248 249 250 251
	unsigned short brdv;
} const sh_msiof_spi_div_table[] = {
	{ 1,	SCR_BRDV_DIV_1 },
	{ 2,	SCR_BRDV_DIV_2 },
	{ 4,	SCR_BRDV_DIV_4 },
	{ 8,	SCR_BRDV_DIV_8 },
	{ 16,	SCR_BRDV_DIV_16 },
	{ 32,	SCR_BRDV_DIV_32 },
252 253 254
};

static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
255
				      unsigned long parent_rate, u32 spi_hz)
256 257
{
	unsigned long div = 1024;
258
	u32 brps, scr;
259 260 261
	size_t k;

	if (!WARN_ON(!spi_hz || !parent_rate))
262
		div = DIV_ROUND_UP(parent_rate, spi_hz);
263

264 265 266
	for (k = 0; k < ARRAY_SIZE(sh_msiof_spi_div_table); k++) {
		brps = DIV_ROUND_UP(div, sh_msiof_spi_div_table[k].div);
		if (brps <= 32) /* max of brdv is 32 */
267 268 269
			break;
	}

270
	k = min_t(int, k, ARRAY_SIZE(sh_msiof_spi_div_table) - 1);
271

272 273
	scr = sh_msiof_spi_div_table[k].brdv | SCR_BRPS(brps);
	sh_msiof_write(p, TSCR, scr);
274
	if (!(p->chipdata->master_flags & SPI_MASTER_MUST_TX))
275
		sh_msiof_write(p, RSCR, scr);
276 277
}

278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl)
{
	/*
	 * DTDL/SYNCDL bit	: p->info->dtdl or p->info->syncdl
	 * b'000		: 0
	 * b'001		: 100
	 * b'010		: 200
	 * b'011 (SYNCDL only)	: 300
	 * b'101		: 50
	 * b'110		: 150
	 */
	if (dtdl_or_syncdl % 100)
		return dtdl_or_syncdl / 100 + 5;
	else
		return dtdl_or_syncdl / 100;
}

static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p)
{
	u32 val;

	if (!p->info)
		return 0;

	/* check if DTDL and SYNCDL is allowed value */
	if (p->info->dtdl > 200 || p->info->syncdl > 300) {
		dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n");
		return 0;
	}

	/* check if the sum of DTDL and SYNCDL becomes an integer value  */
	if ((p->info->dtdl + p->info->syncdl) % 100) {
		dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n");
		return 0;
	}

	val = sh_msiof_get_delay_bit(p->info->dtdl) << MDR1_DTDL_SHIFT;
	val |= sh_msiof_get_delay_bit(p->info->syncdl) << MDR1_SYNCDL_SHIFT;

	return val;
}

320
static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p,
321
				      u32 cpol, u32 cpha,
322
				      u32 tx_hi_z, u32 lsb_first, u32 cs_high)
323
{
324
	u32 tmp;
325 326 327
	int edge;

	/*
328 329 330 331 332
	 * CPOL CPHA     TSCKIZ RSCKIZ TEDG REDG
	 *    0    0         10     10    1    1
	 *    0    1         10     10    0    0
	 *    1    0         11     11    0    0
	 *    1    1         11     11    1    1
333
	 */
334 335 336
	tmp = MDR1_SYNCMD_SPI | 1 << MDR1_FLD_SHIFT | MDR1_XXSTP;
	tmp |= !cs_high << MDR1_SYNCAC_SHIFT;
	tmp |= lsb_first << MDR1_BITLSB_SHIFT;
337
	tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p);
338
	sh_msiof_write(p, TMDR1, tmp | MDR1_TRMD | TMDR1_PCON);
339 340 341 342
	if (p->chipdata->master_flags & SPI_MASTER_MUST_TX) {
		/* These bits are reserved if RX needs TX */
		tmp &= ~0x0000ffff;
	}
343
	sh_msiof_write(p, RMDR1, tmp);
344

345 346 347
	tmp = 0;
	tmp |= CTR_TSCKIZ_SCK | cpol << CTR_TSCKIZ_POL_SHIFT;
	tmp |= CTR_RSCKIZ_SCK | cpol << CTR_RSCKIZ_POL_SHIFT;
348

349
	edge = cpol ^ !cpha;
350

351 352 353
	tmp |= edge << CTR_TEDG_SHIFT;
	tmp |= edge << CTR_REDG_SHIFT;
	tmp |= tx_hi_z ? CTR_TXDIZ_HIZ : CTR_TXDIZ_LOW;
354 355 356 357 358
	sh_msiof_write(p, CTR, tmp);
}

static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
				       const void *tx_buf, void *rx_buf,
359
				       u32 bits, u32 words)
360
{
361
	u32 dr2 = MDR2_BITLEN1(bits) | MDR2_WDLEN1(words);
362

363
	if (tx_buf || (p->chipdata->master_flags & SPI_MASTER_MUST_TX))
364 365
		sh_msiof_write(p, TMDR2, dr2);
	else
366
		sh_msiof_write(p, TMDR2, dr2 | MDR2_GRPMASK1);
367 368 369 370 371 372 373 374 375 376 377 378 379

	if (rx_buf)
		sh_msiof_write(p, RMDR2, dr2);
}

static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
{
	sh_msiof_write(p, STR, sh_msiof_read(p, STR));
}

static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
				      const void *tx_buf, int words, int fs)
{
380
	const u8 *buf_8 = tx_buf;
381 382 383 384 385 386 387 388 389
	int k;

	for (k = 0; k < words; k++)
		sh_msiof_write(p, TFDR, buf_8[k] << fs);
}

static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
				       const void *tx_buf, int words, int fs)
{
390
	const u16 *buf_16 = tx_buf;
391 392 393 394 395 396 397 398 399
	int k;

	for (k = 0; k < words; k++)
		sh_msiof_write(p, TFDR, buf_16[k] << fs);
}

static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
					const void *tx_buf, int words, int fs)
{
400
	const u16 *buf_16 = tx_buf;
401 402 403 404 405 406 407 408 409
	int k;

	for (k = 0; k < words; k++)
		sh_msiof_write(p, TFDR, get_unaligned(&buf_16[k]) << fs);
}

static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
				       const void *tx_buf, int words, int fs)
{
410
	const u32 *buf_32 = tx_buf;
411 412 413 414 415 416 417 418 419
	int k;

	for (k = 0; k < words; k++)
		sh_msiof_write(p, TFDR, buf_32[k] << fs);
}

static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
					const void *tx_buf, int words, int fs)
{
420
	const u32 *buf_32 = tx_buf;
421 422 423 424 425 426
	int k;

	for (k = 0; k < words; k++)
		sh_msiof_write(p, TFDR, get_unaligned(&buf_32[k]) << fs);
}

427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
					const void *tx_buf, int words, int fs)
{
	const u32 *buf_32 = tx_buf;
	int k;

	for (k = 0; k < words; k++)
		sh_msiof_write(p, TFDR, swab32(buf_32[k] << fs));
}

static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
					 const void *tx_buf, int words, int fs)
{
	const u32 *buf_32 = tx_buf;
	int k;

	for (k = 0; k < words; k++)
		sh_msiof_write(p, TFDR, swab32(get_unaligned(&buf_32[k]) << fs));
}

447 448 449
static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
				     void *rx_buf, int words, int fs)
{
450
	u8 *buf_8 = rx_buf;
451 452 453 454 455 456 457 458 459
	int k;

	for (k = 0; k < words; k++)
		buf_8[k] = sh_msiof_read(p, RFDR) >> fs;
}

static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
				      void *rx_buf, int words, int fs)
{
460
	u16 *buf_16 = rx_buf;
461 462 463 464 465 466 467 468 469
	int k;

	for (k = 0; k < words; k++)
		buf_16[k] = sh_msiof_read(p, RFDR) >> fs;
}

static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
				       void *rx_buf, int words, int fs)
{
470
	u16 *buf_16 = rx_buf;
471 472 473 474 475 476 477 478 479
	int k;

	for (k = 0; k < words; k++)
		put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_16[k]);
}

static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
				      void *rx_buf, int words, int fs)
{
480
	u32 *buf_32 = rx_buf;
481 482 483 484 485 486 487 488 489
	int k;

	for (k = 0; k < words; k++)
		buf_32[k] = sh_msiof_read(p, RFDR) >> fs;
}

static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
				       void *rx_buf, int words, int fs)
{
490
	u32 *buf_32 = rx_buf;
491 492 493 494 495 496
	int k;

	for (k = 0; k < words; k++)
		put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_32[k]);
}

497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
				       void *rx_buf, int words, int fs)
{
	u32 *buf_32 = rx_buf;
	int k;

	for (k = 0; k < words; k++)
		buf_32[k] = swab32(sh_msiof_read(p, RFDR) >> fs);
}

static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
				       void *rx_buf, int words, int fs)
{
	u32 *buf_32 = rx_buf;
	int k;

	for (k = 0; k < words; k++)
		put_unaligned(swab32(sh_msiof_read(p, RFDR) >> fs), &buf_32[k]);
}

517
static int sh_msiof_spi_setup(struct spi_device *spi)
518
{
519
	struct device_node	*np = spi->master->dev.of_node;
520
	struct sh_msiof_spi_priv *p = spi_master_get_devdata(spi->master);
521

522 523
	pm_runtime_get_sync(&p->pdev->dev);

524 525 526 527 528 529 530
	if (!np) {
		/*
		 * Use spi->controller_data for CS (same strategy as spi_gpio),
		 * if any. otherwise let HW control CS
		 */
		spi->cs_gpio = (uintptr_t)spi->controller_data;
	}
531

532 533 534 535 536 537
	/* Configure pins before deasserting CS */
	sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL),
				  !!(spi->mode & SPI_CPHA),
				  !!(spi->mode & SPI_3WIRE),
				  !!(spi->mode & SPI_LSB_FIRST),
				  !!(spi->mode & SPI_CS_HIGH));
538

539 540
	if (spi->cs_gpio >= 0)
		gpio_set_value(spi->cs_gpio, !(spi->mode & SPI_CS_HIGH));
541

542

543
	pm_runtime_put(&p->pdev->dev);
544

545
	return 0;
546 547
}

548 549
static int sh_msiof_prepare_message(struct spi_master *master,
				    struct spi_message *msg)
550
{
551 552
	struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
	const struct spi_device *spi = msg->spi;
553

554 555 556 557 558 559 560
	/* Configure pins before asserting CS */
	sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL),
				  !!(spi->mode & SPI_CPHA),
				  !!(spi->mode & SPI_3WIRE),
				  !!(spi->mode & SPI_LSB_FIRST),
				  !!(spi->mode & SPI_CS_HIGH));
	return 0;
561 562
}

563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf)
{
	int ret;

	/* setup clock and rx/tx signals */
	ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TSCKE);
	if (rx_buf && !ret)
		ret = sh_msiof_modify_ctr_wait(p, 0, CTR_RXE);
	if (!ret)
		ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TXE);

	/* start by setting frame bit */
	if (!ret)
		ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TFSE);

	return ret;
}

static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf)
{
	int ret;

	/* shut down frame, rx/tx and clock signals */
	ret = sh_msiof_modify_ctr_wait(p, CTR_TFSE, 0);
	if (!ret)
		ret = sh_msiof_modify_ctr_wait(p, CTR_TXE, 0);
	if (rx_buf && !ret)
		ret = sh_msiof_modify_ctr_wait(p, CTR_RXE, 0);
	if (!ret)
		ret = sh_msiof_modify_ctr_wait(p, CTR_TSCKE, 0);

	return ret;
}

597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
				  void (*tx_fifo)(struct sh_msiof_spi_priv *,
						  const void *, int, int),
				  void (*rx_fifo)(struct sh_msiof_spi_priv *,
						  void *, int, int),
				  const void *tx_buf, void *rx_buf,
				  int words, int bits)
{
	int fifo_shift;
	int ret;

	/* limit maximum word transfer to rx/tx fifo size */
	if (tx_buf)
		words = min_t(int, words, p->tx_fifo_size);
	if (rx_buf)
		words = min_t(int, words, p->rx_fifo_size);

	/* the fifo contents need shifting */
	fifo_shift = 32 - bits;

617 618 619
	/* default FIFO watermarks for PIO */
	sh_msiof_write(p, FCTR, 0);

620 621
	/* setup msiof transfer mode registers */
	sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
622
	sh_msiof_write(p, IER, IER_TEOFE | IER_REOFE);
623 624 625 626 627

	/* write tx fifo */
	if (tx_buf)
		tx_fifo(p, tx_buf, words, fifo_shift);

628
	reinit_completion(&p->done);
629 630

	ret = sh_msiof_spi_start(p, rx_buf);
631 632
	if (ret) {
		dev_err(&p->pdev->dev, "failed to start hardware\n");
633
		goto stop_ier;
634 635 636
	}

	/* wait for tx fifo to be emptied / rx fifo to be filled */
637
	if (!wait_for_completion_timeout(&p->done, HZ)) {
638 639 640 641
		dev_err(&p->pdev->dev, "PIO timeout\n");
		ret = -ETIMEDOUT;
		goto stop_reset;
	}
642 643 644 645 646 647 648 649

	/* read rx fifo */
	if (rx_buf)
		rx_fifo(p, rx_buf, words, fifo_shift);

	/* clear status bits */
	sh_msiof_reset_str(p);

650
	ret = sh_msiof_spi_stop(p, rx_buf);
651 652
	if (ret) {
		dev_err(&p->pdev->dev, "failed to shut down hardware\n");
653
		return ret;
654 655 656 657
	}

	return words;

658 659 660 661
stop_reset:
	sh_msiof_reset_str(p);
	sh_msiof_spi_stop(p, rx_buf);
stop_ier:
662 663 664 665
	sh_msiof_write(p, IER, 0);
	return ret;
}

666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
static void sh_msiof_dma_complete(void *arg)
{
	struct sh_msiof_spi_priv *p = arg;

	sh_msiof_write(p, IER, 0);
	complete(&p->done);
}

static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx,
			     void *rx, unsigned int len)
{
	u32 ier_bits = 0;
	struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
	dma_cookie_t cookie;
	int ret;

682
	/* First prepare and submit the DMA request(s), as this may fail */
683 684 685 686 687
	if (rx) {
		ier_bits |= IER_RDREQE | IER_RDMAE;
		desc_rx = dmaengine_prep_slave_single(p->master->dma_rx,
					p->rx_dma_addr, len, DMA_FROM_DEVICE,
					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
688 689
		if (!desc_rx)
			return -EAGAIN;
690 691 692 693

		desc_rx->callback = sh_msiof_dma_complete;
		desc_rx->callback_param = p;
		cookie = dmaengine_submit(desc_rx);
694 695
		if (dma_submit_error(cookie))
			return cookie;
696 697 698
	}

	if (tx) {
699 700 701 702 703 704 705 706 707 708 709
		ier_bits |= IER_TDREQE | IER_TDMAE;
		dma_sync_single_for_device(p->master->dma_tx->device->dev,
					   p->tx_dma_addr, len, DMA_TO_DEVICE);
		desc_tx = dmaengine_prep_slave_single(p->master->dma_tx,
					p->tx_dma_addr, len, DMA_TO_DEVICE,
					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
		if (!desc_tx) {
			ret = -EAGAIN;
			goto no_dma_tx;
		}

710 711 712 713 714 715 716 717 718 719
		if (rx) {
			/* No callback */
			desc_tx->callback = NULL;
		} else {
			desc_tx->callback = sh_msiof_dma_complete;
			desc_tx->callback_param = p;
		}
		cookie = dmaengine_submit(desc_tx);
		if (dma_submit_error(cookie)) {
			ret = cookie;
720
			goto no_dma_tx;
721 722 723
		}
	}

724 725 726 727 728 729 730 731 732 733 734 735
	/* 1 stage FIFO watermarks for DMA */
	sh_msiof_write(p, FCTR, FCTR_TFWM_1 | FCTR_RFWM_1);

	/* setup msiof transfer mode registers (32-bit words) */
	sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4);

	sh_msiof_write(p, IER, ier_bits);

	reinit_completion(&p->done);

	/* Now start DMA */
	if (rx)
736 737
		dma_async_issue_pending(p->master->dma_rx);
	if (tx)
738 739
		dma_async_issue_pending(p->master->dma_tx);

740 741 742
	ret = sh_msiof_spi_start(p, rx);
	if (ret) {
		dev_err(&p->pdev->dev, "failed to start hardware\n");
743
		goto stop_dma;
744 745 746
	}

	/* wait for tx fifo to be emptied / rx fifo to be filled */
747
	if (!wait_for_completion_timeout(&p->done, HZ)) {
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
		dev_err(&p->pdev->dev, "DMA timeout\n");
		ret = -ETIMEDOUT;
		goto stop_reset;
	}

	/* clear status bits */
	sh_msiof_reset_str(p);

	ret = sh_msiof_spi_stop(p, rx);
	if (ret) {
		dev_err(&p->pdev->dev, "failed to shut down hardware\n");
		return ret;
	}

	if (rx)
763 764
		dma_sync_single_for_cpu(p->master->dma_rx->device->dev,
					p->rx_dma_addr, len,
765 766 767 768 769 770 771
					DMA_FROM_DEVICE);

	return 0;

stop_reset:
	sh_msiof_reset_str(p);
	sh_msiof_spi_stop(p, rx);
772
stop_dma:
773 774
	if (tx)
		dmaengine_terminate_all(p->master->dma_tx);
775
no_dma_tx:
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
	if (rx)
		dmaengine_terminate_all(p->master->dma_rx);
	sh_msiof_write(p, IER, 0);
	return ret;
}

static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words)
{
	/* src or dst can be unaligned, but not both */
	if ((unsigned long)src & 3) {
		while (words--) {
			*dst++ = swab32(get_unaligned(src));
			src++;
		}
	} else if ((unsigned long)dst & 3) {
		while (words--) {
			put_unaligned(swab32(*src++), dst);
			dst++;
		}
	} else {
		while (words--)
			*dst++ = swab32(*src++);
	}
}

static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words)
{
	/* src or dst can be unaligned, but not both */
	if ((unsigned long)src & 3) {
		while (words--) {
			*dst++ = swahw32(get_unaligned(src));
			src++;
		}
	} else if ((unsigned long)dst & 3) {
		while (words--) {
			put_unaligned(swahw32(*src++), dst);
			dst++;
		}
	} else {
		while (words--)
			*dst++ = swahw32(*src++);
	}
}

static void copy_plain32(u32 *dst, const u32 *src, unsigned int words)
{
	memcpy(dst, src, words * 4);
}

825 826 827
static int sh_msiof_transfer_one(struct spi_master *master,
				 struct spi_device *spi,
				 struct spi_transfer *t)
828
{
829
	struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
830
	void (*copy32)(u32 *, const u32 *, unsigned int);
831 832
	void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
	void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
833 834 835 836 837 838
	const void *tx_buf = t->tx_buf;
	void *rx_buf = t->rx_buf;
	unsigned int len = t->len;
	unsigned int bits = t->bits_per_word;
	unsigned int bytes_per_word;
	unsigned int words;
839
	int n;
840
	bool swab;
841 842 843 844 845 846 847 848 849 850
	int ret;

	/* setup clocks (clock already enabled in chipselect()) */
	sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk), t->speed_hz);

	while (master->dma_tx && len > 15) {
		/*
		 *  DMA supports 32-bit words only, hence pack 8-bit and 16-bit
		 *  words, with byte resp. word swapping.
		 */
851 852 853 854 855 856
		unsigned int l = 0;

		if (tx_buf)
			l = min(len, p->tx_fifo_size * 4);
		if (rx_buf)
			l = min(len, p->rx_fifo_size * 4);
857 858 859 860 861 862 863 864 865 866 867 868 869 870 871

		if (bits <= 8) {
			if (l & 3)
				break;
			copy32 = copy_bswap32;
		} else if (bits <= 16) {
			if (l & 1)
				break;
			copy32 = copy_wswap32;
		} else {
			copy32 = copy_plain32;
		}

		if (tx_buf)
			copy32(p->tx_dma_page, tx_buf, l / 4);
872

873
		ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l);
874 875 876 877 878 879
		if (ret == -EAGAIN) {
			pr_warn_once("%s %s: DMA not available, falling back to PIO\n",
				     dev_driver_string(&p->pdev->dev),
				     dev_name(&p->pdev->dev));
			break;
		}
880 881 882 883 884 885 886 887 888 889 890 891 892 893
		if (ret)
			return ret;

		if (rx_buf) {
			copy32(rx_buf, p->rx_dma_page, l / 4);
			rx_buf += l;
		}
		if (tx_buf)
			tx_buf += l;

		len -= l;
		if (!len)
			return 0;
	}
894

895
	if (bits <= 8 && len > 15 && !(len & 3)) {
896 897 898 899 900 901
		bits = 32;
		swab = true;
	} else {
		swab = false;
	}

902 903 904 905 906 907 908
	/* setup bytes per word and fifo read/write functions */
	if (bits <= 8) {
		bytes_per_word = 1;
		tx_fifo = sh_msiof_spi_write_fifo_8;
		rx_fifo = sh_msiof_spi_read_fifo_8;
	} else if (bits <= 16) {
		bytes_per_word = 2;
909
		if ((unsigned long)tx_buf & 0x01)
910 911 912 913
			tx_fifo = sh_msiof_spi_write_fifo_16u;
		else
			tx_fifo = sh_msiof_spi_write_fifo_16;

914
		if ((unsigned long)rx_buf & 0x01)
915 916 917
			rx_fifo = sh_msiof_spi_read_fifo_16u;
		else
			rx_fifo = sh_msiof_spi_read_fifo_16;
918 919
	} else if (swab) {
		bytes_per_word = 4;
920
		if ((unsigned long)tx_buf & 0x03)
921 922 923 924
			tx_fifo = sh_msiof_spi_write_fifo_s32u;
		else
			tx_fifo = sh_msiof_spi_write_fifo_s32;

925
		if ((unsigned long)rx_buf & 0x03)
926 927 928
			rx_fifo = sh_msiof_spi_read_fifo_s32u;
		else
			rx_fifo = sh_msiof_spi_read_fifo_s32;
929 930
	} else {
		bytes_per_word = 4;
931
		if ((unsigned long)tx_buf & 0x03)
932 933 934 935
			tx_fifo = sh_msiof_spi_write_fifo_32u;
		else
			tx_fifo = sh_msiof_spi_write_fifo_32;

936
		if ((unsigned long)rx_buf & 0x03)
937 938 939 940 941 942
			rx_fifo = sh_msiof_spi_read_fifo_32u;
		else
			rx_fifo = sh_msiof_spi_read_fifo_32;
	}

	/* transfer in fifo sized chunks */
943 944 945 946
	words = len / bytes_per_word;

	while (words > 0) {
		n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf,
947 948
					   words, bits);
		if (n < 0)
949
			return n;
950

951 952 953 954
		if (tx_buf)
			tx_buf += n * bytes_per_word;
		if (rx_buf)
			rx_buf += n * bytes_per_word;
955 956 957 958 959 960
		words -= n;
	}

	return 0;
}

961 962 963
static const struct sh_msiof_chipdata sh_data = {
	.tx_fifo_size = 64,
	.rx_fifo_size = 64,
964 965 966 967 968
	.master_flags = 0,
};

static const struct sh_msiof_chipdata r8a779x_data = {
	.tx_fifo_size = 64,
969
	.rx_fifo_size = 64,
970
	.master_flags = SPI_MASTER_MUST_TX,
971 972 973 974 975
};

static const struct of_device_id sh_msiof_match[] = {
	{ .compatible = "renesas,sh-msiof",        .data = &sh_data },
	{ .compatible = "renesas,sh-mobile-msiof", .data = &sh_data },
976 977
	{ .compatible = "renesas,msiof-r8a7790",   .data = &r8a779x_data },
	{ .compatible = "renesas,msiof-r8a7791",   .data = &r8a779x_data },
978 979 980
	{ .compatible = "renesas,msiof-r8a7792",   .data = &r8a779x_data },
	{ .compatible = "renesas,msiof-r8a7793",   .data = &r8a779x_data },
	{ .compatible = "renesas,msiof-r8a7794",   .data = &r8a779x_data },
981 982 983 984
	{},
};
MODULE_DEVICE_TABLE(of, sh_msiof_match);

985 986 987 988 989
#ifdef CONFIG_OF
static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
{
	struct sh_msiof_spi_info *info;
	struct device_node *np = dev->of_node;
990
	u32 num_cs = 1;
991 992

	info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
993
	if (!info)
994 995 996 997 998 999 1000 1001
		return NULL;

	/* Parse the MSIOF properties */
	of_property_read_u32(np, "num-cs", &num_cs);
	of_property_read_u32(np, "renesas,tx-fifo-size",
					&info->tx_fifo_override);
	of_property_read_u32(np, "renesas,rx-fifo-size",
					&info->rx_fifo_override);
1002 1003
	of_property_read_u32(np, "renesas,dtdl", &info->dtdl);
	of_property_read_u32(np, "renesas,syncdl", &info->syncdl);
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015

	info->num_chipselect = num_cs;

	return info;
}
#else
static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
{
	return NULL;
}
#endif

1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev,
	enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr)
{
	dma_cap_mask_t mask;
	struct dma_chan *chan;
	struct dma_slave_config cfg;
	int ret;

	dma_cap_zero(mask);
	dma_cap_set(DMA_SLAVE, mask);

1027 1028 1029
	chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
				(void *)(unsigned long)id, dev,
				dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1030
	if (!chan) {
1031
		dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1032 1033 1034 1035 1036
		return NULL;
	}

	memset(&cfg, 0, sizeof(cfg));
	cfg.direction = dir;
1037
	if (dir == DMA_MEM_TO_DEV) {
1038
		cfg.dst_addr = port_addr;
1039 1040
		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
	} else {
1041
		cfg.src_addr = port_addr;
1042 1043
		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
	}
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059

	ret = dmaengine_slave_config(chan, &cfg);
	if (ret) {
		dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
		dma_release_channel(chan);
		return NULL;
	}

	return chan;
}

static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p)
{
	struct platform_device *pdev = p->pdev;
	struct device *dev = &pdev->dev;
	const struct sh_msiof_spi_info *info = dev_get_platdata(dev);
1060
	unsigned int dma_tx_id, dma_rx_id;
1061 1062
	const struct resource *res;
	struct spi_master *master;
1063
	struct device *tx_dev, *rx_dev;
1064

1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
	if (dev->of_node) {
		/* In the OF case we will get the slave IDs from the DT */
		dma_tx_id = 0;
		dma_rx_id = 0;
	} else if (info && info->dma_tx_id && info->dma_rx_id) {
		dma_tx_id = info->dma_tx_id;
		dma_rx_id = info->dma_rx_id;
	} else {
		/* The driver assumes no error */
		return 0;
	}
1076 1077 1078 1079 1080 1081 1082 1083

	/* The DMA engine uses the second register set, if present */
	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
	if (!res)
		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);

	master = p->master;
	master->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV,
1084
						   dma_tx_id,
1085 1086 1087 1088 1089
						   res->start + TFDR);
	if (!master->dma_tx)
		return -ENODEV;

	master->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM,
1090
						   dma_rx_id,
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
						   res->start + RFDR);
	if (!master->dma_rx)
		goto free_tx_chan;

	p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
	if (!p->tx_dma_page)
		goto free_rx_chan;

	p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
	if (!p->rx_dma_page)
		goto free_tx_page;

1103 1104
	tx_dev = master->dma_tx->device->dev;
	p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE,
1105
					DMA_TO_DEVICE);
1106
	if (dma_mapping_error(tx_dev, p->tx_dma_addr))
1107 1108
		goto free_rx_page;

1109 1110
	rx_dev = master->dma_rx->device->dev;
	p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE,
1111
					DMA_FROM_DEVICE);
1112
	if (dma_mapping_error(rx_dev, p->rx_dma_addr))
1113 1114 1115 1116 1117 1118
		goto unmap_tx_page;

	dev_info(dev, "DMA available");
	return 0;

unmap_tx_page:
1119
	dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE);
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
free_rx_page:
	free_page((unsigned long)p->rx_dma_page);
free_tx_page:
	free_page((unsigned long)p->tx_dma_page);
free_rx_chan:
	dma_release_channel(master->dma_rx);
free_tx_chan:
	dma_release_channel(master->dma_tx);
	master->dma_tx = NULL;
	return -ENODEV;
}

static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p)
{
	struct spi_master *master = p->master;
	struct device *dev;

	if (!master->dma_tx)
		return;

	dev = &p->pdev->dev;
1141 1142 1143 1144
	dma_unmap_single(master->dma_rx->device->dev, p->rx_dma_addr,
			 PAGE_SIZE, DMA_FROM_DEVICE);
	dma_unmap_single(master->dma_tx->device->dev, p->tx_dma_addr,
			 PAGE_SIZE, DMA_TO_DEVICE);
1145 1146 1147 1148 1149 1150
	free_page((unsigned long)p->rx_dma_page);
	free_page((unsigned long)p->tx_dma_page);
	dma_release_channel(master->dma_rx);
	dma_release_channel(master->dma_tx);
}

1151 1152 1153 1154
static int sh_msiof_spi_probe(struct platform_device *pdev)
{
	struct resource	*r;
	struct spi_master *master;
1155
	const struct of_device_id *of_id;
1156 1157 1158 1159 1160 1161 1162
	struct sh_msiof_spi_priv *p;
	int i;
	int ret;

	master = spi_alloc_master(&pdev->dev, sizeof(struct sh_msiof_spi_priv));
	if (master == NULL) {
		dev_err(&pdev->dev, "failed to allocate spi master\n");
1163
		return -ENOMEM;
1164 1165 1166 1167 1168
	}

	p = spi_master_get_devdata(master);

	platform_set_drvdata(pdev, p);
1169
	p->master = master;
1170 1171 1172 1173

	of_id = of_match_device(sh_msiof_match, &pdev->dev);
	if (of_id) {
		p->chipdata = of_id->data;
1174
		p->info = sh_msiof_spi_parse_dt(&pdev->dev);
1175 1176
	} else {
		p->chipdata = (const void *)pdev->id_entry->driver_data;
J
Jingoo Han 已提交
1177
		p->info = dev_get_platdata(&pdev->dev);
1178
	}
1179 1180 1181 1182 1183 1184 1185

	if (!p->info) {
		dev_err(&pdev->dev, "failed to obtain device info\n");
		ret = -ENXIO;
		goto err1;
	}

1186 1187
	init_completion(&p->done);

1188
	p->clk = devm_clk_get(&pdev->dev, NULL);
1189
	if (IS_ERR(p->clk)) {
1190
		dev_err(&pdev->dev, "cannot get clock\n");
1191 1192 1193 1194 1195
		ret = PTR_ERR(p->clk);
		goto err1;
	}

	i = platform_get_irq(pdev, 0);
1196 1197
	if (i < 0) {
		dev_err(&pdev->dev, "cannot get platform IRQ\n");
1198
		ret = -ENOENT;
1199
		goto err1;
1200
	}
1201 1202 1203 1204 1205 1206

	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	p->mapbase = devm_ioremap_resource(&pdev->dev, r);
	if (IS_ERR(p->mapbase)) {
		ret = PTR_ERR(p->mapbase);
		goto err1;
1207 1208
	}

1209 1210
	ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0,
			       dev_name(&pdev->dev), p);
1211 1212
	if (ret) {
		dev_err(&pdev->dev, "unable to request irq\n");
1213
		goto err1;
1214 1215 1216 1217 1218 1219
	}

	p->pdev = pdev;
	pm_runtime_enable(&pdev->dev);

	/* Platform data may override FIFO sizes */
1220 1221
	p->tx_fifo_size = p->chipdata->tx_fifo_size;
	p->rx_fifo_size = p->chipdata->rx_fifo_size;
1222 1223 1224 1225 1226
	if (p->info->tx_fifo_override)
		p->tx_fifo_size = p->info->tx_fifo_override;
	if (p->info->rx_fifo_override)
		p->rx_fifo_size = p->info->rx_fifo_override;

1227
	/* init master code */
1228 1229
	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
	master->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
1230
	master->flags = p->chipdata->master_flags;
1231
	master->bus_num = pdev->id;
1232
	master->dev.of_node = pdev->dev.of_node;
1233
	master->num_chipselect = p->info->num_chipselect;
1234
	master->setup = sh_msiof_spi_setup;
1235
	master->prepare_message = sh_msiof_prepare_message;
1236
	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32);
1237
	master->auto_runtime_pm = true;
1238
	master->transfer_one = sh_msiof_transfer_one;
1239

1240 1241 1242 1243
	ret = sh_msiof_request_dma(p);
	if (ret < 0)
		dev_warn(&pdev->dev, "DMA not available, using PIO\n");

1244 1245 1246 1247 1248
	ret = devm_spi_register_master(&pdev->dev, master);
	if (ret < 0) {
		dev_err(&pdev->dev, "spi_register_master error.\n");
		goto err2;
	}
1249

1250
	return 0;
1251

1252
 err2:
1253
	sh_msiof_release_dma(p);
1254 1255 1256 1257 1258 1259 1260 1261
	pm_runtime_disable(&pdev->dev);
 err1:
	spi_master_put(master);
	return ret;
}

static int sh_msiof_spi_remove(struct platform_device *pdev)
{
1262 1263 1264
	struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);

	sh_msiof_release_dma(p);
1265 1266
	pm_runtime_disable(&pdev->dev);
	return 0;
1267 1268
}

1269
static const struct platform_device_id spi_driver_ids[] = {
1270
	{ "spi_sh_msiof",	(kernel_ulong_t)&sh_data },
1271 1272
	{},
};
1273
MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1274

1275 1276 1277
static struct platform_driver sh_msiof_spi_drv = {
	.probe		= sh_msiof_spi_probe,
	.remove		= sh_msiof_spi_remove,
1278
	.id_table	= spi_driver_ids,
1279 1280
	.driver		= {
		.name		= "spi_sh_msiof",
1281
		.of_match_table = of_match_ptr(sh_msiof_match),
1282 1283
	},
};
1284
module_platform_driver(sh_msiof_spi_drv);
1285 1286 1287 1288 1289

MODULE_DESCRIPTION("SuperH MSIOF SPI Master Interface Driver");
MODULE_AUTHOR("Magnus Damm");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:spi_sh_msiof");