spi-nor.c 34.9 KB
Newer Older
1
/*
2 3 4 5 6
 * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
 * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
 *
 * Copyright (C) 2005, Intec Automation Inc.
 * Copyright (C) 2014, Freescale Semiconductor, Inc.
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
 *
 * This code is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/err.h>
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/mutex.h>
#include <linux/math64.h>

#include <linux/mtd/cfi.h>
#include <linux/mtd/mtd.h>
#include <linux/of_platform.h>
#include <linux/spi/flash.h>
#include <linux/mtd/spi-nor.h>

/* Define max times to check status register before we give up. */
#define	MAX_READY_WAIT_JIFFIES	(40 * HZ) /* M25P16 specs 40s max chip erase */

29 30 31
#define SPI_NOR_MAX_ID_LEN	6

struct flash_info {
32 33
	char		*name;

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
	/*
	 * This array stores the ID bytes.
	 * The first three bytes are the JEDIC ID.
	 * JEDEC ID zero means "no ID" (mostly older chips).
	 */
	u8		id[SPI_NOR_MAX_ID_LEN];
	u8		id_len;

	/* The size listed here is what works with SPINOR_OP_SE, which isn't
	 * necessarily called a "sector" by the vendor.
	 */
	unsigned	sector_size;
	u16		n_sectors;

	u16		page_size;
	u16		addr_width;

	u16		flags;
#define	SECT_4K			0x01	/* SPINOR_OP_BE_4K works uniformly */
#define	SPI_NOR_NO_ERASE	0x02	/* No erase command needed */
#define	SST_WRITE		0x04	/* use SST byte programming */
#define	SPI_NOR_NO_FR		0x08	/* Can't do fastread */
#define	SECT_4K_PMC		0x10	/* SPINOR_OP_BE_4K_PMC works uniformly */
#define	SPI_NOR_DUAL_READ	0x20    /* Flash supports Dual Read */
#define	SPI_NOR_QUAD_READ	0x40    /* Flash supports Quad Read */
#define	USE_FSR			0x80	/* use flag status register */
};

#define JEDEC_MFR(info)	((info)->id[0])
63

64
static const struct flash_info *spi_nor_match_id(const char *name);
65

66 67 68 69 70 71 72 73 74 75
/*
 * Read the status register, returning its value in the location
 * Return the status register value.
 * Returns negative if error occurred.
 */
static int read_sr(struct spi_nor *nor)
{
	int ret;
	u8 val;

76
	ret = nor->read_reg(nor, SPINOR_OP_RDSR, &val, 1);
77 78 79 80 81 82 83 84
	if (ret < 0) {
		pr_err("error %d reading SR\n", (int) ret);
		return ret;
	}

	return val;
}

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
/*
 * Read the flag status register, returning its value in the location
 * Return the status register value.
 * Returns negative if error occurred.
 */
static int read_fsr(struct spi_nor *nor)
{
	int ret;
	u8 val;

	ret = nor->read_reg(nor, SPINOR_OP_RDFSR, &val, 1);
	if (ret < 0) {
		pr_err("error %d reading FSR\n", ret);
		return ret;
	}

	return val;
}

104 105 106 107 108 109 110 111 112 113
/*
 * Read configuration register, returning its value in the
 * location. Return the configuration register value.
 * Returns negative if error occured.
 */
static int read_cr(struct spi_nor *nor)
{
	int ret;
	u8 val;

114
	ret = nor->read_reg(nor, SPINOR_OP_RDCR, &val, 1);
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
	if (ret < 0) {
		dev_err(nor->dev, "error %d reading CR\n", ret);
		return ret;
	}

	return val;
}

/*
 * Dummy Cycle calculation for different type of read.
 * It can be used to support more commands with
 * different dummy cycle requirements.
 */
static inline int spi_nor_read_dummy_cycles(struct spi_nor *nor)
{
	switch (nor->flash_read) {
	case SPI_NOR_FAST:
	case SPI_NOR_DUAL:
	case SPI_NOR_QUAD:
134
		return 8;
135 136 137 138 139 140 141 142 143 144 145 146 147
	case SPI_NOR_NORMAL:
		return 0;
	}
	return 0;
}

/*
 * Write status register 1 byte
 * Returns negative if error occurred.
 */
static inline int write_sr(struct spi_nor *nor, u8 val)
{
	nor->cmd_buf[0] = val;
148
	return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1);
149 150 151 152 153 154 155 156
}

/*
 * Set write enable latch with Write Enable command.
 * Returns negative if error occurred.
 */
static inline int write_enable(struct spi_nor *nor)
{
157
	return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0);
158 159 160 161 162 163 164
}

/*
 * Send write disble instruction to the chip.
 */
static inline int write_disable(struct spi_nor *nor)
{
165
	return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0);
166 167 168 169 170 171 172 173
}

static inline struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd)
{
	return mtd->priv;
}

/* Enable/disable 4-byte addressing mode. */
174
static inline int set_4byte(struct spi_nor *nor, const struct flash_info *info,
175
			    int enable)
176 177 178 179 180
{
	int status;
	bool need_wren = false;
	u8 cmd;

181
	switch (JEDEC_MFR(info)) {
182 183 184 185 186 187 188 189
	case CFI_MFR_ST: /* Micron, actually */
		/* Some Micron need WREN command; all will accept it */
		need_wren = true;
	case CFI_MFR_MACRONIX:
	case 0xEF /* winbond */:
		if (need_wren)
			write_enable(nor);

190
		cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B;
191
		status = nor->write_reg(nor, cmd, NULL, 0);
192 193 194 195 196 197 198
		if (need_wren)
			write_disable(nor);

		return status;
	default:
		/* Spansion style */
		nor->cmd_buf[0] = enable << 7;
199
		return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1);
200 201
	}
}
202
static inline int spi_nor_sr_ready(struct spi_nor *nor)
203
{
204 205 206 207 208 209
	int sr = read_sr(nor);
	if (sr < 0)
		return sr;
	else
		return !(sr & SR_WIP);
}
210

211 212 213 214 215 216 217 218
static inline int spi_nor_fsr_ready(struct spi_nor *nor)
{
	int fsr = read_fsr(nor);
	if (fsr < 0)
		return fsr;
	else
		return fsr & FSR_READY;
}
219

220 221 222 223 224 225 226 227 228 229
static int spi_nor_ready(struct spi_nor *nor)
{
	int sr, fsr;
	sr = spi_nor_sr_ready(nor);
	if (sr < 0)
		return sr;
	fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1;
	if (fsr < 0)
		return fsr;
	return sr && fsr;
230 231
}

232 233 234 235
/*
 * Service routine to read status register until ready, or timeout occurs.
 * Returns non-zero if error.
 */
236
static int spi_nor_wait_till_ready(struct spi_nor *nor)
237 238
{
	unsigned long deadline;
239
	int timeout = 0, ret;
240 241 242

	deadline = jiffies + MAX_READY_WAIT_JIFFIES;

243 244 245
	while (!timeout) {
		if (time_after_eq(jiffies, deadline))
			timeout = 1;
246

247 248 249 250 251
		ret = spi_nor_ready(nor);
		if (ret < 0)
			return ret;
		if (ret)
			return 0;
252 253 254 255 256

		cond_resched();
	}

	dev_err(nor->dev, "flash operation timed out\n");
257 258 259 260

	return -ETIMEDOUT;
}

261 262 263 264 265 266 267
/*
 * Erase the whole flash memory
 *
 * Returns 0 if successful, non-zero otherwise.
 */
static int erase_chip(struct spi_nor *nor)
{
268
	dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd.size >> 10));
269

270
	return nor->write_reg(nor, SPINOR_OP_CHIP_ERASE, NULL, 0);
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
}

static int spi_nor_lock_and_prep(struct spi_nor *nor, enum spi_nor_ops ops)
{
	int ret = 0;

	mutex_lock(&nor->lock);

	if (nor->prepare) {
		ret = nor->prepare(nor, ops);
		if (ret) {
			dev_err(nor->dev, "failed in the preparation.\n");
			mutex_unlock(&nor->lock);
			return ret;
		}
	}
	return ret;
}

static void spi_nor_unlock_and_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
{
	if (nor->unprepare)
		nor->unprepare(nor, ops);
	mutex_unlock(&nor->lock);
}

/*
 * Erase an address range on the nor chip.  The address range may extend
 * one or more erase sectors.  Return an error is there is a problem erasing.
 */
static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	u32 addr, len;
	uint32_t rem;
	int ret;

	dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
			(long long)instr->len);

	div_u64_rem(instr->len, mtd->erasesize, &rem);
	if (rem)
		return -EINVAL;

	addr = instr->addr;
	len = instr->len;

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_ERASE);
	if (ret)
		return ret;

	/* whole-chip erase? */
	if (len == mtd->size) {
324 325
		write_enable(nor);

326 327 328 329 330
		if (erase_chip(nor)) {
			ret = -EIO;
			goto erase_err;
		}

331 332 333 334
		ret = spi_nor_wait_till_ready(nor);
		if (ret)
			goto erase_err;

335
	/* REVISIT in some cases we could speed up erasing large regions
336
	 * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K.  We may have set up
337 338 339 340 341 342
	 * to use "small sector erase", but that's not always optimal.
	 */

	/* "sector"-at-a-time erase */
	} else {
		while (len) {
343 344
			write_enable(nor);

345 346 347 348 349 350 351
			if (nor->erase(nor, addr)) {
				ret = -EIO;
				goto erase_err;
			}

			addr += mtd->erasesize;
			len -= mtd->erasesize;
352 353 354 355

			ret = spi_nor_wait_till_ready(nor);
			if (ret)
				goto erase_err;
356 357 358
		}
	}

359 360
	write_disable(nor);

361 362 363 364 365 366 367 368 369 370 371 372 373
	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);

	instr->state = MTD_ERASE_DONE;
	mtd_erase_callback(instr);

	return ret;

erase_err:
	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);
	instr->state = MTD_ERASE_FAILED;
	return ret;
}

374
static int stm_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
375
{
376
	struct mtd_info *mtd = &nor->mtd;
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
	uint32_t offset = ofs;
	uint8_t status_old, status_new;
	int ret = 0;

	status_old = read_sr(nor);

	if (offset < mtd->size - (mtd->size / 2))
		status_new = status_old | SR_BP2 | SR_BP1 | SR_BP0;
	else if (offset < mtd->size - (mtd->size / 4))
		status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;
	else if (offset < mtd->size - (mtd->size / 8))
		status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
	else if (offset < mtd->size - (mtd->size / 16))
		status_new = (status_old & ~(SR_BP0 | SR_BP1)) | SR_BP2;
	else if (offset < mtd->size - (mtd->size / 32))
		status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
	else if (offset < mtd->size - (mtd->size / 64))
		status_new = (status_old & ~(SR_BP2 | SR_BP0)) | SR_BP1;
	else
		status_new = (status_old & ~(SR_BP2 | SR_BP1)) | SR_BP0;

	/* Only modify protection if it will not unlock other areas */
	if ((status_new & (SR_BP2 | SR_BP1 | SR_BP0)) >
				(status_old & (SR_BP2 | SR_BP1 | SR_BP0))) {
		write_enable(nor);
		ret = write_sr(nor, status_new);
	}

	return ret;
}

408
static int stm_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len)
409
{
410
	struct mtd_info *mtd = &nor->mtd;
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
	uint32_t offset = ofs;
	uint8_t status_old, status_new;
	int ret = 0;

	status_old = read_sr(nor);

	if (offset+len > mtd->size - (mtd->size / 64))
		status_new = status_old & ~(SR_BP2 | SR_BP1 | SR_BP0);
	else if (offset+len > mtd->size - (mtd->size / 32))
		status_new = (status_old & ~(SR_BP2 | SR_BP1)) | SR_BP0;
	else if (offset+len > mtd->size - (mtd->size / 16))
		status_new = (status_old & ~(SR_BP2 | SR_BP0)) | SR_BP1;
	else if (offset+len > mtd->size - (mtd->size / 8))
		status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
	else if (offset+len > mtd->size - (mtd->size / 4))
		status_new = (status_old & ~(SR_BP0 | SR_BP1)) | SR_BP2;
	else if (offset+len > mtd->size - (mtd->size / 2))
		status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
	else
		status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;

	/* Only modify protection if it will not lock other areas */
	if ((status_new & (SR_BP2 | SR_BP1 | SR_BP0)) <
				(status_old & (SR_BP2 | SR_BP1 | SR_BP0))) {
		write_enable(nor);
		ret = write_sr(nor, status_new);
	}

439 440 441 442 443 444 445 446 447 448 449 450 451 452
	return ret;
}

static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	int ret;

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_LOCK);
	if (ret)
		return ret;

	ret = nor->flash_lock(nor, ofs, len);

453 454 455 456
	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_UNLOCK);
	return ret;
}

457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	int ret;

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK);
	if (ret)
		return ret;

	ret = nor->flash_unlock(nor, ofs, len);

	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK);
	return ret;
}

472
/* Used when the "_ext_id" is two bytes at most */
473
#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags)	\
474 475 476 477 478 479 480 481
		.id = {							\
			((_jedec_id) >> 16) & 0xff,			\
			((_jedec_id) >> 8) & 0xff,			\
			(_jedec_id) & 0xff,				\
			((_ext_id) >> 8) & 0xff,			\
			(_ext_id) & 0xff,				\
			},						\
		.id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),	\
482 483 484
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
		.page_size = 256,					\
485
		.flags = (_flags),
486

487 488 489 490 491 492 493 494 495 496 497 498 499
#define INFO6(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags)	\
		.id = {							\
			((_jedec_id) >> 16) & 0xff,			\
			((_jedec_id) >> 8) & 0xff,			\
			(_jedec_id) & 0xff,				\
			((_ext_id) >> 16) & 0xff,			\
			((_ext_id) >> 8) & 0xff,			\
			(_ext_id) & 0xff,				\
			},						\
		.id_len = 6,						\
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
		.page_size = 256,					\
500
		.flags = (_flags),
501

502 503 504 505 506
#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags)	\
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
		.page_size = (_page_size),				\
		.addr_width = (_addr_width),				\
507
		.flags = (_flags),
508 509 510 511

/* NOTE: double check command sets and memory organization when you add
 * more nor chips.  This current list focusses on newer chips, which
 * have been converging on command sets which including JEDEC ID.
512 513 514 515 516 517 518
 *
 * All newly added entries should describe *hardware* and should use SECT_4K
 * (or SECT_4K_PMC) if hardware supports erasing 4 KiB sectors. For usage
 * scenarios excluding small sectors there is config option that can be
 * disabled: CONFIG_MTD_SPI_NOR_USE_4K_SECTORS.
 * For historical (and compatibility) reasons (before we got above config) some
 * old entries may be missing 4K flag.
519
 */
520
static const struct flash_info spi_nor_ids[] = {
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
	/* Atmel -- some are (confusingly) marketed as "DataFlash" */
	{ "at25fs010",  INFO(0x1f6601, 0, 32 * 1024,   4, SECT_4K) },
	{ "at25fs040",  INFO(0x1f6604, 0, 64 * 1024,   8, SECT_4K) },

	{ "at25df041a", INFO(0x1f4401, 0, 64 * 1024,   8, SECT_4K) },
	{ "at25df321a", INFO(0x1f4701, 0, 64 * 1024,  64, SECT_4K) },
	{ "at25df641",  INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },

	{ "at26f004",   INFO(0x1f0400, 0, 64 * 1024,  8, SECT_4K) },
	{ "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
	{ "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
	{ "at26df321",  INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },

	{ "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) },

	/* EON -- en25xxx */
	{ "en25f32",    INFO(0x1c3116, 0, 64 * 1024,   64, SECT_4K) },
	{ "en25p32",    INFO(0x1c2016, 0, 64 * 1024,   64, 0) },
	{ "en25q32b",   INFO(0x1c3016, 0, 64 * 1024,   64, 0) },
	{ "en25p64",    INFO(0x1c2017, 0, 64 * 1024,  128, 0) },
	{ "en25q64",    INFO(0x1c3017, 0, 64 * 1024,  128, SECT_4K) },
542
	{ "en25qh128",  INFO(0x1c7018, 0, 64 * 1024,  256, 0) },
543
	{ "en25qh256",  INFO(0x1c7019, 0, 64 * 1024,  512, 0) },
544
	{ "en25s64",	INFO(0x1c3817, 0, 64 * 1024,  128, SECT_4K) },
545 546 547 548 549 550 551 552

	/* ESMT */
	{ "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K) },

	/* Everspin */
	{ "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "mr25h10",  CAT25_INFO(128 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },

553 554 555
	/* Fujitsu */
	{ "mb85rs1mt", INFO(0x047f27, 0, 128 * 1024, 1, SPI_NOR_NO_ERASE) },

556 557 558
	/* GigaDevice */
	{ "gd25q32", INFO(0xc84016, 0, 64 * 1024,  64, SECT_4K) },
	{ "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128, SECT_4K) },
559
	{ "gd25q128", INFO(0xc84018, 0, 64 * 1024, 256, SECT_4K) },
560 561 562 563 564 565

	/* Intel/Numonyx -- xxxs33b */
	{ "160s33b",  INFO(0x898911, 0, 64 * 1024,  32, 0) },
	{ "320s33b",  INFO(0x898912, 0, 64 * 1024,  64, 0) },
	{ "640s33b",  INFO(0x898913, 0, 64 * 1024, 128, 0) },

566 567 568
	/* ISSI */
	{ "is25cd512", INFO(0x7f9d20, 0, 32 * 1024,   2, SECT_4K) },

569
	/* Macronix */
570
	{ "mx25l512e",   INFO(0xc22010, 0, 64 * 1024,   1, SECT_4K) },
571 572 573 574 575 576 577
	{ "mx25l2005a",  INFO(0xc22012, 0, 64 * 1024,   4, SECT_4K) },
	{ "mx25l4005a",  INFO(0xc22013, 0, 64 * 1024,   8, SECT_4K) },
	{ "mx25l8005",   INFO(0xc22014, 0, 64 * 1024,  16, 0) },
	{ "mx25l1606e",  INFO(0xc22015, 0, 64 * 1024,  32, SECT_4K) },
	{ "mx25l3205d",  INFO(0xc22016, 0, 64 * 1024,  64, 0) },
	{ "mx25l3255e",  INFO(0xc29e16, 0, 64 * 1024,  64, SECT_4K) },
	{ "mx25l6405d",  INFO(0xc22017, 0, 64 * 1024, 128, 0) },
578
	{ "mx25u6435f",  INFO(0xc22537, 0, 64 * 1024, 128, SECT_4K) },
579 580 581 582 583 584 585 586
	{ "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
	{ "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
	{ "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
	{ "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
	{ "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, SPI_NOR_QUAD_READ) },
	{ "mx66l1g55g",  INFO(0xc2261b, 0, 64 * 1024, 2048, SPI_NOR_QUAD_READ) },

	/* Micron */
587
	{ "n25q032",	 INFO(0x20ba16, 0, 64 * 1024,   64, SPI_NOR_QUAD_READ) },
588
	{ "n25q064",     INFO(0x20ba17, 0, 64 * 1024,  128, SECT_4K | SPI_NOR_QUAD_READ) },
589
	{ "n25q064a",    INFO(0x20bb17, 0, 64 * 1024,  128, SECT_4K | SPI_NOR_QUAD_READ) },
590 591 592 593 594 595
	{ "n25q128a11",  INFO(0x20bb18, 0, 64 * 1024,  256, SPI_NOR_QUAD_READ) },
	{ "n25q128a13",  INFO(0x20ba18, 0, 64 * 1024,  256, SPI_NOR_QUAD_READ) },
	{ "n25q256a",    INFO(0x20ba19, 0, 64 * 1024,  512, SECT_4K | SPI_NOR_QUAD_READ) },
	{ "n25q512a",    INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
	{ "n25q512ax3",  INFO(0x20ba20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
	{ "n25q00",      INFO(0x20ba21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
596 597 598 599 600 601 602 603 604

	/* PMC */
	{ "pm25lv512",   INFO(0,        0, 32 * 1024,    2, SECT_4K_PMC) },
	{ "pm25lv010",   INFO(0,        0, 32 * 1024,    4, SECT_4K_PMC) },
	{ "pm25lq032",   INFO(0x7f9d46, 0, 64 * 1024,   64, SECT_4K) },

	/* Spansion -- single (large) sector size only, at least
	 * for the chips listed here (without boot sectors).
	 */
605
	{ "s25sl032p",  INFO(0x010215, 0x4d00,  64 * 1024,  64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
606
	{ "s25sl064p",  INFO(0x010216, 0x4d00,  64 * 1024, 128, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
607 608 609 610 611 612
	{ "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
	{ "s25fl256s1", INFO(0x010219, 0x4d01,  64 * 1024, 512, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
	{ "s25fl512s",  INFO(0x010220, 0x4d00, 256 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
	{ "s70fl01gs",  INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
	{ "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024,  64, 0) },
	{ "s25sl12801", INFO(0x012018, 0x0301,  64 * 1024, 256, 0) },
613
	{ "s25fl128s",	INFO6(0x012018, 0x4d0180, 64 * 1024, 256, SECT_4K | SPI_NOR_QUAD_READ) },
614 615
	{ "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024,  64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
	{ "s25fl129p1", INFO(0x012018, 0x4d01,  64 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
616 617 618 619 620
	{ "s25sl004a",  INFO(0x010212,      0,  64 * 1024,   8, 0) },
	{ "s25sl008a",  INFO(0x010213,      0,  64 * 1024,  16, 0) },
	{ "s25sl016a",  INFO(0x010214,      0,  64 * 1024,  32, 0) },
	{ "s25sl032a",  INFO(0x010215,      0,  64 * 1024,  64, 0) },
	{ "s25sl064a",  INFO(0x010216,      0,  64 * 1024, 128, 0) },
621 622
	{ "s25fl008k",  INFO(0xef4014,      0,  64 * 1024,  16, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
	{ "s25fl016k",  INFO(0xef4015,      0,  64 * 1024,  32, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
623
	{ "s25fl064k",  INFO(0xef4017,      0,  64 * 1024, 128, SECT_4K) },
624
	{ "s25fl132k",  INFO(0x014016,      0,  64 * 1024,  64, SECT_4K) },
625
	{ "s25fl164k",  INFO(0x014017,      0,  64 * 1024, 128, SECT_4K) },
626
	{ "s25fl204k",  INFO(0x014013,      0,  64 * 1024,   8, SECT_4K) },
627 628 629 630 631 632 633 634 635 636

	/* SST -- large erase sizes are "overlays", "sectors" are 4K */
	{ "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024,  8, SECT_4K | SST_WRITE) },
	{ "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
	{ "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) },
	{ "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) },
	{ "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) },
	{ "sst25wf512",  INFO(0xbf2501, 0, 64 * 1024,  1, SECT_4K | SST_WRITE) },
	{ "sst25wf010",  INFO(0xbf2502, 0, 64 * 1024,  2, SECT_4K | SST_WRITE) },
	{ "sst25wf020",  INFO(0xbf2503, 0, 64 * 1024,  4, SECT_4K | SST_WRITE) },
637
	{ "sst25wf020a", INFO(0x621612, 0, 64 * 1024,  4, SECT_4K) },
638
	{ "sst25wf040b", INFO(0x621613, 0, 64 * 1024,  8, SECT_4K) },
639
	{ "sst25wf040",  INFO(0xbf2504, 0, 64 * 1024,  8, SECT_4K | SST_WRITE) },
640
	{ "sst25wf080",  INFO(0xbf2505, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675

	/* ST Microelectronics -- newer production may have feature updates */
	{ "m25p05",  INFO(0x202010,  0,  32 * 1024,   2, 0) },
	{ "m25p10",  INFO(0x202011,  0,  32 * 1024,   4, 0) },
	{ "m25p20",  INFO(0x202012,  0,  64 * 1024,   4, 0) },
	{ "m25p40",  INFO(0x202013,  0,  64 * 1024,   8, 0) },
	{ "m25p80",  INFO(0x202014,  0,  64 * 1024,  16, 0) },
	{ "m25p16",  INFO(0x202015,  0,  64 * 1024,  32, 0) },
	{ "m25p32",  INFO(0x202016,  0,  64 * 1024,  64, 0) },
	{ "m25p64",  INFO(0x202017,  0,  64 * 1024, 128, 0) },
	{ "m25p128", INFO(0x202018,  0, 256 * 1024,  64, 0) },

	{ "m25p05-nonjedec",  INFO(0, 0,  32 * 1024,   2, 0) },
	{ "m25p10-nonjedec",  INFO(0, 0,  32 * 1024,   4, 0) },
	{ "m25p20-nonjedec",  INFO(0, 0,  64 * 1024,   4, 0) },
	{ "m25p40-nonjedec",  INFO(0, 0,  64 * 1024,   8, 0) },
	{ "m25p80-nonjedec",  INFO(0, 0,  64 * 1024,  16, 0) },
	{ "m25p16-nonjedec",  INFO(0, 0,  64 * 1024,  32, 0) },
	{ "m25p32-nonjedec",  INFO(0, 0,  64 * 1024,  64, 0) },
	{ "m25p64-nonjedec",  INFO(0, 0,  64 * 1024, 128, 0) },
	{ "m25p128-nonjedec", INFO(0, 0, 256 * 1024,  64, 0) },

	{ "m45pe10", INFO(0x204011,  0, 64 * 1024,    2, 0) },
	{ "m45pe80", INFO(0x204014,  0, 64 * 1024,   16, 0) },
	{ "m45pe16", INFO(0x204015,  0, 64 * 1024,   32, 0) },

	{ "m25pe20", INFO(0x208012,  0, 64 * 1024,  4,       0) },
	{ "m25pe80", INFO(0x208014,  0, 64 * 1024, 16,       0) },
	{ "m25pe16", INFO(0x208015,  0, 64 * 1024, 32, SECT_4K) },

	{ "m25px16",    INFO(0x207115,  0, 64 * 1024, 32, SECT_4K) },
	{ "m25px32",    INFO(0x207116,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px32-s0", INFO(0x207316,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px32-s1", INFO(0x206316,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px64",    INFO(0x207117,  0, 64 * 1024, 128, 0) },
676
	{ "m25px80",    INFO(0x207114,  0, 64 * 1024, 16, 0) },
677 678

	/* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
679
	{ "w25x05", INFO(0xef3010, 0, 64 * 1024,  1,  SECT_4K) },
680 681 682 683 684 685 686 687 688 689
	{ "w25x10", INFO(0xef3011, 0, 64 * 1024,  2,  SECT_4K) },
	{ "w25x20", INFO(0xef3012, 0, 64 * 1024,  4,  SECT_4K) },
	{ "w25x40", INFO(0xef3013, 0, 64 * 1024,  8,  SECT_4K) },
	{ "w25x80", INFO(0xef3014, 0, 64 * 1024,  16, SECT_4K) },
	{ "w25x16", INFO(0xef3015, 0, 64 * 1024,  32, SECT_4K) },
	{ "w25x32", INFO(0xef3016, 0, 64 * 1024,  64, SECT_4K) },
	{ "w25q32", INFO(0xef4016, 0, 64 * 1024,  64, SECT_4K) },
	{ "w25q32dw", INFO(0xef6016, 0, 64 * 1024,  64, SECT_4K) },
	{ "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
	{ "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
690
	{ "w25q64dw", INFO(0xef6017, 0, 64 * 1024, 128, SECT_4K) },
691 692 693 694 695 696 697 698 699 700 701 702 703 704
	{ "w25q80", INFO(0xef5014, 0, 64 * 1024,  16, SECT_4K) },
	{ "w25q80bl", INFO(0xef4014, 0, 64 * 1024,  16, SECT_4K) },
	{ "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
	{ "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K) },

	/* Catalyst / On Semiconductor -- non-JEDEC */
	{ "cat25c11", CAT25_INFO(  16, 8, 16, 1, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "cat25c03", CAT25_INFO(  32, 8, 16, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "cat25c09", CAT25_INFO( 128, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "cat25c17", CAT25_INFO( 256, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "cat25128", CAT25_INFO(2048, 8, 64, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ },
};

705
static const struct flash_info *spi_nor_read_id(struct spi_nor *nor)
706 707
{
	int			tmp;
708
	u8			id[SPI_NOR_MAX_ID_LEN];
709
	const struct flash_info	*info;
710

711
	tmp = nor->read_reg(nor, SPINOR_OP_RDID, id, SPI_NOR_MAX_ID_LEN);
712 713 714 715 716 717
	if (tmp < 0) {
		dev_dbg(nor->dev, " error %d reading JEDEC ID\n", tmp);
		return ERR_PTR(tmp);
	}

	for (tmp = 0; tmp < ARRAY_SIZE(spi_nor_ids) - 1; tmp++) {
718
		info = &spi_nor_ids[tmp];
719 720
		if (info->id_len) {
			if (!memcmp(info->id, id, info->id_len))
721 722 723
				return &spi_nor_ids[tmp];
		}
	}
724 725
	dev_err(nor->dev, "unrecognized JEDEC id bytes: %02x, %2x, %2x\n",
		id[0], id[1], id[2]);
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
	return ERR_PTR(-ENODEV);
}

static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
			size_t *retlen, u_char *buf)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	int ret;

	dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_READ);
	if (ret)
		return ret;

	ret = nor->read(nor, from, len, retlen, buf);

	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_READ);
	return ret;
}

static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
		size_t *retlen, const u_char *buf)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	size_t actual;
	int ret;

	dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
	if (ret)
		return ret;

	write_enable(nor);

	nor->sst_write_second = false;

	actual = to % 2;
	/* Start write from odd address. */
	if (actual) {
767
		nor->program_opcode = SPINOR_OP_BP;
768 769 770

		/* write one byte. */
		nor->write(nor, to, 1, retlen, buf);
771
		ret = spi_nor_wait_till_ready(nor);
772 773 774 775 776 777 778
		if (ret)
			goto time_out;
	}
	to += actual;

	/* Write out most of the data here. */
	for (; actual < len - 1; actual += 2) {
779
		nor->program_opcode = SPINOR_OP_AAI_WP;
780 781 782

		/* write two bytes. */
		nor->write(nor, to, 2, retlen, buf + actual);
783
		ret = spi_nor_wait_till_ready(nor);
784 785 786 787 788 789 790 791
		if (ret)
			goto time_out;
		to += 2;
		nor->sst_write_second = true;
	}
	nor->sst_write_second = false;

	write_disable(nor);
792
	ret = spi_nor_wait_till_ready(nor);
793 794 795 796 797 798 799
	if (ret)
		goto time_out;

	/* Write out trailing byte if it exists. */
	if (actual != len) {
		write_enable(nor);

800
		nor->program_opcode = SPINOR_OP_BP;
801 802
		nor->write(nor, to, 1, retlen, buf + actual);

803
		ret = spi_nor_wait_till_ready(nor);
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
		if (ret)
			goto time_out;
		write_disable(nor);
	}
time_out:
	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
	return ret;
}

/*
 * Write an address range to the nor chip.  Data must be written in
 * FLASH_PAGESIZE chunks.  The address range may be any size provided
 * it is within the physical boundaries.
 */
static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
	size_t *retlen, const u_char *buf)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	u32 page_offset, page_size, i;
	int ret;

	dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
	if (ret)
		return ret;

	write_enable(nor);

	page_offset = to & (nor->page_size - 1);

	/* do all the bytes fit onto one page? */
	if (page_offset + len <= nor->page_size) {
		nor->write(nor, to, len, retlen, buf);
	} else {
		/* the size of data remaining on the first page */
		page_size = nor->page_size - page_offset;
		nor->write(nor, to, page_size, retlen, buf);

		/* write everything in nor->page_size chunks */
		for (i = page_size; i < len; i += page_size) {
			page_size = len - i;
			if (page_size > nor->page_size)
				page_size = nor->page_size;

849
			ret = spi_nor_wait_till_ready(nor);
850 851 852
			if (ret)
				goto write_err;

853 854 855 856 857 858
			write_enable(nor);

			nor->write(nor, to + i, page_size, retlen, buf + i);
		}
	}

859
	ret = spi_nor_wait_till_ready(nor);
860 861
write_err:
	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
862
	return ret;
863 864 865 866 867 868 869 870 871
}

static int macronix_quad_enable(struct spi_nor *nor)
{
	int ret, val;

	val = read_sr(nor);
	write_enable(nor);

872
	write_sr(nor, val | SR_QUAD_EN_MX);
873

874
	if (spi_nor_wait_till_ready(nor))
875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
		return 1;

	ret = read_sr(nor);
	if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) {
		dev_err(nor->dev, "Macronix Quad bit not set\n");
		return -EINVAL;
	}

	return 0;
}

/*
 * Write status Register and configuration register with 2 bytes
 * The first byte will be written to the status register, while the
 * second byte will be written to the configuration register.
 * Return negative if error occured.
 */
static int write_sr_cr(struct spi_nor *nor, u16 val)
{
	nor->cmd_buf[0] = val & 0xff;
	nor->cmd_buf[1] = (val >> 8);

897
	return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 2);
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
}

static int spansion_quad_enable(struct spi_nor *nor)
{
	int ret;
	int quad_en = CR_QUAD_EN_SPAN << 8;

	write_enable(nor);

	ret = write_sr_cr(nor, quad_en);
	if (ret < 0) {
		dev_err(nor->dev,
			"error while writing configuration register\n");
		return -EINVAL;
	}

	/* read back and check it */
	ret = read_cr(nor);
	if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
		dev_err(nor->dev, "Spansion Quad bit not set\n");
		return -EINVAL;
	}

	return 0;
}

924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
static int micron_quad_enable(struct spi_nor *nor)
{
	int ret;
	u8 val;

	ret = nor->read_reg(nor, SPINOR_OP_RD_EVCR, &val, 1);
	if (ret < 0) {
		dev_err(nor->dev, "error %d reading EVCR\n", ret);
		return ret;
	}

	write_enable(nor);

	/* set EVCR, enable quad I/O */
	nor->cmd_buf[0] = val & ~EVCR_QUAD_EN_MICRON;
939
	ret = nor->write_reg(nor, SPINOR_OP_WD_EVCR, nor->cmd_buf, 1);
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
	if (ret < 0) {
		dev_err(nor->dev, "error while writing EVCR register\n");
		return ret;
	}

	ret = spi_nor_wait_till_ready(nor);
	if (ret)
		return ret;

	/* read EVCR and check it */
	ret = nor->read_reg(nor, SPINOR_OP_RD_EVCR, &val, 1);
	if (ret < 0) {
		dev_err(nor->dev, "error %d reading EVCR\n", ret);
		return ret;
	}
	if (val & EVCR_QUAD_EN_MICRON) {
		dev_err(nor->dev, "Micron EVCR Quad bit not clear\n");
		return -EINVAL;
	}

	return 0;
}

963
static int set_quad_mode(struct spi_nor *nor, const struct flash_info *info)
964 965 966
{
	int status;

967
	switch (JEDEC_MFR(info)) {
968 969 970 971 972 973 974
	case CFI_MFR_MACRONIX:
		status = macronix_quad_enable(nor);
		if (status) {
			dev_err(nor->dev, "Macronix quad-read not enabled\n");
			return -EINVAL;
		}
		return status;
975 976 977 978 979 980 981
	case CFI_MFR_ST:
		status = micron_quad_enable(nor);
		if (status) {
			dev_err(nor->dev, "Micron quad-read not enabled\n");
			return -EINVAL;
		}
		return status;
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
	default:
		status = spansion_quad_enable(nor);
		if (status) {
			dev_err(nor->dev, "Spansion quad-read not enabled\n");
			return -EINVAL;
		}
		return status;
	}
}

static int spi_nor_check(struct spi_nor *nor)
{
	if (!nor->dev || !nor->read || !nor->write ||
		!nor->read_reg || !nor->write_reg || !nor->erase) {
		pr_err("spi-nor: please fill all the necessary fields!\n");
		return -EINVAL;
	}

	return 0;
}

1003
int spi_nor_scan(struct spi_nor *nor, const char *name, enum read_mode mode)
1004
{
1005
	const struct flash_info *info = NULL;
1006
	struct device *dev = nor->dev;
1007
	struct mtd_info *mtd = &nor->mtd;
1008
	struct device_node *np = nor->flash_node;
1009 1010 1011 1012 1013 1014 1015
	int ret;
	int i;

	ret = spi_nor_check(nor);
	if (ret)
		return ret;

1016
	if (name)
1017
		info = spi_nor_match_id(name);
1018
	/* Try to auto-detect if chip name wasn't specified or not found */
1019 1020 1021
	if (!info)
		info = spi_nor_read_id(nor);
	if (IS_ERR_OR_NULL(info))
1022 1023
		return -ENOENT;

1024 1025 1026 1027 1028
	/*
	 * If caller has specified name of flash model that can normally be
	 * detected using JEDEC, let's verify it.
	 */
	if (name && info->id_len) {
1029
		const struct flash_info *jinfo;
1030

1031 1032 1033 1034
		jinfo = spi_nor_read_id(nor);
		if (IS_ERR(jinfo)) {
			return PTR_ERR(jinfo);
		} else if (jinfo != info) {
1035 1036 1037 1038 1039 1040 1041 1042
			/*
			 * JEDEC knows better, so overwrite platform ID. We
			 * can't trust partitions any longer, but we'll let
			 * mtd apply them anyway, since some partitions may be
			 * marked read-only, and we don't want to lose that
			 * information, even if it's not 100% accurate.
			 */
			dev_warn(dev, "found %s, expected %s\n",
1043 1044
				 jinfo->name, info->name);
			info = jinfo;
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
		}
	}

	mutex_init(&nor->lock);

	/*
	 * Atmel, SST and Intel/Numonyx serial nor tend to power
	 * up with the software protection bits set
	 */

1055 1056 1057
	if (JEDEC_MFR(info) == CFI_MFR_ATMEL ||
	    JEDEC_MFR(info) == CFI_MFR_INTEL ||
	    JEDEC_MFR(info) == CFI_MFR_SST) {
1058 1059 1060 1061
		write_enable(nor);
		write_sr(nor, 0);
	}

1062
	if (!mtd->name)
1063
		mtd->name = dev_name(dev);
1064
	mtd->priv = nor;
1065 1066 1067 1068 1069 1070 1071 1072
	mtd->type = MTD_NORFLASH;
	mtd->writesize = 1;
	mtd->flags = MTD_CAP_NORFLASH;
	mtd->size = info->sector_size * info->n_sectors;
	mtd->_erase = spi_nor_erase;
	mtd->_read = spi_nor_read;

	/* nor protection support for STmicro chips */
1073
	if (JEDEC_MFR(info) == CFI_MFR_ST) {
1074 1075 1076 1077 1078
		nor->flash_lock = stm_lock;
		nor->flash_unlock = stm_unlock;
	}

	if (nor->flash_lock && nor->flash_unlock) {
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
		mtd->_lock = spi_nor_lock;
		mtd->_unlock = spi_nor_unlock;
	}

	/* sst nor chips use AAI word program */
	if (info->flags & SST_WRITE)
		mtd->_write = sst_write;
	else
		mtd->_write = spi_nor_write;

1089 1090
	if (info->flags & USE_FSR)
		nor->flags |= SNOR_F_USE_FSR;
1091

1092
#ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS
1093 1094
	/* prefer "small sector" erase if possible */
	if (info->flags & SECT_4K) {
1095
		nor->erase_opcode = SPINOR_OP_BE_4K;
1096 1097
		mtd->erasesize = 4096;
	} else if (info->flags & SECT_4K_PMC) {
1098
		nor->erase_opcode = SPINOR_OP_BE_4K_PMC;
1099
		mtd->erasesize = 4096;
1100 1101 1102
	} else
#endif
	{
1103
		nor->erase_opcode = SPINOR_OP_SE;
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
		mtd->erasesize = info->sector_size;
	}

	if (info->flags & SPI_NOR_NO_ERASE)
		mtd->flags |= MTD_NO_ERASE;

	mtd->dev.parent = dev;
	nor->page_size = info->page_size;
	mtd->writebufsize = nor->page_size;

	if (np) {
		/* If we were instantiated by DT, use it */
		if (of_property_read_bool(np, "m25p,fast-read"))
			nor->flash_read = SPI_NOR_FAST;
		else
			nor->flash_read = SPI_NOR_NORMAL;
	} else {
		/* If we weren't instantiated by DT, default to fast-read */
		nor->flash_read = SPI_NOR_FAST;
	}

	/* Some devices cannot do fast-read, no matter what DT tells us */
	if (info->flags & SPI_NOR_NO_FR)
		nor->flash_read = SPI_NOR_NORMAL;

	/* Quad/Dual-read mode takes precedence over fast/normal */
	if (mode == SPI_NOR_QUAD && info->flags & SPI_NOR_QUAD_READ) {
1131
		ret = set_quad_mode(nor, info);
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
		if (ret) {
			dev_err(dev, "quad mode not supported\n");
			return ret;
		}
		nor->flash_read = SPI_NOR_QUAD;
	} else if (mode == SPI_NOR_DUAL && info->flags & SPI_NOR_DUAL_READ) {
		nor->flash_read = SPI_NOR_DUAL;
	}

	/* Default commands */
	switch (nor->flash_read) {
	case SPI_NOR_QUAD:
1144
		nor->read_opcode = SPINOR_OP_READ_1_1_4;
1145 1146
		break;
	case SPI_NOR_DUAL:
1147
		nor->read_opcode = SPINOR_OP_READ_1_1_2;
1148 1149
		break;
	case SPI_NOR_FAST:
1150
		nor->read_opcode = SPINOR_OP_READ_FAST;
1151 1152
		break;
	case SPI_NOR_NORMAL:
1153
		nor->read_opcode = SPINOR_OP_READ;
1154 1155 1156 1157 1158 1159
		break;
	default:
		dev_err(dev, "No Read opcode defined\n");
		return -EINVAL;
	}

1160
	nor->program_opcode = SPINOR_OP_PP;
1161 1162 1163 1164 1165 1166

	if (info->addr_width)
		nor->addr_width = info->addr_width;
	else if (mtd->size > 0x1000000) {
		/* enable 4-byte addressing if the device exceeds 16MiB */
		nor->addr_width = 4;
1167
		if (JEDEC_MFR(info) == CFI_MFR_AMD) {
1168 1169 1170
			/* Dedicated 4-byte command set */
			switch (nor->flash_read) {
			case SPI_NOR_QUAD:
1171
				nor->read_opcode = SPINOR_OP_READ4_1_1_4;
1172 1173
				break;
			case SPI_NOR_DUAL:
1174
				nor->read_opcode = SPINOR_OP_READ4_1_1_2;
1175 1176
				break;
			case SPI_NOR_FAST:
1177
				nor->read_opcode = SPINOR_OP_READ4_FAST;
1178 1179
				break;
			case SPI_NOR_NORMAL:
1180
				nor->read_opcode = SPINOR_OP_READ4;
1181 1182
				break;
			}
1183
			nor->program_opcode = SPINOR_OP_PP_4B;
1184
			/* No small sector erase for 4-byte command set */
1185
			nor->erase_opcode = SPINOR_OP_SE_4B;
1186 1187
			mtd->erasesize = info->sector_size;
		} else
1188
			set_4byte(nor, info, 1);
1189 1190 1191 1192 1193 1194
	} else {
		nor->addr_width = 3;
	}

	nor->read_dummy = spi_nor_read_dummy_cycles(nor);

1195
	dev_info(dev, "%s (%lld Kbytes)\n", info->name,
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
			(long long)mtd->size >> 10);

	dev_dbg(dev,
		"mtd .name = %s, .size = 0x%llx (%lldMiB), "
		".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
		mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20),
		mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions);

	if (mtd->numeraseregions)
		for (i = 0; i < mtd->numeraseregions; i++)
			dev_dbg(dev,
				"mtd.eraseregions[%d] = { .offset = 0x%llx, "
				".erasesize = 0x%.8x (%uKiB), "
				".numblocks = %d }\n",
				i, (long long)mtd->eraseregions[i].offset,
				mtd->eraseregions[i].erasesize,
				mtd->eraseregions[i].erasesize / 1024,
				mtd->eraseregions[i].numblocks);
	return 0;
}
1216
EXPORT_SYMBOL_GPL(spi_nor_scan);
1217

1218
static const struct flash_info *spi_nor_match_id(const char *name)
1219
{
1220
	const struct flash_info *id = spi_nor_ids;
1221

1222
	while (id->name) {
1223 1224 1225 1226 1227 1228 1229
		if (!strcmp(name, id->name))
			return id;
		id++;
	}
	return NULL;
}

1230 1231 1232 1233
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
MODULE_AUTHOR("Mike Lavender");
MODULE_DESCRIPTION("framework for SPI NOR");