netup_unidvb_spi.c 6.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
/*
 * netup_unidvb_spi.c
 *
 * Internal SPI driver for NetUP Universal Dual DVB-CI
 *
 * Copyright (C) 2014 NetUP Inc.
 * Copyright (C) 2014 Sergey Kozlov <serjk@netup.ru>
 * Copyright (C) 2014 Abylay Ospan <aospan@netup.ru>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include "netup_unidvb.h"
#include <linux/spi/spi.h>
#include <linux/spi/flash.h>
#include <linux/mtd/partitions.h>
#include <mtd/mtd-abi.h>

#define NETUP_SPI_CTRL_IRQ	0x1000
#define NETUP_SPI_CTRL_IMASK	0x2000
#define NETUP_SPI_CTRL_START	0x8000
#define NETUP_SPI_CTRL_LAST_CS	0x4000

#define NETUP_SPI_TIMEOUT	6000

enum netup_spi_state {
	SPI_STATE_START,
	SPI_STATE_DONE,
};

struct netup_spi_regs {
	__u8	data[1024];
	__le16	control_stat;
	__le16	clock_divider;
} __packed __aligned(1);

struct netup_spi {
	struct device			*dev;
	struct spi_master		*master;
	struct netup_spi_regs		*regs;
	u8 __iomem			*mmio;
	spinlock_t			lock;
	wait_queue_head_t		waitq;
	enum netup_spi_state		state;
};

static char netup_spi_name[64] = "fpga";

static struct mtd_partition netup_spi_flash_partitions = {
	.name = netup_spi_name,
	.size = 0x1000000, /* 16MB */
	.offset = 0,
	.mask_flags = MTD_CAP_ROM
};

static struct flash_platform_data spi_flash_data = {
	.name = "netup0_m25p128",
	.parts = &netup_spi_flash_partitions,
	.nr_parts = 1,
};

static struct spi_board_info netup_spi_board = {
	.modalias = "m25p128",
	.max_speed_hz = 11000000,
	.chip_select = 0,
	.mode = SPI_MODE_0,
	.platform_data = &spi_flash_data,
};

irqreturn_t netup_spi_interrupt(struct netup_spi *spi)
{
	u16 reg;
	unsigned long flags;

	if (!spi) {
		dev_dbg(&spi->master->dev,
			"%s(): SPI not initialized\n", __func__);
		return IRQ_NONE;
	}
	spin_lock_irqsave(&spi->lock, flags);
	reg = readw(&spi->regs->control_stat);
	if (!(reg & NETUP_SPI_CTRL_IRQ)) {
		spin_unlock_irqrestore(&spi->lock, flags);
		dev_dbg(&spi->master->dev,
			"%s(): not mine interrupt\n", __func__);
		return IRQ_NONE;
	}
	writew(reg | NETUP_SPI_CTRL_IRQ, &spi->regs->control_stat);
	reg = readw(&spi->regs->control_stat);
	writew(reg & ~NETUP_SPI_CTRL_IMASK, &spi->regs->control_stat);
	spi->state = SPI_STATE_DONE;
	wake_up(&spi->waitq);
	spin_unlock_irqrestore(&spi->lock, flags);
	dev_dbg(&spi->master->dev,
		"%s(): SPI interrupt handled\n", __func__);
	return IRQ_HANDLED;
}

static int netup_spi_transfer(struct spi_master *master,
			      struct spi_message *msg)
{
	struct netup_spi *spi = spi_master_get_devdata(master);
	struct spi_transfer *t;
	int result = 0;
	u32 tr_size;

	/* reset CS */
	writew(NETUP_SPI_CTRL_LAST_CS, &spi->regs->control_stat);
	writew(0, &spi->regs->control_stat);
	list_for_each_entry(t, &msg->transfers, transfer_list) {
		tr_size = t->len;
		while (tr_size) {
			u32 frag_offset = t->len - tr_size;
			u32 frag_size = (tr_size > sizeof(spi->regs->data)) ?
					sizeof(spi->regs->data) : tr_size;
			int frag_last = 0;

			if (list_is_last(&t->transfer_list,
					&msg->transfers) &&
					frag_offset + frag_size == t->len) {
				frag_last = 1;
			}
			if (t->tx_buf) {
				memcpy_toio(spi->regs->data,
					t->tx_buf + frag_offset,
					frag_size);
			} else {
				memset_io(spi->regs->data,
					0, frag_size);
			}
			spi->state = SPI_STATE_START;
			writew((frag_size & 0x3ff) |
				NETUP_SPI_CTRL_IMASK |
				NETUP_SPI_CTRL_START |
				(frag_last ? NETUP_SPI_CTRL_LAST_CS : 0),
				&spi->regs->control_stat);
			dev_dbg(&spi->master->dev,
				"%s(): control_stat 0x%04x\n",
				__func__, readw(&spi->regs->control_stat));
			wait_event_timeout(spi->waitq,
				spi->state != SPI_STATE_START,
				msecs_to_jiffies(NETUP_SPI_TIMEOUT));
			if (spi->state == SPI_STATE_DONE) {
				if (t->rx_buf) {
					memcpy_fromio(t->rx_buf + frag_offset,
						spi->regs->data, frag_size);
				}
			} else {
				if (spi->state == SPI_STATE_START) {
					dev_dbg(&spi->master->dev,
						"%s(): transfer timeout\n",
						__func__);
				} else {
					dev_dbg(&spi->master->dev,
						"%s(): invalid state %d\n",
						__func__, spi->state);
				}
				result = -EIO;
				goto done;
			}
			tr_size -= frag_size;
			msg->actual_length += frag_size;
		}
	}
done:
	msg->status = result;
	spi_finalize_current_message(master);
	return result;
}

static int netup_spi_setup(struct spi_device *spi)
{
	return 0;
}

int netup_spi_init(struct netup_unidvb_dev *ndev)
{
	struct spi_master *master;
	struct netup_spi *nspi;

	master = spi_alloc_master(&ndev->pci_dev->dev,
		sizeof(struct netup_spi));
	if (!master) {
		dev_err(&ndev->pci_dev->dev,
			"%s(): unable to alloc SPI master\n", __func__);
		return -EINVAL;
	}
	nspi = spi_master_get_devdata(master);
	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
	master->bus_num = -1;
	master->num_chipselect = 1;
	master->transfer_one_message = netup_spi_transfer;
	master->setup = netup_spi_setup;
	spin_lock_init(&nspi->lock);
	init_waitqueue_head(&nspi->waitq);
	nspi->master = master;
	nspi->regs = (struct netup_spi_regs *)(ndev->bmmio0 + 0x4000);
	writew(2, &nspi->regs->clock_divider);
	writew(NETUP_UNIDVB_IRQ_SPI, ndev->bmmio0 + REG_IMASK_SET);
	ndev->spi = nspi;
	if (spi_register_master(master)) {
		ndev->spi = NULL;
		dev_err(&ndev->pci_dev->dev,
			"%s(): unable to register SPI bus\n", __func__);
		return -EINVAL;
	}
	snprintf(netup_spi_name,
		sizeof(netup_spi_name),
		"fpga_%02x:%02x.%01x",
		ndev->pci_bus,
		ndev->pci_slot,
		ndev->pci_func);
	if (!spi_new_device(master, &netup_spi_board)) {
		ndev->spi = NULL;
		dev_err(&ndev->pci_dev->dev,
			"%s(): unable to create SPI device\n", __func__);
		return -EINVAL;
	}
	dev_dbg(&ndev->pci_dev->dev, "%s(): SPI init OK\n", __func__);
	return 0;
}

void netup_spi_release(struct netup_unidvb_dev *ndev)
{
	u16 reg;
	unsigned long flags;
	struct netup_spi *spi = ndev->spi;

	if (!spi) {
		dev_dbg(&spi->master->dev,
			"%s(): SPI not initialized\n", __func__);
		return;
	}
	spin_lock_irqsave(&spi->lock, flags);
	reg = readw(&spi->regs->control_stat);
	writew(reg | NETUP_SPI_CTRL_IRQ, &spi->regs->control_stat);
	reg = readw(&spi->regs->control_stat);
	writew(reg & ~NETUP_SPI_CTRL_IMASK, &spi->regs->control_stat);
	spin_unlock_irqrestore(&spi->lock, flags);
	spi_unregister_master(spi->master);
	ndev->spi = NULL;
}