efx.c 71.1 KB
Newer Older
1 2 3
/****************************************************************************
 * Driver for Solarflare Solarstorm network controllers and boards
 * Copyright 2005-2006 Fen Systems Ltd.
B
Ben Hutchings 已提交
4
 * Copyright 2005-2011 Solarflare Communications Inc.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/module.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/notifier.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/in.h>
#include <linux/crc32.h>
#include <linux/ethtool.h>
22
#include <linux/topology.h>
23
#include <linux/gfp.h>
24
#include <linux/cpu_rmap.h>
25 26
#include "net_driver.h"
#include "efx.h"
B
Ben Hutchings 已提交
27
#include "nic.h"
28

29
#include "mcdi.h"
30
#include "workarounds.h"
31

32 33 34 35 36 37 38 39 40 41 42
/**************************************************************************
 *
 * Type name strings
 *
 **************************************************************************
 */

/* Loopback mode names (see LOOPBACK_MODE()) */
const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
const char *efx_loopback_mode_names[] = {
	[LOOPBACK_NONE]		= "NONE",
43
	[LOOPBACK_DATA]		= "DATAPATH",
44 45 46 47
	[LOOPBACK_GMAC]		= "GMAC",
	[LOOPBACK_XGMII]	= "XGMII",
	[LOOPBACK_XGXS]		= "XGXS",
	[LOOPBACK_XAUI]  	= "XAUI",
48 49 50 51 52 53 54 55
	[LOOPBACK_GMII] 	= "GMII",
	[LOOPBACK_SGMII] 	= "SGMII",
	[LOOPBACK_XGBR]		= "XGBR",
	[LOOPBACK_XFI]		= "XFI",
	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
56 57 58 59
	[LOOPBACK_GPHY]		= "GPHY",
	[LOOPBACK_PHYXS]	= "PHYXS",
	[LOOPBACK_PCS]	 	= "PCS",
	[LOOPBACK_PMAPMD] 	= "PMA/PMD",
60 61 62 63 64 65 66 67 68
	[LOOPBACK_XPORT]	= "XPORT",
	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
	[LOOPBACK_XAUI_WS]  	= "XAUI_WS",
	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
	[LOOPBACK_GMII_WS] 	= "GMII_WS",
	[LOOPBACK_XFI_WS]	= "XFI_WS",
	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
	[LOOPBACK_PHYXS_WS]  	= "PHYXS_WS",
69 70 71 72 73 74 75 76 77 78 79 80 81 82
};

const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
const char *efx_reset_type_names[] = {
	[RESET_TYPE_INVISIBLE]     = "INVISIBLE",
	[RESET_TYPE_ALL]           = "ALL",
	[RESET_TYPE_WORLD]         = "WORLD",
	[RESET_TYPE_DISABLE]       = "DISABLE",
	[RESET_TYPE_TX_WATCHDOG]   = "TX_WATCHDOG",
	[RESET_TYPE_INT_ERROR]     = "INT_ERROR",
	[RESET_TYPE_RX_RECOVERY]   = "RX_RECOVERY",
	[RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
	[RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
	[RESET_TYPE_TX_SKIP]       = "TX_SKIP",
83
	[RESET_TYPE_MC_FAILURE]    = "MC_FAILURE",
84 85
};

86 87
#define EFX_MAX_MTU (9 * 1024)

88 89 90 91 92 93
/* Reset workqueue. If any NIC has a hardware failure then a reset will be
 * queued onto this work queue. This is not a per-nic work queue, because
 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
 */
static struct workqueue_struct *reset_workqueue;

94 95 96 97 98 99 100 101 102
/**************************************************************************
 *
 * Configurable values
 *
 *************************************************************************/

/*
 * Use separate channels for TX and RX events
 *
103 104
 * Set this to 1 to use separate channels for TX and RX. It allows us
 * to control interrupt affinity separately for TX and RX.
105
 *
106
 * This is only used in MSI-X interrupt mode
107
 */
108
static unsigned int separate_tx_channels;
109
module_param(separate_tx_channels, uint, 0444);
110 111
MODULE_PARM_DESC(separate_tx_channels,
		 "Use separate channels for TX and RX");
112 113 114 115 116 117 118

/* This is the weight assigned to each of the (per-channel) virtual
 * NAPI devices.
 */
static int napi_weight = 64;

/* This is the time (in jiffies) between invocations of the hardware
119 120 121
 * monitor.  On Falcon-based NICs, this will:
 * - Check the on-board hardware monitor;
 * - Poll the link state and reconfigure the hardware as necessary.
122
 */
S
stephen hemminger 已提交
123
static unsigned int efx_monitor_interval = 1 * HZ;
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170

/* This controls whether or not the driver will initialise devices
 * with invalid MAC addresses stored in the EEPROM or flash.  If true,
 * such devices will be initialised with a random locally-generated
 * MAC address.  This allows for loading the sfc_mtd driver to
 * reprogram the flash, even if the flash contents (including the MAC
 * address) have previously been erased.
 */
static unsigned int allow_bad_hwaddr;

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * The default for RX should strike a balance between increasing the
 * round-trip latency and reducing overhead.
 */
static unsigned int rx_irq_mod_usec = 60;

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * This default is chosen to ensure that a 10G link does not go idle
 * while a TX queue is stopped after it has become full.  A queue is
 * restarted when it drops below half full.  The time this takes (assuming
 * worst case 3 descriptors per packet and 1024 descriptors) is
 *   512 / 3 * 1.2 = 205 usec.
 */
static unsigned int tx_irq_mod_usec = 150;

/* This is the first interrupt mode to try out of:
 * 0 => MSI-X
 * 1 => MSI
 * 2 => legacy
 */
static unsigned int interrupt_mode;

/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
 * i.e. the number of CPUs among which we may distribute simultaneous
 * interrupt handling.
 *
 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
 * The default (0) means to assign an interrupt to each package (level II cache)
 */
static unsigned int rss_cpus;
module_param(rss_cpus, uint, 0444);
MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");

171 172 173 174
static int phy_flash_cfg;
module_param(phy_flash_cfg, int, 0644);
MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");

175 176 177 178 179 180 181 182 183 184
static unsigned irq_adapt_low_thresh = 10000;
module_param(irq_adapt_low_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_low_thresh,
		 "Threshold score for reducing IRQ moderation");

static unsigned irq_adapt_high_thresh = 20000;
module_param(irq_adapt_high_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_high_thresh,
		 "Threshold score for increasing IRQ moderation");

185 186 187 188 189 190 191
static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
module_param(debug, uint, 0);
MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");

192 193 194 195 196
/**************************************************************************
 *
 * Utility functions and prototypes
 *
 *************************************************************************/
197 198

static void efx_remove_channels(struct efx_nic *efx);
199
static void efx_remove_port(struct efx_nic *efx);
200
static void efx_init_napi(struct efx_nic *efx);
201
static void efx_fini_napi(struct efx_nic *efx);
202
static void efx_fini_napi_channel(struct efx_channel *channel);
203 204 205
static void efx_fini_struct(struct efx_nic *efx);
static void efx_start_all(struct efx_nic *efx);
static void efx_stop_all(struct efx_nic *efx);
206 207 208

#define EFX_ASSERT_RESET_SERIALISED(efx)		\
	do {						\
209 210
		if ((efx->state == STATE_RUNNING) ||	\
		    (efx->state == STATE_DISABLED))	\
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
			ASSERT_RTNL();			\
	} while (0)

/**************************************************************************
 *
 * Event queue processing
 *
 *************************************************************************/

/* Process channel's event queue
 *
 * This function is responsible for processing the event queue of a
 * single channel.  The caller must guarantee that this function will
 * never be concurrently called more than once on the same channel,
 * though different channels may be being processed concurrently.
 */
227
static int efx_process_channel(struct efx_channel *channel, int budget)
228
{
B
Ben Hutchings 已提交
229
	struct efx_nic *efx = channel->efx;
230
	int spent;
231

B
Ben Hutchings 已提交
232
	if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
233
		     !channel->enabled))
B
Ben Hutchings 已提交
234
		return 0;
235

236 237
	spent = efx_nic_process_eventq(channel, budget);
	if (spent == 0)
B
Ben Hutchings 已提交
238
		return 0;
239 240 241 242 243 244 245 246 247 248

	/* Deliver last RX packet. */
	if (channel->rx_pkt) {
		__efx_rx_packet(channel, channel->rx_pkt,
				channel->rx_pkt_csummed);
		channel->rx_pkt = NULL;
	}

	efx_rx_strategy(channel);

249
	efx_fast_push_rx_descriptors(efx_channel_get_rx_queue(channel));
250

251
	return spent;
252 253 254 255 256 257 258 259 260 261
}

/* Mark channel as finished processing
 *
 * Note that since we will not receive further interrupts for this
 * channel before we finish processing and call the eventq_read_ack()
 * method, there is no need to use the interrupt hold-off timers.
 */
static inline void efx_channel_processed(struct efx_channel *channel)
{
262 263 264
	/* The interrupt handler for this channel may set work_pending
	 * as soon as we acknowledge the events we've seen.  Make sure
	 * it's cleared before then. */
265
	channel->work_pending = false;
266 267
	smp_wmb();

268
	efx_nic_eventq_read_ack(channel);
269 270 271 272 273 274 275 276 277 278 279
}

/* NAPI poll handler
 *
 * NAPI guarantees serialisation of polls of the same device, which
 * provides the guarantee required by efx_process_channel().
 */
static int efx_poll(struct napi_struct *napi, int budget)
{
	struct efx_channel *channel =
		container_of(napi, struct efx_channel, napi_str);
280
	struct efx_nic *efx = channel->efx;
281
	int spent;
282

283 284 285
	netif_vdbg(efx, intr, efx->net_dev,
		   "channel %d NAPI poll executing on CPU %d\n",
		   channel->channel, raw_smp_processor_id());
286

287
	spent = efx_process_channel(channel, budget);
288

289
	if (spent < budget) {
B
Ben Hutchings 已提交
290
		if (channel->channel < efx->n_rx_channels &&
291 292 293 294
		    efx->irq_rx_adaptive &&
		    unlikely(++channel->irq_count == 1000)) {
			if (unlikely(channel->irq_mod_score <
				     irq_adapt_low_thresh)) {
295 296
				if (channel->irq_moderation > 1) {
					channel->irq_moderation -= 1;
297
					efx->type->push_irq_moderation(channel);
298
				}
299 300
			} else if (unlikely(channel->irq_mod_score >
					    irq_adapt_high_thresh)) {
301 302 303
				if (channel->irq_moderation <
				    efx->irq_rx_moderation) {
					channel->irq_moderation += 1;
304
					efx->type->push_irq_moderation(channel);
305
				}
306 307 308 309 310
			}
			channel->irq_count = 0;
			channel->irq_mod_score = 0;
		}

311 312
		efx_filter_rfs_expire(channel);

313
		/* There is no race here; although napi_disable() will
314
		 * only wait for napi_complete(), this isn't a problem
315 316 317
		 * since efx_channel_processed() will have no effect if
		 * interrupts have already been disabled.
		 */
318
		napi_complete(napi);
319 320 321
		efx_channel_processed(channel);
	}

322
	return spent;
323 324 325 326 327 328 329 330
}

/* Process the eventq of the specified channel immediately on this CPU
 *
 * Disable hardware generated interrupts, wait for any existing
 * processing to finish, then directly poll (and ack ) the eventq.
 * Finally reenable NAPI and interrupts.
 *
331 332
 * This is for use only during a loopback self-test.  It must not
 * deliver any packets up the stack as this can result in deadlock.
333 334 335 336 337
 */
void efx_process_channel_now(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;

338
	BUG_ON(channel->channel >= efx->n_channels);
339
	BUG_ON(!channel->enabled);
340
	BUG_ON(!efx->loopback_selftest);
341 342

	/* Disable interrupts and wait for ISRs to complete */
343
	efx_nic_disable_interrupts(efx);
344
	if (efx->legacy_irq) {
345
		synchronize_irq(efx->legacy_irq);
346 347
		efx->legacy_irq_enabled = false;
	}
348
	if (channel->irq)
349 350 351 352 353 354
		synchronize_irq(channel->irq);

	/* Wait for any NAPI processing to complete */
	napi_disable(&channel->napi_str);

	/* Poll the channel */
355
	efx_process_channel(channel, channel->eventq_mask + 1);
356 357 358 359 360 361

	/* Ack the eventq. This may cause an interrupt to be generated
	 * when they are reenabled */
	efx_channel_processed(channel);

	napi_enable(&channel->napi_str);
362 363
	if (efx->legacy_irq)
		efx->legacy_irq_enabled = true;
364
	efx_nic_enable_interrupts(efx);
365 366 367 368 369 370 371 372 373
}

/* Create event queue
 * Event queue memory allocations are done only once.  If the channel
 * is reset, the memory buffer will be reused; this guards against
 * errors during channel reset and also simplifies interrupt handling.
 */
static int efx_probe_eventq(struct efx_channel *channel)
{
374 375 376
	struct efx_nic *efx = channel->efx;
	unsigned long entries;

377 378
	netif_dbg(channel->efx, probe, channel->efx->net_dev,
		  "chan %d create event queue\n", channel->channel);
379

380 381 382 383 384 385
	/* Build an event queue with room for one event per tx and rx buffer,
	 * plus some extra for link state events and MCDI completions. */
	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
	EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
	channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;

386
	return efx_nic_probe_eventq(channel);
387 388 389
}

/* Prepare channel's event queue */
390
static void efx_init_eventq(struct efx_channel *channel)
391
{
392 393
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d init event queue\n", channel->channel);
394 395 396

	channel->eventq_read_ptr = 0;

397
	efx_nic_init_eventq(channel);
398 399 400 401
}

static void efx_fini_eventq(struct efx_channel *channel)
{
402 403
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d fini event queue\n", channel->channel);
404

405
	efx_nic_fini_eventq(channel);
406 407 408 409
}

static void efx_remove_eventq(struct efx_channel *channel)
{
410 411
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d remove event queue\n", channel->channel);
412

413
	efx_nic_remove_eventq(channel);
414 415 416 417 418 419 420 421
}

/**************************************************************************
 *
 * Channel handling
 *
 *************************************************************************/

422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
/* Allocate and initialise a channel structure, optionally copying
 * parameters (but not resources) from an old channel structure. */
static struct efx_channel *
efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;

	if (old_channel) {
		channel = kmalloc(sizeof(*channel), GFP_KERNEL);
		if (!channel)
			return NULL;

		*channel = *old_channel;

439
		channel->napi_dev = NULL;
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
		memset(&channel->eventq, 0, sizeof(channel->eventq));

		rx_queue = &channel->rx_queue;
		rx_queue->buffer = NULL;
		memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));

		for (j = 0; j < EFX_TXQ_TYPES; j++) {
			tx_queue = &channel->tx_queue[j];
			if (tx_queue->channel)
				tx_queue->channel = channel;
			tx_queue->buffer = NULL;
			memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
		}
	} else {
		channel = kzalloc(sizeof(*channel), GFP_KERNEL);
		if (!channel)
			return NULL;

		channel->efx = efx;
		channel->channel = i;

		for (j = 0; j < EFX_TXQ_TYPES; j++) {
			tx_queue = &channel->tx_queue[j];
			tx_queue->efx = efx;
			tx_queue->queue = i * EFX_TXQ_TYPES + j;
			tx_queue->channel = channel;
		}
	}

	rx_queue = &channel->rx_queue;
	rx_queue->efx = efx;
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);

	return channel;
}

477 478 479 480 481 482
static int efx_probe_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	int rc;

483 484
	netif_dbg(channel->efx, probe, channel->efx->net_dev,
		  "creating channel %d\n", channel->channel);
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516

	rc = efx_probe_eventq(channel);
	if (rc)
		goto fail1;

	efx_for_each_channel_tx_queue(tx_queue, channel) {
		rc = efx_probe_tx_queue(tx_queue);
		if (rc)
			goto fail2;
	}

	efx_for_each_channel_rx_queue(rx_queue, channel) {
		rc = efx_probe_rx_queue(rx_queue);
		if (rc)
			goto fail3;
	}

	channel->n_rx_frm_trunc = 0;

	return 0;

 fail3:
	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_remove_rx_queue(rx_queue);
 fail2:
	efx_for_each_channel_tx_queue(tx_queue, channel)
		efx_remove_tx_queue(tx_queue);
 fail1:
	return rc;
}


517 518 519 520 521 522 523 524
static void efx_set_channel_names(struct efx_nic *efx)
{
	struct efx_channel *channel;
	const char *type = "";
	int number;

	efx_for_each_channel(channel, efx) {
		number = channel->channel;
B
Ben Hutchings 已提交
525 526
		if (efx->n_channels > efx->n_rx_channels) {
			if (channel->channel < efx->n_rx_channels) {
527 528 529
				type = "-rx";
			} else {
				type = "-tx";
B
Ben Hutchings 已提交
530
				number -= efx->n_rx_channels;
531 532
			}
		}
533 534
		snprintf(efx->channel_name[channel->channel],
			 sizeof(efx->channel_name[0]),
535 536 537 538
			 "%s%s-%d", efx->name, type, number);
	}
}

539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
static int efx_probe_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;
	int rc;

	/* Restart special buffer allocation */
	efx->next_buffer_table = 0;

	efx_for_each_channel(channel, efx) {
		rc = efx_probe_channel(channel);
		if (rc) {
			netif_err(efx, probe, efx->net_dev,
				  "failed to create channel %d\n",
				  channel->channel);
			goto fail;
		}
	}
	efx_set_channel_names(efx);

	return 0;

fail:
	efx_remove_channels(efx);
	return rc;
}

565 566 567 568
/* Channels are shutdown and reinitialised whilst the NIC is running
 * to propagate configuration changes (mtu, checksum offload), or
 * to clear hardware error conditions
 */
569
static void efx_init_channels(struct efx_nic *efx)
570 571 572 573 574
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	struct efx_channel *channel;

575 576 577 578 579 580
	/* Calculate the rx buffer allocation parameters required to
	 * support the current MTU, including padding for header
	 * alignment and overruns.
	 */
	efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
			      EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
581
			      efx->type->rx_buffer_hash_size +
582
			      efx->type->rx_buffer_padding);
583 584
	efx->rx_buffer_order = get_order(efx->rx_buffer_len +
					 sizeof(struct efx_rx_page_state));
585 586 587

	/* Initialise the channels */
	efx_for_each_channel(channel, efx) {
588 589
		netif_dbg(channel->efx, drv, channel->efx->net_dev,
			  "init chan %d\n", channel->channel);
590

591
		efx_init_eventq(channel);
592

593 594
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_init_tx_queue(tx_queue);
595 596 597 598

		/* The rx buffer allocation strategy is MTU dependent */
		efx_rx_strategy(channel);

599 600
		efx_for_each_channel_rx_queue(rx_queue, channel)
			efx_init_rx_queue(rx_queue);
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615

		WARN_ON(channel->rx_pkt != NULL);
		efx_rx_strategy(channel);
	}
}

/* This enables event queue processing and packet transmission.
 *
 * Note that this function is not allowed to fail, since that would
 * introduce too much complexity into the suspend/resume path.
 */
static void efx_start_channel(struct efx_channel *channel)
{
	struct efx_rx_queue *rx_queue;

616 617
	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
		  "starting chan %d\n", channel->channel);
618

619 620 621
	/* The interrupt handler for this channel may set work_pending
	 * as soon as we enable it.  Make sure it's cleared before
	 * then.  Similarly, make sure it sees the enabled flag set. */
622 623
	channel->work_pending = false;
	channel->enabled = true;
624
	smp_wmb();
625

626
	/* Fill the queues before enabling NAPI */
627 628
	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_fast_push_rx_descriptors(rx_queue);
629 630

	napi_enable(&channel->napi_str);
631 632 633 634 635 636 637 638 639 640 641
}

/* This disables event queue processing and packet transmission.
 * This function does not guarantee that all queue processing
 * (e.g. RX refill) is complete.
 */
static void efx_stop_channel(struct efx_channel *channel)
{
	if (!channel->enabled)
		return;

642 643
	netif_dbg(channel->efx, ifdown, channel->efx->net_dev,
		  "stop chan %d\n", channel->channel);
644

645
	channel->enabled = false;
646 647 648 649 650 651 652 653
	napi_disable(&channel->napi_str);
}

static void efx_fini_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
654
	int rc;
655 656 657 658

	EFX_ASSERT_RESET_SERIALISED(efx);
	BUG_ON(efx->port_enabled);

659
	rc = efx_nic_flush_queues(efx);
660 661 662 663 664
	if (rc && EFX_WORKAROUND_7803(efx)) {
		/* Schedule a reset to recover from the flush failure. The
		 * descriptor caches reference memory we're about to free,
		 * but falcon_reconfigure_mac_wrapper() won't reconnect
		 * the MACs because of the pending reset. */
665 666
		netif_err(efx, drv, efx->net_dev,
			  "Resetting to recover from flush failure\n");
667 668
		efx_schedule_reset(efx, RESET_TYPE_ALL);
	} else if (rc) {
669
		netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
670
	} else {
671 672
		netif_dbg(efx, drv, efx->net_dev,
			  "successfully flushed all queues\n");
673
	}
674

675
	efx_for_each_channel(channel, efx) {
676 677
		netif_dbg(channel->efx, drv, channel->efx->net_dev,
			  "shut down chan %d\n", channel->channel);
678 679 680

		efx_for_each_channel_rx_queue(rx_queue, channel)
			efx_fini_rx_queue(rx_queue);
681
		efx_for_each_possible_channel_tx_queue(tx_queue, channel)
682 683 684 685 686 687 688 689 690 691
			efx_fini_tx_queue(tx_queue);
		efx_fini_eventq(channel);
	}
}

static void efx_remove_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;

692 693
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "destroy chan %d\n", channel->channel);
694 695 696

	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_remove_rx_queue(rx_queue);
697
	efx_for_each_possible_channel_tx_queue(tx_queue, channel)
698 699 700 701
		efx_remove_tx_queue(tx_queue);
	efx_remove_eventq(channel);
}

702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
static void efx_remove_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx)
		efx_remove_channel(channel);
}

int
efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
{
	struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
	u32 old_rxq_entries, old_txq_entries;
	unsigned i;
	int rc;

	efx_stop_all(efx);
	efx_fini_channels(efx);

	/* Clone channels */
	memset(other_channel, 0, sizeof(other_channel));
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx_alloc_channel(efx, i, efx->channel[i]);
		if (!channel) {
			rc = -ENOMEM;
			goto out;
		}
		other_channel[i] = channel;
	}

	/* Swap entry counts and channel pointers */
	old_rxq_entries = efx->rxq_entries;
	old_txq_entries = efx->txq_entries;
	efx->rxq_entries = rxq_entries;
	efx->txq_entries = txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}

	rc = efx_probe_channels(efx);
	if (rc)
		goto rollback;

747 748
	efx_init_napi(efx);

749
	/* Destroy old channels */
750 751
	for (i = 0; i < efx->n_channels; i++) {
		efx_fini_napi_channel(other_channel[i]);
752
		efx_remove_channel(other_channel[i]);
753
	}
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
out:
	/* Free unused channel structures */
	for (i = 0; i < efx->n_channels; i++)
		kfree(other_channel[i]);

	efx_init_channels(efx);
	efx_start_all(efx);
	return rc;

rollback:
	/* Swap back */
	efx->rxq_entries = old_rxq_entries;
	efx->txq_entries = old_txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}
	goto out;
}

775
void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
776
{
777
	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
778 779 780 781 782 783 784 785 786 787 788 789
}

/**************************************************************************
 *
 * Port handling
 *
 **************************************************************************/

/* This ensures that the kernel is kept informed (via
 * netif_carrier_on/off) of the link status, and also maintains the
 * link status's stop on the port's TX queue.
 */
S
Steve Hodgson 已提交
790
void efx_link_status_changed(struct efx_nic *efx)
791
{
792 793
	struct efx_link_state *link_state = &efx->link_state;

794 795 796 797 798 799 800
	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
	 * that no events are triggered between unregister_netdev() and the
	 * driver unloading. A more general condition is that NETDEV_CHANGE
	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
	if (!netif_running(efx->net_dev))
		return;

801
	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
802 803
		efx->n_link_state_changes++;

804
		if (link_state->up)
805 806 807 808 809 810
			netif_carrier_on(efx->net_dev);
		else
			netif_carrier_off(efx->net_dev);
	}

	/* Status message for kernel log */
811
	if (link_state->up) {
812 813 814 815 816
		netif_info(efx, link, efx->net_dev,
			   "link up at %uMbps %s-duplex (MTU %d)%s\n",
			   link_state->speed, link_state->fd ? "full" : "half",
			   efx->net_dev->mtu,
			   (efx->promiscuous ? " [PROMISC]" : ""));
817
	} else {
818
		netif_info(efx, link, efx->net_dev, "link down\n");
819 820 821 822
	}

}

B
Ben Hutchings 已提交
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
{
	efx->link_advertising = advertising;
	if (advertising) {
		if (advertising & ADVERTISED_Pause)
			efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
		else
			efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
		if (advertising & ADVERTISED_Asym_Pause)
			efx->wanted_fc ^= EFX_FC_TX;
	}
}

void efx_link_set_wanted_fc(struct efx_nic *efx, enum efx_fc_type wanted_fc)
{
	efx->wanted_fc = wanted_fc;
	if (efx->link_advertising) {
		if (wanted_fc & EFX_FC_RX)
			efx->link_advertising |= (ADVERTISED_Pause |
						  ADVERTISED_Asym_Pause);
		else
			efx->link_advertising &= ~(ADVERTISED_Pause |
						   ADVERTISED_Asym_Pause);
		if (wanted_fc & EFX_FC_TX)
			efx->link_advertising ^= ADVERTISED_Asym_Pause;
	}
}

851 852
static void efx_fini_port(struct efx_nic *efx);

B
Ben Hutchings 已提交
853 854 855 856 857 858 859 860
/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
 * the MAC appropriately. All other PHY configuration changes are pushed
 * through phy_op->set_settings(), and pushed asynchronously to the MAC
 * through efx_monitor().
 *
 * Callers must hold the mac_lock
 */
int __efx_reconfigure_port(struct efx_nic *efx)
861
{
B
Ben Hutchings 已提交
862 863
	enum efx_phy_mode phy_mode;
	int rc;
864

B
Ben Hutchings 已提交
865
	WARN_ON(!mutex_is_locked(&efx->mac_lock));
866

867 868 869 870 871 872
	/* Serialise the promiscuous flag with efx_set_multicast_list. */
	if (efx_dev_registered(efx)) {
		netif_addr_lock_bh(efx->net_dev);
		netif_addr_unlock_bh(efx->net_dev);
	}

B
Ben Hutchings 已提交
873 874
	/* Disable PHY transmit in mac level loopbacks */
	phy_mode = efx->phy_mode;
875 876 877 878 879
	if (LOOPBACK_INTERNAL(efx))
		efx->phy_mode |= PHY_MODE_TX_DISABLED;
	else
		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;

B
Ben Hutchings 已提交
880
	rc = efx->type->reconfigure_port(efx);
881

B
Ben Hutchings 已提交
882 883
	if (rc)
		efx->phy_mode = phy_mode;
884

B
Ben Hutchings 已提交
885
	return rc;
886 887 888 889
}

/* Reinitialise the MAC to pick up new PHY settings, even if the port is
 * disabled. */
B
Ben Hutchings 已提交
890
int efx_reconfigure_port(struct efx_nic *efx)
891
{
B
Ben Hutchings 已提交
892 893
	int rc;

894 895 896
	EFX_ASSERT_RESET_SERIALISED(efx);

	mutex_lock(&efx->mac_lock);
B
Ben Hutchings 已提交
897
	rc = __efx_reconfigure_port(efx);
898
	mutex_unlock(&efx->mac_lock);
B
Ben Hutchings 已提交
899 900

	return rc;
901 902
}

903 904 905
/* Asynchronous work item for changing MAC promiscuity and multicast
 * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
 * MAC directly. */
906 907 908 909 910
static void efx_mac_work(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);

	mutex_lock(&efx->mac_lock);
911
	if (efx->port_enabled) {
912
		efx->type->push_multicast_hash(efx);
913 914
		efx->mac_op->reconfigure(efx);
	}
915 916 917
	mutex_unlock(&efx->mac_lock);
}

918 919
static int efx_probe_port(struct efx_nic *efx)
{
920
	unsigned char *perm_addr;
921 922
	int rc;

923
	netif_dbg(efx, probe, efx->net_dev, "create port\n");
924

925 926 927
	if (phy_flash_cfg)
		efx->phy_mode = PHY_MODE_SPECIAL;

928 929
	/* Connect up MAC/PHY operations table */
	rc = efx->type->probe_port(efx);
930
	if (rc)
931
		return rc;
932 933

	/* Sanity check MAC address */
934 935 936
	perm_addr = efx->net_dev->perm_addr;
	if (is_valid_ether_addr(perm_addr)) {
		memcpy(efx->net_dev->dev_addr, perm_addr, ETH_ALEN);
937
	} else {
938
		netif_err(efx, probe, efx->net_dev, "invalid MAC address %pM\n",
939
			  perm_addr);
940 941 942 943 944
		if (!allow_bad_hwaddr) {
			rc = -EINVAL;
			goto err;
		}
		random_ether_addr(efx->net_dev->dev_addr);
945 946 947
		netif_info(efx, probe, efx->net_dev,
			   "using locally-generated MAC %pM\n",
			   efx->net_dev->dev_addr);
948 949 950 951 952
	}

	return 0;

 err:
953
	efx->type->remove_port(efx);
954 955 956 957 958 959 960
	return rc;
}

static int efx_init_port(struct efx_nic *efx)
{
	int rc;

961
	netif_dbg(efx, drv, efx->net_dev, "init port\n");
962

963 964
	mutex_lock(&efx->mac_lock);

965
	rc = efx->phy_op->init(efx);
966
	if (rc)
967
		goto fail1;
968

969
	efx->port_initialized = true;
970

B
Ben Hutchings 已提交
971 972 973 974 975 976 977 978 979
	/* Reconfigure the MAC before creating dma queues (required for
	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
	efx->mac_op->reconfigure(efx);

	/* Ensure the PHY advertises the correct flow control settings */
	rc = efx->phy_op->reconfigure(efx);
	if (rc)
		goto fail2;

980
	mutex_unlock(&efx->mac_lock);
981
	return 0;
982

983
fail2:
984
	efx->phy_op->fini(efx);
985 986
fail1:
	mutex_unlock(&efx->mac_lock);
987
	return rc;
988 989 990 991
}

static void efx_start_port(struct efx_nic *efx)
{
992
	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
993 994 995
	BUG_ON(efx->port_enabled);

	mutex_lock(&efx->mac_lock);
996
	efx->port_enabled = true;
997 998 999

	/* efx_mac_work() might have been scheduled after efx_stop_port(),
	 * and then cancelled by efx_flush_all() */
1000
	efx->type->push_multicast_hash(efx);
1001 1002
	efx->mac_op->reconfigure(efx);

1003 1004 1005
	mutex_unlock(&efx->mac_lock);
}

S
Steve Hodgson 已提交
1006
/* Prevent efx_mac_work() and efx_monitor() from working */
1007 1008
static void efx_stop_port(struct efx_nic *efx)
{
1009
	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1010 1011

	mutex_lock(&efx->mac_lock);
1012
	efx->port_enabled = false;
1013 1014 1015
	mutex_unlock(&efx->mac_lock);

	/* Serialise against efx_set_multicast_list() */
1016
	if (efx_dev_registered(efx)) {
1017 1018
		netif_addr_lock_bh(efx->net_dev);
		netif_addr_unlock_bh(efx->net_dev);
1019 1020 1021 1022 1023
	}
}

static void efx_fini_port(struct efx_nic *efx)
{
1024
	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1025 1026 1027 1028

	if (!efx->port_initialized)
		return;

1029
	efx->phy_op->fini(efx);
1030
	efx->port_initialized = false;
1031

1032
	efx->link_state.up = false;
1033 1034 1035 1036 1037
	efx_link_status_changed(efx);
}

static void efx_remove_port(struct efx_nic *efx)
{
1038
	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1039

1040
	efx->type->remove_port(efx);
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
}

/**************************************************************************
 *
 * NIC handling
 *
 **************************************************************************/

/* This configures the PCI device to enable I/O and DMA. */
static int efx_init_io(struct efx_nic *efx)
{
	struct pci_dev *pci_dev = efx->pci_dev;
	dma_addr_t dma_mask = efx->type->max_dma_mask;
1054
	bool use_wc;
1055 1056
	int rc;

1057
	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1058 1059 1060

	rc = pci_enable_device(pci_dev);
	if (rc) {
1061 1062
		netif_err(efx, probe, efx->net_dev,
			  "failed to enable PCI device\n");
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
		goto fail1;
	}

	pci_set_master(pci_dev);

	/* Set the PCI DMA mask.  Try all possibilities from our
	 * genuine mask down to 32 bits, because some architectures
	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
	 * masks event though they reject 46 bit masks.
	 */
	while (dma_mask > 0x7fffffffUL) {
		if (pci_dma_supported(pci_dev, dma_mask) &&
		    ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
			break;
		dma_mask >>= 1;
	}
	if (rc) {
1080 1081
		netif_err(efx, probe, efx->net_dev,
			  "could not find a suitable DMA mask\n");
1082 1083
		goto fail2;
	}
1084 1085
	netif_dbg(efx, probe, efx->net_dev,
		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1086 1087 1088 1089 1090 1091
	rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
	if (rc) {
		/* pci_set_consistent_dma_mask() is not *allowed* to
		 * fail with a mask that pci_set_dma_mask() accepted,
		 * but just in case...
		 */
1092 1093
		netif_err(efx, probe, efx->net_dev,
			  "failed to set consistent DMA mask\n");
1094 1095 1096
		goto fail2;
	}

1097 1098
	efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
	rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
1099
	if (rc) {
1100 1101
		netif_err(efx, probe, efx->net_dev,
			  "request for memory BAR failed\n");
1102 1103 1104
		rc = -EIO;
		goto fail3;
	}
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119

	/* bug22643: If SR-IOV is enabled then tx push over a write combined
	 * mapping is unsafe. We need to disable write combining in this case.
	 * MSI is unsupported when SR-IOV is enabled, and the firmware will
	 * have removed the MSI capability. So write combining is safe if
	 * there is an MSI capability.
	 */
	use_wc = (!EFX_WORKAROUND_22643(efx) ||
		  pci_find_capability(pci_dev, PCI_CAP_ID_MSI));
	if (use_wc)
		efx->membase = ioremap_wc(efx->membase_phys,
					  efx->type->mem_map_size);
	else
		efx->membase = ioremap_nocache(efx->membase_phys,
					       efx->type->mem_map_size);
1120
	if (!efx->membase) {
1121 1122 1123 1124
		netif_err(efx, probe, efx->net_dev,
			  "could not map memory BAR at %llx+%x\n",
			  (unsigned long long)efx->membase_phys,
			  efx->type->mem_map_size);
1125 1126 1127
		rc = -ENOMEM;
		goto fail4;
	}
1128 1129 1130 1131
	netif_dbg(efx, probe, efx->net_dev,
		  "memory BAR at %llx+%x (virtual %p)\n",
		  (unsigned long long)efx->membase_phys,
		  efx->type->mem_map_size, efx->membase);
1132 1133 1134 1135

	return 0;

 fail4:
1136
	pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1137
 fail3:
1138
	efx->membase_phys = 0;
1139 1140 1141 1142 1143 1144 1145 1146
 fail2:
	pci_disable_device(efx->pci_dev);
 fail1:
	return rc;
}

static void efx_fini_io(struct efx_nic *efx)
{
1147
	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1148 1149 1150 1151 1152 1153 1154

	if (efx->membase) {
		iounmap(efx->membase);
		efx->membase = NULL;
	}

	if (efx->membase_phys) {
1155
		pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1156
		efx->membase_phys = 0;
1157 1158 1159 1160 1161
	}

	pci_disable_device(efx->pci_dev);
}

B
Ben Hutchings 已提交
1162 1163 1164
/* Get number of channels wanted.  Each channel will have its own IRQ,
 * 1 RX queue and/or 2 TX queues. */
static int efx_wanted_channels(void)
1165
{
R
Rusty Russell 已提交
1166
	cpumask_var_t core_mask;
1167 1168
	int count;
	int cpu;
1169 1170 1171

	if (rss_cpus)
		return rss_cpus;
1172

1173
	if (unlikely(!zalloc_cpumask_var(&core_mask, GFP_KERNEL))) {
R
Rusty Russell 已提交
1174
		printk(KERN_WARNING
1175
		       "sfc: RSS disabled due to allocation failure\n");
R
Rusty Russell 已提交
1176 1177 1178
		return 1;
	}

1179 1180
	count = 0;
	for_each_online_cpu(cpu) {
R
Rusty Russell 已提交
1181
		if (!cpumask_test_cpu(cpu, core_mask)) {
1182
			++count;
R
Rusty Russell 已提交
1183
			cpumask_or(core_mask, core_mask,
1184
				   topology_core_cpumask(cpu));
1185 1186 1187
		}
	}

R
Rusty Russell 已提交
1188
	free_cpumask_var(core_mask);
1189 1190 1191
	return count;
}

1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
static int
efx_init_rx_cpu_rmap(struct efx_nic *efx, struct msix_entry *xentries)
{
#ifdef CONFIG_RFS_ACCEL
	int i, rc;

	efx->net_dev->rx_cpu_rmap = alloc_irq_cpu_rmap(efx->n_rx_channels);
	if (!efx->net_dev->rx_cpu_rmap)
		return -ENOMEM;
	for (i = 0; i < efx->n_rx_channels; i++) {
		rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap,
				      xentries[i].vector);
		if (rc) {
			free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
			efx->net_dev->rx_cpu_rmap = NULL;
			return rc;
		}
	}
#endif
	return 0;
}

1214 1215 1216
/* Probe the number and type of interrupts we are able to obtain, and
 * the resulting numbers of channels and RX queues.
 */
1217
static int efx_probe_interrupts(struct efx_nic *efx)
1218
{
1219 1220
	int max_channels =
		min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
1221 1222 1223
	int rc, i;

	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1224
		struct msix_entry xentries[EFX_MAX_CHANNELS];
B
Ben Hutchings 已提交
1225
		int n_channels;
1226

B
Ben Hutchings 已提交
1227 1228 1229 1230
		n_channels = efx_wanted_channels();
		if (separate_tx_channels)
			n_channels *= 2;
		n_channels = min(n_channels, max_channels);
1231

B
Ben Hutchings 已提交
1232
		for (i = 0; i < n_channels; i++)
1233
			xentries[i].entry = i;
B
Ben Hutchings 已提交
1234
		rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
1235
		if (rc > 0) {
1236 1237 1238 1239 1240
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Insufficient MSI-X vectors"
				  " available (%d < %d).\n", rc, n_channels);
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Performance may be reduced.\n");
B
Ben Hutchings 已提交
1241 1242
			EFX_BUG_ON_PARANOID(rc >= n_channels);
			n_channels = rc;
1243
			rc = pci_enable_msix(efx->pci_dev, xentries,
B
Ben Hutchings 已提交
1244
					     n_channels);
1245 1246 1247
		}

		if (rc == 0) {
B
Ben Hutchings 已提交
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
			efx->n_channels = n_channels;
			if (separate_tx_channels) {
				efx->n_tx_channels =
					max(efx->n_channels / 2, 1U);
				efx->n_rx_channels =
					max(efx->n_channels -
					    efx->n_tx_channels, 1U);
			} else {
				efx->n_tx_channels = efx->n_channels;
				efx->n_rx_channels = efx->n_channels;
			}
1259 1260 1261 1262 1263
			rc = efx_init_rx_cpu_rmap(efx, xentries);
			if (rc) {
				pci_disable_msix(efx->pci_dev);
				return rc;
			}
B
Ben Hutchings 已提交
1264
			for (i = 0; i < n_channels; i++)
1265 1266
				efx_get_channel(efx, i)->irq =
					xentries[i].vector;
1267 1268 1269
		} else {
			/* Fall back to single channel MSI */
			efx->interrupt_mode = EFX_INT_MODE_MSI;
1270 1271
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI-X\n");
1272 1273 1274 1275 1276
		}
	}

	/* Try single interrupt MSI */
	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1277
		efx->n_channels = 1;
B
Ben Hutchings 已提交
1278 1279
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1280 1281
		rc = pci_enable_msi(efx->pci_dev);
		if (rc == 0) {
1282
			efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1283
		} else {
1284 1285
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI\n");
1286 1287 1288 1289 1290 1291
			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
		}
	}

	/* Assume legacy interrupts */
	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1292
		efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
B
Ben Hutchings 已提交
1293 1294
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1295 1296
		efx->legacy_irq = efx->pci_dev->irq;
	}
1297 1298

	return 0;
1299 1300 1301 1302 1303 1304 1305
}

static void efx_remove_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	/* Remove MSI/MSI-X interrupts */
1306
	efx_for_each_channel(channel, efx)
1307 1308 1309 1310 1311 1312 1313 1314
		channel->irq = 0;
	pci_disable_msi(efx->pci_dev);
	pci_disable_msix(efx->pci_dev);

	/* Remove legacy interrupt */
	efx->legacy_irq = 0;
}

1315
static void efx_set_channels(struct efx_nic *efx)
1316
{
1317 1318 1319
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;

1320
	efx->tx_channel_offset =
B
Ben Hutchings 已提交
1321
		separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1322 1323 1324 1325 1326 1327 1328 1329 1330

	/* We need to adjust the TX queue numbers if we have separate
	 * RX-only and TX-only channels.
	 */
	efx_for_each_channel(channel, efx) {
		efx_for_each_channel_tx_queue(tx_queue, channel)
			tx_queue->queue -= (efx->tx_channel_offset *
					    EFX_TXQ_TYPES);
	}
1331 1332 1333 1334
}

static int efx_probe_nic(struct efx_nic *efx)
{
1335
	size_t i;
1336 1337
	int rc;

1338
	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1339 1340

	/* Carry out hardware-type specific initialisation */
1341
	rc = efx->type->probe(efx);
1342 1343 1344
	if (rc)
		return rc;

B
Ben Hutchings 已提交
1345
	/* Determine the number of channels and queues by trying to hook
1346
	 * in MSI-X interrupts. */
1347 1348 1349
	rc = efx_probe_interrupts(efx);
	if (rc)
		goto fail;
1350

1351 1352
	if (efx->n_channels > 1)
		get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
1353 1354
	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
		efx->rx_indir_table[i] = i % efx->n_rx_channels;
1355

1356
	efx_set_channels(efx);
1357 1358
	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1359 1360

	/* Initialise the interrupt moderation settings */
1361
	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true);
1362 1363

	return 0;
1364 1365 1366 1367

fail:
	efx->type->remove(efx);
	return rc;
1368 1369 1370 1371
}

static void efx_remove_nic(struct efx_nic *efx)
{
1372
	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1373 1374

	efx_remove_interrupts(efx);
1375
	efx->type->remove(efx);
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
}

/**************************************************************************
 *
 * NIC startup/shutdown
 *
 *************************************************************************/

static int efx_probe_all(struct efx_nic *efx)
{
	int rc;

	rc = efx_probe_nic(efx);
	if (rc) {
1390
		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1391 1392 1393 1394 1395
		goto fail1;
	}

	rc = efx_probe_port(efx);
	if (rc) {
1396
		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1397 1398 1399
		goto fail2;
	}

1400
	efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1401 1402 1403
	rc = efx_probe_channels(efx);
	if (rc)
		goto fail3;
1404

B
Ben Hutchings 已提交
1405 1406 1407 1408 1409 1410 1411
	rc = efx_probe_filters(efx);
	if (rc) {
		netif_err(efx, probe, efx->net_dev,
			  "failed to create filter tables\n");
		goto fail4;
	}

1412 1413
	return 0;

B
Ben Hutchings 已提交
1414 1415
 fail4:
	efx_remove_channels(efx);
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
 fail3:
	efx_remove_port(efx);
 fail2:
	efx_remove_nic(efx);
 fail1:
	return rc;
}

/* Called after previous invocation(s) of efx_stop_all, restarts the
 * port, kernel transmit queue, NAPI processing and hardware interrupts,
 * and ensures that the port is scheduled to be reconfigured.
 * This function is safe to call multiple times when the NIC is in any
 * state. */
static void efx_start_all(struct efx_nic *efx)
{
	struct efx_channel *channel;

	EFX_ASSERT_RESET_SERIALISED(efx);

	/* Check that it is appropriate to restart the interface. All
	 * of these flags are safe to read under just the rtnl lock */
	if (efx->port_enabled)
		return;
	if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
		return;
1441
	if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
1442 1443 1444 1445 1446 1447
		return;

	/* Mark the port as enabled so port reconfigurations can start, then
	 * restart the transmit interface early so the watchdog timer stops */
	efx_start_port(efx);

1448
	if (efx_dev_registered(efx) && netif_device_present(efx->net_dev))
1449 1450 1451
		netif_tx_wake_all_queues(efx->net_dev);

	efx_for_each_channel(channel, efx)
1452 1453
		efx_start_channel(channel);

1454 1455
	if (efx->legacy_irq)
		efx->legacy_irq_enabled = true;
1456
	efx_nic_enable_interrupts(efx);
1457

1458 1459 1460 1461 1462 1463 1464 1465 1466
	/* Switch to event based MCDI completions after enabling interrupts.
	 * If a reset has been scheduled, then we need to stay in polled mode.
	 * Rather than serialising efx_mcdi_mode_event() [which sleeps] and
	 * reset_pending [modified from an atomic context], we instead guarantee
	 * that efx_mcdi_mode_poll() isn't reverted erroneously */
	efx_mcdi_mode_event(efx);
	if (efx->reset_pending != RESET_TYPE_NONE)
		efx_mcdi_mode_poll(efx);

1467 1468 1469 1470
	/* Start the hardware monitor if there is one. Otherwise (we're link
	 * event driven), we have to poll the PHY because after an event queue
	 * flush, we could have a missed a link state change */
	if (efx->type->monitor != NULL) {
1471 1472
		queue_delayed_work(efx->workqueue, &efx->monitor_work,
				   efx_monitor_interval);
1473 1474 1475 1476 1477 1478
	} else {
		mutex_lock(&efx->mac_lock);
		if (efx->phy_op->poll(efx))
			efx_link_status_changed(efx);
		mutex_unlock(&efx->mac_lock);
	}
1479

1480
	efx->type->start_stats(efx);
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
}

/* Flush all delayed work. Should only be called when no more delayed work
 * will be scheduled. This doesn't flush pending online resets (efx_reset),
 * since we're holding the rtnl_lock at this point. */
static void efx_flush_all(struct efx_nic *efx)
{
	/* Make sure the hardware monitor is stopped */
	cancel_delayed_work_sync(&efx->monitor_work);
	/* Stop scheduled port reconfigurations */
1491
	cancel_work_sync(&efx->mac_work);
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
}

/* Quiesce hardware and software without bringing the link down.
 * Safe to call multiple times, when the nic and interface is in any
 * state. The caller is guaranteed to subsequently be in a position
 * to modify any hardware and software state they see fit without
 * taking locks. */
static void efx_stop_all(struct efx_nic *efx)
{
	struct efx_channel *channel;

	EFX_ASSERT_RESET_SERIALISED(efx);

	/* port_enabled can be read safely under the rtnl lock */
	if (!efx->port_enabled)
		return;

1509
	efx->type->stop_stats(efx);
1510

1511 1512 1513
	/* Switch to MCDI polling on Siena before disabling interrupts */
	efx_mcdi_mode_poll(efx);

1514
	/* Disable interrupts and wait for ISR to complete */
1515
	efx_nic_disable_interrupts(efx);
1516
	if (efx->legacy_irq) {
1517
		synchronize_irq(efx->legacy_irq);
1518 1519
		efx->legacy_irq_enabled = false;
	}
1520
	efx_for_each_channel(channel, efx) {
1521 1522
		if (channel->irq)
			synchronize_irq(channel->irq);
1523
	}
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533

	/* Stop all NAPI processing and synchronous rx refills */
	efx_for_each_channel(channel, efx)
		efx_stop_channel(channel);

	/* Stop all asynchronous port reconfigurations. Since all
	 * event processing has already been stopped, there is no
	 * window to loose phy events */
	efx_stop_port(efx);

S
Steve Hodgson 已提交
1534
	/* Flush efx_mac_work(), refill_workqueue, monitor_work */
1535 1536 1537 1538
	efx_flush_all(efx);

	/* Stop the kernel transmit interface late, so the watchdog
	 * timer isn't ticking over the flush */
1539
	if (efx_dev_registered(efx)) {
1540
		netif_tx_stop_all_queues(efx->net_dev);
1541 1542 1543 1544 1545 1546 1547
		netif_tx_lock_bh(efx->net_dev);
		netif_tx_unlock_bh(efx->net_dev);
	}
}

static void efx_remove_all(struct efx_nic *efx)
{
B
Ben Hutchings 已提交
1548
	efx_remove_filters(efx);
1549
	efx_remove_channels(efx);
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
	efx_remove_port(efx);
	efx_remove_nic(efx);
}

/**************************************************************************
 *
 * Interrupt moderation
 *
 **************************************************************************/

1560 1561 1562 1563 1564 1565 1566 1567 1568
static unsigned irq_mod_ticks(int usecs, int resolution)
{
	if (usecs <= 0)
		return 0; /* cannot receive interrupts ahead of time :-) */
	if (usecs < resolution)
		return 1; /* never round down to 0 */
	return usecs / resolution;
}

1569
/* Set interrupt moderation parameters */
1570 1571
void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs,
			     bool rx_adaptive)
1572
{
1573
	struct efx_channel *channel;
1574 1575
	unsigned tx_ticks = irq_mod_ticks(tx_usecs, EFX_IRQ_MOD_RESOLUTION);
	unsigned rx_ticks = irq_mod_ticks(rx_usecs, EFX_IRQ_MOD_RESOLUTION);
1576 1577 1578

	EFX_ASSERT_RESET_SERIALISED(efx);

1579
	efx->irq_rx_adaptive = rx_adaptive;
1580
	efx->irq_rx_moderation = rx_ticks;
1581
	efx_for_each_channel(channel, efx) {
1582
		if (efx_channel_has_rx_queue(channel))
1583
			channel->irq_moderation = rx_ticks;
1584
		else if (efx_channel_has_tx_queues(channel))
1585 1586
			channel->irq_moderation = tx_ticks;
	}
1587 1588 1589 1590 1591 1592 1593 1594
}

/**************************************************************************
 *
 * Hardware monitor
 *
 **************************************************************************/

1595
/* Run periodically off the general workqueue */
1596 1597 1598 1599 1600
static void efx_monitor(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic,
					   monitor_work.work);

1601 1602 1603
	netif_vdbg(efx, timer, efx->net_dev,
		   "hardware monitor executing on CPU %d\n",
		   raw_smp_processor_id());
1604
	BUG_ON(efx->type->monitor == NULL);
1605 1606 1607

	/* If the mac_lock is already held then it is likely a port
	 * reconfiguration is already in place, which will likely do
1608 1609 1610 1611 1612 1613
	 * most of the work of monitor() anyway. */
	if (mutex_trylock(&efx->mac_lock)) {
		if (efx->port_enabled)
			efx->type->monitor(efx);
		mutex_unlock(&efx->mac_lock);
	}
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629

	queue_delayed_work(efx->workqueue, &efx->monitor_work,
			   efx_monitor_interval);
}

/**************************************************************************
 *
 * ioctls
 *
 *************************************************************************/

/* Net device ioctl
 * Context: process, rtnl_lock() held.
 */
static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
{
1630
	struct efx_nic *efx = netdev_priv(net_dev);
1631
	struct mii_ioctl_data *data = if_mii(ifr);
1632 1633 1634

	EFX_ASSERT_RESET_SERIALISED(efx);

1635 1636 1637 1638 1639 1640
	/* Convert phy_id from older PRTAD/DEVAD format */
	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
	    (data->phy_id & 0xfc00) == 0x0400)
		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;

	return mdio_mii_ioctl(&efx->mdio, data, cmd);
1641 1642 1643 1644 1645 1646 1647 1648
}

/**************************************************************************
 *
 * NAPI interface
 *
 **************************************************************************/

1649
static void efx_init_napi(struct efx_nic *efx)
1650 1651 1652 1653 1654
{
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx) {
		channel->napi_dev = efx->net_dev;
1655 1656
		netif_napi_add(channel->napi_dev, &channel->napi_str,
			       efx_poll, napi_weight);
1657
	}
1658 1659 1660 1661 1662 1663 1664
}

static void efx_fini_napi_channel(struct efx_channel *channel)
{
	if (channel->napi_dev)
		netif_napi_del(&channel->napi_str);
	channel->napi_dev = NULL;
1665 1666 1667 1668 1669 1670
}

static void efx_fini_napi(struct efx_nic *efx)
{
	struct efx_channel *channel;

1671 1672
	efx_for_each_channel(channel, efx)
		efx_fini_napi_channel(channel);
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
}

/**************************************************************************
 *
 * Kernel netpoll interface
 *
 *************************************************************************/

#ifdef CONFIG_NET_POLL_CONTROLLER

/* Although in the common case interrupts will be disabled, this is not
 * guaranteed. However, all our work happens inside the NAPI callback,
 * so no locking is required.
 */
static void efx_netpoll(struct net_device *net_dev)
{
1689
	struct efx_nic *efx = netdev_priv(net_dev);
1690 1691
	struct efx_channel *channel;

1692
	efx_for_each_channel(channel, efx)
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
		efx_schedule_channel(channel);
}

#endif

/**************************************************************************
 *
 * Kernel net device interface
 *
 *************************************************************************/

/* Context: process, rtnl_lock() held. */
static int efx_net_open(struct net_device *net_dev)
{
1707
	struct efx_nic *efx = netdev_priv(net_dev);
1708 1709
	EFX_ASSERT_RESET_SERIALISED(efx);

1710 1711
	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
		  raw_smp_processor_id());
1712

1713 1714
	if (efx->state == STATE_DISABLED)
		return -EIO;
1715 1716
	if (efx->phy_mode & PHY_MODE_SPECIAL)
		return -EBUSY;
1717 1718
	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
		return -EIO;
1719

1720 1721 1722 1723
	/* Notify the kernel of the link state polled during driver load,
	 * before the monitor starts running */
	efx_link_status_changed(efx);

1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
	efx_start_all(efx);
	return 0;
}

/* Context: process, rtnl_lock() held.
 * Note that the kernel will ignore our return code; this method
 * should really be a void.
 */
static int efx_net_stop(struct net_device *net_dev)
{
1734
	struct efx_nic *efx = netdev_priv(net_dev);
1735

1736 1737
	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
		  raw_smp_processor_id());
1738

1739 1740 1741 1742 1743 1744
	if (efx->state != STATE_DISABLED) {
		/* Stop the device and flush all the channels */
		efx_stop_all(efx);
		efx_fini_channels(efx);
		efx_init_channels(efx);
	}
1745 1746 1747 1748

	return 0;
}

1749
/* Context: process, dev_base_lock or RTNL held, non-blocking. */
1750
static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev, struct rtnl_link_stats64 *stats)
1751
{
1752
	struct efx_nic *efx = netdev_priv(net_dev);
1753 1754
	struct efx_mac_stats *mac_stats = &efx->mac_stats;

1755
	spin_lock_bh(&efx->stats_lock);
1756
	efx->type->update_stats(efx);
1757
	spin_unlock_bh(&efx->stats_lock);
1758 1759 1760 1761 1762

	stats->rx_packets = mac_stats->rx_packets;
	stats->tx_packets = mac_stats->tx_packets;
	stats->rx_bytes = mac_stats->rx_bytes;
	stats->tx_bytes = mac_stats->tx_bytes;
1763
	stats->rx_dropped = efx->n_rx_nodesc_drop_cnt;
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
	stats->multicast = mac_stats->rx_multicast;
	stats->collisions = mac_stats->tx_collision;
	stats->rx_length_errors = (mac_stats->rx_gtjumbo +
				   mac_stats->rx_length_error);
	stats->rx_crc_errors = mac_stats->rx_bad;
	stats->rx_frame_errors = mac_stats->rx_align_error;
	stats->rx_fifo_errors = mac_stats->rx_overflow;
	stats->rx_missed_errors = mac_stats->rx_missed;
	stats->tx_window_errors = mac_stats->tx_late_collision;

	stats->rx_errors = (stats->rx_length_errors +
			    stats->rx_crc_errors +
			    stats->rx_frame_errors +
			    mac_stats->rx_symbol_error);
	stats->tx_errors = (stats->tx_window_errors +
			    mac_stats->tx_bad);

	return stats;
}

/* Context: netif_tx_lock held, BHs disabled. */
static void efx_watchdog(struct net_device *net_dev)
{
1787
	struct efx_nic *efx = netdev_priv(net_dev);
1788

1789 1790 1791
	netif_err(efx, tx_err, efx->net_dev,
		  "TX stuck with port_enabled=%d: resetting channels\n",
		  efx->port_enabled);
1792

1793
	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
1794 1795 1796 1797 1798 1799
}


/* Context: process, rtnl_lock() held. */
static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
{
1800
	struct efx_nic *efx = netdev_priv(net_dev);
1801 1802 1803 1804 1805 1806 1807 1808 1809
	int rc = 0;

	EFX_ASSERT_RESET_SERIALISED(efx);

	if (new_mtu > EFX_MAX_MTU)
		return -EINVAL;

	efx_stop_all(efx);

1810
	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
1811 1812

	efx_fini_channels(efx);
B
Ben Hutchings 已提交
1813 1814 1815 1816

	mutex_lock(&efx->mac_lock);
	/* Reconfigure the MAC before enabling the dma queues so that
	 * the RX buffers don't overflow */
1817
	net_dev->mtu = new_mtu;
B
Ben Hutchings 已提交
1818 1819 1820
	efx->mac_op->reconfigure(efx);
	mutex_unlock(&efx->mac_lock);

1821
	efx_init_channels(efx);
1822 1823 1824 1825 1826 1827 1828

	efx_start_all(efx);
	return rc;
}

static int efx_set_mac_address(struct net_device *net_dev, void *data)
{
1829
	struct efx_nic *efx = netdev_priv(net_dev);
1830 1831 1832 1833 1834 1835
	struct sockaddr *addr = data;
	char *new_addr = addr->sa_data;

	EFX_ASSERT_RESET_SERIALISED(efx);

	if (!is_valid_ether_addr(new_addr)) {
1836 1837 1838
		netif_err(efx, drv, efx->net_dev,
			  "invalid ethernet MAC address requested: %pM\n",
			  new_addr);
1839 1840 1841 1842 1843 1844
		return -EINVAL;
	}

	memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);

	/* Reconfigure the MAC */
B
Ben Hutchings 已提交
1845 1846 1847
	mutex_lock(&efx->mac_lock);
	efx->mac_op->reconfigure(efx);
	mutex_unlock(&efx->mac_lock);
1848 1849 1850 1851

	return 0;
}

1852
/* Context: netif_addr_lock held, BHs disabled. */
1853 1854
static void efx_set_multicast_list(struct net_device *net_dev)
{
1855
	struct efx_nic *efx = netdev_priv(net_dev);
1856
	struct netdev_hw_addr *ha;
1857 1858 1859 1860
	union efx_multicast_hash *mc_hash = &efx->multicast_hash;
	u32 crc;
	int bit;

1861
	efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
1862 1863

	/* Build multicast hash table */
1864
	if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
1865 1866 1867
		memset(mc_hash, 0xff, sizeof(*mc_hash));
	} else {
		memset(mc_hash, 0x00, sizeof(*mc_hash));
1868 1869
		netdev_for_each_mc_addr(ha, net_dev) {
			crc = ether_crc_le(ETH_ALEN, ha->addr);
1870 1871 1872 1873
			bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
			set_bit_le(bit, mc_hash->byte);
		}

1874 1875 1876 1877 1878 1879
		/* Broadcast packets go through the multicast hash filter.
		 * ether_crc_le() of the broadcast address is 0xbe2612ff
		 * so we always add bit 0xff to the mask.
		 */
		set_bit_le(0xff, mc_hash->byte);
	}
1880

1881 1882 1883
	if (efx->port_enabled)
		queue_work(efx->workqueue, &efx->mac_work);
	/* Otherwise efx_start_port() will do this */
1884 1885
}

1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
static int efx_set_features(struct net_device *net_dev, u32 data)
{
	struct efx_nic *efx = netdev_priv(net_dev);

	/* If disabling RX n-tuple filtering, clear existing filters */
	if (net_dev->features & ~data & NETIF_F_NTUPLE)
		efx_filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);

	return 0;
}

S
Stephen Hemminger 已提交
1897 1898 1899
static const struct net_device_ops efx_netdev_ops = {
	.ndo_open		= efx_net_open,
	.ndo_stop		= efx_net_stop,
1900
	.ndo_get_stats64	= efx_net_stats,
S
Stephen Hemminger 已提交
1901 1902 1903 1904 1905 1906 1907
	.ndo_tx_timeout		= efx_watchdog,
	.ndo_start_xmit		= efx_hard_start_xmit,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_do_ioctl		= efx_ioctl,
	.ndo_change_mtu		= efx_change_mtu,
	.ndo_set_mac_address	= efx_set_mac_address,
	.ndo_set_multicast_list = efx_set_multicast_list,
1908
	.ndo_set_features	= efx_set_features,
S
Stephen Hemminger 已提交
1909 1910 1911
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller = efx_netpoll,
#endif
1912
	.ndo_setup_tc		= efx_setup_tc,
1913 1914 1915
#ifdef CONFIG_RFS_ACCEL
	.ndo_rx_flow_steer	= efx_filter_rfs,
#endif
S
Stephen Hemminger 已提交
1916 1917
};

1918 1919 1920 1921 1922 1923 1924
static void efx_update_name(struct efx_nic *efx)
{
	strcpy(efx->name, efx->net_dev->name);
	efx_mtd_rename(efx);
	efx_set_channel_names(efx);
}

1925 1926 1927
static int efx_netdev_event(struct notifier_block *this,
			    unsigned long event, void *ptr)
{
1928
	struct net_device *net_dev = ptr;
1929

1930 1931 1932
	if (net_dev->netdev_ops == &efx_netdev_ops &&
	    event == NETDEV_CHANGENAME)
		efx_update_name(netdev_priv(net_dev));
1933 1934 1935 1936 1937 1938 1939 1940

	return NOTIFY_DONE;
}

static struct notifier_block efx_netdev_notifier = {
	.notifier_call = efx_netdev_event,
};

B
Ben Hutchings 已提交
1941 1942 1943 1944 1945 1946 1947 1948
static ssize_t
show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
	return sprintf(buf, "%d\n", efx->phy_type);
}
static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);

1949 1950 1951
static int efx_register_netdev(struct efx_nic *efx)
{
	struct net_device *net_dev = efx->net_dev;
1952
	struct efx_channel *channel;
1953 1954 1955 1956
	int rc;

	net_dev->watchdog_timeo = 5 * HZ;
	net_dev->irq = efx->pci_dev->irq;
S
Stephen Hemminger 已提交
1957
	net_dev->netdev_ops = &efx_netdev_ops;
1958 1959 1960
	SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);

	/* Clear MAC statistics */
1961
	efx->mac_op->update_stats(efx);
1962 1963
	memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));

1964
	rtnl_lock();
1965 1966 1967 1968

	rc = dev_alloc_name(net_dev, net_dev->name);
	if (rc < 0)
		goto fail_locked;
1969
	efx_update_name(efx);
1970 1971 1972 1973 1974

	rc = register_netdevice(net_dev);
	if (rc)
		goto fail_locked;

1975 1976
	efx_for_each_channel(channel, efx) {
		struct efx_tx_queue *tx_queue;
1977 1978
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_init_tx_queue_core_txq(tx_queue);
1979 1980
	}

1981 1982 1983
	/* Always start with carrier off; PHY events will detect the link */
	netif_carrier_off(efx->net_dev);

1984
	rtnl_unlock();
1985

B
Ben Hutchings 已提交
1986 1987
	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
	if (rc) {
1988 1989
		netif_err(efx, drv, efx->net_dev,
			  "failed to init net dev attributes\n");
B
Ben Hutchings 已提交
1990 1991 1992
		goto fail_registered;
	}

1993
	return 0;
B
Ben Hutchings 已提交
1994

1995 1996
fail_locked:
	rtnl_unlock();
1997
	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
1998 1999
	return rc;

B
Ben Hutchings 已提交
2000 2001 2002
fail_registered:
	unregister_netdev(net_dev);
	return rc;
2003 2004 2005 2006
}

static void efx_unregister_netdev(struct efx_nic *efx)
{
2007
	struct efx_channel *channel;
2008 2009 2010 2011 2012
	struct efx_tx_queue *tx_queue;

	if (!efx->net_dev)
		return;

2013
	BUG_ON(netdev_priv(efx->net_dev) != efx);
2014 2015 2016 2017

	/* Free up any skbs still remaining. This has to happen before
	 * we try to unregister the netdev as running their destructors
	 * may be needed to get the device ref. count to 0. */
2018 2019 2020 2021
	efx_for_each_channel(channel, efx) {
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_release_tx_buffers(tx_queue);
	}
2022

2023
	if (efx_dev_registered(efx)) {
2024
		strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
B
Ben Hutchings 已提交
2025
		device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
		unregister_netdev(efx->net_dev);
	}
}

/**************************************************************************
 *
 * Device reset and suspend
 *
 **************************************************************************/

B
Ben Hutchings 已提交
2036 2037
/* Tears down the entire software state and most of the hardware state
 * before reset.  */
B
Ben Hutchings 已提交
2038
void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2039 2040 2041
{
	EFX_ASSERT_RESET_SERIALISED(efx);

B
Ben Hutchings 已提交
2042 2043 2044
	efx_stop_all(efx);
	mutex_lock(&efx->mac_lock);

2045
	efx_fini_channels(efx);
2046 2047
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
		efx->phy_op->fini(efx);
2048
	efx->type->fini(efx);
2049 2050
}

B
Ben Hutchings 已提交
2051 2052 2053 2054 2055
/* This function will always ensure that the locks acquired in
 * efx_reset_down() are released. A failure return code indicates
 * that we were unable to reinitialise the hardware, and the
 * driver should be disabled. If ok is false, then the rx and tx
 * engines are not restarted, pending a RESET_DISABLE. */
B
Ben Hutchings 已提交
2056
int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2057 2058 2059
{
	int rc;

B
Ben Hutchings 已提交
2060
	EFX_ASSERT_RESET_SERIALISED(efx);
2061

2062
	rc = efx->type->init(efx);
2063
	if (rc) {
2064
		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2065
		goto fail;
2066 2067
	}

2068 2069 2070
	if (!ok)
		goto fail;

2071
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
2072 2073 2074 2075
		rc = efx->phy_op->init(efx);
		if (rc)
			goto fail;
		if (efx->phy_op->reconfigure(efx))
2076 2077
			netif_err(efx, drv, efx->net_dev,
				  "could not restore PHY settings\n");
2078 2079
	}

2080
	efx->mac_op->reconfigure(efx);
2081

2082
	efx_init_channels(efx);
B
Ben Hutchings 已提交
2083
	efx_restore_filters(efx);
2084 2085 2086 2087 2088 2089 2090 2091 2092

	mutex_unlock(&efx->mac_lock);

	efx_start_all(efx);

	return 0;

fail:
	efx->port_initialized = false;
B
Ben Hutchings 已提交
2093 2094 2095

	mutex_unlock(&efx->mac_lock);

2096 2097 2098
	return rc;
}

2099 2100
/* Reset the NIC using the specified method.  Note that the reset may
 * fail, in which case the card will be left in an unusable state.
2101
 *
2102
 * Caller must hold the rtnl_lock.
2103
 */
2104
int efx_reset(struct efx_nic *efx, enum reset_type method)
2105
{
2106 2107
	int rc, rc2;
	bool disabled;
2108

2109 2110
	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
		   RESET_TYPE(method));
2111

2112
	netif_device_detach(efx->net_dev);
B
Ben Hutchings 已提交
2113
	efx_reset_down(efx, method);
2114

2115
	rc = efx->type->reset(efx, method);
2116
	if (rc) {
2117
		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2118
		goto out;
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
	}

	/* Allow resets to be rescheduled. */
	efx->reset_pending = RESET_TYPE_NONE;

	/* Reinitialise bus-mastering, which may have been turned off before
	 * the reset was scheduled. This is still appropriate, even in the
	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
	 * can respond to requests. */
	pci_set_master(efx->pci_dev);

2130
out:
2131
	/* Leave device stopped if necessary */
2132 2133 2134 2135 2136 2137
	disabled = rc || method == RESET_TYPE_DISABLE;
	rc2 = efx_reset_up(efx, method, !disabled);
	if (rc2) {
		disabled = true;
		if (!rc)
			rc = rc2;
2138 2139
	}

2140
	if (disabled) {
2141
		dev_close(efx->net_dev);
2142
		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2143 2144
		efx->state = STATE_DISABLED;
	} else {
2145
		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2146
		netif_device_attach(efx->net_dev);
2147
	}
2148 2149 2150 2151 2152 2153 2154 2155
	return rc;
}

/* The worker thread exists so that code that cannot sleep can
 * schedule a reset for later.
 */
static void efx_reset_work(struct work_struct *data)
{
2156
	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2157

2158 2159 2160
	if (efx->reset_pending == RESET_TYPE_NONE)
		return;

2161 2162 2163
	/* If we're not RUNNING then don't reset. Leave the reset_pending
	 * flag set so that efx_pci_probe_main will be retried */
	if (efx->state != STATE_RUNNING) {
2164 2165
		netif_info(efx, drv, efx->net_dev,
			   "scheduled reset quenched. NIC not RUNNING\n");
2166 2167 2168 2169
		return;
	}

	rtnl_lock();
2170
	(void)efx_reset(efx, efx->reset_pending);
2171
	rtnl_unlock();
2172 2173 2174 2175 2176 2177 2178
}

void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
{
	enum reset_type method;

	if (efx->reset_pending != RESET_TYPE_NONE) {
2179 2180
		netif_info(efx, drv, efx->net_dev,
			   "quenching already scheduled reset\n");
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
		return;
	}

	switch (type) {
	case RESET_TYPE_INVISIBLE:
	case RESET_TYPE_ALL:
	case RESET_TYPE_WORLD:
	case RESET_TYPE_DISABLE:
		method = type;
		break;
	case RESET_TYPE_RX_RECOVERY:
	case RESET_TYPE_RX_DESC_FETCH:
	case RESET_TYPE_TX_DESC_FETCH:
	case RESET_TYPE_TX_SKIP:
		method = RESET_TYPE_INVISIBLE;
		break;
2197
	case RESET_TYPE_MC_FAILURE:
2198 2199 2200 2201 2202 2203
	default:
		method = RESET_TYPE_ALL;
		break;
	}

	if (method != type)
2204 2205 2206
		netif_dbg(efx, drv, efx->net_dev,
			  "scheduling %s reset for %s\n",
			  RESET_TYPE(method), RESET_TYPE(type));
2207
	else
2208 2209
		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
			  RESET_TYPE(method));
2210 2211 2212

	efx->reset_pending = method;

2213 2214 2215 2216
	/* efx_process_channel() will no longer read events once a
	 * reset is scheduled. So switch back to poll'd MCDI completions. */
	efx_mcdi_mode_poll(efx);

2217
	queue_work(reset_workqueue, &efx->reset_work);
2218 2219 2220 2221 2222 2223 2224 2225 2226
}

/**************************************************************************
 *
 * List of NICs we support
 *
 **************************************************************************/

/* PCI device ID table */
2227
static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
2228
	{PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
2229
	 .driver_data = (unsigned long) &falcon_a1_nic_type},
2230
	{PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
2231
	 .driver_data = (unsigned long) &falcon_b0_nic_type},
2232 2233 2234 2235
	{PCI_DEVICE(EFX_VENDID_SFC, BETHPAGE_A_P_DEVID),
	 .driver_data = (unsigned long) &siena_a0_nic_type},
	{PCI_DEVICE(EFX_VENDID_SFC, SIENA_A_P_DEVID),
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2236 2237 2238 2239 2240
	{0}			/* end of list */
};

/**************************************************************************
 *
2241
 * Dummy PHY/MAC operations
2242
 *
2243
 * Can be used for some unimplemented operations
2244 2245 2246 2247 2248 2249 2250 2251 2252
 * Needed so all function pointers are valid and do not have to be tested
 * before use
 *
 **************************************************************************/
int efx_port_dummy_op_int(struct efx_nic *efx)
{
	return 0;
}
void efx_port_dummy_op_void(struct efx_nic *efx) {}
S
stephen hemminger 已提交
2253 2254

static bool efx_port_dummy_op_poll(struct efx_nic *efx)
S
Steve Hodgson 已提交
2255 2256 2257
{
	return false;
}
2258

2259
static const struct efx_phy_operations efx_dummy_phy_operations = {
2260
	.init		 = efx_port_dummy_op_int,
B
Ben Hutchings 已提交
2261
	.reconfigure	 = efx_port_dummy_op_int,
S
Steve Hodgson 已提交
2262
	.poll		 = efx_port_dummy_op_poll,
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
	.fini		 = efx_port_dummy_op_void,
};

/**************************************************************************
 *
 * Data housekeeping
 *
 **************************************************************************/

/* This zeroes out and then fills in the invariants in a struct
 * efx_nic (including all sub-structures).
 */
2275
static int efx_init_struct(struct efx_nic *efx, const struct efx_nic_type *type,
2276 2277
			   struct pci_dev *pci_dev, struct net_device *net_dev)
{
2278
	int i;
2279 2280 2281 2282

	/* Initialise common structures */
	memset(efx, 0, sizeof(*efx));
	spin_lock_init(&efx->biu_lock);
2283 2284 2285
#ifdef CONFIG_SFC_MTD
	INIT_LIST_HEAD(&efx->mtd_list);
#endif
2286 2287 2288
	INIT_WORK(&efx->reset_work, efx_reset_work);
	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
	efx->pci_dev = pci_dev;
2289
	efx->msg_enable = debug;
2290 2291 2292 2293 2294 2295 2296
	efx->state = STATE_INIT;
	efx->reset_pending = RESET_TYPE_NONE;
	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));

	efx->net_dev = net_dev;
	spin_lock_init(&efx->stats_lock);
	mutex_init(&efx->mac_lock);
2297
	efx->mac_op = type->default_mac_ops;
2298
	efx->phy_op = &efx_dummy_phy_operations;
2299
	efx->mdio.dev = net_dev;
2300
	INIT_WORK(&efx->mac_work, efx_mac_work);
2301 2302

	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2303 2304 2305
		efx->channel[i] = efx_alloc_channel(efx, i, NULL);
		if (!efx->channel[i])
			goto fail;
2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
	}

	efx->type = type;

	EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);

	/* Higher numbered interrupt modes are less capable! */
	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
				  interrupt_mode);

2316 2317 2318 2319
	/* Would be good to use the net_dev name, but we're too early */
	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
		 pci_name(pci_dev));
	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2320
	if (!efx->workqueue)
2321
		goto fail;
2322

2323
	return 0;
2324 2325 2326 2327

fail:
	efx_fini_struct(efx);
	return -ENOMEM;
2328 2329 2330 2331
}

static void efx_fini_struct(struct efx_nic *efx)
{
2332 2333 2334 2335 2336
	int i;

	for (i = 0; i < EFX_MAX_CHANNELS; i++)
		kfree(efx->channel[i]);

2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
	if (efx->workqueue) {
		destroy_workqueue(efx->workqueue);
		efx->workqueue = NULL;
	}
}

/**************************************************************************
 *
 * PCI interface
 *
 **************************************************************************/

/* Main body of final NIC shutdown code
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove_main(struct efx_nic *efx)
{
2354 2355 2356 2357
#ifdef CONFIG_RFS_ACCEL
	free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
	efx->net_dev->rx_cpu_rmap = NULL;
#endif
2358
	efx_nic_fini_interrupt(efx);
2359 2360
	efx_fini_channels(efx);
	efx_fini_port(efx);
2361
	efx->type->fini(efx);
2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
	efx_fini_napi(efx);
	efx_remove_all(efx);
}

/* Final NIC shutdown
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove(struct pci_dev *pci_dev)
{
	struct efx_nic *efx;

	efx = pci_get_drvdata(pci_dev);
	if (!efx)
		return;

	/* Mark the NIC as fini, then stop the interface */
	rtnl_lock();
	efx->state = STATE_FINI;
	dev_close(efx->net_dev);

	/* Allow any queued efx_resets() to complete */
	rtnl_unlock();

	efx_unregister_netdev(efx);

2387 2388
	efx_mtd_remove(efx);

2389 2390 2391 2392
	/* Wait for any scheduled resets to complete. No more will be
	 * scheduled from this point because efx_stop_all() has been
	 * called, we are no longer registered with driverlink, and
	 * the net_device's have been removed. */
2393
	cancel_work_sync(&efx->reset_work);
2394 2395 2396 2397

	efx_pci_remove_main(efx);

	efx_fini_io(efx);
2398
	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416

	pci_set_drvdata(pci_dev, NULL);
	efx_fini_struct(efx);
	free_netdev(efx->net_dev);
};

/* Main body of NIC initialisation
 * This is called at module load (or hotplug insertion, theoretically).
 */
static int efx_pci_probe_main(struct efx_nic *efx)
{
	int rc;

	/* Do start-of-day initialisation */
	rc = efx_probe_all(efx);
	if (rc)
		goto fail1;

2417
	efx_init_napi(efx);
2418

2419
	rc = efx->type->init(efx);
2420
	if (rc) {
2421 2422
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise NIC\n");
2423
		goto fail3;
2424 2425 2426 2427
	}

	rc = efx_init_port(efx);
	if (rc) {
2428 2429
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise port\n");
2430
		goto fail4;
2431 2432
	}

2433
	efx_init_channels(efx);
2434

2435
	rc = efx_nic_init_interrupt(efx);
2436
	if (rc)
2437
		goto fail5;
2438 2439 2440

	return 0;

2441
 fail5:
2442
	efx_fini_channels(efx);
2443 2444
	efx_fini_port(efx);
 fail4:
2445
	efx->type->fini(efx);
2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
 fail3:
	efx_fini_napi(efx);
	efx_remove_all(efx);
 fail1:
	return rc;
}

/* NIC initialisation
 *
 * This is called at module load (or hotplug insertion,
 * theoretically).  It sets up PCI mappings, tests and resets the NIC,
 * sets up and registers the network devices with the kernel and hooks
 * the interrupt service routine.  It does not prepare the device for
 * transmission; this is left to the first time one of the network
 * interfaces is brought up (i.e. efx_net_open).
 */
static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
				   const struct pci_device_id *entry)
{
2465
	const struct efx_nic_type *type = (const struct efx_nic_type *) entry->driver_data;
2466 2467 2468 2469 2470
	struct net_device *net_dev;
	struct efx_nic *efx;
	int i, rc;

	/* Allocate and initialise a struct net_device and struct efx_nic */
2471 2472
	net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
				     EFX_MAX_RX_QUEUES);
2473 2474
	if (!net_dev)
		return -ENOMEM;
2475
	net_dev->features |= (type->offload_features | NETIF_F_SG |
B
Ben Hutchings 已提交
2476
			      NETIF_F_HIGHDMA | NETIF_F_TSO |
2477
			      NETIF_F_RXCSUM);
B
Ben Hutchings 已提交
2478 2479
	if (type->offload_features & NETIF_F_V6_CSUM)
		net_dev->features |= NETIF_F_TSO6;
2480 2481
	/* Mask for features that also apply to VLAN devices */
	net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2482 2483 2484 2485
				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
				   NETIF_F_RXCSUM);
	/* All offloads can be toggled */
	net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
2486
	efx = netdev_priv(net_dev);
2487
	pci_set_drvdata(pci_dev, efx);
2488
	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2489 2490 2491 2492
	rc = efx_init_struct(efx, type, pci_dev, net_dev);
	if (rc)
		goto fail1;

2493 2494
	netif_info(efx, probe, efx->net_dev,
		   "Solarflare Communications NIC detected\n");
2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509

	/* Set up basic I/O (BAR mappings etc) */
	rc = efx_init_io(efx);
	if (rc)
		goto fail2;

	/* No serialisation is required with the reset path because
	 * we're in STATE_INIT. */
	for (i = 0; i < 5; i++) {
		rc = efx_pci_probe_main(efx);

		/* Serialise against efx_reset(). No more resets will be
		 * scheduled since efx_stop_all() has been called, and we
		 * have not and never have been registered with either
		 * the rtnetlink or driverlink layers. */
2510
		cancel_work_sync(&efx->reset_work);
2511

2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522
		if (rc == 0) {
			if (efx->reset_pending != RESET_TYPE_NONE) {
				/* If there was a scheduled reset during
				 * probe, the NIC is probably hosed anyway */
				efx_pci_remove_main(efx);
				rc = -EIO;
			} else {
				break;
			}
		}

2523 2524 2525 2526 2527 2528 2529 2530 2531
		/* Retry if a recoverably reset event has been scheduled */
		if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
		    (efx->reset_pending != RESET_TYPE_ALL))
			goto fail3;

		efx->reset_pending = RESET_TYPE_NONE;
	}

	if (rc) {
2532
		netif_err(efx, probe, efx->net_dev, "Could not reset NIC\n");
2533 2534 2535
		goto fail4;
	}

2536 2537
	/* Switch to the running state before we expose the device to the OS,
	 * so that dev_open()|efx_start_all() will actually start the device */
2538
	efx->state = STATE_RUNNING;
2539

2540 2541 2542 2543
	rc = efx_register_netdev(efx);
	if (rc)
		goto fail5;

2544
	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
2545 2546 2547 2548

	rtnl_lock();
	efx_mtd_probe(efx); /* allowed to fail */
	rtnl_unlock();
2549 2550 2551 2552 2553 2554 2555 2556 2557 2558
	return 0;

 fail5:
	efx_pci_remove_main(efx);
 fail4:
 fail3:
	efx_fini_io(efx);
 fail2:
	efx_fini_struct(efx);
 fail1:
S
Steve Hodgson 已提交
2559
	WARN_ON(rc > 0);
2560
	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
2561 2562 2563 2564
	free_netdev(net_dev);
	return rc;
}

2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598
static int efx_pm_freeze(struct device *dev)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

	efx->state = STATE_FINI;

	netif_device_detach(efx->net_dev);

	efx_stop_all(efx);
	efx_fini_channels(efx);

	return 0;
}

static int efx_pm_thaw(struct device *dev)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

	efx->state = STATE_INIT;

	efx_init_channels(efx);

	mutex_lock(&efx->mac_lock);
	efx->phy_op->reconfigure(efx);
	mutex_unlock(&efx->mac_lock);

	efx_start_all(efx);

	netif_device_attach(efx->net_dev);

	efx->state = STATE_RUNNING;

	efx->type->resume_wol(efx);

2599 2600 2601
	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
	queue_work(reset_workqueue, &efx->reset_work);

2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
	return 0;
}

static int efx_pm_poweroff(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);

	efx->type->fini(efx);

	efx->reset_pending = RESET_TYPE_NONE;

	pci_save_state(pci_dev);
	return pci_set_power_state(pci_dev, PCI_D3hot);
}

/* Used for both resume and restore */
static int efx_pm_resume(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);
	int rc;

	rc = pci_set_power_state(pci_dev, PCI_D0);
	if (rc)
		return rc;
	pci_restore_state(pci_dev);
	rc = pci_enable_device(pci_dev);
	if (rc)
		return rc;
	pci_set_master(efx->pci_dev);
	rc = efx->type->reset(efx, RESET_TYPE_ALL);
	if (rc)
		return rc;
	rc = efx->type->init(efx);
	if (rc)
		return rc;
	efx_pm_thaw(dev);
	return 0;
}

static int efx_pm_suspend(struct device *dev)
{
	int rc;

	efx_pm_freeze(dev);
	rc = efx_pm_poweroff(dev);
	if (rc)
		efx_pm_resume(dev);
	return rc;
}

static struct dev_pm_ops efx_pm_ops = {
	.suspend	= efx_pm_suspend,
	.resume		= efx_pm_resume,
	.freeze		= efx_pm_freeze,
	.thaw		= efx_pm_thaw,
	.poweroff	= efx_pm_poweroff,
	.restore	= efx_pm_resume,
};

2663
static struct pci_driver efx_pci_driver = {
2664
	.name		= KBUILD_MODNAME,
2665 2666 2667
	.id_table	= efx_pci_table,
	.probe		= efx_pci_probe,
	.remove		= efx_pci_remove,
2668
	.driver.pm	= &efx_pm_ops,
2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690
};

/**************************************************************************
 *
 * Kernel module interface
 *
 *************************************************************************/

module_param(interrupt_mode, uint, 0444);
MODULE_PARM_DESC(interrupt_mode,
		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");

static int __init efx_init_module(void)
{
	int rc;

	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");

	rc = register_netdevice_notifier(&efx_netdev_notifier);
	if (rc)
		goto err_notifier;

2691 2692 2693 2694 2695
	reset_workqueue = create_singlethread_workqueue("sfc_reset");
	if (!reset_workqueue) {
		rc = -ENOMEM;
		goto err_reset;
	}
2696 2697 2698 2699 2700 2701 2702 2703

	rc = pci_register_driver(&efx_pci_driver);
	if (rc < 0)
		goto err_pci;

	return 0;

 err_pci:
2704 2705
	destroy_workqueue(reset_workqueue);
 err_reset:
2706 2707 2708 2709 2710 2711 2712 2713 2714 2715
	unregister_netdevice_notifier(&efx_netdev_notifier);
 err_notifier:
	return rc;
}

static void __exit efx_exit_module(void)
{
	printk(KERN_INFO "Solarflare NET driver unloading\n");

	pci_unregister_driver(&efx_pci_driver);
2716
	destroy_workqueue(reset_workqueue);
2717 2718 2719 2720 2721 2722 2723
	unregister_netdevice_notifier(&efx_netdev_notifier);

}

module_init(efx_init_module);
module_exit(efx_exit_module);

2724 2725
MODULE_AUTHOR("Solarflare Communications and "
	      "Michael Brown <mbrown@fensystems.co.uk>");
2726 2727 2728
MODULE_DESCRIPTION("Solarflare Communications network driver");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, efx_pci_table);