ring_buffer_benchmark.c 8.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
/*
 * ring buffer tester and benchmark
 *
 * Copyright (C) 2009 Steven Rostedt <srostedt@redhat.com>
 */
#include <linux/ring_buffer.h>
#include <linux/completion.h>
#include <linux/kthread.h>
#include <linux/module.h>
#include <linux/time.h>

struct rb_page {
	u64		ts;
	local_t		commit;
	char		data[4080];
};

/* run time and sleep time in seconds */
#define RUN_TIME	10
#define SLEEP_TIME	10

/* number of events for writer to wake up the reader */
static int wakeup_interval = 100;

static int reader_finish;
static struct completion read_start;
static struct completion read_done;

static struct ring_buffer *buffer;
static struct task_struct *producer;
static struct task_struct *consumer;
static unsigned long read;

static int disable_reader;
module_param(disable_reader, uint, 0644);
MODULE_PARM_DESC(disable_reader, "only run producer");

static int read_events;

static int kill_test;

#define KILL_TEST()				\
	do {					\
		if (!kill_test) {		\
			kill_test = 1;		\
			WARN_ON(1);		\
		}				\
	} while (0)

enum event_status {
	EVENT_FOUND,
	EVENT_DROPPED,
};

static enum event_status read_event(int cpu)
{
	struct ring_buffer_event *event;
	int *entry;
	u64 ts;

	event = ring_buffer_consume(buffer, cpu, &ts);
	if (!event)
		return EVENT_DROPPED;

	entry = ring_buffer_event_data(event);
	if (*entry != cpu) {
		KILL_TEST();
		return EVENT_DROPPED;
	}

	read++;
	return EVENT_FOUND;
}

static enum event_status read_page(int cpu)
{
	struct ring_buffer_event *event;
	struct rb_page *rpage;
	unsigned long commit;
	void *bpage;
	int *entry;
	int ret;
	int inc;
	int i;

	bpage = ring_buffer_alloc_read_page(buffer);
87 88 89
	if (!bpage)
		return EVENT_DROPPED;

90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
	ret = ring_buffer_read_page(buffer, &bpage, PAGE_SIZE, cpu, 1);
	if (ret >= 0) {
		rpage = bpage;
		commit = local_read(&rpage->commit);
		for (i = 0; i < commit && !kill_test; i += inc) {

			if (i >= (PAGE_SIZE - offsetof(struct rb_page, data))) {
				KILL_TEST();
				break;
			}

			inc = -1;
			event = (void *)&rpage->data[i];
			switch (event->type_len) {
			case RINGBUF_TYPE_PADDING:
				/* We don't expect any padding */
				KILL_TEST();
				break;
			case RINGBUF_TYPE_TIME_EXTEND:
				inc = 8;
				break;
			case 0:
				entry = ring_buffer_event_data(event);
				if (*entry != cpu) {
					KILL_TEST();
					break;
				}
				read++;
				if (!event->array[0]) {
					KILL_TEST();
					break;
				}
				inc = event->array[0];
				break;
			default:
				entry = ring_buffer_event_data(event);
				if (*entry != cpu) {
					KILL_TEST();
					break;
				}
				read++;
				inc = ((event->type_len + 1) * 4);
			}
			if (kill_test)
				break;

			if (inc <= 0) {
				KILL_TEST();
				break;
			}
		}
	}
	ring_buffer_free_read_page(buffer, bpage);

	if (ret < 0)
		return EVENT_DROPPED;
	return EVENT_FOUND;
}

static void ring_buffer_consumer(void)
{
	/* toggle between reading pages and events */
	read_events ^= 1;

	read = 0;
	while (!reader_finish && !kill_test) {
		int found;

		do {
			int cpu;

			found = 0;
			for_each_online_cpu(cpu) {
				enum event_status stat;

				if (read_events)
					stat = read_event(cpu);
				else
					stat = read_page(cpu);

				if (kill_test)
					break;
				if (stat == EVENT_FOUND)
					found = 1;
			}
		} while (found && !kill_test);

		set_current_state(TASK_INTERRUPTIBLE);
		if (reader_finish)
			break;

		schedule();
		__set_current_state(TASK_RUNNING);
	}
	reader_finish = 0;
	complete(&read_done);
}

static void ring_buffer_producer(void)
{
	struct timeval start_tv;
	struct timeval end_tv;
	unsigned long long time;
	unsigned long long entries;
	unsigned long long overruns;
	unsigned long missed = 0;
	unsigned long hit = 0;
	unsigned long avg;
	int cnt = 0;

	/*
	 * Hammer the buffer for 10 secs (this may
	 * make the system stall)
	 */
	pr_info("Starting ring buffer hammer\n");
	do_gettimeofday(&start_tv);
	do {
		struct ring_buffer_event *event;
		int *entry;

		event = ring_buffer_lock_reserve(buffer, 10);
		if (!event) {
			missed++;
		} else {
			hit++;
			entry = ring_buffer_event_data(event);
			*entry = smp_processor_id();
			ring_buffer_unlock_commit(buffer, event);
		}
		do_gettimeofday(&end_tv);

221 222
		cnt++;
		if (consumer && !(cnt % wakeup_interval))
223 224
			wake_up_process(consumer);

225
#ifndef CONFIG_PREEMPT
226 227 228 229 230
		/*
		 * If we are a non preempt kernel, the 10 second run will
		 * stop everything while it runs. Instead, we will call
		 * cond_resched and also add any time that was lost by a
		 * rescedule.
231 232 233
		 *
		 * Do a cond resched at the same frequency we would wake up
		 * the reader.
234
		 */
235 236 237
		if (cnt % wakeup_interval)
			cond_resched();
#endif
238

239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
	} while (end_tv.tv_sec < (start_tv.tv_sec + RUN_TIME) && !kill_test);
	pr_info("End ring buffer hammer\n");

	if (consumer) {
		/* Init both completions here to avoid races */
		init_completion(&read_start);
		init_completion(&read_done);
		/* the completions must be visible before the finish var */
		smp_wmb();
		reader_finish = 1;
		/* finish var visible before waking up the consumer */
		smp_wmb();
		wake_up_process(consumer);
		wait_for_completion(&read_done);
	}

	time = end_tv.tv_sec - start_tv.tv_sec;
256
	time *= USEC_PER_SEC;
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
	time += (long long)((long)end_tv.tv_usec - (long)start_tv.tv_usec);

	entries = ring_buffer_entries(buffer);
	overruns = ring_buffer_overruns(buffer);

	if (kill_test)
		pr_info("ERROR!\n");
	pr_info("Time:     %lld (usecs)\n", time);
	pr_info("Overruns: %lld\n", overruns);
	if (disable_reader)
		pr_info("Read:     (reader disabled)\n");
	else
		pr_info("Read:     %ld  (by %s)\n", read,
			read_events ? "events" : "pages");
	pr_info("Entries:  %lld\n", entries);
	pr_info("Total:    %lld\n", entries + overruns + read);
	pr_info("Missed:   %ld\n", missed);
	pr_info("Hit:      %ld\n", hit);

276 277
	/* Convert time from usecs to millisecs */
	do_div(time, USEC_PER_MSEC);
278 279 280 281 282 283 284 285
	if (time)
		hit /= (long)time;
	else
		pr_info("TIME IS ZERO??\n");

	pr_info("Entries per millisec: %ld\n", hit);

	if (hit) {
286 287
		/* Calculate the average time in nanosecs */
		avg = NSEC_PER_MSEC / hit;
288 289
		pr_info("%ld ns per entry\n", avg);
	}
290 291 292 293 294 295 296

	if (missed) {
		if (time)
			missed /= (long)time;

		pr_info("Total iterations per millisec: %ld\n", hit + missed);

297 298 299 300 301 302
		/* it is possible that hit + missed will overflow and be zero */
		if (!(hit + missed)) {
			pr_info("hit + missed overflowed and totalled zero!\n");
			hit--; /* make it non zero */
		}

303 304
		/* Caculate the average time in nanosecs */
		avg = NSEC_PER_MSEC / (hit + missed);
305 306
		pr_info("%ld ns per entry\n", avg);
	}
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
}

static void wait_to_die(void)
{
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
}

static int ring_buffer_consumer_thread(void *arg)
{
	while (!kthread_should_stop() && !kill_test) {
		complete(&read_start);

		ring_buffer_consumer();

		set_current_state(TASK_INTERRUPTIBLE);
		if (kthread_should_stop() || kill_test)
			break;

		schedule();
		__set_current_state(TASK_RUNNING);
	}
	__set_current_state(TASK_RUNNING);

	if (kill_test)
		wait_to_die();

	return 0;
}

static int ring_buffer_producer_thread(void *arg)
{
	init_completion(&read_start);

	while (!kthread_should_stop() && !kill_test) {
		ring_buffer_reset(buffer);

		if (consumer) {
			smp_wmb();
			wake_up_process(consumer);
			wait_for_completion(&read_start);
		}

		ring_buffer_producer();

		pr_info("Sleeping for 10 secs\n");
		set_current_state(TASK_INTERRUPTIBLE);
		schedule_timeout(HZ * SLEEP_TIME);
		__set_current_state(TASK_RUNNING);
	}

	if (kill_test)
		wait_to_die();

	return 0;
}

static int __init ring_buffer_benchmark_init(void)
{
	int ret;

	/* make a one meg buffer in overwite mode */
	buffer = ring_buffer_alloc(1000000, RB_FL_OVERWRITE);
	if (!buffer)
		return -ENOMEM;

	if (!disable_reader) {
		consumer = kthread_create(ring_buffer_consumer_thread,
					  NULL, "rb_consumer");
		ret = PTR_ERR(consumer);
		if (IS_ERR(consumer))
			goto out_fail;
	}

	producer = kthread_run(ring_buffer_producer_thread,
			       NULL, "rb_producer");
	ret = PTR_ERR(producer);

	if (IS_ERR(producer))
		goto out_kill;

	return 0;

 out_kill:
	if (consumer)
		kthread_stop(consumer);

 out_fail:
	ring_buffer_free(buffer);
	return ret;
}

static void __exit ring_buffer_benchmark_exit(void)
{
	kthread_stop(producer);
	if (consumer)
		kthread_stop(consumer);
	ring_buffer_free(buffer);
}

module_init(ring_buffer_benchmark_init);
module_exit(ring_buffer_benchmark_exit);

MODULE_AUTHOR("Steven Rostedt");
MODULE_DESCRIPTION("ring_buffer_benchmark");
MODULE_LICENSE("GPL");