init.c 30.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
/*
 * Copyright (C) 1995  Linus Torvalds
 * Copyright 2010 Tilera Corporation. All Rights Reserved.
 *
 *   This program is free software; you can redistribute it and/or
 *   modify it under the terms of the GNU General Public License
 *   as published by the Free Software Foundation, version 2.
 *
 *   This program is distributed in the hope that it will be useful, but
 *   WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 *   NON INFRINGEMENT.  See the GNU General Public License for
 *   more details.
 */

#include <linux/module.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/ptrace.h>
#include <linux/mman.h>
#include <linux/mm.h>
#include <linux/hugetlb.h>
#include <linux/swap.h>
#include <linux/smp.h>
#include <linux/init.h>
#include <linux/highmem.h>
#include <linux/pagemap.h>
#include <linux/poison.h>
#include <linux/bootmem.h>
#include <linux/slab.h>
#include <linux/proc_fs.h>
#include <linux/efi.h>
#include <linux/memory_hotplug.h>
#include <linux/uaccess.h>
#include <asm/mmu_context.h>
#include <asm/processor.h>
#include <asm/system.h>
#include <asm/pgtable.h>
#include <asm/pgalloc.h>
#include <asm/dma.h>
#include <asm/fixmap.h>
#include <asm/tlb.h>
#include <asm/tlbflush.h>
#include <asm/sections.h>
#include <asm/setup.h>
#include <asm/homecache.h>
#include <hv/hypervisor.h>
#include <arch/chip.h>

#include "migrate.h"

/*
 * We could set FORCE_MAX_ZONEORDER to "(HPAGE_SHIFT - PAGE_SHIFT + 1)"
 * in the Tile Kconfig, but this generates configure warnings.
 * Do it here and force people to get it right to compile this file.
 * The problem is that with 4KB small pages and 16MB huge pages,
 * the default value doesn't allow us to group enough small pages
 * together to make up a huge page.
 */
#if CONFIG_FORCE_MAX_ZONEORDER < HPAGE_SHIFT - PAGE_SHIFT + 1
# error "Change FORCE_MAX_ZONEORDER in arch/tile/Kconfig to match page size"
#endif

#define clear_pgd(pmdptr) (*(pmdptr) = hv_pte(0))

unsigned long VMALLOC_RESERVE = CONFIG_VMALLOC_RESERVE;

DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);

/* Create an L2 page table */
static pte_t * __init alloc_pte(void)
{
	return __alloc_bootmem(L2_KERNEL_PGTABLE_SIZE, HV_PAGE_TABLE_ALIGN, 0);
}

/*
 * L2 page tables per controller.  We allocate these all at once from
 * the bootmem allocator and store them here.  This saves on kernel L2
 * page table memory, compared to allocating a full 64K page per L2
 * page table, and also means that in cases where we use huge pages,
 * we are guaranteed to later be able to shatter those huge pages and
 * switch to using these page tables instead, without requiring
 * further allocation.  Each l2_ptes[] entry points to the first page
 * table for the first hugepage-size piece of memory on the
 * controller; other page tables are just indexed directly, i.e. the
 * L2 page tables are contiguous in memory for each controller.
 */
static pte_t *l2_ptes[MAX_NUMNODES];
static int num_l2_ptes[MAX_NUMNODES];

static void init_prealloc_ptes(int node, int pages)
{
	BUG_ON(pages & (HV_L2_ENTRIES-1));
	if (pages) {
		num_l2_ptes[node] = pages;
		l2_ptes[node] = __alloc_bootmem(pages * sizeof(pte_t),
						HV_PAGE_TABLE_ALIGN, 0);
	}
}

pte_t *get_prealloc_pte(unsigned long pfn)
{
	int node = pfn_to_nid(pfn);
	pfn &= ~(-1UL << (NR_PA_HIGHBIT_SHIFT - PAGE_SHIFT));
	BUG_ON(node >= MAX_NUMNODES);
	BUG_ON(pfn >= num_l2_ptes[node]);
	return &l2_ptes[node][pfn];
}

/*
 * What caching do we expect pages from the heap to have when
 * they are allocated during bootup?  (Once we've installed the
 * "real" swapper_pg_dir.)
 */
static int initial_heap_home(void)
{
#if CHIP_HAS_CBOX_HOME_MAP()
	if (hash_default)
		return PAGE_HOME_HASH;
#endif
	return smp_processor_id();
}

/*
 * Place a pointer to an L2 page table in a middle page
 * directory entry.
 */
static void __init assign_pte(pmd_t *pmd, pte_t *page_table)
{
	phys_addr_t pa = __pa(page_table);
	unsigned long l2_ptfn = pa >> HV_LOG2_PAGE_TABLE_ALIGN;
	pte_t pteval = hv_pte_set_ptfn(__pgprot(_PAGE_TABLE), l2_ptfn);
	BUG_ON((pa & (HV_PAGE_TABLE_ALIGN-1)) != 0);
	pteval = pte_set_home(pteval, initial_heap_home());
	*(pte_t *)pmd = pteval;
	if (page_table != (pte_t *)pmd_page_vaddr(*pmd))
		BUG();
}

#ifdef __tilegx__

#if HV_L1_SIZE != HV_L2_SIZE
# error Rework assumption that L1 and L2 page tables are same size.
#endif

/* Since pmd_t arrays and pte_t arrays are the same size, just use casts. */
static inline pmd_t *alloc_pmd(void)
{
	return (pmd_t *)alloc_pte();
}

static inline void assign_pmd(pud_t *pud, pmd_t *pmd)
{
	assign_pte((pmd_t *)pud, (pte_t *)pmd);
}

#endif /* __tilegx__ */

/* Replace the given pmd with a full PTE table. */
void __init shatter_pmd(pmd_t *pmd)
{
	pte_t *pte = get_prealloc_pte(pte_pfn(*(pte_t *)pmd));
	assign_pte(pmd, pte);
}

#ifdef CONFIG_HIGHMEM
/*
 * This function initializes a certain range of kernel virtual memory
 * with new bootmem page tables, everywhere page tables are missing in
 * the given range.
 */

/*
 * NOTE: The pagetables are allocated contiguous on the physical space
 * so we can cache the place of the first one and move around without
 * checking the pgd every time.
 */
static void __init page_table_range_init(unsigned long start,
					 unsigned long end, pgd_t *pgd_base)
{
	pgd_t *pgd;
	int pgd_idx;
	unsigned long vaddr;

	vaddr = start;
	pgd_idx = pgd_index(vaddr);
	pgd = pgd_base + pgd_idx;

	for ( ; (pgd_idx < PTRS_PER_PGD) && (vaddr != end); pgd++, pgd_idx++) {
		pmd_t *pmd = pmd_offset(pud_offset(pgd, vaddr), vaddr);
		if (pmd_none(*pmd))
			assign_pte(pmd, alloc_pte());
		vaddr += PMD_SIZE;
	}
}
#endif /* CONFIG_HIGHMEM */


#if CHIP_HAS_CBOX_HOME_MAP()

static int __initdata ktext_hash = 1;  /* .text pages */
static int __initdata kdata_hash = 1;  /* .data and .bss pages */
int __write_once hash_default = 1;     /* kernel allocator pages */
EXPORT_SYMBOL(hash_default);
int __write_once kstack_hash = 1;      /* if no homecaching, use h4h */
#endif /* CHIP_HAS_CBOX_HOME_MAP */

/*
 * CPUs to use to for striping the pages of kernel data.  If hash-for-home
 * is available, this is only relevant if kcache_hash sets up the
 * .data and .bss to be page-homed, and we don't want the default mode
 * of using the full set of kernel cpus for the striping.
 */
static __initdata struct cpumask kdata_mask;
static __initdata int kdata_arg_seen;

int __write_once kdata_huge;       /* if no homecaching, small pages */


/* Combine a generic pgprot_t with cache home to get a cache-aware pgprot. */
static pgprot_t __init construct_pgprot(pgprot_t prot, int home)
{
	prot = pte_set_home(prot, home);
#if CHIP_HAS_CBOX_HOME_MAP()
	if (home == PAGE_HOME_IMMUTABLE) {
		if (ktext_hash)
			prot = hv_pte_set_mode(prot, HV_PTE_MODE_CACHE_HASH_L3);
		else
			prot = hv_pte_set_mode(prot, HV_PTE_MODE_CACHE_NO_L3);
	}
#endif
	return prot;
}

/*
 * For a given kernel data VA, how should it be cached?
 * We return the complete pgprot_t with caching bits set.
 */
static pgprot_t __init init_pgprot(ulong address)
{
	int cpu;
	unsigned long page;
	enum { CODE_DELTA = MEM_SV_INTRPT - PAGE_OFFSET };

#if CHIP_HAS_CBOX_HOME_MAP()
	/* For kdata=huge, everything is just hash-for-home. */
	if (kdata_huge)
		return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
#endif

	/* We map the aliased pages of permanent text inaccessible. */
	if (address < (ulong) _sinittext - CODE_DELTA)
		return PAGE_NONE;

	/*
	 * We map read-only data non-coherent for performance.  We could
	 * use neighborhood caching on TILE64, but it's not clear it's a win.
	 */
	if ((address >= (ulong) __start_rodata &&
	     address < (ulong) __end_rodata) ||
	    address == (ulong) empty_zero_page) {
		return construct_pgprot(PAGE_KERNEL_RO, PAGE_HOME_IMMUTABLE);
	}

	/* As a performance optimization, keep the boot init stack here. */
	if (address >= (ulong)&init_thread_union &&
	    address < (ulong)&init_thread_union + THREAD_SIZE)
		return construct_pgprot(PAGE_KERNEL, smp_processor_id());

#ifndef __tilegx__
#if !ATOMIC_LOCKS_FOUND_VIA_TABLE()
	/* Force the atomic_locks[] array page to be hash-for-home. */
	if (address == (ulong) atomic_locks)
		return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
#endif
#endif

	/*
	 * Everything else that isn't data or bss is heap, so mark it
	 * with the initial heap home (hash-for-home, or this cpu).  This
	 * includes any addresses after the loaded image; any address before
	 * _einittext (since we already captured the case of text before
	 * _sinittext); and any init-data pages.
	 *
	 * All the LOWMEM pages that we mark this way will get their
	 * struct page homecache properly marked later, in set_page_homes().
	 * The HIGHMEM pages we leave with a default zero for their
	 * homes, but with a zero free_time we don't have to actually
	 * do a flush action the first time we use them, either.
	 */
	if (address >= (ulong) _end || address < (ulong) _sdata ||
	    (address >= (ulong) _sinitdata &&
	     address < (ulong) _einitdata))
		return construct_pgprot(PAGE_KERNEL, initial_heap_home());

#if CHIP_HAS_CBOX_HOME_MAP()
	/* Use hash-for-home if requested for data/bss. */
	if (kdata_hash)
		return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
#endif

	/*
	 * Otherwise we just hand out consecutive cpus.  To avoid
	 * requiring this function to hold state, we just walk forward from
	 * _sdata by PAGE_SIZE, skipping the readonly and init data, to reach
	 * the requested address, while walking cpu home around kdata_mask.
	 * This is typically no more than a dozen or so iterations.
	 */
	BUG_ON(_einitdata != __bss_start);
	for (page = (ulong)_sdata, cpu = NR_CPUS; ; ) {
		cpu = cpumask_next(cpu, &kdata_mask);
		if (cpu == NR_CPUS)
			cpu = cpumask_first(&kdata_mask);
		if (page >= address)
			break;
		page += PAGE_SIZE;
		if (page == (ulong)__start_rodata)
			page = (ulong)__end_rodata;
		if (page == (ulong)&init_thread_union)
			page += THREAD_SIZE;
		if (page == (ulong)_sinitdata)
			page = (ulong)_einitdata;
		if (page == (ulong)empty_zero_page)
			page += PAGE_SIZE;
#ifndef __tilegx__
#if !ATOMIC_LOCKS_FOUND_VIA_TABLE()
		if (page == (ulong)atomic_locks)
			page += PAGE_SIZE;
#endif
#endif

	}
	return construct_pgprot(PAGE_KERNEL, cpu);
}

/*
 * This function sets up how we cache the kernel text.  If we have
 * hash-for-home support, normally that is used instead (see the
 * kcache_hash boot flag for more information).  But if we end up
 * using a page-based caching technique, this option sets up the
 * details of that.  In addition, the "ktext=nocache" option may
 * always be used to disable local caching of text pages, if desired.
 */

static int __initdata ktext_arg_seen;
static int __initdata ktext_small;
static int __initdata ktext_local;
static int __initdata ktext_all;
static int __initdata ktext_nondataplane;
static int __initdata ktext_nocache;
static struct cpumask __initdata ktext_mask;

static int __init setup_ktext(char *str)
{
	if (str == NULL)
		return -EINVAL;

	/* If you have a leading "nocache", turn off ktext caching */
	if (strncmp(str, "nocache", 7) == 0) {
		ktext_nocache = 1;
		printk("ktext: disabling local caching of kernel text\n");
		str += 7;
		if (*str == ',')
			++str;
		if (*str == '\0')
			return 0;
	}

	ktext_arg_seen = 1;

	/* Default setting on Tile64: use a huge page */
	if (strcmp(str, "huge") == 0)
		printk("ktext: using one huge locally cached page\n");

	/* Pay TLB cost but get no cache benefit: cache small pages locally */
	else if (strcmp(str, "local") == 0) {
		ktext_small = 1;
		ktext_local = 1;
		printk("ktext: using small pages with local caching\n");
	}

	/* Neighborhood cache ktext pages on all cpus. */
	else if (strcmp(str, "all") == 0) {
		ktext_small = 1;
		ktext_all = 1;
		printk("ktext: using maximal caching neighborhood\n");
	}


	/* Neighborhood ktext pages on specified mask */
	else if (cpulist_parse(str, &ktext_mask) == 0) {
		char buf[NR_CPUS * 5];
		cpulist_scnprintf(buf, sizeof(buf), &ktext_mask);
		if (cpumask_weight(&ktext_mask) > 1) {
			ktext_small = 1;
			printk("ktext: using caching neighborhood %s "
			       "with small pages\n", buf);
		} else {
			printk("ktext: caching on cpu %s with one huge page\n",
			       buf);
		}
	}

	else if (*str)
		return -EINVAL;

	return 0;
}

early_param("ktext", setup_ktext);


static inline pgprot_t ktext_set_nocache(pgprot_t prot)
{
	if (!ktext_nocache)
		prot = hv_pte_set_nc(prot);
#if CHIP_HAS_NC_AND_NOALLOC_BITS()
	else
		prot = hv_pte_set_no_alloc_l2(prot);
#endif
	return prot;
}

#ifndef __tilegx__
static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va)
{
	return pmd_offset(pud_offset(&pgtables[pgd_index(va)], va), va);
}
#else
static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va)
{
	pud_t *pud = pud_offset(&pgtables[pgd_index(va)], va);
	if (pud_none(*pud))
		assign_pmd(pud, alloc_pmd());
	return pmd_offset(pud, va);
}
#endif

/* Temporary page table we use for staging. */
static pgd_t pgtables[PTRS_PER_PGD]
 __attribute__((section(".init.page")));

/*
 * This maps the physical memory to kernel virtual address space, a total
 * of max_low_pfn pages, by creating page tables starting from address
 * PAGE_OFFSET.
 *
 * This routine transitions us from using a set of compiled-in large
 * pages to using some more precise caching, including removing access
 * to code pages mapped at PAGE_OFFSET (executed only at MEM_SV_START)
 * marking read-only data as locally cacheable, striping the remaining
 * .data and .bss across all the available tiles, and removing access
 * to pages above the top of RAM (thus ensuring a page fault from a bad
 * virtual address rather than a hypervisor shoot down for accessing
 * memory outside the assigned limits).
 */
static void __init kernel_physical_mapping_init(pgd_t *pgd_base)
{
	unsigned long address, pfn;
	pmd_t *pmd;
	pte_t *pte;
	int pte_ofs;
	const struct cpumask *my_cpu_mask = cpumask_of(smp_processor_id());
	struct cpumask kstripe_mask;
	int rc, i;

#if CHIP_HAS_CBOX_HOME_MAP()
	if (ktext_arg_seen && ktext_hash) {
		printk("warning: \"ktext\" boot argument ignored"
		       " if \"kcache_hash\" sets up text hash-for-home\n");
		ktext_small = 0;
	}

	if (kdata_arg_seen && kdata_hash) {
		printk("warning: \"kdata\" boot argument ignored"
		       " if \"kcache_hash\" sets up data hash-for-home\n");
	}

	if (kdata_huge && !hash_default) {
		printk("warning: disabling \"kdata=huge\"; requires"
		       " kcache_hash=all or =allbutstack\n");
		kdata_huge = 0;
	}
#endif

	/*
	 * Set up a mask for cpus to use for kernel striping.
	 * This is normally all cpus, but minus dataplane cpus if any.
	 * If the dataplane covers the whole chip, we stripe over
	 * the whole chip too.
	 */
	cpumask_copy(&kstripe_mask, cpu_possible_mask);
	if (!kdata_arg_seen)
		kdata_mask = kstripe_mask;

	/* Allocate and fill in L2 page tables */
	for (i = 0; i < MAX_NUMNODES; ++i) {
#ifdef CONFIG_HIGHMEM
		unsigned long end_pfn = node_lowmem_end_pfn[i];
#else
		unsigned long end_pfn = node_end_pfn[i];
#endif
		unsigned long end_huge_pfn = 0;

		/* Pre-shatter the last huge page to allow per-cpu pages. */
		if (kdata_huge)
			end_huge_pfn = end_pfn - (HPAGE_SIZE >> PAGE_SHIFT);

		pfn = node_start_pfn[i];

		/* Allocate enough memory to hold L2 page tables for node. */
		init_prealloc_ptes(i, end_pfn - pfn);

		address = (unsigned long) pfn_to_kaddr(pfn);
		while (pfn < end_pfn) {
			BUG_ON(address & (HPAGE_SIZE-1));
			pmd = get_pmd(pgtables, address);
			pte = get_prealloc_pte(pfn);
			if (pfn < end_huge_pfn) {
				pgprot_t prot = init_pgprot(address);
				*(pte_t *)pmd = pte_mkhuge(pfn_pte(pfn, prot));
				for (pte_ofs = 0; pte_ofs < PTRS_PER_PTE;
				     pfn++, pte_ofs++, address += PAGE_SIZE)
					pte[pte_ofs] = pfn_pte(pfn, prot);
			} else {
				if (kdata_huge)
					printk(KERN_DEBUG "pre-shattered huge"
					       " page at %#lx\n", address);
				for (pte_ofs = 0; pte_ofs < PTRS_PER_PTE;
				     pfn++, pte_ofs++, address += PAGE_SIZE) {
					pgprot_t prot = init_pgprot(address);
					pte[pte_ofs] = pfn_pte(pfn, prot);
				}
				assign_pte(pmd, pte);
			}
		}
	}

	/*
	 * Set or check ktext_map now that we have cpu_possible_mask
	 * and kstripe_mask to work with.
	 */
	if (ktext_all)
		cpumask_copy(&ktext_mask, cpu_possible_mask);
	else if (ktext_nondataplane)
		ktext_mask = kstripe_mask;
	else if (!cpumask_empty(&ktext_mask)) {
		/* Sanity-check any mask that was requested */
		struct cpumask bad;
		cpumask_andnot(&bad, &ktext_mask, cpu_possible_mask);
		cpumask_and(&ktext_mask, &ktext_mask, cpu_possible_mask);
		if (!cpumask_empty(&bad)) {
			char buf[NR_CPUS * 5];
			cpulist_scnprintf(buf, sizeof(buf), &bad);
			printk("ktext: not using unavailable cpus %s\n", buf);
		}
		if (cpumask_empty(&ktext_mask)) {
			printk("ktext: no valid cpus; caching on %d.\n",
			       smp_processor_id());
			cpumask_copy(&ktext_mask,
				     cpumask_of(smp_processor_id()));
		}
	}

	address = MEM_SV_INTRPT;
	pmd = get_pmd(pgtables, address);
	if (ktext_small) {
		/* Allocate an L2 PTE for the kernel text */
		int cpu = 0;
		pgprot_t prot = construct_pgprot(PAGE_KERNEL_EXEC,
						 PAGE_HOME_IMMUTABLE);

		if (ktext_local) {
			if (ktext_nocache)
				prot = hv_pte_set_mode(prot,
						       HV_PTE_MODE_UNCACHED);
			else
				prot = hv_pte_set_mode(prot,
						       HV_PTE_MODE_CACHE_NO_L3);
		} else {
			prot = hv_pte_set_mode(prot,
					       HV_PTE_MODE_CACHE_TILE_L3);
			cpu = cpumask_first(&ktext_mask);

			prot = ktext_set_nocache(prot);
		}

		BUG_ON(address != (unsigned long)_stext);
		pfn = 0;  /* code starts at PA 0 */
		pte = alloc_pte();
		for (pte_ofs = 0; address < (unsigned long)_einittext;
		     pfn++, pte_ofs++, address += PAGE_SIZE) {
			if (!ktext_local) {
				prot = set_remote_cache_cpu(prot, cpu);
				cpu = cpumask_next(cpu, &ktext_mask);
				if (cpu == NR_CPUS)
					cpu = cpumask_first(&ktext_mask);
			}
			pte[pte_ofs] = pfn_pte(pfn, prot);
		}
		assign_pte(pmd, pte);
	} else {
		pte_t pteval = pfn_pte(0, PAGE_KERNEL_EXEC);
		pteval = pte_mkhuge(pteval);
#if CHIP_HAS_CBOX_HOME_MAP()
		if (ktext_hash) {
			pteval = hv_pte_set_mode(pteval,
						 HV_PTE_MODE_CACHE_HASH_L3);
			pteval = ktext_set_nocache(pteval);
		} else
#endif /* CHIP_HAS_CBOX_HOME_MAP() */
		if (cpumask_weight(&ktext_mask) == 1) {
			pteval = set_remote_cache_cpu(pteval,
					      cpumask_first(&ktext_mask));
			pteval = hv_pte_set_mode(pteval,
						 HV_PTE_MODE_CACHE_TILE_L3);
			pteval = ktext_set_nocache(pteval);
		} else if (ktext_nocache)
			pteval = hv_pte_set_mode(pteval,
						 HV_PTE_MODE_UNCACHED);
		else
			pteval = hv_pte_set_mode(pteval,
						 HV_PTE_MODE_CACHE_NO_L3);
		*(pte_t *)pmd = pteval;
	}

	/* Set swapper_pgprot here so it is flushed to memory right away. */
	swapper_pgprot = init_pgprot((unsigned long)swapper_pg_dir);

	/*
	 * Since we may be changing the caching of the stack and page
	 * table itself, we invoke an assembly helper to do the
	 * following steps:
	 *
	 *  - flush the cache so we start with an empty slate
	 *  - install pgtables[] as the real page table
	 *  - flush the TLB so the new page table takes effect
	 */
	rc = flush_and_install_context(__pa(pgtables),
				       init_pgprot((unsigned long)pgtables),
				       __get_cpu_var(current_asid),
				       cpumask_bits(my_cpu_mask));
	BUG_ON(rc != 0);

	/* Copy the page table back to the normal swapper_pg_dir. */
	memcpy(pgd_base, pgtables, sizeof(pgtables));
	__install_page_table(pgd_base, __get_cpu_var(current_asid),
			     swapper_pgprot);
}

/*
 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
 * is valid. The argument is a physical page number.
 *
 * On Tile, the only valid things for which we can just hand out unchecked
 * PTEs are the kernel code and data.  Anything else might change its
 * homing with time, and we wouldn't know to adjust the /dev/mem PTEs.
 * Note that init_thread_union is released to heap soon after boot,
 * so we include it in the init data.
 *
 * For TILE-Gx, we might want to consider allowing access to PA
 * regions corresponding to PCI space, etc.
 */
int devmem_is_allowed(unsigned long pagenr)
{
	return pagenr < kaddr_to_pfn(_end) &&
		!(pagenr >= kaddr_to_pfn(&init_thread_union) ||
		  pagenr < kaddr_to_pfn(_einitdata)) &&
		!(pagenr >= kaddr_to_pfn(_sinittext) ||
		  pagenr <= kaddr_to_pfn(_einittext-1));
}

#ifdef CONFIG_HIGHMEM
static void __init permanent_kmaps_init(pgd_t *pgd_base)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;
	unsigned long vaddr;

	vaddr = PKMAP_BASE;
	page_table_range_init(vaddr, vaddr + PAGE_SIZE*LAST_PKMAP, pgd_base);

	pgd = swapper_pg_dir + pgd_index(vaddr);
	pud = pud_offset(pgd, vaddr);
	pmd = pmd_offset(pud, vaddr);
	pte = pte_offset_kernel(pmd, vaddr);
	pkmap_page_table = pte;
}
#endif /* CONFIG_HIGHMEM */


static void __init init_free_pfn_range(unsigned long start, unsigned long end)
{
	unsigned long pfn;
	struct page *page = pfn_to_page(start);

	for (pfn = start; pfn < end; ) {
		/* Optimize by freeing pages in large batches */
		int order = __ffs(pfn);
		int count, i;
		struct page *p;

		if (order >= MAX_ORDER)
			order = MAX_ORDER-1;
		count = 1 << order;
		while (pfn + count > end) {
			count >>= 1;
			--order;
		}
		for (p = page, i = 0; i < count; ++i, ++p) {
			__ClearPageReserved(p);
			/*
			 * Hacky direct set to avoid unnecessary
			 * lock take/release for EVERY page here.
			 */
			p->_count.counter = 0;
			p->_mapcount.counter = -1;
		}
		init_page_count(page);
		__free_pages(page, order);
		totalram_pages += count;

		page += count;
		pfn += count;
	}
}

static void __init set_non_bootmem_pages_init(void)
{
	struct zone *z;
	for_each_zone(z) {
		unsigned long start, end;
		int nid = z->zone_pgdat->node_id;

		start = z->zone_start_pfn;
		if (start == 0)
			continue;  /* bootmem */
		end = start + z->spanned_pages;
		if (zone_idx(z) == ZONE_NORMAL) {
			BUG_ON(start != node_start_pfn[nid]);
			start = node_free_pfn[nid];
		}
#ifdef CONFIG_HIGHMEM
		if (zone_idx(z) == ZONE_HIGHMEM)
			totalhigh_pages += z->spanned_pages;
#endif
		if (kdata_huge) {
			unsigned long percpu_pfn = node_percpu_pfn[nid];
			if (start < percpu_pfn && end > percpu_pfn)
				end = percpu_pfn;
		}
#ifdef CONFIG_PCI
		if (start <= pci_reserve_start_pfn &&
		    end > pci_reserve_start_pfn) {
			if (end > pci_reserve_end_pfn)
				init_free_pfn_range(pci_reserve_end_pfn, end);
			end = pci_reserve_start_pfn;
		}
#endif
		init_free_pfn_range(start, end);
	}
}

/*
 * paging_init() sets up the page tables - note that all of lowmem is
 * already mapped by head.S.
 */
void __init paging_init(void)
{
#ifdef CONFIG_HIGHMEM
	unsigned long vaddr, end;
#endif
#ifdef __tilegx__
	pud_t *pud;
#endif
	pgd_t *pgd_base = swapper_pg_dir;

	kernel_physical_mapping_init(pgd_base);

#ifdef CONFIG_HIGHMEM
	/*
	 * Fixed mappings, only the page table structure has to be
	 * created - mappings will be set by set_fixmap():
	 */
	vaddr = __fix_to_virt(__end_of_fixed_addresses - 1) & PMD_MASK;
	end = (FIXADDR_TOP + PMD_SIZE - 1) & PMD_MASK;
	page_table_range_init(vaddr, end, pgd_base);
	permanent_kmaps_init(pgd_base);
#endif

#ifdef __tilegx__
	/*
	 * Since GX allocates just one pmd_t array worth of vmalloc space,
	 * we go ahead and allocate it statically here, then share it
	 * globally.  As a result we don't have to worry about any task
	 * changing init_mm once we get up and running, and there's no
	 * need for e.g. vmalloc_sync_all().
	 */
	BUILD_BUG_ON(pgd_index(VMALLOC_START) != pgd_index(VMALLOC_END));
	pud = pud_offset(pgd_base + pgd_index(VMALLOC_START), VMALLOC_START);
	assign_pmd(pud, alloc_pmd());
#endif
}


/*
 * Walk the kernel page tables and derive the page_home() from
 * the PTEs, so that set_pte() can properly validate the caching
 * of all PTEs it sees.
 */
void __init set_page_homes(void)
{
}

static void __init set_max_mapnr_init(void)
{
#ifdef CONFIG_FLATMEM
	max_mapnr = max_low_pfn;
#endif
}

void __init mem_init(void)
{
	int codesize, datasize, initsize;
	int i;
#ifndef __tilegx__
	void *last;
#endif

#ifdef CONFIG_FLATMEM
	if (!mem_map)
		BUG();
#endif

#ifdef CONFIG_HIGHMEM
	/* check that fixmap and pkmap do not overlap */
	if (PKMAP_ADDR(LAST_PKMAP-1) >= FIXADDR_START) {
		printk(KERN_ERR "fixmap and kmap areas overlap"
		       " - this will crash\n");
		printk(KERN_ERR "pkstart: %lxh pkend: %lxh fixstart %lxh\n",
		       PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP-1),
		       FIXADDR_START);
		BUG();
	}
#endif

	set_max_mapnr_init();

	/* this will put all bootmem onto the freelists */
	totalram_pages += free_all_bootmem();

	/* count all remaining LOWMEM and give all HIGHMEM to page allocator */
	set_non_bootmem_pages_init();

	codesize =  (unsigned long)&_etext - (unsigned long)&_text;
	datasize =  (unsigned long)&_end - (unsigned long)&_sdata;
	initsize =  (unsigned long)&_einittext - (unsigned long)&_sinittext;
	initsize += (unsigned long)&_einitdata - (unsigned long)&_sinitdata;

	printk(KERN_INFO "Memory: %luk/%luk available (%dk kernel code, %dk data, %dk init, %ldk highmem)\n",
		(unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
		num_physpages << (PAGE_SHIFT-10),
		codesize >> 10,
		datasize >> 10,
		initsize >> 10,
		(unsigned long) (totalhigh_pages << (PAGE_SHIFT-10))
	       );

	/*
	 * In debug mode, dump some interesting memory mappings.
	 */
#ifdef CONFIG_HIGHMEM
	printk(KERN_DEBUG "  KMAP    %#lx - %#lx\n",
	       FIXADDR_START, FIXADDR_TOP + PAGE_SIZE - 1);
	printk(KERN_DEBUG "  PKMAP   %#lx - %#lx\n",
	       PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP) - 1);
#endif
#ifdef CONFIG_HUGEVMAP
	printk(KERN_DEBUG "  HUGEMAP %#lx - %#lx\n",
	       HUGE_VMAP_BASE, HUGE_VMAP_END - 1);
#endif
	printk(KERN_DEBUG "  VMALLOC %#lx - %#lx\n",
	       _VMALLOC_START, _VMALLOC_END - 1);
#ifdef __tilegx__
	for (i = MAX_NUMNODES-1; i >= 0; --i) {
		struct pglist_data *node = &node_data[i];
		if (node->node_present_pages) {
			unsigned long start = (unsigned long)
				pfn_to_kaddr(node->node_start_pfn);
			unsigned long end = start +
				(node->node_present_pages << PAGE_SHIFT);
			printk(KERN_DEBUG "  MEM%d    %#lx - %#lx\n",
			       i, start, end - 1);
		}
	}
#else
	last = high_memory;
	for (i = MAX_NUMNODES-1; i >= 0; --i) {
		if ((unsigned long)vbase_map[i] != -1UL) {
			printk(KERN_DEBUG "  LOWMEM%d %#lx - %#lx\n",
			       i, (unsigned long) (vbase_map[i]),
			       (unsigned long) (last-1));
			last = vbase_map[i];
		}
	}
#endif

#ifndef __tilegx__
	/*
	 * Convert from using one lock for all atomic operations to
	 * one per cpu.
	 */
	__init_atomic_per_cpu();
#endif
}

/*
 * this is for the non-NUMA, single node SMP system case.
 * Specifically, in the case of x86, we will always add
 * memory to the highmem for now.
 */
#ifndef CONFIG_NEED_MULTIPLE_NODES
int arch_add_memory(u64 start, u64 size)
{
	struct pglist_data *pgdata = &contig_page_data;
	struct zone *zone = pgdata->node_zones + MAX_NR_ZONES-1;
	unsigned long start_pfn = start >> PAGE_SHIFT;
	unsigned long nr_pages = size >> PAGE_SHIFT;

	return __add_pages(zone, start_pfn, nr_pages);
}

int remove_memory(u64 start, u64 size)
{
	return -EINVAL;
}
#endif

struct kmem_cache *pgd_cache;

void __init pgtable_cache_init(void)
{
	pgd_cache = kmem_cache_create("pgd",
				PTRS_PER_PGD*sizeof(pgd_t),
				PTRS_PER_PGD*sizeof(pgd_t),
				0,
				NULL);
	if (!pgd_cache)
		panic("pgtable_cache_init(): Cannot create pgd cache");
}

#if !CHIP_HAS_COHERENT_LOCAL_CACHE()
/*
 * The __w1data area holds data that is only written during initialization,
 * and is read-only and thus freely cacheable thereafter.  Fix the page
 * table entries that cover that region accordingly.
 */
static void mark_w1data_ro(void)
{
	/* Loop over page table entries */
	unsigned long addr = (unsigned long)__w1data_begin;
	BUG_ON((addr & (PAGE_SIZE-1)) != 0);
	for (; addr <= (unsigned long)__w1data_end - 1; addr += PAGE_SIZE) {
		unsigned long pfn = kaddr_to_pfn((void *)addr);
		struct page *page = pfn_to_page(pfn);
		pte_t *ptep = virt_to_pte(NULL, addr);
		BUG_ON(pte_huge(*ptep));   /* not relevant for kdata_huge */
		set_pte_at(&init_mm, addr, ptep, pfn_pte(pfn, PAGE_KERNEL_RO));
	}
}
#endif

#ifdef CONFIG_DEBUG_PAGEALLOC
static long __write_once initfree;
#else
static long __write_once initfree = 1;
#endif

/* Select whether to free (1) or mark unusable (0) the __init pages. */
static int __init set_initfree(char *str)
{
	strict_strtol(str, 0, &initfree);
	printk("initfree: %s free init pages\n", initfree ? "will" : "won't");
	return 1;
}
__setup("initfree=", set_initfree);

static void free_init_pages(char *what, unsigned long begin, unsigned long end)
{
	unsigned long addr = (unsigned long) begin;

	if (kdata_huge && !initfree) {
		printk("Warning: ignoring initfree=0:"
		       " incompatible with kdata=huge\n");
		initfree = 1;
	}
	end = (end + PAGE_SIZE - 1) & PAGE_MASK;
	local_flush_tlb_pages(NULL, begin, PAGE_SIZE, end - begin);
	for (addr = begin; addr < end; addr += PAGE_SIZE) {
		/*
		 * Note we just reset the home here directly in the
		 * page table.  We know this is safe because our caller
		 * just flushed the caches on all the other cpus,
		 * and they won't be touching any of these pages.
		 */
		int pfn = kaddr_to_pfn((void *)addr);
		struct page *page = pfn_to_page(pfn);
		pte_t *ptep = virt_to_pte(NULL, addr);
		if (!initfree) {
			/*
			 * If debugging page accesses then do not free
			 * this memory but mark them not present - any
			 * buggy init-section access will create a
			 * kernel page fault:
			 */
			pte_clear(&init_mm, addr, ptep);
			continue;
		}
		__ClearPageReserved(page);
		init_page_count(page);
		if (pte_huge(*ptep))
			BUG_ON(!kdata_huge);
		else
			set_pte_at(&init_mm, addr, ptep,
				   pfn_pte(pfn, PAGE_KERNEL));
		memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
		free_page(addr);
		totalram_pages++;
	}
	printk(KERN_INFO "Freeing %s: %ldk freed\n", what, (end - begin) >> 10);
}

void free_initmem(void)
{
	const unsigned long text_delta = MEM_SV_INTRPT - PAGE_OFFSET;

	/*
	 * Evict the dirty initdata on the boot cpu, evict the w1data
	 * wherever it's homed, and evict all the init code everywhere.
	 * We are guaranteed that no one will touch the init pages any
	 * more, and although other cpus may be touching the w1data,
	 * we only actually change the caching on tile64, which won't
	 * be keeping local copies in the other tiles' caches anyway.
	 */
	homecache_evict(&cpu_cacheable_map);

	/* Free the data pages that we won't use again after init. */
	free_init_pages("unused kernel data",
			(unsigned long)_sinitdata,
			(unsigned long)_einitdata);

	/*
	 * Free the pages mapped from 0xc0000000 that correspond to code
	 * pages from 0xfd000000 that we won't use again after init.
	 */
	free_init_pages("unused kernel text",
			(unsigned long)_sinittext - text_delta,
			(unsigned long)_einittext - text_delta);

#if !CHIP_HAS_COHERENT_LOCAL_CACHE()
	/*
	 * Upgrade the .w1data section to globally cached.
	 * We don't do this on tilepro, since the cache architecture
	 * pretty much makes it irrelevant, and in any case we end
	 * up having racing issues with other tiles that may touch
	 * the data after we flush the cache but before we update
	 * the PTEs and flush the TLBs, causing sharer shootdowns
	 * later.  Even though this is to clean data, it seems like
	 * an unnecessary complication.
	 */
	mark_w1data_ro();
#endif

	/* Do a global TLB flush so everyone sees the changes. */
	flush_tlb_all();
}