fschmd.c 40.3 KB
Newer Older
1 2
/* fschmd.c
 *
3
 * Copyright (C) 2007 - 2009 Hans de Goede <hdegoede@redhat.com>
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 *  Merged Fujitsu Siemens hwmon driver, supporting the Poseidon, Hermes,
22
 *  Scylla, Heracles, Heimdall and Syleus chips
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
 *
 *  Based on the original 2.4 fscscy, 2.6 fscpos, 2.6 fscher and 2.6
 *  (candidate) fschmd drivers:
 *  Copyright (C) 2006 Thilo Cestonaro
 *			<thilo.cestonaro.external@fujitsu-siemens.com>
 *  Copyright (C) 2004, 2005 Stefan Ott <stefan@desire.ch>
 *  Copyright (C) 2003, 2004 Reinhard Nissl <rnissl@gmx.de>
 *  Copyright (c) 2001 Martin Knoblauch <mkn@teraport.de, knobi@knobisoft.de>
 *  Copyright (C) 2000 Hermann Jung <hej@odn.de>
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/jiffies.h>
#include <linux/i2c.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/sysfs.h>
44
#include <linux/dmi.h>
45 46 47 48 49
#include <linux/fs.h>
#include <linux/watchdog.h>
#include <linux/miscdevice.h>
#include <linux/uaccess.h>
#include <linux/kref.h>
50 51

/* Addresses to scan */
52
static const unsigned short normal_i2c[] = { 0x73, I2C_CLIENT_END };
53 54

/* Insmod parameters */
55 56 57 58
static int nowayout = WATCHDOG_NOWAYOUT;
module_param(nowayout, int, 0);
MODULE_PARM_DESC(nowayout, "Watchdog cannot be stopped once started (default="
	__MODULE_STRING(WATCHDOG_NOWAYOUT) ")");
59
I2C_CLIENT_INSMOD_6(fscpos, fscher, fscscy, fschrc, fschmd, fscsyl);
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

/*
 * The FSCHMD registers and other defines
 */

/* chip identification */
#define FSCHMD_REG_IDENT_0		0x00
#define FSCHMD_REG_IDENT_1		0x01
#define FSCHMD_REG_IDENT_2		0x02
#define FSCHMD_REG_REVISION		0x03

/* global control and status */
#define FSCHMD_REG_EVENT_STATE		0x04
#define FSCHMD_REG_CONTROL		0x05

75
#define FSCHMD_CONTROL_ALERT_LED	0x01
76

77
/* watchdog */
78 79 80 81 82 83
static const u8 FSCHMD_REG_WDOG_CONTROL[6] =
	{ 0x21, 0x21, 0x21, 0x21, 0x21, 0x28 };
static const u8 FSCHMD_REG_WDOG_STATE[6] =
	{ 0x23, 0x23, 0x23, 0x23, 0x23, 0x29 };
static const u8 FSCHMD_REG_WDOG_PRESET[6] =
	{ 0x28, 0x28, 0x28, 0x28, 0x28, 0x2a };
84

85 86 87 88 89 90 91
#define FSCHMD_WDOG_CONTROL_TRIGGER	0x10
#define FSCHMD_WDOG_CONTROL_STARTED	0x10 /* the same as trigger */
#define FSCHMD_WDOG_CONTROL_STOP	0x20
#define FSCHMD_WDOG_CONTROL_RESOLUTION	0x40

#define FSCHMD_WDOG_STATE_CARDRESET	0x02

92
/* voltages, weird order is to keep the same order as the old drivers */
93 94 95 96 97 98 99 100 101 102
static const u8 FSCHMD_REG_VOLT[6][6] = {
	{ 0x45, 0x42, 0x48 },				/* pos */
	{ 0x45, 0x42, 0x48 },				/* her */
	{ 0x45, 0x42, 0x48 },				/* scy */
	{ 0x45, 0x42, 0x48 },				/* hrc */
	{ 0x45, 0x42, 0x48 },				/* hmd */
	{ 0x21, 0x20, 0x22, 0x23, 0x24, 0x25 },		/* syl */
};

static const int FSCHMD_NO_VOLT_SENSORS[6] = { 3, 3, 3, 3, 3, 6 };
103 104 105

/* minimum pwm at which the fan is driven (pwm can by increased depending on
   the temp. Notice that for the scy some fans share there minimum speed.
106
   Also notice that with the scy the sensor order is different than with the
107
   other chips, this order was in the 2.4 driver and kept for consistency. */
108
static const u8 FSCHMD_REG_FAN_MIN[6][7] = {
109 110 111 112 113
	{ 0x55, 0x65 },					/* pos */
	{ 0x55, 0x65, 0xb5 },				/* her */
	{ 0x65, 0x65, 0x55, 0xa5, 0x55, 0xa5 },		/* scy */
	{ 0x55, 0x65, 0xa5, 0xb5 },			/* hrc */
	{ 0x55, 0x65, 0xa5, 0xb5, 0xc5 },		/* hmd */
114
	{ 0x54, 0x64, 0x74, 0x84, 0x94, 0xa4, 0xb4 },	/* syl */
115 116 117
};

/* actual fan speed */
118
static const u8 FSCHMD_REG_FAN_ACT[6][7] = {
119 120 121 122 123
	{ 0x0e, 0x6b, 0xab },				/* pos */
	{ 0x0e, 0x6b, 0xbb },				/* her */
	{ 0x6b, 0x6c, 0x0e, 0xab, 0x5c, 0xbb },		/* scy */
	{ 0x0e, 0x6b, 0xab, 0xbb },			/* hrc */
	{ 0x5b, 0x6b, 0xab, 0xbb, 0xcb },		/* hmd */
124
	{ 0x57, 0x67, 0x77, 0x87, 0x97, 0xa7, 0xb7 },	/* syl */
125 126 127
};

/* fan status registers */
128
static const u8 FSCHMD_REG_FAN_STATE[6][7] = {
129 130 131 132 133
	{ 0x0d, 0x62, 0xa2 },				/* pos */
	{ 0x0d, 0x62, 0xb2 },				/* her */
	{ 0x62, 0x61, 0x0d, 0xa2, 0x52, 0xb2 },		/* scy */
	{ 0x0d, 0x62, 0xa2, 0xb2 },			/* hrc */
	{ 0x52, 0x62, 0xa2, 0xb2, 0xc2 },		/* hmd */
134
	{ 0x50, 0x60, 0x70, 0x80, 0x90, 0xa0, 0xb0 },	/* syl */
135 136 137
};

/* fan ripple / divider registers */
138
static const u8 FSCHMD_REG_FAN_RIPPLE[6][7] = {
139 140 141 142 143
	{ 0x0f, 0x6f, 0xaf },				/* pos */
	{ 0x0f, 0x6f, 0xbf },				/* her */
	{ 0x6f, 0x6f, 0x0f, 0xaf, 0x0f, 0xbf },		/* scy */
	{ 0x0f, 0x6f, 0xaf, 0xbf },			/* hrc */
	{ 0x5f, 0x6f, 0xaf, 0xbf, 0xcf },		/* hmd */
144
	{ 0x56, 0x66, 0x76, 0x86, 0x96, 0xa6, 0xb6 },	/* syl */
145 146
};

147
static const int FSCHMD_NO_FAN_SENSORS[6] = { 3, 3, 6, 4, 5, 7 };
148 149

/* Fan status register bitmasks */
150
#define FSCHMD_FAN_ALARM	0x04 /* called fault by FSC! */
151 152
#define FSCHMD_FAN_NOT_PRESENT	0x08
#define FSCHMD_FAN_DISABLED	0x80
153 154 155


/* actual temperature registers */
156
static const u8 FSCHMD_REG_TEMP_ACT[6][11] = {
157 158 159 160 161
	{ 0x64, 0x32, 0x35 },				/* pos */
	{ 0x64, 0x32, 0x35 },				/* her */
	{ 0x64, 0xD0, 0x32, 0x35 },			/* scy */
	{ 0x64, 0x32, 0x35 },				/* hrc */
	{ 0x70, 0x80, 0x90, 0xd0, 0xe0 },		/* hmd */
162 163
	{ 0x58, 0x68, 0x78, 0x88, 0x98, 0xa8,		/* syl */
	  0xb8, 0xc8, 0xd8, 0xe8, 0xf8 },
164 165 166
};

/* temperature state registers */
167
static const u8 FSCHMD_REG_TEMP_STATE[6][11] = {
168 169 170 171
	{ 0x71, 0x81, 0x91 },				/* pos */
	{ 0x71, 0x81, 0x91 },				/* her */
	{ 0x71, 0xd1, 0x81, 0x91 },			/* scy */
	{ 0x71, 0x81, 0x91 },				/* hrc */
172
	{ 0x71, 0x81, 0x91, 0xd1, 0xe1 },		/* hmd */
173 174
	{ 0x59, 0x69, 0x79, 0x89, 0x99, 0xa9,		/* syl */
	  0xb9, 0xc9, 0xd9, 0xe9, 0xf9 },
175 176 177 178 179 180 181
};

/* temperature high limit registers, FSC does not document these. Proven to be
   there with field testing on the fscher and fschrc, already supported / used
   in the fscscy 2.4 driver. FSC has confirmed that the fschmd has registers
   at these addresses, but doesn't want to confirm they are the same as with
   the fscher?? */
182
static const u8 FSCHMD_REG_TEMP_LIMIT[6][11] = {
183 184 185 186
	{ 0, 0, 0 },					/* pos */
	{ 0x76, 0x86, 0x96 },				/* her */
	{ 0x76, 0xd6, 0x86, 0x96 },			/* scy */
	{ 0x76, 0x86, 0x96 },				/* hrc */
187
	{ 0x76, 0x86, 0x96, 0xd6, 0xe6 },		/* hmd */
188 189
	{ 0x5a, 0x6a, 0x7a, 0x8a, 0x9a, 0xaa,		/* syl */
	  0xba, 0xca, 0xda, 0xea, 0xfa },
190 191 192 193
};

/* These were found through experimenting with an fscher, currently they are
   not used, but we keep them around for future reference.
194 195 196
   On the fscsyl AUTOP1 lives at 0x#c (so 0x5c for fan1, 0x6c for fan2, etc),
   AUTOP2 lives at 0x#e, and 0x#1 is a bitmask defining which temps influence
   the fan speed.
197 198 199
static const u8 FSCHER_REG_TEMP_AUTOP1[] =	{ 0x73, 0x83, 0x93 };
static const u8 FSCHER_REG_TEMP_AUTOP2[] =	{ 0x75, 0x85, 0x95 }; */

200
static const int FSCHMD_NO_TEMP_SENSORS[6] = { 3, 3, 4, 3, 5, 11 };
201 202

/* temp status register bitmasks */
203 204
#define FSCHMD_TEMP_WORKING	0x01
#define FSCHMD_TEMP_ALERT	0x02
205
#define FSCHMD_TEMP_DISABLED	0x80
206 207
/* there only really is an alarm if the sensor is working and alert == 1 */
#define FSCHMD_TEMP_ALARM_MASK \
208
	(FSCHMD_TEMP_WORKING | FSCHMD_TEMP_ALERT)
209 210 211 212 213

/*
 * Functions declarations
 */

214 215 216 217 218
static int fschmd_probe(struct i2c_client *client,
			const struct i2c_device_id *id);
static int fschmd_detect(struct i2c_client *client, int kind,
			 struct i2c_board_info *info);
static int fschmd_remove(struct i2c_client *client);
219 220 221 222 223 224
static struct fschmd_data *fschmd_update_device(struct device *dev);

/*
 * Driver data (common to all clients)
 */

225 226 227 228 229 230
static const struct i2c_device_id fschmd_id[] = {
	{ "fscpos", fscpos },
	{ "fscher", fscher },
	{ "fscscy", fscscy },
	{ "fschrc", fschrc },
	{ "fschmd", fschmd },
231
	{ "fscsyl", fscsyl },
232 233 234 235
	{ }
};
MODULE_DEVICE_TABLE(i2c, fschmd_id);

236
static struct i2c_driver fschmd_driver = {
237
	.class		= I2C_CLASS_HWMON,
238
	.driver = {
239
		.name	= "fschmd",
240
	},
241 242 243 244 245
	.probe		= fschmd_probe,
	.remove		= fschmd_remove,
	.id_table	= fschmd_id,
	.detect		= fschmd_detect,
	.address_data	= &addr_data,
246 247 248 249 250 251 252
};

/*
 * Client data (each client gets its own)
 */

struct fschmd_data {
253
	struct i2c_client *client;
254 255
	struct device *hwmon_dev;
	struct mutex update_lock;
256 257 258 259
	struct mutex watchdog_lock;
	struct list_head list; /* member of the watchdog_data_list */
	struct kref kref;
	struct miscdevice watchdog_miscdev;
260
	int kind;
261 262 263
	unsigned long watchdog_is_open;
	char watchdog_expect_close;
	char watchdog_name[10]; /* must be unique to avoid sysfs conflict */
264 265 266 267
	char valid; /* zero until following fields are valid */
	unsigned long last_updated; /* in jiffies */

	/* register values */
268
	u8 revision;            /* chip revision */
269
	u8 global_control;	/* global control register */
270 271 272
	u8 watchdog_control;    /* watchdog control register */
	u8 watchdog_state;      /* watchdog status register */
	u8 watchdog_preset;     /* watchdog counter preset on trigger val */
273 274 275 276 277 278 279 280
	u8 volt[6];		/* voltage */
	u8 temp_act[11];	/* temperature */
	u8 temp_status[11];	/* status of sensor */
	u8 temp_max[11];	/* high temp limit, notice: undocumented! */
	u8 fan_act[7];		/* fans revolutions per second */
	u8 fan_status[7];	/* fan status */
	u8 fan_min[7];		/* fan min value for rps */
	u8 fan_ripple[7];	/* divider for rps */
281 282
};

283
/* Global variables to hold information read from special DMI tables, which are
284 285 286 287
   available on FSC machines with an fscher or later chip. There is no need to
   protect these with a lock as they are only modified from our attach function
   which always gets called with the i2c-core lock held and never accessed
   before the attach function is done with them. */
288 289
static int dmi_mult[6] = { 490, 200, 100, 100, 200, 100 };
static int dmi_offset[6] = { 0, 0, 0, 0, 0, 0 };
290 291
static int dmi_vref = -1;

292 293 294 295 296 297 298 299 300 301 302 303 304 305
/* Somewhat ugly :( global data pointer list with all fschmd devices, so that
   we can find our device data as when using misc_register there is no other
   method to get to ones device data from the open fop. */
static LIST_HEAD(watchdog_data_list);
/* Note this lock not only protect list access, but also data.kref access */
static DEFINE_MUTEX(watchdog_data_mutex);

/* Release our data struct when we're detached from the i2c client *and* all
   references to our watchdog device are released */
static void fschmd_release_resources(struct kref *ref)
{
	struct fschmd_data *data = container_of(ref, struct fschmd_data, kref);
	kfree(data);
}
306

307 308 309 310 311 312 313 314 315 316 317
/*
 * Sysfs attr show / store functions
 */

static ssize_t show_in_value(struct device *dev,
	struct device_attribute *devattr, char *buf)
{
	const int max_reading[3] = { 14200, 6600, 3300 };
	int index = to_sensor_dev_attr(devattr)->index;
	struct fschmd_data *data = fschmd_update_device(dev);

318 319 320 321 322 323 324
	/* fscher / fschrc - 1 as data->kind is an array index, not a chips */
	if (data->kind == (fscher - 1) || data->kind >= (fschrc - 1))
		return sprintf(buf, "%d\n", (data->volt[index] * dmi_vref *
			dmi_mult[index]) / 255 + dmi_offset[index]);
	else
		return sprintf(buf, "%d\n", (data->volt[index] *
			max_reading[index] + 128) / 255);
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
}


#define TEMP_FROM_REG(val)	(((val) - 128) * 1000)

static ssize_t show_temp_value(struct device *dev,
	struct device_attribute *devattr, char *buf)
{
	int index = to_sensor_dev_attr(devattr)->index;
	struct fschmd_data *data = fschmd_update_device(dev);

	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_act[index]));
}

static ssize_t show_temp_max(struct device *dev,
	struct device_attribute *devattr, char *buf)
{
	int index = to_sensor_dev_attr(devattr)->index;
	struct fschmd_data *data = fschmd_update_device(dev);

	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[index]));
}

static ssize_t store_temp_max(struct device *dev, struct device_attribute
	*devattr, const char *buf, size_t count)
{
	int index = to_sensor_dev_attr(devattr)->index;
	struct fschmd_data *data = dev_get_drvdata(dev);
	long v = simple_strtol(buf, NULL, 10) / 1000;

	v = SENSORS_LIMIT(v, -128, 127) + 128;

	mutex_lock(&data->update_lock);
358
	i2c_smbus_write_byte_data(to_i2c_client(dev),
359 360 361 362 363 364 365 366 367 368 369 370 371 372
		FSCHMD_REG_TEMP_LIMIT[data->kind][index], v);
	data->temp_max[index] = v;
	mutex_unlock(&data->update_lock);

	return count;
}

static ssize_t show_temp_fault(struct device *dev,
	struct device_attribute *devattr, char *buf)
{
	int index = to_sensor_dev_attr(devattr)->index;
	struct fschmd_data *data = fschmd_update_device(dev);

	/* bit 0 set means sensor working ok, so no fault! */
373
	if (data->temp_status[index] & FSCHMD_TEMP_WORKING)
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
		return sprintf(buf, "0\n");
	else
		return sprintf(buf, "1\n");
}

static ssize_t show_temp_alarm(struct device *dev,
	struct device_attribute *devattr, char *buf)
{
	int index = to_sensor_dev_attr(devattr)->index;
	struct fschmd_data *data = fschmd_update_device(dev);

	if ((data->temp_status[index] & FSCHMD_TEMP_ALARM_MASK) ==
			FSCHMD_TEMP_ALARM_MASK)
		return sprintf(buf, "1\n");
	else
		return sprintf(buf, "0\n");
}


#define RPM_FROM_REG(val)	((val) * 60)

static ssize_t show_fan_value(struct device *dev,
	struct device_attribute *devattr, char *buf)
{
	int index = to_sensor_dev_attr(devattr)->index;
	struct fschmd_data *data = fschmd_update_device(dev);

	return sprintf(buf, "%u\n", RPM_FROM_REG(data->fan_act[index]));
}

static ssize_t show_fan_div(struct device *dev,
	struct device_attribute *devattr, char *buf)
{
	int index = to_sensor_dev_attr(devattr)->index;
	struct fschmd_data *data = fschmd_update_device(dev);

	/* bits 2..7 reserved => mask with 3 */
	return sprintf(buf, "%d\n", 1 << (data->fan_ripple[index] & 3));
}

static ssize_t store_fan_div(struct device *dev, struct device_attribute
	*devattr, const char *buf, size_t count)
{
	u8 reg;
	int index = to_sensor_dev_attr(devattr)->index;
	struct fschmd_data *data = dev_get_drvdata(dev);
	/* supported values: 2, 4, 8 */
	unsigned long v = simple_strtoul(buf, NULL, 10);

	switch (v) {
	case 2: v = 1; break;
	case 4: v = 2; break;
	case 8: v = 3; break;
	default:
		dev_err(dev, "fan_div value %lu not supported. "
			"Choose one of 2, 4 or 8!\n", v);
		return -EINVAL;
	}

	mutex_lock(&data->update_lock);

435
	reg = i2c_smbus_read_byte_data(to_i2c_client(dev),
436 437 438 439 440 441
		FSCHMD_REG_FAN_RIPPLE[data->kind][index]);

	/* bits 2..7 reserved => mask with 0x03 */
	reg &= ~0x03;
	reg |= v;

442
	i2c_smbus_write_byte_data(to_i2c_client(dev),
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
		FSCHMD_REG_FAN_RIPPLE[data->kind][index], reg);

	data->fan_ripple[index] = reg;

	mutex_unlock(&data->update_lock);

	return count;
}

static ssize_t show_fan_alarm(struct device *dev,
	struct device_attribute *devattr, char *buf)
{
	int index = to_sensor_dev_attr(devattr)->index;
	struct fschmd_data *data = fschmd_update_device(dev);

458
	if (data->fan_status[index] & FSCHMD_FAN_ALARM)
459 460 461 462 463 464 465 466 467 468 469
		return sprintf(buf, "1\n");
	else
		return sprintf(buf, "0\n");
}

static ssize_t show_fan_fault(struct device *dev,
	struct device_attribute *devattr, char *buf)
{
	int index = to_sensor_dev_attr(devattr)->index;
	struct fschmd_data *data = fschmd_update_device(dev);

470
	if (data->fan_status[index] & FSCHMD_FAN_NOT_PRESENT)
471 472 473 474 475 476 477 478 479 480
		return sprintf(buf, "1\n");
	else
		return sprintf(buf, "0\n");
}


static ssize_t show_pwm_auto_point1_pwm(struct device *dev,
	struct device_attribute *devattr, char *buf)
{
	int index = to_sensor_dev_attr(devattr)->index;
481 482
	struct fschmd_data *data = fschmd_update_device(dev);
	int val = data->fan_min[index];
483

484 485
	/* 0 = allow turning off (except on the syl), 1-255 = 50-100% */
	if (val || data->kind == fscsyl - 1)
486 487 488 489 490 491 492 493 494 495 496 497
		val = val / 2 + 128;

	return sprintf(buf, "%d\n", val);
}

static ssize_t store_pwm_auto_point1_pwm(struct device *dev,
	struct device_attribute *devattr, const char *buf, size_t count)
{
	int index = to_sensor_dev_attr(devattr)->index;
	struct fschmd_data *data = dev_get_drvdata(dev);
	unsigned long v = simple_strtoul(buf, NULL, 10);

498 499
	/* reg: 0 = allow turning off (except on the syl), 1-255 = 50-100% */
	if (v || data->kind == fscsyl - 1) {
500 501 502 503 504 505
		v = SENSORS_LIMIT(v, 128, 255);
		v = (v - 128) * 2 + 1;
	}

	mutex_lock(&data->update_lock);

506
	i2c_smbus_write_byte_data(to_i2c_client(dev),
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
		FSCHMD_REG_FAN_MIN[data->kind][index], v);
	data->fan_min[index] = v;

	mutex_unlock(&data->update_lock);

	return count;
}


/* The FSC hwmon family has the ability to force an attached alert led to flash
   from software, we export this as an alert_led sysfs attr */
static ssize_t show_alert_led(struct device *dev,
	struct device_attribute *devattr, char *buf)
{
	struct fschmd_data *data = fschmd_update_device(dev);

523
	if (data->global_control & FSCHMD_CONTROL_ALERT_LED)
524 525 526 527 528 529 530 531 532 533 534 535 536 537
		return sprintf(buf, "1\n");
	else
		return sprintf(buf, "0\n");
}

static ssize_t store_alert_led(struct device *dev,
	struct device_attribute *devattr, const char *buf, size_t count)
{
	u8 reg;
	struct fschmd_data *data = dev_get_drvdata(dev);
	unsigned long v = simple_strtoul(buf, NULL, 10);

	mutex_lock(&data->update_lock);

538
	reg = i2c_smbus_read_byte_data(to_i2c_client(dev), FSCHMD_REG_CONTROL);
539 540

	if (v)
541
		reg |= FSCHMD_CONTROL_ALERT_LED;
542
	else
543
		reg &= ~FSCHMD_CONTROL_ALERT_LED;
544

545
	i2c_smbus_write_byte_data(to_i2c_client(dev), FSCHMD_REG_CONTROL, reg);
546 547 548 549 550 551 552 553

	data->global_control = reg;

	mutex_unlock(&data->update_lock);

	return count;
}

554 555
static DEVICE_ATTR(alert_led, 0644, show_alert_led, store_alert_led);

556 557 558 559
static struct sensor_device_attribute fschmd_attr[] = {
	SENSOR_ATTR(in0_input, 0444, show_in_value, NULL, 0),
	SENSOR_ATTR(in1_input, 0444, show_in_value, NULL, 1),
	SENSOR_ATTR(in2_input, 0444, show_in_value, NULL, 2),
560 561 562
	SENSOR_ATTR(in3_input, 0444, show_in_value, NULL, 3),
	SENSOR_ATTR(in4_input, 0444, show_in_value, NULL, 4),
	SENSOR_ATTR(in5_input, 0444, show_in_value, NULL, 5),
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
};

static struct sensor_device_attribute fschmd_temp_attr[] = {
	SENSOR_ATTR(temp1_input, 0444, show_temp_value, NULL, 0),
	SENSOR_ATTR(temp1_max,   0644, show_temp_max, store_temp_max, 0),
	SENSOR_ATTR(temp1_fault, 0444, show_temp_fault, NULL, 0),
	SENSOR_ATTR(temp1_alarm, 0444, show_temp_alarm, NULL, 0),
	SENSOR_ATTR(temp2_input, 0444, show_temp_value, NULL, 1),
	SENSOR_ATTR(temp2_max,   0644, show_temp_max, store_temp_max, 1),
	SENSOR_ATTR(temp2_fault, 0444, show_temp_fault, NULL, 1),
	SENSOR_ATTR(temp2_alarm, 0444, show_temp_alarm, NULL, 1),
	SENSOR_ATTR(temp3_input, 0444, show_temp_value, NULL, 2),
	SENSOR_ATTR(temp3_max,   0644, show_temp_max, store_temp_max, 2),
	SENSOR_ATTR(temp3_fault, 0444, show_temp_fault, NULL, 2),
	SENSOR_ATTR(temp3_alarm, 0444, show_temp_alarm, NULL, 2),
	SENSOR_ATTR(temp4_input, 0444, show_temp_value, NULL, 3),
	SENSOR_ATTR(temp4_max,   0644, show_temp_max, store_temp_max, 3),
	SENSOR_ATTR(temp4_fault, 0444, show_temp_fault, NULL, 3),
	SENSOR_ATTR(temp4_alarm, 0444, show_temp_alarm, NULL, 3),
	SENSOR_ATTR(temp5_input, 0444, show_temp_value, NULL, 4),
	SENSOR_ATTR(temp5_max,   0644, show_temp_max, store_temp_max, 4),
	SENSOR_ATTR(temp5_fault, 0444, show_temp_fault, NULL, 4),
	SENSOR_ATTR(temp5_alarm, 0444, show_temp_alarm, NULL, 4),
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
	SENSOR_ATTR(temp6_input, 0444, show_temp_value, NULL, 5),
	SENSOR_ATTR(temp6_max,   0644, show_temp_max, store_temp_max, 5),
	SENSOR_ATTR(temp6_fault, 0444, show_temp_fault, NULL, 5),
	SENSOR_ATTR(temp6_alarm, 0444, show_temp_alarm, NULL, 5),
	SENSOR_ATTR(temp7_input, 0444, show_temp_value, NULL, 6),
	SENSOR_ATTR(temp7_max,   0644, show_temp_max, store_temp_max, 6),
	SENSOR_ATTR(temp7_fault, 0444, show_temp_fault, NULL, 6),
	SENSOR_ATTR(temp7_alarm, 0444, show_temp_alarm, NULL, 6),
	SENSOR_ATTR(temp8_input, 0444, show_temp_value, NULL, 7),
	SENSOR_ATTR(temp8_max,   0644, show_temp_max, store_temp_max, 7),
	SENSOR_ATTR(temp8_fault, 0444, show_temp_fault, NULL, 7),
	SENSOR_ATTR(temp8_alarm, 0444, show_temp_alarm, NULL, 7),
	SENSOR_ATTR(temp9_input, 0444, show_temp_value, NULL, 8),
	SENSOR_ATTR(temp9_max,   0644, show_temp_max, store_temp_max, 8),
	SENSOR_ATTR(temp9_fault, 0444, show_temp_fault, NULL, 8),
	SENSOR_ATTR(temp9_alarm, 0444, show_temp_alarm, NULL, 8),
	SENSOR_ATTR(temp10_input, 0444, show_temp_value, NULL, 9),
	SENSOR_ATTR(temp10_max,   0644, show_temp_max, store_temp_max, 9),
	SENSOR_ATTR(temp10_fault, 0444, show_temp_fault, NULL, 9),
	SENSOR_ATTR(temp10_alarm, 0444, show_temp_alarm, NULL, 9),
	SENSOR_ATTR(temp11_input, 0444, show_temp_value, NULL, 10),
	SENSOR_ATTR(temp11_max,   0644, show_temp_max, store_temp_max, 10),
	SENSOR_ATTR(temp11_fault, 0444, show_temp_fault, NULL, 10),
	SENSOR_ATTR(temp11_alarm, 0444, show_temp_alarm, NULL, 10),
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
};

static struct sensor_device_attribute fschmd_fan_attr[] = {
	SENSOR_ATTR(fan1_input, 0444, show_fan_value, NULL, 0),
	SENSOR_ATTR(fan1_div,   0644, show_fan_div, store_fan_div, 0),
	SENSOR_ATTR(fan1_alarm, 0444, show_fan_alarm, NULL, 0),
	SENSOR_ATTR(fan1_fault, 0444, show_fan_fault, NULL, 0),
	SENSOR_ATTR(pwm1_auto_point1_pwm, 0644, show_pwm_auto_point1_pwm,
		store_pwm_auto_point1_pwm, 0),
	SENSOR_ATTR(fan2_input, 0444, show_fan_value, NULL, 1),
	SENSOR_ATTR(fan2_div,   0644, show_fan_div, store_fan_div, 1),
	SENSOR_ATTR(fan2_alarm, 0444, show_fan_alarm, NULL, 1),
	SENSOR_ATTR(fan2_fault, 0444, show_fan_fault, NULL, 1),
	SENSOR_ATTR(pwm2_auto_point1_pwm, 0644, show_pwm_auto_point1_pwm,
		store_pwm_auto_point1_pwm, 1),
	SENSOR_ATTR(fan3_input, 0444, show_fan_value, NULL, 2),
	SENSOR_ATTR(fan3_div,   0644, show_fan_div, store_fan_div, 2),
	SENSOR_ATTR(fan3_alarm, 0444, show_fan_alarm, NULL, 2),
	SENSOR_ATTR(fan3_fault, 0444, show_fan_fault, NULL, 2),
	SENSOR_ATTR(pwm3_auto_point1_pwm, 0644, show_pwm_auto_point1_pwm,
		store_pwm_auto_point1_pwm, 2),
	SENSOR_ATTR(fan4_input, 0444, show_fan_value, NULL, 3),
	SENSOR_ATTR(fan4_div,   0644, show_fan_div, store_fan_div, 3),
	SENSOR_ATTR(fan4_alarm, 0444, show_fan_alarm, NULL, 3),
	SENSOR_ATTR(fan4_fault, 0444, show_fan_fault, NULL, 3),
	SENSOR_ATTR(pwm4_auto_point1_pwm, 0644, show_pwm_auto_point1_pwm,
		store_pwm_auto_point1_pwm, 3),
	SENSOR_ATTR(fan5_input, 0444, show_fan_value, NULL, 4),
	SENSOR_ATTR(fan5_div,   0644, show_fan_div, store_fan_div, 4),
	SENSOR_ATTR(fan5_alarm, 0444, show_fan_alarm, NULL, 4),
	SENSOR_ATTR(fan5_fault, 0444, show_fan_fault, NULL, 4),
	SENSOR_ATTR(pwm5_auto_point1_pwm, 0644, show_pwm_auto_point1_pwm,
		store_pwm_auto_point1_pwm, 4),
	SENSOR_ATTR(fan6_input, 0444, show_fan_value, NULL, 5),
	SENSOR_ATTR(fan6_div,   0644, show_fan_div, store_fan_div, 5),
	SENSOR_ATTR(fan6_alarm, 0444, show_fan_alarm, NULL, 5),
	SENSOR_ATTR(fan6_fault, 0444, show_fan_fault, NULL, 5),
	SENSOR_ATTR(pwm6_auto_point1_pwm, 0644, show_pwm_auto_point1_pwm,
		store_pwm_auto_point1_pwm, 5),
649 650 651 652 653 654
	SENSOR_ATTR(fan7_input, 0444, show_fan_value, NULL, 6),
	SENSOR_ATTR(fan7_div,   0644, show_fan_div, store_fan_div, 6),
	SENSOR_ATTR(fan7_alarm, 0444, show_fan_alarm, NULL, 6),
	SENSOR_ATTR(fan7_fault, 0444, show_fan_fault, NULL, 6),
	SENSOR_ATTR(pwm7_auto_point1_pwm, 0644, show_pwm_auto_point1_pwm,
		store_pwm_auto_point1_pwm, 6),
655 656 657 658
};


/*
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
 * Watchdog routines
 */

static int watchdog_set_timeout(struct fschmd_data *data, int timeout)
{
	int ret, resolution;
	int kind = data->kind + 1; /* 0-x array index -> 1-x module param */

	/* 2 second or 60 second resolution? */
	if (timeout <= 510 || kind == fscpos || kind == fscscy)
		resolution = 2;
	else
		resolution = 60;

	if (timeout < resolution || timeout > (resolution * 255))
		return -EINVAL;

	mutex_lock(&data->watchdog_lock);
	if (!data->client) {
		ret = -ENODEV;
		goto leave;
	}

	if (resolution == 2)
		data->watchdog_control &= ~FSCHMD_WDOG_CONTROL_RESOLUTION;
	else
		data->watchdog_control |= FSCHMD_WDOG_CONTROL_RESOLUTION;

	data->watchdog_preset = DIV_ROUND_UP(timeout, resolution);

	/* Write new timeout value */
690 691
	i2c_smbus_write_byte_data(data->client,
		FSCHMD_REG_WDOG_PRESET[data->kind], data->watchdog_preset);
692
	/* Write new control register, do not trigger! */
693 694
	i2c_smbus_write_byte_data(data->client,
		FSCHMD_REG_WDOG_CONTROL[data->kind],
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
		data->watchdog_control & ~FSCHMD_WDOG_CONTROL_TRIGGER);

	ret = data->watchdog_preset * resolution;

leave:
	mutex_unlock(&data->watchdog_lock);
	return ret;
}

static int watchdog_get_timeout(struct fschmd_data *data)
{
	int timeout;

	mutex_lock(&data->watchdog_lock);
	if (data->watchdog_control & FSCHMD_WDOG_CONTROL_RESOLUTION)
		timeout = data->watchdog_preset * 60;
	else
		timeout = data->watchdog_preset * 2;
	mutex_unlock(&data->watchdog_lock);

	return timeout;
}

static int watchdog_trigger(struct fschmd_data *data)
{
	int ret = 0;

	mutex_lock(&data->watchdog_lock);
	if (!data->client) {
		ret = -ENODEV;
		goto leave;
	}

	data->watchdog_control |= FSCHMD_WDOG_CONTROL_TRIGGER;
729 730 731
	i2c_smbus_write_byte_data(data->client,
				  FSCHMD_REG_WDOG_CONTROL[data->kind],
				  data->watchdog_control);
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
leave:
	mutex_unlock(&data->watchdog_lock);
	return ret;
}

static int watchdog_stop(struct fschmd_data *data)
{
	int ret = 0;

	mutex_lock(&data->watchdog_lock);
	if (!data->client) {
		ret = -ENODEV;
		goto leave;
	}

	data->watchdog_control &= ~FSCHMD_WDOG_CONTROL_STARTED;
	/* Don't store the stop flag in our watchdog control register copy, as
	   its a write only bit (read always returns 0) */
750 751
	i2c_smbus_write_byte_data(data->client,
		FSCHMD_REG_WDOG_CONTROL[data->kind],
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
		data->watchdog_control | FSCHMD_WDOG_CONTROL_STOP);
leave:
	mutex_unlock(&data->watchdog_lock);
	return ret;
}

static int watchdog_open(struct inode *inode, struct file *filp)
{
	struct fschmd_data *pos, *data = NULL;

	/* We get called from drivers/char/misc.c with misc_mtx hold, and we
	   call misc_register() from fschmd_probe() with watchdog_data_mutex
	   hold, as misc_register() takes the misc_mtx lock, this is a possible
	   deadlock, so we use mutex_trylock here. */
	if (!mutex_trylock(&watchdog_data_mutex))
		return -ERESTARTSYS;
	list_for_each_entry(pos, &watchdog_data_list, list) {
		if (pos->watchdog_miscdev.minor == iminor(inode)) {
			data = pos;
			break;
		}
	}
	/* Note we can never not have found data, so we don't check for this */
	kref_get(&data->kref);
	mutex_unlock(&watchdog_data_mutex);

	if (test_and_set_bit(0, &data->watchdog_is_open))
		return -EBUSY;

	/* Start the watchdog */
	watchdog_trigger(data);
	filp->private_data = data;

	return nonseekable_open(inode, filp);
}

static int watchdog_release(struct inode *inode, struct file *filp)
{
	struct fschmd_data *data = filp->private_data;

	if (data->watchdog_expect_close) {
		watchdog_stop(data);
		data->watchdog_expect_close = 0;
	} else {
		watchdog_trigger(data);
		dev_crit(&data->client->dev,
			"unexpected close, not stopping watchdog!\n");
	}

	clear_bit(0, &data->watchdog_is_open);

	mutex_lock(&watchdog_data_mutex);
	kref_put(&data->kref, fschmd_release_resources);
	mutex_unlock(&watchdog_data_mutex);

	return 0;
}

static ssize_t watchdog_write(struct file *filp, const char __user *buf,
	size_t count, loff_t *offset)
{
	size_t ret;
	struct fschmd_data *data = filp->private_data;

	if (count) {
		if (!nowayout) {
			size_t i;

			/* Clear it in case it was set with a previous write */
			data->watchdog_expect_close = 0;

			for (i = 0; i != count; i++) {
				char c;
				if (get_user(c, buf + i))
					return -EFAULT;
				if (c == 'V')
					data->watchdog_expect_close = 1;
			}
		}
		ret = watchdog_trigger(data);
		if (ret < 0)
			return ret;
	}
	return count;
}

static int watchdog_ioctl(struct inode *inode, struct file *filp,
	unsigned int cmd, unsigned long arg)
{
	static struct watchdog_info ident = {
		.options = WDIOF_KEEPALIVEPING | WDIOF_SETTIMEOUT |
				WDIOF_CARDRESET,
		.identity = "FSC watchdog"
	};
	int i, ret = 0;
	struct fschmd_data *data = filp->private_data;

	switch (cmd) {
	case WDIOC_GETSUPPORT:
		ident.firmware_version = data->revision;
		if (!nowayout)
			ident.options |= WDIOF_MAGICCLOSE;
		if (copy_to_user((void __user *)arg, &ident, sizeof(ident)))
			ret = -EFAULT;
		break;

	case WDIOC_GETSTATUS:
		ret = put_user(0, (int __user *)arg);
		break;

	case WDIOC_GETBOOTSTATUS:
		if (data->watchdog_state & FSCHMD_WDOG_STATE_CARDRESET)
			ret = put_user(WDIOF_CARDRESET, (int __user *)arg);
		else
			ret = put_user(0, (int __user *)arg);
		break;

	case WDIOC_KEEPALIVE:
		ret = watchdog_trigger(data);
		break;

	case WDIOC_GETTIMEOUT:
		i = watchdog_get_timeout(data);
		ret = put_user(i, (int __user *)arg);
		break;

	case WDIOC_SETTIMEOUT:
		if (get_user(i, (int __user *)arg)) {
			ret = -EFAULT;
			break;
		}
		ret = watchdog_set_timeout(data, i);
		if (ret > 0)
			ret = put_user(ret, (int __user *)arg);
		break;

	case WDIOC_SETOPTIONS:
		if (get_user(i, (int __user *)arg)) {
			ret = -EFAULT;
			break;
		}

		if (i & WDIOS_DISABLECARD)
			ret = watchdog_stop(data);
		else if (i & WDIOS_ENABLECARD)
			ret = watchdog_trigger(data);
		else
			ret = -EINVAL;

		break;
	default:
		ret = -ENOTTY;
	}

	return ret;
}

static struct file_operations watchdog_fops = {
	.owner = THIS_MODULE,
	.llseek = no_llseek,
	.open = watchdog_open,
	.release = watchdog_release,
	.write = watchdog_write,
	.ioctl = watchdog_ioctl,
};


/*
 * Detect, register, unregister and update device functions
921 922
 */

923 924
/* DMI decode routine to read voltage scaling factors from special DMI tables,
   which are available on FSC machines with an fscher or later chip. */
925
static void fschmd_dmi_decode(const struct dmi_header *header, void *dummy)
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
{
	int i, mult[3] = { 0 }, offset[3] = { 0 }, vref = 0, found = 0;

	/* dmi code ugliness, we get passed the address of the contents of
	   a complete DMI record, but in the form of a dmi_header pointer, in
	   reality this address holds header->length bytes of which the header
	   are the first 4 bytes */
	u8 *dmi_data = (u8 *)header;

	/* We are looking for OEM-specific type 185 */
	if (header->type != 185)
		return;

	/* we are looking for what Siemens calls "subtype" 19, the subtype
	   is stored in byte 5 of the dmi block */
	if (header->length < 5 || dmi_data[4] != 19)
		return;

	/* After the subtype comes 1 unknown byte and then blocks of 5 bytes,
	   consisting of what Siemens calls an "Entity" number, followed by
	   2 16-bit words in LSB first order */
	for (i = 6; (i + 4) < header->length; i += 5) {
		/* entity 1 - 3: voltage multiplier and offset */
		if (dmi_data[i] >= 1 && dmi_data[i] <= 3) {
			/* Our in sensors order and the DMI order differ */
			const int shuffle[3] = { 1, 0, 2 };
			int in = shuffle[dmi_data[i] - 1];

			/* Check for twice the same entity */
			if (found & (1 << in))
				return;

			mult[in] = dmi_data[i + 1] | (dmi_data[i + 2] << 8);
			offset[in] = dmi_data[i + 3] | (dmi_data[i + 4] << 8);

			found |= 1 << in;
		}

		/* entity 7: reference voltage */
		if (dmi_data[i] == 7) {
			/* Check for twice the same entity */
			if (found & 0x08)
				return;

			vref = dmi_data[i + 1] | (dmi_data[i + 2] << 8);

			found |= 0x08;
		}
	}

	if (found == 0x0F) {
		for (i = 0; i < 3; i++) {
			dmi_mult[i] = mult[i] * 10;
			dmi_offset[i] = offset[i] * 10;
		}
981 982 983 984 985 986 987 988 989
		/* According to the docs there should be separate dmi entries
		   for the mult's and offsets of in3-5 of the syl, but on
		   my test machine these are not present */
		dmi_mult[3] = dmi_mult[2];
		dmi_mult[4] = dmi_mult[1];
		dmi_mult[5] = dmi_mult[2];
		dmi_offset[3] = dmi_offset[2];
		dmi_offset[4] = dmi_offset[1];
		dmi_offset[5] = dmi_offset[2];
990 991 992 993
		dmi_vref = vref;
	}
}

994 995
static int fschmd_detect(struct i2c_client *client, int kind,
			 struct i2c_board_info *info)
996
{
997
	struct i2c_adapter *adapter = client->adapter;
998 999

	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
1000
		return -ENODEV;
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023

	/* Detect & Identify the chip */
	if (kind <= 0) {
		char id[4];

		id[0] = i2c_smbus_read_byte_data(client,
				FSCHMD_REG_IDENT_0);
		id[1] = i2c_smbus_read_byte_data(client,
				FSCHMD_REG_IDENT_1);
		id[2] = i2c_smbus_read_byte_data(client,
				FSCHMD_REG_IDENT_2);
		id[3] = '\0';

		if (!strcmp(id, "PEG"))
			kind = fscpos;
		else if (!strcmp(id, "HER"))
			kind = fscher;
		else if (!strcmp(id, "SCY"))
			kind = fscscy;
		else if (!strcmp(id, "HRC"))
			kind = fschrc;
		else if (!strcmp(id, "HMD"))
			kind = fschmd;
1024 1025
		else if (!strcmp(id, "SYL"))
			kind = fscsyl;
1026
		else
1027
			return -ENODEV;
1028 1029
	}

1030
	strlcpy(info->type, fschmd_id[kind - 1].name, I2C_NAME_SIZE);
1031 1032 1033 1034 1035 1036 1037 1038

	return 0;
}

static int fschmd_probe(struct i2c_client *client,
			const struct i2c_device_id *id)
{
	struct fschmd_data *data;
1039 1040
	const char * const names[6] = { "Poseidon", "Hermes", "Scylla",
					"Heracles", "Heimdall", "Syleus" };
1041
	const int watchdog_minors[] = { WATCHDOG_MINOR, 212, 213, 214, 215 };
1042 1043 1044 1045 1046 1047 1048 1049 1050
	int i, err;
	enum chips kind = id->driver_data;

	data = kzalloc(sizeof(struct fschmd_data), GFP_KERNEL);
	if (!data)
		return -ENOMEM;

	i2c_set_clientdata(client, data);
	mutex_init(&data->update_lock);
1051 1052 1053 1054 1055 1056 1057
	mutex_init(&data->watchdog_lock);
	INIT_LIST_HEAD(&data->list);
	kref_init(&data->kref);
	/* Store client pointer in our data struct for watchdog usage
	   (where the client is found through a data ptr instead of the
	   otherway around) */
	data->client = client;
1058

1059 1060 1061 1062 1063 1064 1065 1066
	if (kind == fscpos) {
		/* The Poseidon has hardwired temp limits, fill these
		   in for the alarm resetting code */
		data->temp_max[0] = 70 + 128;
		data->temp_max[1] = 50 + 128;
		data->temp_max[2] = 50 + 128;
	}

1067
	/* Read the special DMI table for fscher and newer chips */
1068
	if ((kind == fscher || kind >= fschrc) && dmi_vref == -1) {
1069
		dmi_walk(fschmd_dmi_decode, NULL);
1070
		if (dmi_vref == -1) {
1071 1072
			dev_warn(&client->dev,
				"Couldn't get voltage scaling factors from "
1073 1074 1075 1076 1077
				"BIOS DMI table, using builtin defaults\n");
			dmi_vref = 33;
		}
	}

1078 1079 1080
	/* i2c kind goes from 1-6, we want from 0-5 to address arrays */
	data->kind = kind - 1;

1081 1082 1083 1084 1085
	/* Read in some never changing registers */
	data->revision = i2c_smbus_read_byte_data(client, FSCHMD_REG_REVISION);
	data->global_control = i2c_smbus_read_byte_data(client,
					FSCHMD_REG_CONTROL);
	data->watchdog_control = i2c_smbus_read_byte_data(client,
1086
					FSCHMD_REG_WDOG_CONTROL[data->kind]);
1087
	data->watchdog_state = i2c_smbus_read_byte_data(client,
1088
					FSCHMD_REG_WDOG_STATE[data->kind]);
1089
	data->watchdog_preset = i2c_smbus_read_byte_data(client,
1090
					FSCHMD_REG_WDOG_PRESET[data->kind]);
1091

1092 1093 1094
	err = device_create_file(&client->dev, &dev_attr_alert_led);
	if (err)
		goto exit_detach;
1095

1096
	for (i = 0; i < FSCHMD_NO_VOLT_SENSORS[data->kind]; i++) {
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
		err = device_create_file(&client->dev,
					&fschmd_attr[i].dev_attr);
		if (err)
			goto exit_detach;
	}

	for (i = 0; i < (FSCHMD_NO_TEMP_SENSORS[data->kind] * 4); i++) {
		/* Poseidon doesn't have TEMP_LIMIT registers */
		if (kind == fscpos && fschmd_temp_attr[i].dev_attr.show ==
				show_temp_max)
			continue;

1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
		if (kind == fscsyl) {
			if (i % 4 == 0)
				data->temp_status[i / 4] =
					i2c_smbus_read_byte_data(client,
						FSCHMD_REG_TEMP_STATE
						[data->kind][i / 4]);
			if (data->temp_status[i / 4] & FSCHMD_TEMP_DISABLED)
				continue;
		}

1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
		err = device_create_file(&client->dev,
					&fschmd_temp_attr[i].dev_attr);
		if (err)
			goto exit_detach;
	}

	for (i = 0; i < (FSCHMD_NO_FAN_SENSORS[data->kind] * 5); i++) {
		/* Poseidon doesn't have a FAN_MIN register for its 3rd fan */
		if (kind == fscpos &&
				!strcmp(fschmd_fan_attr[i].dev_attr.attr.name,
					"pwm3_auto_point1_pwm"))
			continue;

1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
		if (kind == fscsyl) {
			if (i % 5 == 0)
				data->fan_status[i / 5] =
					i2c_smbus_read_byte_data(client,
						FSCHMD_REG_FAN_STATE
						[data->kind][i / 5]);
			if (data->fan_status[i / 5] & FSCHMD_FAN_DISABLED)
				continue;
		}

1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
		err = device_create_file(&client->dev,
					&fschmd_fan_attr[i].dev_attr);
		if (err)
			goto exit_detach;
	}

	data->hwmon_dev = hwmon_device_register(&client->dev);
	if (IS_ERR(data->hwmon_dev)) {
		err = PTR_ERR(data->hwmon_dev);
		data->hwmon_dev = NULL;
		goto exit_detach;
	}

1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
	/* We take the data_mutex lock early so that watchdog_open() cannot
	   run when misc_register() has completed, but we've not yet added
	   our data to the watchdog_data_list (and set the default timeout) */
	mutex_lock(&watchdog_data_mutex);
	for (i = 0; i < ARRAY_SIZE(watchdog_minors); i++) {
		/* Register our watchdog part */
		snprintf(data->watchdog_name, sizeof(data->watchdog_name),
			"watchdog%c", (i == 0) ? '\0' : ('0' + i));
		data->watchdog_miscdev.name = data->watchdog_name;
		data->watchdog_miscdev.fops = &watchdog_fops;
		data->watchdog_miscdev.minor = watchdog_minors[i];
		err = misc_register(&data->watchdog_miscdev);
		if (err == -EBUSY)
			continue;
		if (err) {
			data->watchdog_miscdev.minor = 0;
			dev_err(&client->dev,
				"Registering watchdog chardev: %d\n", err);
			break;
		}

		list_add(&data->list, &watchdog_data_list);
		watchdog_set_timeout(data, 60);
		dev_info(&client->dev,
			"Registered watchdog chardev major 10, minor: %d\n",
			watchdog_minors[i]);
		break;
	}
	if (i == ARRAY_SIZE(watchdog_minors)) {
		data->watchdog_miscdev.minor = 0;
		dev_warn(&client->dev, "Couldn't register watchdog chardev "
			"(due to no free minor)\n");
	}
	mutex_unlock(&watchdog_data_mutex);

1190
	dev_info(&client->dev, "Detected FSC %s chip, revision: %d\n",
1191
		names[data->kind], (int) data->revision);
1192 1193 1194 1195

	return 0;

exit_detach:
1196
	fschmd_remove(client); /* will also free data for us */
1197 1198 1199
	return err;
}

1200
static int fschmd_remove(struct i2c_client *client)
1201 1202
{
	struct fschmd_data *data = i2c_get_clientdata(client);
1203
	int i;
1204

1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
	/* Unregister the watchdog (if registered) */
	if (data->watchdog_miscdev.minor) {
		misc_deregister(&data->watchdog_miscdev);
		if (data->watchdog_is_open) {
			dev_warn(&client->dev,
				"i2c client detached with watchdog open! "
				"Stopping watchdog.\n");
			watchdog_stop(data);
		}
		mutex_lock(&watchdog_data_mutex);
		list_del(&data->list);
		mutex_unlock(&watchdog_data_mutex);
		/* Tell the watchdog code the client is gone */
		mutex_lock(&data->watchdog_lock);
		data->client = NULL;
		mutex_unlock(&data->watchdog_lock);
	}

1223 1224 1225 1226 1227
	/* Check if registered in case we're called from fschmd_detect
	   to cleanup after an error */
	if (data->hwmon_dev)
		hwmon_device_unregister(data->hwmon_dev);

1228 1229
	device_remove_file(&client->dev, &dev_attr_alert_led);
	for (i = 0; i < (FSCHMD_NO_VOLT_SENSORS[data->kind]); i++)
1230 1231 1232 1233 1234 1235 1236 1237
		device_remove_file(&client->dev, &fschmd_attr[i].dev_attr);
	for (i = 0; i < (FSCHMD_NO_TEMP_SENSORS[data->kind] * 4); i++)
		device_remove_file(&client->dev,
					&fschmd_temp_attr[i].dev_attr);
	for (i = 0; i < (FSCHMD_NO_FAN_SENSORS[data->kind] * 5); i++)
		device_remove_file(&client->dev,
					&fschmd_fan_attr[i].dev_attr);

1238 1239 1240 1241
	mutex_lock(&watchdog_data_mutex);
	kref_put(&data->kref, fschmd_release_resources);
	mutex_unlock(&watchdog_data_mutex);

1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
	return 0;
}

static struct fschmd_data *fschmd_update_device(struct device *dev)
{
	struct i2c_client *client = to_i2c_client(dev);
	struct fschmd_data *data = i2c_get_clientdata(client);
	int i;

	mutex_lock(&data->update_lock);

	if (time_after(jiffies, data->last_updated + 2 * HZ) || !data->valid) {

		for (i = 0; i < FSCHMD_NO_TEMP_SENSORS[data->kind]; i++) {
			data->temp_act[i] = i2c_smbus_read_byte_data(client,
					FSCHMD_REG_TEMP_ACT[data->kind][i]);
			data->temp_status[i] = i2c_smbus_read_byte_data(client,
					FSCHMD_REG_TEMP_STATE[data->kind][i]);

			/* The fscpos doesn't have TEMP_LIMIT registers */
			if (FSCHMD_REG_TEMP_LIMIT[data->kind][i])
				data->temp_max[i] = i2c_smbus_read_byte_data(
					client,
					FSCHMD_REG_TEMP_LIMIT[data->kind][i]);

			/* reset alarm if the alarm condition is gone,
			   the chip doesn't do this itself */
			if ((data->temp_status[i] & FSCHMD_TEMP_ALARM_MASK) ==
					FSCHMD_TEMP_ALARM_MASK &&
					data->temp_act[i] < data->temp_max[i])
				i2c_smbus_write_byte_data(client,
					FSCHMD_REG_TEMP_STATE[data->kind][i],
1274
					data->temp_status[i]);
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
		}

		for (i = 0; i < FSCHMD_NO_FAN_SENSORS[data->kind]; i++) {
			data->fan_act[i] = i2c_smbus_read_byte_data(client,
					FSCHMD_REG_FAN_ACT[data->kind][i]);
			data->fan_status[i] = i2c_smbus_read_byte_data(client,
					FSCHMD_REG_FAN_STATE[data->kind][i]);
			data->fan_ripple[i] = i2c_smbus_read_byte_data(client,
					FSCHMD_REG_FAN_RIPPLE[data->kind][i]);

			/* The fscpos third fan doesn't have a fan_min */
			if (FSCHMD_REG_FAN_MIN[data->kind][i])
				data->fan_min[i] = i2c_smbus_read_byte_data(
					client,
					FSCHMD_REG_FAN_MIN[data->kind][i]);

			/* reset fan status if speed is back to > 0 */
1292
			if ((data->fan_status[i] & FSCHMD_FAN_ALARM) &&
1293 1294 1295
					data->fan_act[i])
				i2c_smbus_write_byte_data(client,
					FSCHMD_REG_FAN_STATE[data->kind][i],
1296
					data->fan_status[i]);
1297 1298
		}

1299
		for (i = 0; i < FSCHMD_NO_VOLT_SENSORS[data->kind]; i++)
1300
			data->volt[i] = i2c_smbus_read_byte_data(client,
1301
					       FSCHMD_REG_VOLT[data->kind][i]);
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321

		data->last_updated = jiffies;
		data->valid = 1;
	}

	mutex_unlock(&data->update_lock);

	return data;
}

static int __init fschmd_init(void)
{
	return i2c_add_driver(&fschmd_driver);
}

static void __exit fschmd_exit(void)
{
	i2c_del_driver(&fschmd_driver);
}

1322
MODULE_AUTHOR("Hans de Goede <hdegoede@redhat.com>");
1323 1324
MODULE_DESCRIPTION("FSC Poseidon, Hermes, Scylla, Heracles, Heimdall and "
			"Syleus driver");
1325 1326 1327 1328
MODULE_LICENSE("GPL");

module_init(fschmd_init);
module_exit(fschmd_exit);