i915_gem_tiling.c 14.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28 29
#include "linux/string.h"
#include "linux/bitops.h"
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"

/** @file i915_gem_tiling.c
 *
 * Support for managing tiling state of buffer objects.
 *
 * The idea behind tiling is to increase cache hit rates by rearranging
 * pixel data so that a group of pixel accesses are in the same cacheline.
 * Performance improvement from doing this on the back/depth buffer are on
 * the order of 30%.
 *
 * Intel architectures make this somewhat more complicated, though, by
 * adjustments made to addressing of data when the memory is in interleaved
 * mode (matched pairs of DIMMS) to improve memory bandwidth.
 * For interleaved memory, the CPU sends every sequential 64 bytes
 * to an alternate memory channel so it can get the bandwidth from both.
 *
 * The GPU also rearranges its accesses for increased bandwidth to interleaved
 * memory, and it matches what the CPU does for non-tiled.  However, when tiled
 * it does it a little differently, since one walks addresses not just in the
 * X direction but also Y.  So, along with alternating channels when bit
 * 6 of the address flips, it also alternates when other bits flip --  Bits 9
 * (every 512 bytes, an X tile scanline) and 10 (every two X tile scanlines)
 * are common to both the 915 and 965-class hardware.
 *
 * The CPU also sometimes XORs in higher bits as well, to improve
 * bandwidth doing strided access like we do so frequently in graphics.  This
 * is called "Channel XOR Randomization" in the MCH documentation.  The result
 * is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address
 * decode.
 *
 * All of this bit 6 XORing has an effect on our memory management,
 * as we need to make sure that the 3d driver can correctly address object
 * contents.
 *
 * If we don't have interleaved memory, all tiling is safe and no swizzling is
 * required.
 *
 * When bit 17 is XORed in, we simply refuse to tile at all.  Bit
 * 17 is not just a page offset, so as we page an objet out and back in,
 * individual pages in it will have different bit 17 addresses, resulting in
 * each 64 bytes being swapped with its neighbor!
 *
 * Otherwise, if interleaved, we have to tell the 3d driver what the address
 * swizzling it needs to do is, since it's writing with the CPU to the pages
 * (bit 6 and potentially bit 11 XORed in), and the GPU is reading from the
 * pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling
 * required by the CPU of XORing in bit 6, 9, 10, and potentially 11, in order
 * to match what the GPU expects.
 */

/**
 * Detects bit 6 swizzling of address lookup between IGD access and CPU
 * access through main memory.
 */
void
i915_gem_detect_bit_6_swizzle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
	uint32_t swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;

95
	if (IS_GEN5(dev) || IS_GEN6(dev)) {
96
		/* On Ironlake whatever DRAM config, GPU always do
Z
Zhenyu Wang 已提交
97 98 99 100
		 * same swizzling setup.
		 */
		swizzle_x = I915_BIT_6_SWIZZLE_9_10;
		swizzle_y = I915_BIT_6_SWIZZLE_9;
101
	} else if (IS_GEN2(dev)) {
102 103 104 105 106
		/* As far as we know, the 865 doesn't have these bit 6
		 * swizzling issues.
		 */
		swizzle_x = I915_BIT_6_SWIZZLE_NONE;
		swizzle_y = I915_BIT_6_SWIZZLE_NONE;
107
	} else if (IS_MOBILE(dev)) {
108 109
		uint32_t dcc;

110 111 112 113 114 115 116
		/* On mobile 9xx chipsets, channel interleave by the CPU is
		 * determined by DCC.  For single-channel, neither the CPU
		 * nor the GPU do swizzling.  For dual channel interleaved,
		 * the GPU's interleave is bit 9 and 10 for X tiled, and bit
		 * 9 for Y tiled.  The CPU's interleave is independent, and
		 * can be based on either bit 11 (haven't seen this yet) or
		 * bit 17 (common).
117 118 119 120 121 122 123 124 125
		 */
		dcc = I915_READ(DCC);
		switch (dcc & DCC_ADDRESSING_MODE_MASK) {
		case DCC_ADDRESSING_MODE_SINGLE_CHANNEL:
		case DCC_ADDRESSING_MODE_DUAL_CHANNEL_ASYMMETRIC:
			swizzle_x = I915_BIT_6_SWIZZLE_NONE;
			swizzle_y = I915_BIT_6_SWIZZLE_NONE;
			break;
		case DCC_ADDRESSING_MODE_DUAL_CHANNEL_INTERLEAVED:
126 127 128 129
			if (dcc & DCC_CHANNEL_XOR_DISABLE) {
				/* This is the base swizzling by the GPU for
				 * tiled buffers.
				 */
130 131
				swizzle_x = I915_BIT_6_SWIZZLE_9_10;
				swizzle_y = I915_BIT_6_SWIZZLE_9;
132 133
			} else if ((dcc & DCC_CHANNEL_XOR_BIT_17) == 0) {
				/* Bit 11 swizzling by the CPU in addition. */
134 135 136
				swizzle_x = I915_BIT_6_SWIZZLE_9_10_11;
				swizzle_y = I915_BIT_6_SWIZZLE_9_11;
			} else {
137
				/* Bit 17 swizzling by the CPU in addition. */
138 139
				swizzle_x = I915_BIT_6_SWIZZLE_9_10_17;
				swizzle_y = I915_BIT_6_SWIZZLE_9_17;
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
			}
			break;
		}
		if (dcc == 0xffffffff) {
			DRM_ERROR("Couldn't read from MCHBAR.  "
				  "Disabling tiling.\n");
			swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
			swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
		}
	} else {
		/* The 965, G33, and newer, have a very flexible memory
		 * configuration.  It will enable dual-channel mode
		 * (interleaving) on as much memory as it can, and the GPU
		 * will additionally sometimes enable different bit 6
		 * swizzling for tiled objects from the CPU.
		 *
		 * Here's what I found on the G965:
		 *    slot fill         memory size  swizzling
		 * 0A   0B   1A   1B    1-ch   2-ch
		 * 512  0    0    0     512    0     O
		 * 512  0    512  0     16     1008  X
		 * 512  0    0    512   16     1008  X
		 * 0    512  0    512   16     1008  X
		 * 1024 1024 1024 0     2048   1024  O
		 *
		 * We could probably detect this based on either the DRB
		 * matching, which was the case for the swizzling required in
		 * the table above, or from the 1-ch value being less than
		 * the minimum size of a rank.
		 */
		if (I915_READ16(C0DRB3) != I915_READ16(C1DRB3)) {
			swizzle_x = I915_BIT_6_SWIZZLE_NONE;
			swizzle_y = I915_BIT_6_SWIZZLE_NONE;
		} else {
			swizzle_x = I915_BIT_6_SWIZZLE_9_10;
			swizzle_y = I915_BIT_6_SWIZZLE_9;
		}
	}

	dev_priv->mm.bit_6_swizzle_x = swizzle_x;
	dev_priv->mm.bit_6_swizzle_y = swizzle_y;
}

183
/* Check pitch constriants for all chips & tiling formats */
184
static bool
185 186
i915_tiling_ok(struct drm_device *dev, int stride, int size, int tiling_mode)
{
187
	int tile_width, tile_height;
188 189 190 191 192

	/* Linear is always fine */
	if (tiling_mode == I915_TILING_NONE)
		return true;

193
	if (IS_GEN2(dev) ||
194
	    (tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
195 196 197 198
		tile_width = 128;
	else
		tile_width = 512;

199
	/* check maximum stride & object size */
200
	if (INTEL_INFO(dev)->gen >= 4) {
201 202 203 204
		/* i965 stores the end address of the gtt mapping in the fence
		 * reg, so dont bother to check the size */
		if (stride / 128 > I965_FENCE_MAX_PITCH_VAL)
			return false;
205
	} else {
206
		if (stride > 8192)
207
			return false;
208

209 210 211 212 213 214 215
		if (IS_GEN3(dev)) {
			if (size > I830_FENCE_MAX_SIZE_VAL << 20)
				return false;
		} else {
			if (size > I830_FENCE_MAX_SIZE_VAL << 19)
				return false;
		}
216 217
	}

218 219 220 221 222 223 224 225 226 227 228 229 230 231
	if (IS_GEN2(dev) ||
	    (tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
		tile_height = 32;
	else
		tile_height = 8;
	/* i8xx is strange: It has 2 interleaved rows of tiles, so needs an even
	 * number of tile rows. */
	if (IS_GEN2(dev))
		tile_height *= 2;

	/* Size needs to be aligned to a full tile row */
	if (size & (tile_height * stride - 1))
		return false;

232
	/* 965+ just needs multiples of tile width */
233
	if (INTEL_INFO(dev)->gen >= 4) {
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
		if (stride & (tile_width - 1))
			return false;
		return true;
	}

	/* Pre-965 needs power of two tile widths */
	if (stride < tile_width)
		return false;

	if (stride & (stride - 1))
		return false;

	return true;
}

249 250
/* Is the current GTT allocation valid for the change in tiling? */
static bool
251
i915_gem_object_fence_ok(struct drm_i915_gem_object *obj, int tiling_mode)
252
{
253
	u32 size;
254 255 256 257

	if (tiling_mode == I915_TILING_NONE)
		return true;

258
	if (INTEL_INFO(obj->base.dev)->gen >= 4)
259 260
		return true;

261 262
	if (INTEL_INFO(obj->base.dev)->gen == 3) {
		if (obj->gtt_offset & ~I915_FENCE_START_MASK)
263 264
			return false;
	} else {
265
		if (obj->gtt_offset & ~I830_FENCE_START_MASK)
266 267 268
			return false;
	}

269 270 271 272
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
273
	if (INTEL_INFO(obj->base.dev)->gen == 3)
274 275 276 277
		size = 1024*1024;
	else
		size = 512*1024;

278
	while (size < obj->base.size)
279 280
		size <<= 1;

281
	if (obj->gtt_space->size != size)
282 283
		return false;

284
	if (obj->gtt_offset & (size - 1))
285
		return false;
286 287 288 289

	return true;
}

290 291 292 293 294 295
/**
 * Sets the tiling mode of an object, returning the required swizzling of
 * bit 6 of addresses in the object.
 */
int
i915_gem_set_tiling(struct drm_device *dev, void *data,
296
		   struct drm_file *file)
297 298 299
{
	struct drm_i915_gem_set_tiling *args = data;
	drm_i915_private_t *dev_priv = dev->dev_private;
300
	struct drm_i915_gem_object *obj;
301

302
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
303
	if (&obj->base == NULL)
304
		return -ENOENT;
305

306 307 308
	if (!i915_tiling_ok(dev,
			    args->stride, obj->base.size, args->tiling_mode)) {
		drm_gem_object_unreference_unlocked(&obj->base);
309
		return -EINVAL;
310
	}
311

312 313
	if (obj->pin_count) {
		drm_gem_object_unreference_unlocked(&obj->base);
314 315 316
		return -EBUSY;
	}

317 318
	if (args->tiling_mode == I915_TILING_NONE) {
		args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
319
		args->stride = 0;
320 321 322 323 324
	} else {
		if (args->tiling_mode == I915_TILING_X)
			args->swizzle_mode = dev_priv->mm.bit_6_swizzle_x;
		else
			args->swizzle_mode = dev_priv->mm.bit_6_swizzle_y;
325 326 327 328 329 330 331 332 333 334 335 336 337

		/* Hide bit 17 swizzling from the user.  This prevents old Mesa
		 * from aborting the application on sw fallbacks to bit 17,
		 * and we use the pread/pwrite bit17 paths to swizzle for it.
		 * If there was a user that was relying on the swizzle
		 * information for drm_intel_bo_map()ed reads/writes this would
		 * break it, but we don't have any of those.
		 */
		if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_17)
			args->swizzle_mode = I915_BIT_6_SWIZZLE_9;
		if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_10_17)
			args->swizzle_mode = I915_BIT_6_SWIZZLE_9_10;

338 339 340 341
		/* If we can't handle the swizzling, make it untiled. */
		if (args->swizzle_mode == I915_BIT_6_SWIZZLE_UNKNOWN) {
			args->tiling_mode = I915_TILING_NONE;
			args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
342
			args->stride = 0;
343 344
		}
	}
345

346
	mutex_lock(&dev->struct_mutex);
347 348
	if (args->tiling_mode != obj->tiling_mode ||
	    args->stride != obj->stride) {
349 350 351 352
		/* We need to rebind the object if its current allocation
		 * no longer meets the alignment restrictions for its new
		 * tiling mode. Otherwise we can just leave it alone, but
		 * need to ensure that any fence register is cleared.
353
		 */
354
		i915_gem_release_mmap(obj);
355

356 357 358 359
		obj->map_and_fenceable =
			obj->gtt_space == NULL ||
			(obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end &&
			 i915_gem_object_fence_ok(obj, args->tiling_mode));
360

361
		obj->tiling_changed = true;
362 363
		obj->tiling_mode = args->tiling_mode;
		obj->stride = args->stride;
364
	}
365
	drm_gem_object_unreference(&obj->base);
366
	mutex_unlock(&dev->struct_mutex);
367

368
	return 0;
369 370 371 372 373 374 375
}

/**
 * Returns the current tiling mode and required bit 6 swizzling for the object.
 */
int
i915_gem_get_tiling(struct drm_device *dev, void *data,
376
		   struct drm_file *file)
377 378 379
{
	struct drm_i915_gem_get_tiling *args = data;
	drm_i915_private_t *dev_priv = dev->dev_private;
380
	struct drm_i915_gem_object *obj;
381

382
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
383
	if (&obj->base == NULL)
384
		return -ENOENT;
385 386 387

	mutex_lock(&dev->struct_mutex);

388 389
	args->tiling_mode = obj->tiling_mode;
	switch (obj->tiling_mode) {
390 391 392 393 394 395 396 397 398 399 400 401 402
	case I915_TILING_X:
		args->swizzle_mode = dev_priv->mm.bit_6_swizzle_x;
		break;
	case I915_TILING_Y:
		args->swizzle_mode = dev_priv->mm.bit_6_swizzle_y;
		break;
	case I915_TILING_NONE:
		args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
		break;
	default:
		DRM_ERROR("unknown tiling mode\n");
	}

403 404 405 406 407 408
	/* Hide bit 17 from the user -- see comment in i915_gem_set_tiling */
	if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_17)
		args->swizzle_mode = I915_BIT_6_SWIZZLE_9;
	if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_10_17)
		args->swizzle_mode = I915_BIT_6_SWIZZLE_9_10;

409
	drm_gem_object_unreference(&obj->base);
410
	mutex_unlock(&dev->struct_mutex);
411 412 413

	return 0;
}
414 415 416 417 418 419

/**
 * Swap every 64 bytes of this page around, to account for it having a new
 * bit 17 of its physical address and therefore being interpreted differently
 * by the GPU.
 */
420
static void
421 422
i915_gem_swizzle_page(struct page *page)
{
423
	char temp[64];
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
	char *vaddr;
	int i;

	vaddr = kmap(page);

	for (i = 0; i < PAGE_SIZE; i += 128) {
		memcpy(temp, &vaddr[i], 64);
		memcpy(&vaddr[i], &vaddr[i + 64], 64);
		memcpy(&vaddr[i + 64], temp, 64);
	}

	kunmap(page);
}

void
439
i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj)
440
{
441
	struct drm_device *dev = obj->base.dev;
442
	drm_i915_private_t *dev_priv = dev->dev_private;
443
	int page_count = obj->base.size >> PAGE_SHIFT;
444 445 446 447 448
	int i;

	if (dev_priv->mm.bit_6_swizzle_x != I915_BIT_6_SWIZZLE_9_10_17)
		return;

449
	if (obj->bit_17 == NULL)
450 451 452
		return;

	for (i = 0; i < page_count; i++) {
453
		char new_bit_17 = page_to_phys(obj->pages[i]) >> 17;
454
		if ((new_bit_17 & 0x1) !=
455 456 457
		    (test_bit(i, obj->bit_17) != 0)) {
			i915_gem_swizzle_page(obj->pages[i]);
			set_page_dirty(obj->pages[i]);
458 459 460 461 462
		}
	}
}

void
463
i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj)
464
{
465
	struct drm_device *dev = obj->base.dev;
466
	drm_i915_private_t *dev_priv = dev->dev_private;
467
	int page_count = obj->base.size >> PAGE_SHIFT;
468 469 470 471 472
	int i;

	if (dev_priv->mm.bit_6_swizzle_x != I915_BIT_6_SWIZZLE_9_10_17)
		return;

473 474
	if (obj->bit_17 == NULL) {
		obj->bit_17 = kmalloc(BITS_TO_LONGS(page_count) *
475
					   sizeof(long), GFP_KERNEL);
476
		if (obj->bit_17 == NULL) {
477 478 479 480 481 482 483
			DRM_ERROR("Failed to allocate memory for bit 17 "
				  "record\n");
			return;
		}
	}

	for (i = 0; i < page_count; i++) {
484 485
		if (page_to_phys(obj->pages[i]) & (1 << 17))
			__set_bit(i, obj->bit_17);
486
		else
487
			__clear_bit(i, obj->bit_17);
488 489
	}
}