sonixb.c 34.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
/*
 *		sonix sn9c102 (bayer) library
 *		Copyright (C) 2003 2004 Michel Xhaard mxhaard@magic.fr
 * Add Pas106 Stefano Mozzi (C) 2004
 *
 * V4L2 by Jean-Francois Moine <http://moinejf.free.fr>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 */

#define MODULE_NAME "sonixb"

#include "gspca.h"

MODULE_AUTHOR("Michel Xhaard <mxhaard@users.sourceforge.net>");
MODULE_DESCRIPTION("GSPCA/SN9C102 USB Camera Driver");
MODULE_LICENSE("GPL");

/* specific webcam descriptor */
struct sd {
	struct gspca_dev gspca_dev;	/* !! must be the first item */

35 36 37 38
	struct sd_desc sd_desc;		/* our nctrls differ dependend upon the
					   sensor, so we use a per cam copy */
	atomic_t avg_lum;

39 40
	unsigned char gain;
	unsigned char exposure;
41
	unsigned char brightness;
42 43
	unsigned char autogain;
	unsigned char autogain_ignore_frames;
44
	unsigned char frames_to_drop;
45
	unsigned char freq;		/* light freq filter setting */
46

47
	unsigned char fr_h_sz;		/* size of frame header */
48 49 50 51
	char sensor;			/* Type of image sensor chip */
#define SENSOR_HV7131R 0
#define SENSOR_OV6650 1
#define SENSOR_OV7630 2
52 53 54 55
#define SENSOR_PAS106 3
#define SENSOR_PAS202 4
#define SENSOR_TAS5110 5
#define SENSOR_TAS5130CXX 6
56 57
	char sensor_has_gain;
	__u8 sensor_addr;
58
	__u8 reg11;
59 60
};

61 62 63 64 65 66
/* flags used in the device id table */
#define F_GAIN 0x01		/* has gain */
#define F_AUTO 0x02		/* has autogain */
#define F_SIF  0x04		/* sif or vga */
#define F_H18  0x08		/* long (18 b) or short (12 b) frame header */

67 68 69 70 71 72 73 74 75
#define COMP2 0x8f
#define COMP 0xc7		/* 0x87 //0x07 */
#define COMP1 0xc9		/* 0x89 //0x09 */

#define MCK_INIT 0x63
#define MCK_INIT1 0x20		/*fixme: Bayer - 0x50 for JPEG ??*/

#define SYS_CLK 0x04

76 77 78 79 80 81
/* We calculate the autogain at the end of the transfer of a frame, at this
   moment a frame with the old settings is being transmitted, and a frame is
   being captured with the old settings. So if we adjust the autogain we must
   ignore atleast the 2 next frames for the new settings to come into effect
   before doing any other adjustments */
#define AUTOGAIN_IGNORE_FRAMES 3
82
#define AUTOGAIN_DEADZONE 1000
83 84
#define DESIRED_AVG_LUM 7000

85 86 87
/* V4L2 controls supported by the driver */
static int sd_setbrightness(struct gspca_dev *gspca_dev, __s32 val);
static int sd_getbrightness(struct gspca_dev *gspca_dev, __s32 *val);
88 89 90 91 92 93
static int sd_setgain(struct gspca_dev *gspca_dev, __s32 val);
static int sd_getgain(struct gspca_dev *gspca_dev, __s32 *val);
static int sd_setexposure(struct gspca_dev *gspca_dev, __s32 val);
static int sd_getexposure(struct gspca_dev *gspca_dev, __s32 *val);
static int sd_setautogain(struct gspca_dev *gspca_dev, __s32 val);
static int sd_getautogain(struct gspca_dev *gspca_dev, __s32 *val);
94 95
static int sd_setfreq(struct gspca_dev *gspca_dev, __s32 val);
static int sd_getfreq(struct gspca_dev *gspca_dev, __s32 *val);
96 97 98 99 100 101 102 103 104 105

static struct ctrl sd_ctrls[] = {
	{
	    {
		.id      = V4L2_CID_BRIGHTNESS,
		.type    = V4L2_CTRL_TYPE_INTEGER,
		.name    = "Brightness",
		.minimum = 0,
		.maximum = 255,
		.step    = 1,
106 107
#define BRIGHTNESS_DEF 127
		.default_value = BRIGHTNESS_DEF,
108 109 110 111 112 113
	    },
	    .set = sd_setbrightness,
	    .get = sd_getbrightness,
	},
	{
	    {
114
		.id      = V4L2_CID_GAIN,
115
		.type    = V4L2_CTRL_TYPE_INTEGER,
116
		.name    = "Gain",
117
		.minimum = 0,
118
		.maximum = 255,
119
		.step    = 1,
120 121
#define GAIN_DEF 127
#define GAIN_KNEE 200
122
		.default_value = GAIN_DEF,
123
	    },
124 125 126 127 128 129 130 131
	    .set = sd_setgain,
	    .get = sd_getgain,
	},
	{
		{
			.id = V4L2_CID_EXPOSURE,
			.type = V4L2_CTRL_TYPE_INTEGER,
			.name = "Exposure",
132 133
#define EXPOSURE_DEF  16 /*  32 ms / 30 fps */
#define EXPOSURE_KNEE 50 /* 100 ms / 10 fps */
134
			.minimum = 0,
135
			.maximum = 255,
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
			.step = 1,
			.default_value = EXPOSURE_DEF,
			.flags = 0,
		},
		.set = sd_setexposure,
		.get = sd_getexposure,
	},
	{
		{
			.id = V4L2_CID_AUTOGAIN,
			.type = V4L2_CTRL_TYPE_BOOLEAN,
			.name = "Automatic Gain (and Exposure)",
			.minimum = 0,
			.maximum = 1,
			.step = 1,
151 152
#define AUTOGAIN_DEF 1
			.default_value = AUTOGAIN_DEF,
153 154 155 156
			.flags = 0,
		},
		.set = sd_setautogain,
		.get = sd_getautogain,
157
	},
158 159 160 161 162 163 164 165 166 167 168 169 170 171
	{
		{
			.id	 = V4L2_CID_POWER_LINE_FREQUENCY,
			.type    = V4L2_CTRL_TYPE_MENU,
			.name    = "Light frequency filter",
			.minimum = 0,
			.maximum = 2,	/* 0: 0, 1: 50Hz, 2:60Hz */
			.step    = 1,
#define FREQ_DEF 1
			.default_value = FREQ_DEF,
		},
		.set = sd_setfreq,
		.get = sd_getfreq,
	},
172 173
};

174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
static struct v4l2_pix_format vga_mode[] = {
	{160, 120, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
		.bytesperline = 160,
		.sizeimage = 160 * 120,
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 2},
	{320, 240, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
		.bytesperline = 320,
		.sizeimage = 320 * 240,
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 1},
	{640, 480, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
		.bytesperline = 640,
		.sizeimage = 640 * 480,
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 0},
190
};
191 192 193 194 195 196 197 198 199 200 201
static struct v4l2_pix_format sif_mode[] = {
	{176, 144, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
		.bytesperline = 176,
		.sizeimage = 176 * 144,
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 1},
	{352, 288, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
		.bytesperline = 352,
		.sizeimage = 352 * 288,
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 0},
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
};

static const __u8 initHv7131[] = {
	0x46, 0x77, 0x00, 0x04, 0x00, 0x00, 0x00, 0x80, 0x11, 0x00, 0x00, 0x00,
	0x00, 0x00,
	0x00, 0x00, 0x00, 0x03, 0x01, 0x00,	/* shift from 0x02 0x01 0x00 */
	0x28, 0x1e, 0x60, 0x8a, 0x20,
	0x1d, 0x10, 0x02, 0x03, 0x0f, 0x0c
};
static const __u8 hv7131_sensor_init[][8] = {
	{0xc0, 0x11, 0x31, 0x38, 0x2a, 0x2e, 0x00, 0x10},
	{0xa0, 0x11, 0x01, 0x08, 0x2a, 0x2e, 0x00, 0x10},
	{0xb0, 0x11, 0x20, 0x00, 0xd0, 0x2e, 0x00, 0x10},
	{0xc0, 0x11, 0x25, 0x03, 0x0e, 0x28, 0x00, 0x16},
	{0xa0, 0x11, 0x30, 0x10, 0x0e, 0x28, 0x00, 0x15},
};
static const __u8 initOv6650[] = {
	0x44, 0x44, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80,
	0x60, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
	0x00, 0x02, 0x01, 0x0a, 0x16, 0x12, 0x68, 0x0b,
	0x10, 0x1d, 0x10, 0x00, 0x06, 0x1f, 0x00
};
static const __u8 ov6650_sensor_init[][8] =
{
	/* Bright, contrast, etc are set througth SCBB interface.
	 * AVCAP on win2 do not send any data on this 	controls. */
	/* Anyway, some registers appears to alter bright and constrat */
229 230

	/* Reset sensor */
231
	{0xa0, 0x60, 0x12, 0x80, 0x00, 0x00, 0x00, 0x10},
232
	/* Set clock register 0x11 low nibble is clock divider */
233
	{0xd0, 0x60, 0x11, 0xc0, 0x1b, 0x18, 0xc1, 0x10},
234
	/* Next some unknown stuff */
235 236 237 238 239 240 241 242
	{0xb0, 0x60, 0x15, 0x00, 0x02, 0x18, 0xc1, 0x10},
/*	{0xa0, 0x60, 0x1b, 0x01, 0x02, 0x18, 0xc1, 0x10},
		 * THIS SET GREEN SCREEN
		 * (pixels could be innverted in decode kind of "brg",
		 * but blue wont be there. Avoid this data ... */
	{0xd0, 0x60, 0x26, 0x01, 0x14, 0xd8, 0xa4, 0x10}, /* format out? */
	{0xd0, 0x60, 0x26, 0x01, 0x14, 0xd8, 0xa4, 0x10},
	{0xa0, 0x60, 0x30, 0x3d, 0x0A, 0xd8, 0xa4, 0x10},
243 244 245 246 247 248 249 250 251
	/* Enable rgb brightness control */
	{0xa0, 0x60, 0x61, 0x08, 0x00, 0x00, 0x00, 0x10},
	/* HDG: Note windows uses the line below, which sets both register 0x60
	   and 0x61 I believe these registers of the ov6650 are identical as
	   those of the ov7630, because if this is true the windows settings
	   add a bit additional red gain and a lot additional blue gain, which
	   matches my findings that the windows settings make blue much too
	   blue and red a little too red.
	{0xb0, 0x60, 0x60, 0x66, 0x68, 0xd8, 0xa4, 0x10}, */
252
	/* Some more unknown stuff */
253 254 255
	{0xa0, 0x60, 0x68, 0x04, 0x68, 0xd8, 0xa4, 0x10},
	{0xd0, 0x60, 0x17, 0x24, 0xd6, 0x04, 0x94, 0x10}, /* Clipreg */
};
256

257 258 259 260 261 262 263 264 265 266 267
static const __u8 initOv7630[] = {
	0x04, 0x44, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80,	/* r01 .. r08 */
	0x21, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,	/* r09 .. r10 */
	0x00, 0x02, 0x01, 0x0a,				/* r11 .. r14 */
	0x28, 0x1e,			/* H & V sizes     r15 .. r16 */
	0x68, COMP1, MCK_INIT1,				/* r17 .. r19 */
	0x1d, 0x10, 0x02, 0x03, 0x0f, 0x0c		/* r1a .. r1f */
};
static const __u8 initOv7630_3[] = {
	0x44, 0x44, 0x00, 0x1a, 0x20, 0x20, 0x20, 0x80,	/* r01 .. r08 */
	0x21, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04,	/* r09 .. r10 */
268
	0x00, 0x01, 0x01, 0x0a,				/* r11 .. r14 */
269
	0x28, 0x1e,			/* H & V sizes     r15 .. r16 */
270 271 272 273
	0x68, 0x8f, MCK_INIT1,				/* r17 .. r19 */
	0x1d, 0x10, 0x02, 0x03, 0x0f, 0x0c, 0x00,	/* r1a .. r20 */
	0x10, 0x20, 0x30, 0x40, 0x50, 0x60, 0x70, 0x80, /* r21 .. r28 */
	0x90, 0xa0, 0xb0, 0xc0, 0xd0, 0xe0, 0xf0, 0xff  /* r29 .. r30 */
274
};
275
static const __u8 ov7630_sensor_init[][8] = {
276 277 278
	{0xa0, 0x21, 0x12, 0x80, 0x00, 0x00, 0x00, 0x10},
	{0xb0, 0x21, 0x01, 0x77, 0x3a, 0x00, 0x00, 0x10},
/*	{0xd0, 0x21, 0x12, 0x7c, 0x01, 0x80, 0x34, 0x10},	   jfm */
279
	{0xd0, 0x21, 0x12, 0x1c, 0x00, 0x80, 0x34, 0x10},	/* jfm */
280 281 282 283 284 285 286
	{0xa0, 0x21, 0x1b, 0x04, 0x00, 0x80, 0x34, 0x10},
	{0xa0, 0x21, 0x20, 0x44, 0x00, 0x80, 0x34, 0x10},
	{0xa0, 0x21, 0x23, 0xee, 0x00, 0x80, 0x34, 0x10},
	{0xd0, 0x21, 0x26, 0xa0, 0x9a, 0xa0, 0x30, 0x10},
	{0xb0, 0x21, 0x2a, 0x80, 0x00, 0xa0, 0x30, 0x10},
	{0xb0, 0x21, 0x2f, 0x3d, 0x24, 0xa0, 0x30, 0x10},
	{0xa0, 0x21, 0x32, 0x86, 0x24, 0xa0, 0x30, 0x10},
287 288
	{0xb0, 0x21, 0x60, 0xa9, 0x4a, 0xa0, 0x30, 0x10},
/*	{0xb0, 0x21, 0x60, 0xa9, 0x42, 0xa0, 0x30, 0x10},	 * jfm */
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
	{0xa0, 0x21, 0x65, 0x00, 0x42, 0xa0, 0x30, 0x10},
	{0xa0, 0x21, 0x69, 0x38, 0x42, 0xa0, 0x30, 0x10},
	{0xc0, 0x21, 0x6f, 0x88, 0x0b, 0x00, 0x30, 0x10},
	{0xc0, 0x21, 0x74, 0x21, 0x8e, 0x00, 0x30, 0x10},
	{0xa0, 0x21, 0x7d, 0xf7, 0x8e, 0x00, 0x30, 0x10},
	{0xd0, 0x21, 0x17, 0x1c, 0xbd, 0x06, 0xf6, 0x10},
};

static const __u8 initPas106[] = {
	0x04, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x81, 0x40, 0x00, 0x00, 0x00,
	0x00, 0x00,
	0x00, 0x00, 0x00, 0x05, 0x01, 0x00,
	0x16, 0x12, 0x28, COMP1, MCK_INIT1,
	0x18, 0x10, 0x04, 0x03, 0x11, 0x0c
};
/* compression 0x86 mckinit1 0x2b */
static const __u8 pas106_data[][2] = {
	{0x02, 0x04},		/* Pixel Clock Divider 6 */
	{0x03, 0x13},		/* Frame Time MSB */
/*	{0x03, 0x12},		 * Frame Time MSB */
	{0x04, 0x06},		/* Frame Time LSB */
/*	{0x04, 0x05},		 * Frame Time LSB */
	{0x05, 0x65},		/* Shutter Time Line Offset */
/*	{0x05, 0x6d},		 * Shutter Time Line Offset */
/*	{0x06, 0xb1},		 * Shutter Time Pixel Offset */
	{0x06, 0xcd},		/* Shutter Time Pixel Offset */
	{0x07, 0xc1},		/* Black Level Subtract Sign */
/*	{0x07, 0x00},		 * Black Level Subtract Sign */
	{0x08, 0x06},		/* Black Level Subtract Level */
	{0x08, 0x06},		/* Black Level Subtract Level */
/*	{0x08, 0x01},		 * Black Level Subtract Level */
	{0x09, 0x05},		/* Color Gain B Pixel 5 a */
	{0x0a, 0x04},		/* Color Gain G1 Pixel 1 5 */
	{0x0b, 0x04},		/* Color Gain G2 Pixel 1 0 5 */
	{0x0c, 0x05},		/* Color Gain R Pixel 3 1 */
	{0x0d, 0x00},		/* Color GainH  Pixel */
	{0x0e, 0x0e},		/* Global Gain */
	{0x0f, 0x00},		/* Contrast */
	{0x10, 0x06},		/* H&V synchro polarity */
	{0x11, 0x06},		/* ?default */
	{0x12, 0x06},		/* DAC scale */
	{0x14, 0x02},		/* ?default */
	{0x13, 0x01},		/* Validate Settings */
};
static const __u8 initPas202[] = {
	0x44, 0x44, 0x21, 0x30, 0x00, 0x00, 0x00, 0x80, 0x40, 0x00, 0x00, 0x00,
	0x00, 0x00,
	0x00, 0x00, 0x00, 0x07, 0x03, 0x0a,	/* 6 */
	0x28, 0x1e, 0x28, 0x89, 0x30,
	0x00, 0x00, 0x02, 0x03, 0x0f, 0x0c
};
static const __u8 pas202_sensor_init[][8] = {
	{0xa0, 0x40, 0x02, 0x03, 0x00, 0x00, 0x00, 0x10},
	{0xd0, 0x40, 0x04, 0x07, 0x34, 0x00, 0x09, 0x10},
	{0xd0, 0x40, 0x08, 0x01, 0x00, 0x00, 0x01, 0x10},
	{0xd0, 0x40, 0x0C, 0x00, 0x0C, 0x00, 0x32, 0x10},
	{0xd0, 0x40, 0x10, 0x00, 0x01, 0x00, 0x63, 0x10},
	{0xa0, 0x40, 0x15, 0x70, 0x01, 0x00, 0x63, 0x10},
	{0xa0, 0x40, 0x18, 0x00, 0x01, 0x00, 0x63, 0x10},
	{0xa0, 0x40, 0x11, 0x01, 0x01, 0x00, 0x63, 0x10},
	{0xa0, 0x40, 0x03, 0x56, 0x01, 0x00, 0x63, 0x10},
	{0xa0, 0x40, 0x11, 0x01, 0x01, 0x00, 0x63, 0x10},
	{0xb0, 0x40, 0x04, 0x07, 0x2a, 0x00, 0x63, 0x10},
	{0xb0, 0x40, 0x0e, 0x00, 0x3d, 0x00, 0x63, 0x10},

	{0xa0, 0x40, 0x11, 0x01, 0x3d, 0x00, 0x63, 0x16},
	{0xa0, 0x40, 0x10, 0x08, 0x3d, 0x00, 0x63, 0x15},
	{0xa0, 0x40, 0x02, 0x04, 0x3d, 0x00, 0x63, 0x16},
	{0xa0, 0x40, 0x11, 0x01, 0x3d, 0x00, 0x63, 0x16},
	{0xb0, 0x40, 0x0e, 0x00, 0x31, 0x00, 0x63, 0x16},
	{0xa0, 0x40, 0x11, 0x01, 0x31, 0x00, 0x63, 0x16},
	{0xa0, 0x40, 0x10, 0x0e, 0x31, 0x00, 0x63, 0x15},
	{0xa0, 0x40, 0x11, 0x01, 0x31, 0x00, 0x63, 0x16},
};

static const __u8 initTas5110[] = {
	0x44, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x11, 0x00, 0x00, 0x00,
	0x00, 0x00,
	0x00, 0x01, 0x00, 0x46, 0x09, 0x0a,	/* shift from 0x45 0x09 0x0a */
	0x16, 0x12, 0x60, 0x86, 0x2b,
	0x14, 0x0a, 0x02, 0x02, 0x09, 0x07
};
static const __u8 tas5110_sensor_init[][8] = {
	{0x30, 0x11, 0x00, 0x00, 0x0c, 0x00, 0x00, 0x10},
	{0x30, 0x11, 0x02, 0x20, 0xa9, 0x00, 0x00, 0x10},
	{0xa0, 0x61, 0x9a, 0xca, 0x00, 0x00, 0x00, 0x17},
};

static const __u8 initTas5130[] = {
	0x04, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x11, 0x00, 0x00, 0x00,
	0x00, 0x00,
	0x00, 0x01, 0x00, 0x69, 0x0c, 0x0a,
	0x28, 0x1e, 0x60, COMP, MCK_INIT,
	0x18, 0x10, 0x04, 0x03, 0x11, 0x0c
};
static const __u8 tas5130_sensor_init[][8] = {
/* 	{0x30, 0x11, 0x00, 0x40, 0x47, 0x00, 0x00, 0x10},
					* shutter 0x47 short exposure? */
	{0x30, 0x11, 0x00, 0x40, 0x01, 0x00, 0x00, 0x10},
					/* shutter 0x01 long exposure */
	{0x30, 0x11, 0x02, 0x20, 0x70, 0x00, 0x00, 0x10},
};

392 393 394
/* get one byte in gspca_dev->usb_buf */
static void reg_r(struct gspca_dev *gspca_dev,
		  __u16 value)
395
{
396 397
	usb_control_msg(gspca_dev->dev,
			usb_rcvctrlpipe(gspca_dev->dev, 0),
398 399 400 401
			0,			/* request */
			USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
			value,
			0,			/* index */
402
			gspca_dev->usb_buf, 1,
403 404 405
			500);
}

406 407 408 409
static void reg_w(struct gspca_dev *gspca_dev,
		  __u16 value,
		  const __u8 *buffer,
		  int len)
410
{
411
#ifdef CONFIG_VIDEO_ADV_DEBUG
412
	if (len > sizeof gspca_dev->usb_buf) {
413 414 415 416
		PDEBUG(D_ERR|D_PACK, "reg_w: buffer overflow");
		return;
	}
#endif
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
	memcpy(gspca_dev->usb_buf, buffer, len);
	usb_control_msg(gspca_dev->dev,
			usb_sndctrlpipe(gspca_dev->dev, 0),
			0x08,			/* request */
			USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
			value,
			0,			/* index */
			gspca_dev->usb_buf, len,
			500);
}

static void reg_w_big(struct gspca_dev *gspca_dev,
		  __u16 value,
		  const __u8 *buffer,
		  int len)
{
	__u8 *tmpbuf;

	tmpbuf = kmalloc(len, GFP_KERNEL);
436
	memcpy(tmpbuf, buffer, len);
437 438
	usb_control_msg(gspca_dev->dev,
			usb_sndctrlpipe(gspca_dev->dev, 0),
439 440 441 442
			0x08,			/* request */
			USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
			value,
			0,			/* index */
443
			tmpbuf, len,
444
			500);
445
	kfree(tmpbuf);
446 447
}

448
static int i2c_w(struct gspca_dev *gspca_dev, const __u8 *buffer)
449 450 451 452
{
	int retry = 60;

	/* is i2c ready */
453
	reg_w(gspca_dev, 0x08, buffer, 8);
454 455
	while (retry--) {
		msleep(10);
456
		reg_r(gspca_dev, 0x08);
457 458 459
		if (gspca_dev->usb_buf[0] & 0x04) {
			if (gspca_dev->usb_buf[0] & 0x08)
				return -1;
460
			return 0;
461
		}
462 463 464 465
	}
	return -1;
}

466
static void i2c_w_vector(struct gspca_dev *gspca_dev,
467 468 469
			const __u8 buffer[][8], int len)
{
	for (;;) {
470
		reg_w(gspca_dev, 0x08, *buffer, 8);
471 472 473 474 475 476 477 478 479 480 481 482 483
		len -= 8;
		if (len <= 0)
			break;
		buffer++;
	}
}

static void setbrightness(struct gspca_dev *gspca_dev)
{
	struct sd *sd = (struct sd *) gspca_dev;
	__u8 value;

	switch (sd->sensor) {
484
	case  SENSOR_OV6650:
485 486
	case  SENSOR_OV7630: {
		__u8 i2cOV[] =
487
			{0xa0, 0x00, 0x06, 0x00, 0x00, 0x00, 0x00, 0x10};
488 489

		/* change reg 0x06 */
490
		i2cOV[1] = sd->sensor_addr;
491
		i2cOV[3] = sd->brightness;
492
		if (i2c_w(gspca_dev, i2cOV) < 0)
493 494 495 496 497 498 499 500 501
			goto err;
		break;
	    }
	case SENSOR_PAS106: {
		__u8 i2c1[] =
			{0xa1, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x14};

		i2c1[3] = sd->brightness >> 3;
		i2c1[2] = 0x0e;
502
		if (i2c_w(gspca_dev, i2c1) < 0)
503 504 505
			goto err;
		i2c1[3] = 0x01;
		i2c1[2] = 0x13;
506
		if (i2c_w(gspca_dev, i2c1) < 0)
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
			goto err;
		break;
	    }
	case SENSOR_PAS202: {
		/* __u8 i2cpexpo1[] =
			{0xb0, 0x40, 0x04, 0x07, 0x2a, 0x00, 0x63, 0x16}; */
		__u8 i2cpexpo[] =
			{0xb0, 0x40, 0x0e, 0x01, 0xab, 0x00, 0x63, 0x16};
		__u8 i2cp202[] =
			{0xa0, 0x40, 0x10, 0x0e, 0x31, 0x00, 0x63, 0x15};
		static __u8 i2cpdoit[] =
			{0xa0, 0x40, 0x11, 0x01, 0x31, 0x00, 0x63, 0x16};

		/* change reg 0x10 */
		i2cpexpo[4] = 0xff - sd->brightness;
522
/*		if(i2c_w(gspca_dev,i2cpexpo1) < 0)
523
			goto err; */
524
/*		if(i2c_w(gspca_dev,i2cpdoit) < 0)
525
			goto err; */
526
		if (i2c_w(gspca_dev, i2cpexpo) < 0)
527
			goto err;
528
		if (i2c_w(gspca_dev, i2cpdoit) < 0)
529 530
			goto err;
		i2cp202[3] = sd->brightness >> 3;
531
		if (i2c_w(gspca_dev, i2cp202) < 0)
532
			goto err;
533
		if (i2c_w(gspca_dev, i2cpdoit) < 0)
534 535 536
			goto err;
		break;
	    }
537
	case SENSOR_TAS5130CXX: {
538 539 540 541 542 543
		__u8 i2c[] =
			{0x30, 0x11, 0x02, 0x20, 0x70, 0x00, 0x00, 0x10};

		value = 0xff - sd->brightness;
		i2c[4] = value;
		PDEBUG(D_CONF, "brightness %d : %d", value, i2c[4]);
544
		if (i2c_w(gspca_dev, i2c) < 0)
545 546 547
			goto err;
		break;
	    }
548 549 550
	case SENSOR_TAS5110:
		/* FIXME figure out howto control brightness on TAS5110 */
		break;
551 552 553 554 555
	}
	return;
err:
	PDEBUG(D_ERR, "i2c error brightness");
}
556 557 558 559

static void setsensorgain(struct gspca_dev *gspca_dev)
{
	struct sd *sd = (struct sd *) gspca_dev;
560
	unsigned char gain = sd->gain;
561 562 563 564 565 566 567

	switch (sd->sensor) {

	case SENSOR_TAS5110: {
		__u8 i2c[] =
			{0x30, 0x11, 0x02, 0x20, 0x70, 0x00, 0x00, 0x10};

568
		i2c[4] = 255 - gain;
569
		if (i2c_w(gspca_dev, i2c) < 0)
570
			goto err;
571 572
		break;
	    }
573

574 575 576
	case SENSOR_OV6650:
		gain >>= 1;
		/* fall thru */
577
	case SENSOR_OV7630: {
578
		__u8 i2c[] = {0xa0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10};
579

580 581
		i2c[1] = sd->sensor_addr;
		i2c[3] = gain >> 2;
582 583 584 585
		if (i2c_w(gspca_dev, i2c) < 0)
			goto err;
		break;
	    }
586 587 588 589 590 591 592
	}
	return;
err:
	PDEBUG(D_ERR, "i2c error gain");
}

static void setgain(struct gspca_dev *gspca_dev)
593 594 595 596 597
{
	struct sd *sd = (struct sd *) gspca_dev;
	__u8 gain;
	__u8 rgb_value;

598
	gain = sd->gain >> 4;
599

600 601
	/* red and blue gain */
	rgb_value = gain << 4 | gain;
602
	reg_w(gspca_dev, 0x10, &rgb_value, 1);
603 604
	/* green gain */
	rgb_value = gain;
605
	reg_w(gspca_dev, 0x11, &rgb_value, 1);
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621

	if (sd->sensor_has_gain)
		setsensorgain(gspca_dev);
}

static void setexposure(struct gspca_dev *gspca_dev)
{
	struct sd *sd = (struct sd *) gspca_dev;

	switch (sd->sensor) {
	case SENSOR_TAS5110: {
		__u8 reg;

		/* register 19's high nibble contains the sn9c10x clock divider
		   The high nibble configures the no fps according to the
		   formula: 60 / high_nibble. With a maximum of 30 fps */
622 623 624 625
		reg = 120 * sd->exposure / 1000;
		if (reg < 2)
			reg = 2;
		else if (reg > 15)
626 627
			reg = 15;
		reg = (reg << 4) | 0x0b;
628
		reg_w(gspca_dev, 0x19, &reg, 1);
629 630
		break;
	    }
631
	case SENSOR_OV6650:
632
	case SENSOR_OV7630: {
633 634
		/* The ov6650 / ov7630 have 2 registers which both influence
		   exposure, register 11, whose low nibble sets the nr off fps
635 636 637 638 639 640 641 642 643 644 645 646
		   according to: fps = 30 / (low_nibble + 1)

		   The fps configures the maximum exposure setting, but it is
		   possible to use less exposure then what the fps maximum
		   allows by setting register 10. register 10 configures the
		   actual exposure as quotient of the full exposure, with 0
		   being no exposure at all (not very usefull) and reg10_max
		   being max exposure possible at that framerate.

		   The code maps our 0 - 510 ms exposure ctrl to these 2
		   registers, trying to keep fps as high as possible.
		*/
647 648 649
		__u8 i2c[] = {0xb0, 0x00, 0x10, 0x00, 0x00, 0x00, 0x00, 0x10};
		int reg10, reg11, reg10_max;

650 651 652 653 654
		/* ov6645 datasheet says reg10_max is 9a, but that uses
		   tline * 2 * reg10 as formula for calculating texpo, the
		   ov6650 probably uses the same formula as the 7730 which uses
		   tline * 4 * reg10, which explains why the reg10max we've
		   found experimentally for the ov6650 is exactly half that of
655
		   the ov6645. The ov7630 datasheet says the max is 0x41. */
656 657 658 659 660
		if (sd->sensor == SENSOR_OV6650) {
			reg10_max = 0x4d;
			i2c[4] = 0xc0; /* OV6650 needs non default vsync pol */
		} else
			reg10_max = 0x41;
661

662 663 664 665 666 667 668 669 670 671
		reg11 = (60 * sd->exposure + 999) / 1000;
		if (reg11 < 1)
			reg11 = 1;
		else if (reg11 > 16)
			reg11 = 16;

		/* frame exposure time in ms = 1000 * reg11 / 30    ->
		reg10 = sd->exposure * 2 * reg10_max / (1000 * reg11 / 30) */
		reg10 = (sd->exposure * 60 * reg10_max) / (1000 * reg11);

672 673 674 675 676 677
		/* Don't allow this to get below 10 when using autogain, the
		   steps become very large (relatively) when below 10 causing
		   the image to oscilate from much too dark, to much too bright
		   and back again. */
		if (sd->autogain && reg10 < 10)
			reg10 = 10;
678 679 680
		else if (reg10 > reg10_max)
			reg10 = reg10_max;

681 682 683 684 685
		/* In 640x480, if the reg11 has less than 3, the image is
		   unstable (not enough bandwidth). */
		if (gspca_dev->width == 640 && reg11 < 3)
			reg11 = 3;

686
		/* Write reg 10 and reg11 low nibble */
687
		i2c[1] = sd->sensor_addr;
688 689
		i2c[3] = reg10;
		i2c[4] |= reg11 - 1;
690 691 692 693 694 695 696 697

		/* If register 11 didn't change, don't change it */
		if (sd->reg11 == reg11 )
			i2c[0] = 0xa0;

		if (i2c_w(gspca_dev, i2c) == 0)
			sd->reg11 = reg11;
		else
698
			PDEBUG(D_ERR, "i2c error exposure");
699 700
		break;
	    }
701 702 703
	}
}

704 705 706 707 708
static void setfreq(struct gspca_dev *gspca_dev)
{
	struct sd *sd = (struct sd *) gspca_dev;

	switch (sd->sensor) {
709
	case SENSOR_OV6650:
710
	case SENSOR_OV7630: {
711
		/* Framerate adjust register for artificial light 50 hz flicker
712 713 714
		   compensation, for the ov6650 this is identical to ov6630
		   0x2b register, see ov6630 datasheet.
		   0x4f / 0x8a -> (30 fps -> 25 fps), 0x00 -> no adjustment */
715
		__u8 i2c[] = {0xa0, 0x00, 0x2b, 0x00, 0x00, 0x00, 0x00, 0x10};
716 717 718 719 720 721 722
		switch (sd->freq) {
		default:
/*		case 0:			 * no filter*/
/*		case 2:			 * 60 hz */
			i2c[3] = 0;
			break;
		case 1:			/* 50 hz */
723 724
			i2c[3] = (sd->sensor == SENSOR_OV6650)
					? 0x4f : 0x8a;
725 726
			break;
		}
727
		i2c[1] = sd->sensor_addr;
728 729 730 731 732 733 734
		if (i2c_w(gspca_dev, i2c) < 0)
			PDEBUG(D_ERR, "i2c error setfreq");
		break;
	    }
	}
}

735 736 737 738 739 740 741 742 743 744 745 746
static void do_autogain(struct gspca_dev *gspca_dev)
{
	struct sd *sd = (struct sd *) gspca_dev;
	int avg_lum = atomic_read(&sd->avg_lum);

	if (avg_lum == -1)
		return;

	if (sd->autogain_ignore_frames > 0)
		sd->autogain_ignore_frames--;
	else if (gspca_auto_gain_n_exposure(gspca_dev, avg_lum,
			sd->brightness * DESIRED_AVG_LUM / 127,
747 748 749
			AUTOGAIN_DEADZONE, GAIN_KNEE, EXPOSURE_KNEE)) {
		PDEBUG(D_FRAM, "autogain: gain changed: gain: %d expo: %d\n",
			(int)sd->gain, (int)sd->exposure);
750
		sd->autogain_ignore_frames = AUTOGAIN_IGNORE_FRAMES;
751
	}
752 753 754 755 756 757 758 759 760 761
}

/* this function is called at probe time */
static int sd_config(struct gspca_dev *gspca_dev,
			const struct usb_device_id *id)
{
	struct sd *sd = (struct sd *) gspca_dev;
	struct cam *cam;
	int sif = 0;

762 763 764 765
	/* nctrls depends upon the sensor, so we use a per cam copy */
	memcpy(&sd->sd_desc, gspca_dev->sd_desc, sizeof(struct sd_desc));
	gspca_dev->sd_desc = &sd->sd_desc;

766 767 768 769 770 771 772 773 774 775 776 777 778 779
	/* copy the webcam info from the device id */
	sd->sensor = (id->driver_info >> 24) & 0xff;
	if (id->driver_info & (F_GAIN << 16))
		sd->sensor_has_gain = 1;
	if (id->driver_info & (F_AUTO << 16))
		sd->sd_desc.dq_callback = do_autogain;
	if (id->driver_info & (F_SIF << 16))
		sif = 1;
	if (id->driver_info & (F_H18 << 16))
		sd->fr_h_sz = 18;		/* size of frame header */
	else
		sd->fr_h_sz = 12;
	sd->sd_desc.nctrls = (id->driver_info >> 8) & 0xff;
	sd->sensor_addr = id->driver_info & 0xff;
780 781 782 783 784

	cam = &gspca_dev->cam;
	cam->epaddr = 0x01;
	if (!sif) {
		cam->cam_mode = vga_mode;
785
		cam->nmodes = ARRAY_SIZE(vga_mode);
786 787
	} else {
		cam->cam_mode = sif_mode;
788
		cam->nmodes = ARRAY_SIZE(sif_mode);
789
	}
790 791 792
	sd->brightness = BRIGHTNESS_DEF;
	sd->gain = GAIN_DEF;
	sd->exposure = EXPOSURE_DEF;
793
	sd->autogain = AUTOGAIN_DEF;
794
	sd->freq = FREQ_DEF;
795

796 797 798 799 800 801
	return 0;
}

/* this function is called at open time */
static int sd_open(struct gspca_dev *gspca_dev)
{
802 803
	reg_r(gspca_dev, 0x00);
	if (gspca_dev->usb_buf[0] != 0x10)
804 805 806 807
		return -ENODEV;
	return 0;
}

808
static void pas106_i2cinit(struct gspca_dev *gspca_dev)
809 810 811 812 813 814 815 816 817 818
{
	int i;
	const __u8 *data;
	__u8 i2c1[] = { 0xa1, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x14 };

	i = ARRAY_SIZE(pas106_data);
	data = pas106_data[0];
	while (--i >= 0) {
		memcpy(&i2c1[2], data, 2);
					/* copy 2 bytes from the template */
819
		if (i2c_w(gspca_dev, i2c1) < 0)
820 821 822 823 824 825 826 827 828
			PDEBUG(D_ERR, "i2c error pas106");
		data += 2;
	}
}

/* -- start the camera -- */
static void sd_start(struct gspca_dev *gspca_dev)
{
	struct sd *sd = (struct sd *) gspca_dev;
829
	int mode, l = 0x1f;
830 831 832
	const __u8 *sn9c10x;
	__u8 reg17_19[3];

833
	mode = gspca_dev->cam.cam_mode[(int) gspca_dev->curr_mode].priv;
834 835 836 837 838 839 840 841 842 843 844 845 846 847
	switch (sd->sensor) {
	case SENSOR_HV7131R:
		sn9c10x = initHv7131;
		reg17_19[0] = 0x60;
		reg17_19[1] = (mode << 4) | 0x8a;
		reg17_19[2] = 0x20;
		break;
	case SENSOR_OV6650:
		sn9c10x = initOv6650;
		reg17_19[0] = 0x68;
		reg17_19[1] = (mode << 4) | 0x8b;
		reg17_19[2] = 0x20;
		break;
	case SENSOR_OV7630:
848 849 850 851 852
		if (sd->fr_h_sz == 18) { /* SN9C103 */
			sn9c10x = initOv7630_3;
			l = sizeof initOv7630_3;
		} else
			sn9c10x = initOv7630;
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
		reg17_19[0] = 0x68;
		reg17_19[1] = (mode << 4) | COMP2;
		reg17_19[2] = MCK_INIT1;
		break;
	case SENSOR_PAS106:
		sn9c10x = initPas106;
		reg17_19[0] = 0x24;		/* 0x28 */
		reg17_19[1] = (mode << 4) | COMP1;
		reg17_19[2] = MCK_INIT1;
		break;
	case SENSOR_PAS202:
		sn9c10x = initPas202;
		reg17_19[0] = mode ? 0x24 : 0x20;
		reg17_19[1] = (mode << 4) | 0x89;
		reg17_19[2] = 0x20;
		break;
	case SENSOR_TAS5110:
		sn9c10x = initTas5110;
		reg17_19[0] = 0x60;
		reg17_19[1] = (mode << 4) | 0x86;
		reg17_19[2] = 0x2b;		/* 0xf3; */
		break;
	default:
/*	case SENSOR_TAS5130CXX: */
		sn9c10x = initTas5130;
		reg17_19[0] = 0x60;
		reg17_19[1] = (mode << 4) | COMP;
		reg17_19[2] = mode ? 0x23 : 0x43;
		break;
	}
883

884
	/* reg 0x01 bit 2 video transfert on */
885
	reg_w(gspca_dev, 0x01, &sn9c10x[0x01 - 1], 1);
886
	/* reg 0x17 SensorClk enable inv Clk 0x60 */
887
	reg_w(gspca_dev, 0x17, &sn9c10x[0x17 - 1], 1);
888
	/* Set the registers from the template */
889
	reg_w_big(gspca_dev, 0x01, sn9c10x, l);
890 891
	switch (sd->sensor) {
	case SENSOR_HV7131R:
892
		i2c_w_vector(gspca_dev, hv7131_sensor_init,
893 894 895
				sizeof hv7131_sensor_init);
		break;
	case SENSOR_OV6650:
896
		i2c_w_vector(gspca_dev, ov6650_sensor_init,
897 898 899
				sizeof ov6650_sensor_init);
		break;
	case SENSOR_OV7630:
900
		i2c_w_vector(gspca_dev, ov7630_sensor_init,
901
				sizeof ov7630_sensor_init);
902 903 904 905 906
		if (sd->fr_h_sz == 18) { /* SN9C103 */
			const __u8 i2c[] = { 0xa0, 0x21, 0x13, 0x80, 0x00,
						0x00, 0x00, 0x10 };
			i2c_w(gspca_dev, i2c);
		}
907 908
		break;
	case SENSOR_PAS106:
909
		pas106_i2cinit(gspca_dev);
910 911
		break;
	case SENSOR_PAS202:
912
		i2c_w_vector(gspca_dev, pas202_sensor_init,
913 914 915
				sizeof pas202_sensor_init);
		break;
	case SENSOR_TAS5110:
916
		i2c_w_vector(gspca_dev, tas5110_sensor_init,
917 918 919 920
				sizeof tas5110_sensor_init);
		break;
	default:
/*	case SENSOR_TAS5130CXX: */
921
		i2c_w_vector(gspca_dev, tas5130_sensor_init,
922 923 924
				sizeof tas5130_sensor_init);
		break;
	}
925 926
	/* H_size V_size 0x28, 0x1e -> 640x480. 0x16, 0x12 -> 352x288 */
	reg_w(gspca_dev, 0x15, &sn9c10x[0x15 - 1], 2);
927
	/* compression register */
928
	reg_w(gspca_dev, 0x18, &reg17_19[1], 1);
929 930 931 932
	/* H_start */
	reg_w(gspca_dev, 0x12, &sn9c10x[0x12 - 1], 1);
	/* V_START */
	reg_w(gspca_dev, 0x13, &sn9c10x[0x13 - 1], 1);
933 934
	/* reset 0x17 SensorClk enable inv Clk 0x60 */
				/*fixme: ov7630 [17]=68 8f (+20 if 102)*/
935
	reg_w(gspca_dev, 0x17, &reg17_19[0], 1);
936
	/*MCKSIZE ->3 */	/*fixme: not ov7630*/
937
	reg_w(gspca_dev, 0x19, &reg17_19[2], 1);
938
	/* AE_STRX AE_STRY AE_ENDX AE_ENDY */
939
	reg_w(gspca_dev, 0x1c, &sn9c10x[0x1c - 1], 4);
940
	/* Enable video transfert */
941
	reg_w(gspca_dev, 0x01, &sn9c10x[0], 1);
942
	/* Compression */
943
	reg_w(gspca_dev, 0x18, &reg17_19[1], 2);
944 945
	msleep(20);

946 947
	sd->reg11 = -1;

948
	setgain(gspca_dev);
949
	setbrightness(gspca_dev);
950
	setexposure(gspca_dev);
951
	setfreq(gspca_dev);
952

953
	sd->frames_to_drop = 0;
954 955
	sd->autogain_ignore_frames = 0;
	atomic_set(&sd->avg_lum, -1);
956 957 958 959
}

static void sd_stopN(struct gspca_dev *gspca_dev)
{
960
	__u8 ByteSend;
961 962

	ByteSend = 0x09;	/* 0X00 */
963
	reg_w(gspca_dev, 0x01, &ByteSend, 1);
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
}

static void sd_stop0(struct gspca_dev *gspca_dev)
{
}

static void sd_close(struct gspca_dev *gspca_dev)
{
}

static void sd_pkt_scan(struct gspca_dev *gspca_dev,
			struct gspca_frame *frame,	/* target */
			unsigned char *data,		/* isoc packet */
			int len)			/* iso packet length */
{
979
	int i;
980
	struct sd *sd = (struct sd *) gspca_dev;
981

982 983 984 985 986 987 988 989 990
	/* frames start with:
	 *	ff ff 00 c4 c4 96	synchro
	 *	00		(unknown)
	 *	xx		(frame sequence / size / compression)
	 *	(xx)		(idem - extra byte for sn9c103)
	 *	ll mm		brightness sum inside auto exposure
	 *	ll mm		brightness sum outside auto exposure
	 *	(xx xx xx xx xx)	audio values for snc103
	 */
991
	if (len > 6 && len < 24) {
992 993 994 995 996 997 998
		for (i = 0; i < len - 6; i++) {
			if (data[0 + i] == 0xff
			    && data[1 + i] == 0xff
			    && data[2 + i] == 0x00
			    && data[3 + i] == 0xc4
			    && data[4 + i] == 0xc4
			    && data[5 + i] == 0x96) {	/* start of frame */
999 1000 1001
				int lum = -1;
				int pkt_type = LAST_PACKET;

1002 1003 1004 1005
				if (len - i < sd->fr_h_sz) {
					PDEBUG(D_STREAM, "packet too short to"
						" get avg brightness");
				} else if (sd->fr_h_sz == 12) {
1006
					lum = data[i + 8] + (data[i + 9] << 8);
1007
				} else {
1008 1009
					lum = data[i + 9] +
						(data[i + 10] << 8);
1010
				}
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
				if (lum == 0) {
					lum = -1;
					sd->frames_to_drop = 2;
				}
				atomic_set(&sd->avg_lum, lum);

				if (sd->frames_to_drop) {
					sd->frames_to_drop--;
					pkt_type = DISCARD_PACKET;
				}

				frame = gspca_frame_add(gspca_dev, pkt_type,
							frame, data, 0);
1024 1025
				data += i + sd->fr_h_sz;
				len -= i + sd->fr_h_sz;
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
				gspca_frame_add(gspca_dev, FIRST_PACKET,
						frame, data, len);
				return;
			}
		}
	}
	gspca_frame_add(gspca_dev, INTER_PACKET,
			frame, data, len);
}

static int sd_setbrightness(struct gspca_dev *gspca_dev, __s32 val)
{
	struct sd *sd = (struct sd *) gspca_dev;

	sd->brightness = val;
	if (gspca_dev->streaming)
		setbrightness(gspca_dev);
	return 0;
}

static int sd_getbrightness(struct gspca_dev *gspca_dev, __s32 *val)
{
	struct sd *sd = (struct sd *) gspca_dev;

	*val = sd->brightness;
	return 0;
}

1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
static int sd_setgain(struct gspca_dev *gspca_dev, __s32 val)
{
	struct sd *sd = (struct sd *) gspca_dev;

	sd->gain = val;
	if (gspca_dev->streaming)
		setgain(gspca_dev);
	return 0;
}

static int sd_getgain(struct gspca_dev *gspca_dev, __s32 *val)
1065 1066 1067
{
	struct sd *sd = (struct sd *) gspca_dev;

1068 1069 1070 1071 1072 1073 1074 1075 1076
	*val = sd->gain;
	return 0;
}

static int sd_setexposure(struct gspca_dev *gspca_dev, __s32 val)
{
	struct sd *sd = (struct sd *) gspca_dev;

	sd->exposure = val;
1077
	if (gspca_dev->streaming)
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
		setexposure(gspca_dev);
	return 0;
}

static int sd_getexposure(struct gspca_dev *gspca_dev, __s32 *val)
{
	struct sd *sd = (struct sd *) gspca_dev;

	*val = sd->exposure;
	return 0;
}

static int sd_setautogain(struct gspca_dev *gspca_dev, __s32 val)
{
	struct sd *sd = (struct sd *) gspca_dev;

	sd->autogain = val;
	/* when switching to autogain set defaults to make sure
	   we are on a valid point of the autogain gain /
	   exposure knee graph, and give this change time to
	   take effect before doing autogain. */
	if (sd->autogain) {
		sd->exposure = EXPOSURE_DEF;
		sd->gain = GAIN_DEF;
		if (gspca_dev->streaming) {
			sd->autogain_ignore_frames = AUTOGAIN_IGNORE_FRAMES;
			setexposure(gspca_dev);
			setgain(gspca_dev);
		}
	}

1109 1110 1111
	return 0;
}

1112
static int sd_getautogain(struct gspca_dev *gspca_dev, __s32 *val)
1113 1114 1115
{
	struct sd *sd = (struct sd *) gspca_dev;

1116
	*val = sd->autogain;
1117 1118 1119
	return 0;
}

1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
static int sd_setfreq(struct gspca_dev *gspca_dev, __s32 val)
{
	struct sd *sd = (struct sd *) gspca_dev;

	sd->freq = val;
	if (gspca_dev->streaming)
		setfreq(gspca_dev);
	return 0;
}

static int sd_getfreq(struct gspca_dev *gspca_dev, __s32 *val)
{
	struct sd *sd = (struct sd *) gspca_dev;

	*val = sd->freq;
	return 0;
}

static int sd_querymenu(struct gspca_dev *gspca_dev,
			struct v4l2_querymenu *menu)
{
	switch (menu->id) {
	case V4L2_CID_POWER_LINE_FREQUENCY:
		switch (menu->index) {
		case 0:		/* V4L2_CID_POWER_LINE_FREQUENCY_DISABLED */
			strcpy((char *) menu->name, "NoFliker");
			return 0;
		case 1:		/* V4L2_CID_POWER_LINE_FREQUENCY_50HZ */
			strcpy((char *) menu->name, "50 Hz");
			return 0;
		case 2:		/* V4L2_CID_POWER_LINE_FREQUENCY_60HZ */
			strcpy((char *) menu->name, "60 Hz");
			return 0;
		}
		break;
	}
	return -EINVAL;
}

1159
/* sub-driver description */
1160
static const struct sd_desc sd_desc = {
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
	.name = MODULE_NAME,
	.ctrls = sd_ctrls,
	.nctrls = ARRAY_SIZE(sd_ctrls),
	.config = sd_config,
	.open = sd_open,
	.start = sd_start,
	.stopN = sd_stopN,
	.stop0 = sd_stop0,
	.close = sd_close,
	.pkt_scan = sd_pkt_scan,
1171
	.querymenu = sd_querymenu,
1172 1173 1174
};

/* -- module initialisation -- */
1175 1176 1177 1178 1179
#define SFCI(sensor, flags, nctrls, i2c_addr) \
	.driver_info = (SENSOR_ ## sensor << 24) \
			| ((flags) << 16) \
			| ((nctrls) << 8) \
			| (i2c_addr)
1180
static __devinitdata struct usb_device_id device_table[] = {
1181
#ifndef CONFIG_USB_SN9C102
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
	{USB_DEVICE(0x0c45, 0x6001),			/* SN9C102 */
			SFCI(TAS5110, F_GAIN|F_AUTO|F_SIF, 4, 0)},
	{USB_DEVICE(0x0c45, 0x6005),			/* SN9C101 */
			SFCI(TAS5110, F_GAIN|F_AUTO|F_SIF, 4, 0)},
	{USB_DEVICE(0x0c45, 0x6007),			/* SN9C101 */
			SFCI(TAS5110, F_GAIN|F_AUTO|F_SIF, 4, 0)},
	{USB_DEVICE(0x0c45, 0x6009),			/* SN9C101 */
			SFCI(PAS106, F_SIF, 2, 0)},
	{USB_DEVICE(0x0c45, 0x600d),			/* SN9C101 */
			SFCI(PAS106, F_SIF, 2, 0)},
1192
#endif
1193 1194
	{USB_DEVICE(0x0c45, 0x6011),		/* SN9C101 - SN9C101G */
			SFCI(OV6650, F_GAIN|F_AUTO|F_SIF, 5, 0x60)},
1195
#ifndef CONFIG_USB_SN9C102
1196
	{USB_DEVICE(0x0c45, 0x6019),			/* SN9C101 */
1197
			SFCI(OV7630, F_GAIN|F_AUTO, 5, 0x21)},
1198 1199 1200 1201 1202 1203 1204 1205 1206
	{USB_DEVICE(0x0c45, 0x6024),			/* SN9C102 */
			SFCI(TAS5130CXX, 0, 2, 0)},
	{USB_DEVICE(0x0c45, 0x6025),			/* SN9C102 */
			SFCI(TAS5130CXX, 0, 2, 0)},
	{USB_DEVICE(0x0c45, 0x6028),			/* SN9C102 */
			SFCI(PAS202, 0, 2, 0)},
	{USB_DEVICE(0x0c45, 0x6029),			/* SN9C101 */
			SFCI(PAS106, F_SIF, 2, 0)},
	{USB_DEVICE(0x0c45, 0x602c),			/* SN9C102 */
1207
			SFCI(OV7630, F_GAIN|F_AUTO, 5, 0x21)},
1208 1209 1210
	{USB_DEVICE(0x0c45, 0x602d),			/* SN9C102 */
			SFCI(HV7131R, 0, 2, 0)},
	{USB_DEVICE(0x0c45, 0x602e),			/* SN9C102 */
1211
			SFCI(OV7630, F_GAIN|F_AUTO, 5, 0x21)},
1212 1213 1214
	{USB_DEVICE(0x0c45, 0x60af),			/* SN9C103 */
			SFCI(PAS202, F_H18, 2, 0)},
	{USB_DEVICE(0x0c45, 0x60b0),			/* SN9C103 */
1215
			SFCI(OV7630, F_GAIN|F_AUTO|F_H18, 5, 0x21)},
1216
#endif
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
	{}
};
MODULE_DEVICE_TABLE(usb, device_table);

/* -- device connect -- */
static int sd_probe(struct usb_interface *intf,
			const struct usb_device_id *id)
{
	return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd),
				THIS_MODULE);
}

static struct usb_driver sd_driver = {
	.name = MODULE_NAME,
	.id_table = device_table,
	.probe = sd_probe,
	.disconnect = gspca_disconnect,
};

/* -- module insert / remove -- */
static int __init sd_mod_init(void)
{
	if (usb_register(&sd_driver) < 0)
		return -1;
1241
	PDEBUG(D_PROBE, "registered");
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
	return 0;
}
static void __exit sd_mod_exit(void)
{
	usb_deregister(&sd_driver);
	PDEBUG(D_PROBE, "deregistered");
}

module_init(sd_mod_init);
module_exit(sd_mod_exit);