init.c 7.0 KB
Newer Older
1
/*
2
 * x86 FPU boot time init code:
3
 */
4
#include <asm/fpu/internal.h>
5 6
#include <asm/tlbflush.h>

7 8 9 10
/*
 * Initialize the TS bit in CR0 according to the style of context-switches
 * we are using:
 */
I
Ingo Molnar 已提交
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
static void fpu__init_cpu_ctx_switch(void)
{
	if (!cpu_has_eager_fpu)
		stts();
	else
		clts();
}

/*
 * Initialize the registers found in all CPUs, CR0 and CR4:
 */
static void fpu__init_cpu_generic(void)
{
	unsigned long cr0;
	unsigned long cr4_mask = 0;

	if (cpu_has_fxsr)
		cr4_mask |= X86_CR4_OSFXSR;
	if (cpu_has_xmm)
		cr4_mask |= X86_CR4_OSXMMEXCPT;
	if (cr4_mask)
		cr4_set_bits(cr4_mask);

	cr0 = read_cr0();
	cr0 &= ~(X86_CR0_TS|X86_CR0_EM); /* clear TS and EM */
	if (!cpu_has_fpu)
		cr0 |= X86_CR0_EM;
	write_cr0(cr0);
}

/*
42
 * Enable all supported FPU features. Called when a CPU is brought online:
I
Ingo Molnar 已提交
43 44 45 46 47 48 49 50
 */
void fpu__init_cpu(void)
{
	fpu__init_cpu_generic();
	fpu__init_cpu_xstate();
	fpu__init_cpu_ctx_switch();
}

51
/*
52 53 54 55
 * The earliest FPU detection code.
 *
 * Set the X86_FEATURE_FPU CPU-capability bit based on
 * trying to execute an actual sequence of FPU instructions:
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
 */
static void fpu__init_system_early_generic(struct cpuinfo_x86 *c)
{
	unsigned long cr0;
	u16 fsw, fcw;

	fsw = fcw = 0xffff;

	cr0 = read_cr0();
	cr0 &= ~(X86_CR0_TS | X86_CR0_EM);
	write_cr0(cr0);

	asm volatile("fninit ; fnstsw %0 ; fnstcw %1"
		     : "+m" (fsw), "+m" (fcw));

	if (fsw == 0 && (fcw & 0x103f) == 0x003f)
		set_cpu_cap(c, X86_FEATURE_FPU);
	else
		clear_cpu_cap(c, X86_FEATURE_FPU);
75 76 77

#ifndef CONFIG_MATH_EMULATION
	if (!cpu_has_fpu) {
78
		pr_emerg("x86/fpu: Giving up, no FPU found and no math emulation present\n");
79 80 81 82
		for (;;)
			asm volatile("hlt");
	}
#endif
83 84
}

85 86 87
/*
 * Boot time FPU feature detection code:
 */
88
unsigned int mxcsr_feature_mask __read_mostly = 0xffffffffu;
89

90
static void fpu__init_system_mxcsr(void)
91
{
92
	unsigned int mask = 0;
93 94

	if (cpu_has_fxsr) {
95 96 97 98 99 100 101 102 103 104 105
		struct i387_fxsave_struct fx_tmp __aligned(32) = { };

		asm volatile("fxsave %0" : "+m" (fx_tmp));

		mask = fx_tmp.mxcsr_mask;

		/*
		 * If zero then use the default features mask,
		 * which has all features set, except the
		 * denormals-are-zero feature bit:
		 */
106 107 108 109 110 111
		if (mask == 0)
			mask = 0x0000ffbf;
	}
	mxcsr_feature_mask &= mask;
}

112 113 114 115 116 117 118 119 120 121 122 123 124 125
/*
 * Once per bootup FPU initialization sequences that will run on most x86 CPUs:
 */
static void fpu__init_system_generic(void)
{
	/*
	 * Set up the legacy init FPU context. (xstate init might overwrite this
	 * with a more modern format, if the CPU supports it.)
	 */
	fx_finit(&init_xstate_ctx.i387);

	fpu__init_system_mxcsr();
}

126 127 128 129 130 131
/*
 * Size of the FPU context state. All tasks in the system use the
 * same context size, regardless of what portion they use.
 * This is inherent to the XSAVE architecture which puts all state
 * components into a single, continuous memory block:
 */
I
Ingo Molnar 已提交
132 133 134 135 136 137 138 139 140
unsigned int xstate_size;
EXPORT_SYMBOL_GPL(xstate_size);

/*
 * Set up the xstate_size based on the legacy FPU context size.
 *
 * We set this up first, and later it will be overwritten by
 * fpu__init_system_xstate() if the CPU knows about xstates.
 */
141
static void fpu__init_system_xstate_size_legacy(void)
142
{
143 144 145 146 147 148
	static bool on_boot_cpu = 1;

	if (!on_boot_cpu)
		return;
	on_boot_cpu = 0;

149 150
	/*
	 * Note that xstate_size might be overwriten later during
I
Ingo Molnar 已提交
151
	 * fpu__init_system_xstate().
152 153 154 155 156 157 158 159 160 161
	 */

	if (!cpu_has_fpu) {
		/*
		 * Disable xsave as we do not support it if i387
		 * emulation is enabled.
		 */
		setup_clear_cpu_cap(X86_FEATURE_XSAVE);
		setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
		xstate_size = sizeof(struct i387_soft_struct);
162 163 164 165 166
	} else {
		if (cpu_has_fxsr)
			xstate_size = sizeof(struct i387_fxsave_struct);
		else
			xstate_size = sizeof(struct i387_fsave_struct);
167 168 169
	}
}

170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
/*
 * FPU context switching strategies:
 *
 * Against popular belief, we don't do lazy FPU saves, due to the
 * task migration complications it brings on SMP - we only do
 * lazy FPU restores.
 *
 * 'lazy' is the traditional strategy, which is based on setting
 * CR0::TS to 1 during context-switch (instead of doing a full
 * restore of the FPU state), which causes the first FPU instruction
 * after the context switch (whenever it is executed) to fault - at
 * which point we lazily restore the FPU state into FPU registers.
 *
 * Tasks are of course under no obligation to execute FPU instructions,
 * so it can easily happen that another context-switch occurs without
 * a single FPU instruction being executed. If we eventually switch
 * back to the original task (that still owns the FPU) then we have
 * not only saved the restores along the way, but we also have the
 * FPU ready to be used for the original task.
 *
 * 'eager' switching is used on modern CPUs, there we switch the FPU
 * state during every context switch, regardless of whether the task
 * has used FPU instructions in that time slice or not. This is done
 * because modern FPU context saving instructions are able to optimize
 * state saving and restoration in hardware: they can detect both
 * unused and untouched FPU state and optimize accordingly.
 *
 * [ Note that even in 'lazy' mode we might optimize context switches
 *   to use 'eager' restores, if we detect that a task is using the FPU
 *   frequently. See the fpu->counter logic in fpu/internal.h for that. ]
 */
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
static enum { AUTO, ENABLE, DISABLE } eagerfpu = AUTO;

static int __init eager_fpu_setup(char *s)
{
	if (!strcmp(s, "on"))
		eagerfpu = ENABLE;
	else if (!strcmp(s, "off"))
		eagerfpu = DISABLE;
	else if (!strcmp(s, "auto"))
		eagerfpu = AUTO;
	return 1;
}
__setup("eagerfpu=", eager_fpu_setup);

/*
216
 * Pick the FPU context switching strategy:
217
 */
218
static void fpu__init_system_ctx_switch(void)
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
{
	WARN_ON(current->thread.fpu.fpstate_active);
	current_thread_info()->status = 0;

	/* Auto enable eagerfpu for xsaveopt */
	if (cpu_has_xsaveopt && eagerfpu != DISABLE)
		eagerfpu = ENABLE;

	if (xfeatures_mask & XSTATE_EAGER) {
		if (eagerfpu == DISABLE) {
			pr_err("x86/fpu: eagerfpu switching disabled, disabling the following xstate features: 0x%llx.\n",
			       xfeatures_mask & XSTATE_EAGER);
			xfeatures_mask &= ~XSTATE_EAGER;
		} else {
			eagerfpu = ENABLE;
		}
	}

	if (eagerfpu == ENABLE)
		setup_force_cpu_cap(X86_FEATURE_EAGER_FPU);

	printk_once(KERN_INFO "x86/fpu: Using '%s' FPU context switches.\n", eagerfpu == ENABLE ? "eager" : "lazy");
}

243
/*
244 245
 * Called on the boot CPU once per system bootup, to set up the initial
 * FPU state that is later cloned into all processes:
246
 */
247
void fpu__init_system(struct cpuinfo_x86 *c)
248
{
249 250
	fpu__init_system_early_generic(c);

251 252 253 254
	/*
	 * The FPU has to be operational for some of the
	 * later FPU init activities:
	 */
255
	fpu__init_cpu();
256

257
	/*
258 259 260 261
	 * But don't leave CR0::TS set yet, as some of the FPU setup
	 * methods depend on being able to execute FPU instructions
	 * that will fault on a set TS, such as the FXSAVE in
	 * fpu__init_system_mxcsr().
262 263 264
	 */
	clts();

265
	fpu__init_system_generic();
266
	fpu__init_system_xstate_size_legacy();
I
Ingo Molnar 已提交
267
	fpu__init_system_xstate();
268
	setup_xstate_comp();
269

270
	fpu__init_system_ctx_switch();
271
}
272

273 274 275
/*
 * Boot parameter to turn off FPU support and fall back to math-emu:
 */
276 277 278 279 280 281 282
static int __init no_387(char *s)
{
	setup_clear_cpu_cap(X86_FEATURE_FPU);
	return 1;
}

__setup("no387", no_387);