pmem.c 17.8 KB
Newer Older
1 2 3
/*
 * Persistent Memory Driver
 *
4
 * Copyright (c) 2014-2015, Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
 * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 */

#include <asm/cacheflush.h>
#include <linux/blkdev.h>
#include <linux/hdreg.h>
#include <linux/init.h>
#include <linux/platform_device.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
25
#include <linux/badblocks.h>
D
Dan Williams 已提交
26
#include <linux/memremap.h>
27
#include <linux/vmalloc.h>
D
Dan Williams 已提交
28
#include <linux/pfn_t.h>
29
#include <linux/slab.h>
30
#include <linux/pmem.h>
31
#include <linux/nd.h>
32
#include "pfn.h"
33
#include "nd.h"
34 35 36 37

struct pmem_device {
	struct request_queue	*pmem_queue;
	struct gendisk		*pmem_disk;
38
	struct nd_namespace_common *ndns;
39 40 41

	/* One contiguous memory region per device */
	phys_addr_t		phys_addr;
42 43
	/* when non-zero this device is hosting a 'pfn' instance */
	phys_addr_t		data_offset;
A
Arnd Bergmann 已提交
44
	u64			pfn_flags;
45
	void __pmem		*virt_addr;
46
	/* immutable base size of the namespace */
47
	size_t			size;
48 49
	/* trim size when namespace capacity has been section aligned */
	u32			pfn_pad;
50
	struct badblocks	bb;
51 52
};

53 54 55 56 57 58 59 60 61 62 63 64 65
static bool is_bad_pmem(struct badblocks *bb, sector_t sector, unsigned int len)
{
	if (bb->count) {
		sector_t first_bad;
		int num_bad;

		return !!badblocks_check(bb, sector, len / 512, &first_bad,
				&num_bad);
	}

	return false;
}

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
static void pmem_clear_poison(struct pmem_device *pmem, phys_addr_t offset,
		unsigned int len)
{
	struct device *dev = disk_to_dev(pmem->pmem_disk);
	sector_t sector;
	long cleared;

	sector = (offset - pmem->data_offset) / 512;
	cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len);

	if (cleared > 0 && cleared / 512) {
		dev_dbg(dev, "%s: %llx clear %ld sector%s\n",
				__func__, (unsigned long long) sector,
				cleared / 512, cleared / 512 > 1 ? "s" : "");
		badblocks_clear(&pmem->bb, sector, cleared / 512);
	}
	invalidate_pmem(pmem->virt_addr + offset, len);
}

85
static int pmem_do_bvec(struct pmem_device *pmem, struct page *page,
86 87 88
			unsigned int len, unsigned int off, int rw,
			sector_t sector)
{
89
	int rc = 0;
90
	bool bad_pmem = false;
91
	void *mem = kmap_atomic(page);
92
	phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
93
	void __pmem *pmem_addr = pmem->virt_addr + pmem_off;
94

95 96 97
	if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
		bad_pmem = true;

98
	if (rw == READ) {
99
		if (unlikely(bad_pmem))
100 101
			rc = -EIO;
		else {
102
			rc = memcpy_from_pmem(mem + off, pmem_addr, len);
103 104
			flush_dcache_page(page);
		}
105
	} else {
106 107 108 109 110 111 112 113 114 115 116 117 118 119
		/*
		 * Note that we write the data both before and after
		 * clearing poison.  The write before clear poison
		 * handles situations where the latest written data is
		 * preserved and the clear poison operation simply marks
		 * the address range as valid without changing the data.
		 * In this case application software can assume that an
		 * interrupted write will either return the new good
		 * data or an error.
		 *
		 * However, if pmem_clear_poison() leaves the data in an
		 * indeterminate state we need to perform the write
		 * after clear poison.
		 */
120
		flush_dcache_page(page);
121
		memcpy_to_pmem(pmem_addr, mem + off, len);
122 123 124 125
		if (unlikely(bad_pmem)) {
			pmem_clear_poison(pmem, pmem_off, len);
			memcpy_to_pmem(pmem_addr, mem + off, len);
		}
126 127 128
	}

	kunmap_atomic(mem);
129
	return rc;
130 131
}

132
static blk_qc_t pmem_make_request(struct request_queue *q, struct bio *bio)
133
{
134
	int rc = 0;
D
Dan Williams 已提交
135 136
	bool do_acct;
	unsigned long start;
137 138
	struct bio_vec bvec;
	struct bvec_iter iter;
D
Dan Williams 已提交
139 140
	struct block_device *bdev = bio->bi_bdev;
	struct pmem_device *pmem = bdev->bd_disk->private_data;
141

D
Dan Williams 已提交
142
	do_acct = nd_iostat_start(bio, &start);
143 144 145 146 147 148 149 150 151
	bio_for_each_segment(bvec, bio, iter) {
		rc = pmem_do_bvec(pmem, bvec.bv_page, bvec.bv_len,
				bvec.bv_offset, bio_data_dir(bio),
				iter.bi_sector);
		if (rc) {
			bio->bi_error = rc;
			break;
		}
	}
D
Dan Williams 已提交
152 153
	if (do_acct)
		nd_iostat_end(bio, start);
154 155 156 157

	if (bio_data_dir(bio))
		wmb_pmem();

158
	bio_endio(bio);
159
	return BLK_QC_T_NONE;
160 161 162 163 164 165
}

static int pmem_rw_page(struct block_device *bdev, sector_t sector,
		       struct page *page, int rw)
{
	struct pmem_device *pmem = bdev->bd_disk->private_data;
166
	int rc;
167

168
	rc = pmem_do_bvec(pmem, page, PAGE_SIZE, 0, rw, sector);
169 170
	if (rw & WRITE)
		wmb_pmem();
171

172 173 174 175 176 177 178 179 180 181
	/*
	 * The ->rw_page interface is subtle and tricky.  The core
	 * retries on any error, so we can only invoke page_endio() in
	 * the successful completion case.  Otherwise, we'll see crashes
	 * caused by double completion.
	 */
	if (rc == 0)
		page_endio(page, rw & WRITE, 0);

	return rc;
182 183 184
}

static long pmem_direct_access(struct block_device *bdev, sector_t sector,
D
Dan Williams 已提交
185
		      void __pmem **kaddr, pfn_t *pfn)
186 187
{
	struct pmem_device *pmem = bdev->bd_disk->private_data;
188
	resource_size_t offset = sector * 512 + pmem->data_offset;
189

190
	*kaddr = pmem->virt_addr + offset;
D
Dan Williams 已提交
191
	*pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
192

193
	return pmem->size - pmem->pfn_pad - offset;
194 195 196 197 198 199
}

static const struct block_device_operations pmem_fops = {
	.owner =		THIS_MODULE,
	.rw_page =		pmem_rw_page,
	.direct_access =	pmem_direct_access,
200
	.revalidate_disk =	nvdimm_revalidate_disk,
201 202
};

203 204
static struct pmem_device *pmem_alloc(struct device *dev,
		struct resource *res, int id)
205 206
{
	struct pmem_device *pmem;
207
	struct request_queue *q;
208

209
	pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
210
	if (!pmem)
211
		return ERR_PTR(-ENOMEM);
212 213 214

	pmem->phys_addr = res->start;
	pmem->size = resource_size(res);
215
	if (!arch_has_wmb_pmem())
216
		dev_warn(dev, "unable to guarantee persistence of writes\n");
217

218 219
	if (!devm_request_mem_region(dev, pmem->phys_addr, pmem->size,
			dev_name(dev))) {
220 221
		dev_warn(dev, "could not reserve region [0x%pa:0x%zx]\n",
				&pmem->phys_addr, pmem->size);
222
		return ERR_PTR(-EBUSY);
223 224
	}

225 226 227 228
	q = blk_alloc_queue_node(GFP_KERNEL, dev_to_node(dev));
	if (!q)
		return ERR_PTR(-ENOMEM);

D
Dan Williams 已提交
229 230
	pmem->pfn_flags = PFN_DEV;
	if (pmem_should_map_pages(dev)) {
231
		pmem->virt_addr = (void __pmem *) devm_memremap_pages(dev, res,
232
				&q->q_usage_counter, NULL);
D
Dan Williams 已提交
233 234
		pmem->pfn_flags |= PFN_MAP;
	} else
D
Dan Williams 已提交
235 236 237
		pmem->virt_addr = (void __pmem *) devm_memremap(dev,
				pmem->phys_addr, pmem->size,
				ARCH_MEMREMAP_PMEM);
238

239 240
	if (IS_ERR(pmem->virt_addr)) {
		blk_cleanup_queue(q);
241
		return (void __force *) pmem->virt_addr;
242
	}
243

244
	pmem->pmem_queue = q;
245 246 247 248 249
	return pmem;
}

static void pmem_detach_disk(struct pmem_device *pmem)
{
250 251 252
	if (!pmem->pmem_disk)
		return;

253 254 255 256 257
	del_gendisk(pmem->pmem_disk);
	put_disk(pmem->pmem_disk);
	blk_cleanup_queue(pmem->pmem_queue);
}

258 259
static int pmem_attach_disk(struct device *dev,
		struct nd_namespace_common *ndns, struct pmem_device *pmem)
260
{
261
	struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
262
	int nid = dev_to_node(dev);
263
	struct resource bb_res;
264
	struct gendisk *disk;
265 266

	blk_queue_make_request(pmem->pmem_queue, pmem_make_request);
267
	blk_queue_physical_block_size(pmem->pmem_queue, PAGE_SIZE);
268
	blk_queue_max_hw_sectors(pmem->pmem_queue, UINT_MAX);
269
	blk_queue_bounce_limit(pmem->pmem_queue, BLK_BOUNCE_ANY);
270
	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, pmem->pmem_queue);
271

272
	disk = alloc_disk_node(0, nid);
273 274 275 276
	if (!disk) {
		blk_cleanup_queue(pmem->pmem_queue);
		return -ENOMEM;
	}
277 278 279 280 281

	disk->fops		= &pmem_fops;
	disk->private_data	= pmem;
	disk->queue		= pmem->pmem_queue;
	disk->flags		= GENHD_FL_EXT_DEVT;
V
Vishal Verma 已提交
282
	nvdimm_namespace_disk_name(ndns, disk->disk_name);
283
	disk->driverfs_dev = dev;
284 285
	set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
			/ 512);
286
	pmem->pmem_disk = disk;
287
	devm_exit_badblocks(dev, &pmem->bb);
288 289
	if (devm_init_badblocks(dev, &pmem->bb))
		return -ENOMEM;
290 291 292 293 294 295 296 297 298 299 300
	bb_res.start = nsio->res.start + pmem->data_offset;
	bb_res.end = nsio->res.end;
	if (is_nd_pfn(dev)) {
		struct nd_pfn *nd_pfn = to_nd_pfn(dev);
		struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;

		bb_res.start += __le32_to_cpu(pfn_sb->start_pad);
		bb_res.end -= __le32_to_cpu(pfn_sb->end_trunc);
	}
	nvdimm_badblocks_populate(to_nd_region(dev->parent), &pmem->bb,
			&bb_res);
301
	disk->bb = &pmem->bb;
302
	add_disk(disk);
303
	revalidate_disk(disk);
304

305 306
	return 0;
}
307

308 309 310 311 312 313 314 315 316 317
static int pmem_rw_bytes(struct nd_namespace_common *ndns,
		resource_size_t offset, void *buf, size_t size, int rw)
{
	struct pmem_device *pmem = dev_get_drvdata(ndns->claim);

	if (unlikely(offset + size > pmem->size)) {
		dev_WARN_ONCE(&ndns->dev, 1, "request out of range\n");
		return -EFAULT;
	}

318 319 320 321 322
	if (rw == READ) {
		unsigned int sz_align = ALIGN(size + (offset & (512 - 1)), 512);

		if (unlikely(is_bad_pmem(&pmem->bb, offset / 512, sz_align)))
			return -EIO;
323
		return memcpy_from_pmem(buf, pmem->virt_addr + offset, size);
324
	} else {
325 326 327
		memcpy_to_pmem(pmem->virt_addr + offset, buf, size);
		wmb_pmem();
	}
328 329 330 331

	return 0;
}

332 333 334 335 336
static int nd_pfn_init(struct nd_pfn *nd_pfn)
{
	struct nd_pfn_sb *pfn_sb = kzalloc(sizeof(*pfn_sb), GFP_KERNEL);
	struct pmem_device *pmem = dev_get_drvdata(&nd_pfn->dev);
	struct nd_namespace_common *ndns = nd_pfn->ndns;
337 338 339
	u32 start_pad = 0, end_trunc = 0;
	resource_size_t start, size;
	struct nd_namespace_io *nsio;
340 341 342 343 344 345 346 347 348 349 350
	struct nd_region *nd_region;
	unsigned long npfns;
	phys_addr_t offset;
	u64 checksum;
	int rc;

	if (!pfn_sb)
		return -ENOMEM;

	nd_pfn->pfn_sb = pfn_sb;
	rc = nd_pfn_validate(nd_pfn);
351 352 353
	if (rc == -ENODEV)
		/* no info block, do init */;
	else
354 355 356 357 358 359 360 361 362 363 364
		return rc;

	nd_region = to_nd_region(nd_pfn->dev.parent);
	if (nd_region->ro) {
		dev_info(&nd_pfn->dev,
				"%s is read-only, unable to init metadata\n",
				dev_name(&nd_region->dev));
		goto err;
	}

	memset(pfn_sb, 0, sizeof(*pfn_sb));
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391

	/*
	 * Check if pmem collides with 'System RAM' when section aligned and
	 * trim it accordingly
	 */
	nsio = to_nd_namespace_io(&ndns->dev);
	start = PHYS_SECTION_ALIGN_DOWN(nsio->res.start);
	size = resource_size(&nsio->res);
	if (region_intersects(start, size, IORESOURCE_SYSTEM_RAM,
				IORES_DESC_NONE) == REGION_MIXED) {

		start = nsio->res.start;
		start_pad = PHYS_SECTION_ALIGN_UP(start) - start;
	}

	start = nsio->res.start;
	size = PHYS_SECTION_ALIGN_UP(start + size) - start;
	if (region_intersects(start, size, IORESOURCE_SYSTEM_RAM,
				IORES_DESC_NONE) == REGION_MIXED) {
		size = resource_size(&nsio->res);
		end_trunc = start + size - PHYS_SECTION_ALIGN_DOWN(start + size);
	}

	if (start_pad + end_trunc)
		dev_info(&nd_pfn->dev, "%s section collision, truncate %d bytes\n",
				dev_name(&ndns->dev), start_pad + end_trunc);

392 393 394 395 396 397
	/*
	 * Note, we use 64 here for the standard size of struct page,
	 * debugging options may cause it to be larger in which case the
	 * implementation will limit the pfns advertised through
	 * ->direct_access() to those that are included in the memmap.
	 */
398 399
	start += start_pad;
	npfns = (pmem->size - start_pad - end_trunc - SZ_8K) / SZ_4K;
400
	if (nd_pfn->mode == PFN_MODE_PMEM)
401 402
		offset = ALIGN(start + SZ_8K + 64 * npfns, nd_pfn->align)
			- start;
403
	else if (nd_pfn->mode == PFN_MODE_RAM)
404
		offset = ALIGN(start + SZ_8K, nd_pfn->align) - start;
405 406 407
	else
		goto err;

408 409 410 411 412 413 414
	if (offset + start_pad + end_trunc >= pmem->size) {
		dev_err(&nd_pfn->dev, "%s unable to satisfy requested alignment\n",
				dev_name(&ndns->dev));
		goto err;
	}

	npfns = (pmem->size - offset - start_pad - end_trunc) / SZ_4K;
415 416 417 418 419
	pfn_sb->mode = cpu_to_le32(nd_pfn->mode);
	pfn_sb->dataoff = cpu_to_le64(offset);
	pfn_sb->npfns = cpu_to_le64(npfns);
	memcpy(pfn_sb->signature, PFN_SIG, PFN_SIG_LEN);
	memcpy(pfn_sb->uuid, nd_pfn->uuid, 16);
420
	memcpy(pfn_sb->parent_uuid, nd_dev_to_uuid(&ndns->dev), 16);
421
	pfn_sb->version_major = cpu_to_le16(1);
422 423 424
	pfn_sb->version_minor = cpu_to_le16(1);
	pfn_sb->start_pad = cpu_to_le32(start_pad);
	pfn_sb->end_trunc = cpu_to_le32(end_trunc);
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
	checksum = nd_sb_checksum((struct nd_gen_sb *) pfn_sb);
	pfn_sb->checksum = cpu_to_le64(checksum);

	rc = nvdimm_write_bytes(ndns, SZ_4K, pfn_sb, sizeof(*pfn_sb));
	if (rc)
		goto err;

	return 0;
 err:
	nd_pfn->pfn_sb = NULL;
	kfree(pfn_sb);
	return -ENXIO;
}

static int nvdimm_namespace_detach_pfn(struct nd_namespace_common *ndns)
{
	struct nd_pfn *nd_pfn = to_nd_pfn(ndns->claim);
	struct pmem_device *pmem;

	/* free pmem disk */
	pmem = dev_get_drvdata(&nd_pfn->dev);
	pmem_detach_disk(pmem);

	/* release nd_pfn resources */
	kfree(nd_pfn->pfn_sb);
	nd_pfn->pfn_sb = NULL;

	return 0;
}

455 456 457 458 459 460
/*
 * We hotplug memory at section granularity, pad the reserved area from
 * the previous section base to the namespace base address.
 */
static unsigned long init_altmap_base(resource_size_t base)
{
461
	unsigned long base_pfn = PHYS_PFN(base);
462 463 464 465 466 467

	return PFN_SECTION_ALIGN_DOWN(base_pfn);
}

static unsigned long init_altmap_reserve(resource_size_t base)
{
468 469
	unsigned long reserve = PHYS_PFN(SZ_8K);
	unsigned long base_pfn = PHYS_PFN(base);
470 471 472 473 474

	reserve += base_pfn - PFN_SECTION_ALIGN_DOWN(base_pfn);
	return reserve;
}

475
static int __nvdimm_namespace_attach_pfn(struct nd_pfn *nd_pfn)
476
{
477
	int rc;
478 479 480 481 482 483 484 485 486 487 488
	struct resource res;
	struct request_queue *q;
	struct pmem_device *pmem;
	struct vmem_altmap *altmap;
	struct device *dev = &nd_pfn->dev;
	struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
	struct nd_namespace_common *ndns = nd_pfn->ndns;
	u32 start_pad = __le32_to_cpu(pfn_sb->start_pad);
	u32 end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
	struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
	resource_size_t base = nsio->res.start + start_pad;
489
	struct vmem_altmap __altmap = {
490 491
		.base_pfn = init_altmap_base(base),
		.reserve = init_altmap_reserve(base),
492
	};
493

494 495 496
	pmem = dev_get_drvdata(dev);
	pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
	pmem->pfn_pad = start_pad + end_trunc;
497 498
	nd_pfn->mode = le32_to_cpu(nd_pfn->pfn_sb->mode);
	if (nd_pfn->mode == PFN_MODE_RAM) {
499
		if (pmem->data_offset < SZ_8K)
500 501 502
			return -EINVAL;
		nd_pfn->npfns = le64_to_cpu(pfn_sb->npfns);
		altmap = NULL;
503
	} else if (nd_pfn->mode == PFN_MODE_PMEM) {
504
		nd_pfn->npfns = (pmem->size - pmem->pfn_pad - pmem->data_offset)
505 506 507 508 509 510 511
			/ PAGE_SIZE;
		if (le64_to_cpu(nd_pfn->pfn_sb->npfns) > nd_pfn->npfns)
			dev_info(&nd_pfn->dev,
					"number of pfns truncated from %lld to %ld\n",
					le64_to_cpu(nd_pfn->pfn_sb->npfns),
					nd_pfn->npfns);
		altmap = & __altmap;
512
		altmap->free = PHYS_PFN(pmem->data_offset - SZ_8K);
513
		altmap->alloc = 0;
514 515 516 517 518 519
	} else {
		rc = -ENXIO;
		goto err;
	}

	/* establish pfn range for lookup, and switch to direct map */
520
	q = pmem->pmem_queue;
521 522 523
	memcpy(&res, &nsio->res, sizeof(res));
	res.start += start_pad;
	res.end -= end_trunc;
D
Dan Williams 已提交
524
	devm_memunmap(dev, (void __force *) pmem->virt_addr);
525
	pmem->virt_addr = (void __pmem *) devm_memremap_pages(dev, &res,
526
			&q->q_usage_counter, altmap);
D
Dan Williams 已提交
527
	pmem->pfn_flags |= PFN_MAP;
528 529 530 531 532 533 534 535 536 537 538 539 540 541
	if (IS_ERR(pmem->virt_addr)) {
		rc = PTR_ERR(pmem->virt_addr);
		goto err;
	}

	/* attach pmem disk in "pfn-mode" */
	rc = pmem_attach_disk(dev, ndns, pmem);
	if (rc)
		goto err;

	return rc;
 err:
	nvdimm_namespace_detach_pfn(ndns);
	return rc;
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557

}

static int nvdimm_namespace_attach_pfn(struct nd_namespace_common *ndns)
{
	struct nd_pfn *nd_pfn = to_nd_pfn(ndns->claim);
	int rc;

	if (!nd_pfn->uuid || !nd_pfn->ndns)
		return -ENODEV;

	rc = nd_pfn_init(nd_pfn);
	if (rc)
		return rc;
	/* we need a valid pfn_sb before we can init a vmem_altmap */
	return __nvdimm_namespace_attach_pfn(nd_pfn);
558 559
}

560
static int nd_pmem_probe(struct device *dev)
561
{
562
	struct nd_region *nd_region = to_nd_region(dev->parent);
563 564
	struct nd_namespace_common *ndns;
	struct nd_namespace_io *nsio;
565 566
	struct pmem_device *pmem;

567 568 569
	ndns = nvdimm_namespace_common_probe(dev);
	if (IS_ERR(ndns))
		return PTR_ERR(ndns);
570

571
	nsio = to_nd_namespace_io(&ndns->dev);
572
	pmem = pmem_alloc(dev, &nsio->res, nd_region->id);
573 574 575
	if (IS_ERR(pmem))
		return PTR_ERR(pmem);

576
	pmem->ndns = ndns;
577
	dev_set_drvdata(dev, pmem);
578
	ndns->rw_bytes = pmem_rw_bytes;
579 580
	if (devm_init_badblocks(dev, &pmem->bb))
		return -ENOMEM;
581
	nvdimm_badblocks_populate(nd_region, &pmem->bb, &nsio->res);
582

583 584 585 586
	if (is_nd_btt(dev)) {
		/* btt allocates its own request_queue */
		blk_cleanup_queue(pmem->pmem_queue);
		pmem->pmem_queue = NULL;
587
		return nvdimm_namespace_attach_btt(ndns);
588
	}
589

590 591 592
	if (is_nd_pfn(dev))
		return nvdimm_namespace_attach_pfn(ndns);

593 594 595 596 597 598
	if (nd_btt_probe(ndns, pmem) == 0 || nd_pfn_probe(ndns, pmem) == 0) {
		/*
		 * We'll come back as either btt-pmem, or pfn-pmem, so
		 * drop the queue allocation for now.
		 */
		blk_cleanup_queue(pmem->pmem_queue);
599 600 601 602
		return -ENXIO;
	}

	return pmem_attach_disk(dev, ndns, pmem);
603 604
}

605
static int nd_pmem_remove(struct device *dev)
606
{
607
	struct pmem_device *pmem = dev_get_drvdata(dev);
608

609
	if (is_nd_btt(dev))
610 611 612
		nvdimm_namespace_detach_btt(pmem->ndns);
	else if (is_nd_pfn(dev))
		nvdimm_namespace_detach_pfn(pmem->ndns);
613 614 615
	else
		pmem_detach_disk(pmem);

616 617 618
	return 0;
}

619 620 621 622
static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
{
	struct pmem_device *pmem = dev_get_drvdata(dev);
	struct nd_namespace_common *ndns = pmem->ndns;
623 624 625 626 627 628
	struct nd_region *nd_region = to_nd_region(dev->parent);
	struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
	struct resource res = {
		.start = nsio->res.start + pmem->data_offset,
		.end = nsio->res.end,
	};
629 630 631 632

	if (event != NVDIMM_REVALIDATE_POISON)
		return;

633 634 635 636 637 638 639 640 641
	if (is_nd_pfn(dev)) {
		struct nd_pfn *nd_pfn = to_nd_pfn(dev);
		struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;

		res.start += __le32_to_cpu(pfn_sb->start_pad);
		res.end -= __le32_to_cpu(pfn_sb->end_trunc);
	}

	nvdimm_badblocks_populate(nd_region, &pmem->bb, &res);
642 643
}

644 645
MODULE_ALIAS("pmem");
MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
646
MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
647 648 649
static struct nd_device_driver nd_pmem_driver = {
	.probe = nd_pmem_probe,
	.remove = nd_pmem_remove,
650
	.notify = nd_pmem_notify,
651 652
	.drv = {
		.name = "nd_pmem",
653
	},
654
	.type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
655 656 657 658
};

static int __init pmem_init(void)
{
659
	return nd_driver_register(&nd_pmem_driver);
660 661 662 663 664
}
module_init(pmem_init);

static void pmem_exit(void)
{
665
	driver_unregister(&nd_pmem_driver.drv);
666 667 668 669 670
}
module_exit(pmem_exit);

MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
MODULE_LICENSE("GPL v2");