adutux.c 22.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/*
 * adutux - driver for ADU devices from Ontrak Control Systems
 * This is an experimental driver. Use at your own risk.
 * This driver is not supported by Ontrak Control Systems.
 *
 * Copyright (c) 2003 John Homppi (SCO, leave this notice here)
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of
 * the License, or (at your option) any later version.
 *
 * derived from the Lego USB Tower driver 0.56:
 * Copyright (c) 2003 David Glance <davidgsf@sourceforge.net>
 *               2001 Juergen Stuber <stuber@loria.fr>
 * that was derived from USB Skeleton driver - 0.5
 * Copyright (c) 2001 Greg Kroah-Hartman (greg@kroah.com)
 *
 */

21 22
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

23 24 25 26 27
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/usb.h>
28
#include <linux/mutex.h>
29
#include <linux/uaccess.h>
30 31 32 33 34 35 36 37 38 39 40

/* Version Information */
#define DRIVER_VERSION "v0.0.13"
#define DRIVER_AUTHOR "John Homppi"
#define DRIVER_DESC "adutux (see www.ontrak.net)"

/* Define these values to match your device */
#define ADU_VENDOR_ID 0x0a07
#define ADU_PRODUCT_ID 0x0064

/* table of devices that work with this driver */
41
static const struct usb_device_id device_table[] = {
42
	{ USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID) },		/* ADU100 */
43 44
	{ USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID+20) },	/* ADU120 */
	{ USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID+30) },	/* ADU130 */
45 46 47
	{ USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID+100) },	/* ADU200 */
	{ USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID+108) },	/* ADU208 */
	{ USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID+118) },	/* ADU218 */
48
	{ } /* Terminating entry */
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
};

MODULE_DEVICE_TABLE(usb, device_table);

#ifdef CONFIG_USB_DYNAMIC_MINORS
#define ADU_MINOR_BASE	0
#else
#define ADU_MINOR_BASE	67
#endif

/* we can have up to this number of device plugged in at once */
#define MAX_DEVICES	16

#define COMMAND_TIMEOUT	(2*HZ)	/* 60 second timeout for a command */

64 65 66 67 68 69 70 71 72 73
/*
 * The locking scheme is a vanilla 3-lock:
 *   adu_device.buflock: A spinlock, covers what IRQs touch.
 *   adutux_mutex:       A Static lock to cover open_count. It would also cover
 *                       any globals, but we don't have them in 2.6.
 *   adu_device.mtx:     A mutex to hold across sleepers like copy_from_user.
 *                       It covers all of adu_device, except the open_count
 *                       and what .buflock covers.
 */

74 75
/* Structure to hold all of our device specific stuff */
struct adu_device {
76
	struct mutex		mtx;
77 78
	struct usb_device *udev; /* save off the usb device pointer */
	struct usb_interface *interface;
79
	unsigned int		minor; /* the starting minor number for this device */
80 81 82 83
	char			serial_number[8];

	int			open_count; /* number of times this port has been opened */

84
	char		*read_buffer_primary;
85
	int			read_buffer_length;
86
	char		*read_buffer_secondary;
87 88 89 90 91 92 93
	int			secondary_head;
	int			secondary_tail;
	spinlock_t		buflock;

	wait_queue_head_t	read_wait;
	wait_queue_head_t	write_wait;

94 95 96
	char		*interrupt_in_buffer;
	struct usb_endpoint_descriptor *interrupt_in_endpoint;
	struct urb	*interrupt_in_urb;
97 98
	int			read_urb_finished;

99 100 101
	char		*interrupt_out_buffer;
	struct usb_endpoint_descriptor *interrupt_out_endpoint;
	struct urb	*interrupt_out_urb;
102
	int			out_urb_finished;
103 104
};

105 106
static DEFINE_MUTEX(adutux_mutex);

107 108
static struct usb_driver adu_driver;

109 110
static inline void adu_debug_data(struct device *dev, const char *function,
				  int size, const unsigned char *data)
111
{
112 113
	dev_dbg(dev, "%s - length = %d, data = %*ph\n",
		function, size, size, data);
114 115 116 117 118 119 120 121
}

/**
 * adu_abort_transfers
 *      aborts transfers and frees associated data structures
 */
static void adu_abort_transfers(struct adu_device *dev)
{
122
	unsigned long flags;
123

124
	if (dev->udev == NULL)
125
		return;
126 127

	/* shutdown transfer */
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142

	/* XXX Anchor these instead */
	spin_lock_irqsave(&dev->buflock, flags);
	if (!dev->read_urb_finished) {
		spin_unlock_irqrestore(&dev->buflock, flags);
		usb_kill_urb(dev->interrupt_in_urb);
	} else
		spin_unlock_irqrestore(&dev->buflock, flags);

	spin_lock_irqsave(&dev->buflock, flags);
	if (!dev->out_urb_finished) {
		spin_unlock_irqrestore(&dev->buflock, flags);
		usb_kill_urb(dev->interrupt_out_urb);
	} else
		spin_unlock_irqrestore(&dev->buflock, flags);
143 144 145 146 147 148 149 150 151 152 153 154 155 156
}

static void adu_delete(struct adu_device *dev)
{
	/* free data structures */
	usb_free_urb(dev->interrupt_in_urb);
	usb_free_urb(dev->interrupt_out_urb);
	kfree(dev->read_buffer_primary);
	kfree(dev->read_buffer_secondary);
	kfree(dev->interrupt_in_buffer);
	kfree(dev->interrupt_out_buffer);
	kfree(dev);
}

157
static void adu_interrupt_in_callback(struct urb *urb)
158 159
{
	struct adu_device *dev = urb->context;
160
	int status = urb->status;
161

162 163
	adu_debug_data(&dev->udev->dev, __func__,
		       urb->actual_length, urb->transfer_buffer);
164 165 166

	spin_lock(&dev->buflock);

167
	if (status != 0) {
168 169
		if ((status != -ENOENT) && (status != -ECONNRESET) &&
			(status != -ESHUTDOWN)) {
170 171 172
			dev_dbg(&dev->udev->dev,
				"%s : nonzero status received: %d\n",
				__func__, status);
173 174 175 176 177 178
		}
		goto exit;
	}

	if (urb->actual_length > 0 && dev->interrupt_in_buffer[0] != 0x00) {
		if (dev->read_buffer_length <
179
		    (4 * usb_endpoint_maxp(dev->interrupt_in_endpoint)) -
180 181 182 183 184 185
		     (urb->actual_length)) {
			memcpy (dev->read_buffer_primary +
				dev->read_buffer_length,
				dev->interrupt_in_buffer, urb->actual_length);

			dev->read_buffer_length += urb->actual_length;
186 187
			dev_dbg(&dev->udev->dev,"%s reading  %d\n", __func__,
				urb->actual_length);
188
		} else {
189 190
			dev_dbg(&dev->udev->dev,"%s : read_buffer overflow\n",
				__func__);
191 192 193 194 195 196 197 198 199 200
		}
	}

exit:
	dev->read_urb_finished = 1;
	spin_unlock(&dev->buflock);
	/* always wake up so we recover from errors */
	wake_up_interruptible(&dev->read_wait);
}

201
static void adu_interrupt_out_callback(struct urb *urb)
202 203
{
	struct adu_device *dev = urb->context;
204
	int status = urb->status;
205

206 207
	adu_debug_data(&dev->udev->dev, __func__,
		       urb->actual_length, urb->transfer_buffer);
208

209 210 211
	if (status != 0) {
		if ((status != -ENOENT) &&
		    (status != -ECONNRESET)) {
212 213 214
			dev_dbg(&dev->udev->dev,
				"%s :nonzero status received: %d\n", __func__,
				status);
215
		}
216
		return;
217 218
	}

219 220 221 222
	spin_lock(&dev->buflock);
	dev->out_urb_finished = 1;
	wake_up(&dev->write_wait);
	spin_unlock(&dev->buflock);
223 224 225 226 227 228 229
}

static int adu_open(struct inode *inode, struct file *file)
{
	struct adu_device *dev = NULL;
	struct usb_interface *interface;
	int subminor;
230
	int retval;
231 232 233

	subminor = iminor(inode);

234
	retval = mutex_lock_interruptible(&adutux_mutex);
235
	if (retval)
236 237
		goto exit_no_lock;

238 239
	interface = usb_find_interface(&adu_driver, subminor);
	if (!interface) {
240 241
		pr_err("%s - error, can't find device for minor %d\n",
		       __func__, subminor);
242 243 244 245 246
		retval = -ENODEV;
		goto exit_no_device;
	}

	dev = usb_get_intfdata(interface);
247
	if (!dev || !dev->udev) {
248 249 250 251
		retval = -ENODEV;
		goto exit_no_device;
	}

252 253 254
	/* check that nobody else is using the device */
	if (dev->open_count) {
		retval = -EBUSY;
255 256 257 258
		goto exit_no_device;
	}

	++dev->open_count;
259 260
	dev_dbg(&dev->udev->dev, "%s: open count %d\n", __func__,
		dev->open_count);
261 262 263 264

	/* save device in the file's private structure */
	file->private_data = dev;

265 266
	/* initialize in direction */
	dev->read_buffer_length = 0;
267

268
	/* fixup first read by having urb waiting for it */
269
	usb_fill_int_urb(dev->interrupt_in_urb, dev->udev,
270 271 272
			 usb_rcvintpipe(dev->udev,
					dev->interrupt_in_endpoint->bEndpointAddress),
			 dev->interrupt_in_buffer,
273
			 usb_endpoint_maxp(dev->interrupt_in_endpoint),
274 275 276 277 278 279 280 281 282 283 284 285
			 adu_interrupt_in_callback, dev,
			 dev->interrupt_in_endpoint->bInterval);
	dev->read_urb_finished = 0;
	if (usb_submit_urb(dev->interrupt_in_urb, GFP_KERNEL))
		dev->read_urb_finished = 1;
	/* we ignore failure */
	/* end of fixup for first read */

	/* initialize out direction */
	dev->out_urb_finished = 1;

	retval = 0;
286 287

exit_no_device:
288 289
	mutex_unlock(&adutux_mutex);
exit_no_lock:
290 291 292
	return retval;
}

293
static void adu_release_internal(struct adu_device *dev)
294 295 296
{
	/* decrement our usage count for the device */
	--dev->open_count;
297 298
	dev_dbg(&dev->udev->dev, "%s : open count %d\n", __func__,
		dev->open_count);
299 300 301 302 303 304 305 306
	if (dev->open_count <= 0) {
		adu_abort_transfers(dev);
		dev->open_count = 0;
	}
}

static int adu_release(struct inode *inode, struct file *file)
{
307
	struct adu_device *dev;
308 309 310 311 312 313 314 315 316 317 318 319 320
	int retval = 0;

	if (file == NULL) {
		retval = -ENODEV;
		goto exit;
	}

	dev = file->private_data;
	if (dev == NULL) {
		retval = -ENODEV;
		goto exit;
	}

321
	mutex_lock(&adutux_mutex); /* not interruptible */
322 323

	if (dev->open_count <= 0) {
324
		dev_dbg(&dev->udev->dev, "%s : device not opened\n", __func__);
325
		retval = -ENODEV;
326
		goto unlock;
327 328
	}

329
	adu_release_internal(dev);
330 331
	if (dev->udev == NULL) {
		/* the device was unplugged before the file was released */
332 333
		if (!dev->open_count)	/* ... and we're the last user */
			adu_delete(dev);
334
	}
335
unlock:
336
	mutex_unlock(&adutux_mutex);
337
exit:
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
	return retval;
}

static ssize_t adu_read(struct file *file, __user char *buffer, size_t count,
			loff_t *ppos)
{
	struct adu_device *dev;
	size_t bytes_read = 0;
	size_t bytes_to_read = count;
	int i;
	int retval = 0;
	int timeout = 0;
	int should_submit = 0;
	unsigned long flags;
	DECLARE_WAITQUEUE(wait, current);

	dev = file->private_data;
355
	if (mutex_lock_interruptible(&dev->mtx))
356 357 358
		return -ERESTARTSYS;

	/* verify that the device wasn't unplugged */
359
	if (dev->udev == NULL) {
360
		retval = -ENODEV;
361
		pr_err("No device or device unplugged %d\n", retval);
362 363 364 365 366
		goto exit;
	}

	/* verify that some data was requested */
	if (count == 0) {
367 368
		dev_dbg(&dev->udev->dev, "%s : read request of 0 bytes\n",
			__func__);
369 370 371 372
		goto exit;
	}

	timeout = COMMAND_TIMEOUT;
373
	dev_dbg(&dev->udev->dev, "%s : about to start looping\n", __func__);
374 375
	while (bytes_to_read) {
		int data_in_secondary = dev->secondary_tail - dev->secondary_head;
376 377 378 379
		dev_dbg(&dev->udev->dev,
			"%s : while, data_in_secondary=%d, status=%d\n",
			__func__, data_in_secondary,
			dev->interrupt_in_urb->status);
380 381 382 383 384

		if (data_in_secondary) {
			/* drain secondary buffer */
			int amount = bytes_to_read < data_in_secondary ? bytes_to_read : data_in_secondary;
			i = copy_to_user(buffer, dev->read_buffer_secondary+dev->secondary_head, amount);
385
			if (i) {
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
				retval = -EFAULT;
				goto exit;
			}
			dev->secondary_head += (amount - i);
			bytes_read += (amount - i);
			bytes_to_read -= (amount - i);
			if (i) {
				retval = bytes_read ? bytes_read : -EFAULT;
				goto exit;
			}
		} else {
			/* we check the primary buffer */
			spin_lock_irqsave (&dev->buflock, flags);
			if (dev->read_buffer_length) {
				/* we secure access to the primary */
				char *tmp;
402 403 404
				dev_dbg(&dev->udev->dev,
					"%s : swap, read_buffer_length = %d\n",
					__func__, dev->read_buffer_length);
405 406 407 408 409 410 411 412 413 414 415
				tmp = dev->read_buffer_secondary;
				dev->read_buffer_secondary = dev->read_buffer_primary;
				dev->read_buffer_primary = tmp;
				dev->secondary_head = 0;
				dev->secondary_tail = dev->read_buffer_length;
				dev->read_buffer_length = 0;
				spin_unlock_irqrestore(&dev->buflock, flags);
				/* we have a free buffer so use it */
				should_submit = 1;
			} else {
				/* even the primary was empty - we may need to do IO */
416
				if (!dev->read_urb_finished) {
417 418
					/* somebody is doing IO */
					spin_unlock_irqrestore(&dev->buflock, flags);
419 420 421
					dev_dbg(&dev->udev->dev,
						"%s : submitted already\n",
						__func__);
422 423
				} else {
					/* we must initiate input */
424 425 426
					dev_dbg(&dev->udev->dev,
						"%s : initiate input\n",
						__func__);
427
					dev->read_urb_finished = 0;
428
					spin_unlock_irqrestore(&dev->buflock, flags);
429

430
					usb_fill_int_urb(dev->interrupt_in_urb, dev->udev,
431 432
							usb_rcvintpipe(dev->udev,
								dev->interrupt_in_endpoint->bEndpointAddress),
433
							 dev->interrupt_in_buffer,
434
							 usb_endpoint_maxp(dev->interrupt_in_endpoint),
435 436 437
							 adu_interrupt_in_callback,
							 dev,
							 dev->interrupt_in_endpoint->bInterval);
438 439 440
					retval = usb_submit_urb(dev->interrupt_in_urb, GFP_KERNEL);
					if (retval) {
						dev->read_urb_finished = 1;
441 442 443
						if (retval == -ENOMEM) {
							retval = bytes_read ? bytes_read : -ENOMEM;
						}
444 445 446
						dev_dbg(&dev->udev->dev,
							"%s : submit failed\n",
							__func__);
447 448 449 450 451 452 453
						goto exit;
					}
				}

				/* we wait for I/O to complete */
				set_current_state(TASK_INTERRUPTIBLE);
				add_wait_queue(&dev->read_wait, &wait);
454 455 456
				spin_lock_irqsave(&dev->buflock, flags);
				if (!dev->read_urb_finished) {
					spin_unlock_irqrestore(&dev->buflock, flags);
457
					timeout = schedule_timeout(COMMAND_TIMEOUT);
458 459
				} else {
					spin_unlock_irqrestore(&dev->buflock, flags);
460
					set_current_state(TASK_RUNNING);
461
				}
462 463 464
				remove_wait_queue(&dev->read_wait, &wait);

				if (timeout <= 0) {
465 466
					dev_dbg(&dev->udev->dev,
						"%s : timeout\n", __func__);
467 468 469 470 471
					retval = bytes_read ? bytes_read : -ETIMEDOUT;
					goto exit;
				}

				if (signal_pending(current)) {
472 473 474
					dev_dbg(&dev->udev->dev,
						"%s : signal pending\n",
						__func__);
475 476 477 478 479 480 481 482 483
					retval = bytes_read ? bytes_read : -EINTR;
					goto exit;
				}
			}
		}
	}

	retval = bytes_read;
	/* if the primary buffer is empty then use it */
484 485 486 487
	spin_lock_irqsave(&dev->buflock, flags);
	if (should_submit && dev->read_urb_finished) {
		dev->read_urb_finished = 0;
		spin_unlock_irqrestore(&dev->buflock, flags);
488
		usb_fill_int_urb(dev->interrupt_in_urb, dev->udev,
489
				 usb_rcvintpipe(dev->udev,
490
					dev->interrupt_in_endpoint->bEndpointAddress),
491
				dev->interrupt_in_buffer,
492
				usb_endpoint_maxp(dev->interrupt_in_endpoint),
493 494 495 496 497
				adu_interrupt_in_callback,
				dev,
				dev->interrupt_in_endpoint->bInterval);
		if (usb_submit_urb(dev->interrupt_in_urb, GFP_KERNEL) != 0)
			dev->read_urb_finished = 1;
498
		/* we ignore failure */
499 500
	} else {
		spin_unlock_irqrestore(&dev->buflock, flags);
501 502 503 504
	}

exit:
	/* unlock the device */
505
	mutex_unlock(&dev->mtx);
506 507 508 509 510 511 512

	return retval;
}

static ssize_t adu_write(struct file *file, const __user char *buffer,
			 size_t count, loff_t *ppos)
{
513
	DECLARE_WAITQUEUE(waita, current);
514 515 516 517
	struct adu_device *dev;
	size_t bytes_written = 0;
	size_t bytes_to_write;
	size_t buffer_size;
518
	unsigned long flags;
O
Oliver Neukum 已提交
519
	int retval;
520 521 522

	dev = file->private_data;

523
	retval = mutex_lock_interruptible(&dev->mtx);
O
Oliver Neukum 已提交
524 525
	if (retval)
		goto exit_nolock;
526 527

	/* verify that the device wasn't unplugged */
528
	if (dev->udev == NULL) {
529
		retval = -ENODEV;
530
		pr_err("No device or device unplugged %d\n", retval);
531 532 533 534 535
		goto exit;
	}

	/* verify that we actually have some data to write */
	if (count == 0) {
536 537
		dev_dbg(&dev->udev->dev, "%s : write request of 0 bytes\n",
			__func__);
538 539 540 541
		goto exit;
	}

	while (count > 0) {
542 543 544 545 546
		add_wait_queue(&dev->write_wait, &waita);
		set_current_state(TASK_INTERRUPTIBLE);
		spin_lock_irqsave(&dev->buflock, flags);
		if (!dev->out_urb_finished) {
			spin_unlock_irqrestore(&dev->buflock, flags);
547

548 549
			mutex_unlock(&dev->mtx);
			if (signal_pending(current)) {
550 551
				dev_dbg(&dev->udev->dev, "%s : interrupted\n",
					__func__);
552
				set_current_state(TASK_RUNNING);
553
				retval = -EINTR;
554
				goto exit_onqueue;
555
			}
556
			if (schedule_timeout(COMMAND_TIMEOUT) == 0) {
557 558
				dev_dbg(&dev->udev->dev,
					"%s - command timed out.\n", __func__);
559 560 561 562
				retval = -ETIMEDOUT;
				goto exit_onqueue;
			}
			remove_wait_queue(&dev->write_wait, &waita);
563
			retval = mutex_lock_interruptible(&dev->mtx);
O
Oliver Neukum 已提交
564 565 566 567
			if (retval) {
				retval = bytes_written ? bytes_written : retval;
				goto exit_nolock;
			}
568

569 570 571
			dev_dbg(&dev->udev->dev,
				"%s : in progress, count = %Zd\n",
				__func__, count);
572
		} else {
573 574 575
			spin_unlock_irqrestore(&dev->buflock, flags);
			set_current_state(TASK_RUNNING);
			remove_wait_queue(&dev->write_wait, &waita);
576 577
			dev_dbg(&dev->udev->dev, "%s : sending, count = %Zd\n",
				__func__, count);
578 579

			/* write the data into interrupt_out_buffer from userspace */
580
			buffer_size = usb_endpoint_maxp(dev->interrupt_out_endpoint);
581
			bytes_to_write = count > buffer_size ? buffer_size : count;
582 583 584
			dev_dbg(&dev->udev->dev,
				"%s : buffer_size = %Zd, count = %Zd, bytes_to_write = %Zd\n",
				__func__, buffer_size, count, bytes_to_write);
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599

			if (copy_from_user(dev->interrupt_out_buffer, buffer, bytes_to_write) != 0) {
				retval = -EFAULT;
				goto exit;
			}

			/* send off the urb */
			usb_fill_int_urb(
				dev->interrupt_out_urb,
				dev->udev,
				usb_sndintpipe(dev->udev, dev->interrupt_out_endpoint->bEndpointAddress),
				dev->interrupt_out_buffer,
				bytes_to_write,
				adu_interrupt_out_callback,
				dev,
600
				dev->interrupt_out_endpoint->bInterval);
601
			dev->interrupt_out_urb->actual_length = bytes_to_write;
602
			dev->out_urb_finished = 0;
603 604
			retval = usb_submit_urb(dev->interrupt_out_urb, GFP_KERNEL);
			if (retval < 0) {
605
				dev->out_urb_finished = 1;
606 607
				dev_err(&dev->udev->dev, "Couldn't submit "
					"interrupt_out_urb %d\n", retval);
608 609 610 611 612 613 614 615 616
				goto exit;
			}

			buffer += bytes_to_write;
			count -= bytes_to_write;

			bytes_written += bytes_to_write;
		}
	}
617 618
	mutex_unlock(&dev->mtx);
	return bytes_written;
619 620

exit:
621
	mutex_unlock(&dev->mtx);
O
Oliver Neukum 已提交
622
exit_nolock:
623
	return retval;
624

625 626
exit_onqueue:
	remove_wait_queue(&dev->write_wait, &waita);
627 628 629 630
	return retval;
}

/* file operations needed when we register this driver */
631
static const struct file_operations adu_fops = {
632 633 634 635 636
	.owner = THIS_MODULE,
	.read  = adu_read,
	.write = adu_write,
	.open = adu_open,
	.release = adu_release,
637
	.llseek = noop_llseek,
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
};

/*
 * usb class driver info in order to get a minor number from the usb core,
 * and to have the device registered with devfs and the driver core
 */
static struct usb_class_driver adu_class = {
	.name = "usb/adutux%d",
	.fops = &adu_fops,
	.minor_base = ADU_MINOR_BASE,
};

/**
 * adu_probe
 *
 * Called by the usb core when a new device is connected that it thinks
 * this driver might be interested in.
 */
static int adu_probe(struct usb_interface *interface,
		     const struct usb_device_id *id)
{
	struct usb_device *udev = interface_to_usbdev(interface);
	struct adu_device *dev = NULL;
	struct usb_host_interface *iface_desc;
	struct usb_endpoint_descriptor *endpoint;
	int retval = -ENODEV;
	int in_end_size;
	int out_end_size;
	int i;

	if (udev == NULL) {
		dev_err(&interface->dev, "udev is NULL.\n");
		goto exit;
	}

673
	/* allocate memory for our device state and initialize it */
674 675 676 677 678 679 680
	dev = kzalloc(sizeof(struct adu_device), GFP_KERNEL);
	if (dev == NULL) {
		dev_err(&interface->dev, "Out of memory\n");
		retval = -ENOMEM;
		goto exit;
	}

681
	mutex_init(&dev->mtx);
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
	spin_lock_init(&dev->buflock);
	dev->udev = udev;
	init_waitqueue_head(&dev->read_wait);
	init_waitqueue_head(&dev->write_wait);

	iface_desc = &interface->altsetting[0];

	/* set up the endpoint information */
	for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) {
		endpoint = &iface_desc->endpoint[i].desc;

		if (usb_endpoint_is_int_in(endpoint))
			dev->interrupt_in_endpoint = endpoint;

		if (usb_endpoint_is_int_out(endpoint))
			dev->interrupt_out_endpoint = endpoint;
	}
	if (dev->interrupt_in_endpoint == NULL) {
		dev_err(&interface->dev, "interrupt in endpoint not found\n");
		goto error;
	}
	if (dev->interrupt_out_endpoint == NULL) {
		dev_err(&interface->dev, "interrupt out endpoint not found\n");
		goto error;
	}

708 709
	in_end_size = usb_endpoint_maxp(dev->interrupt_in_endpoint);
	out_end_size = usb_endpoint_maxp(dev->interrupt_out_endpoint);
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766

	dev->read_buffer_primary = kmalloc((4 * in_end_size), GFP_KERNEL);
	if (!dev->read_buffer_primary) {
		dev_err(&interface->dev, "Couldn't allocate read_buffer_primary\n");
		retval = -ENOMEM;
		goto error;
	}

	/* debug code prime the buffer */
	memset(dev->read_buffer_primary, 'a', in_end_size);
	memset(dev->read_buffer_primary + in_end_size, 'b', in_end_size);
	memset(dev->read_buffer_primary + (2 * in_end_size), 'c', in_end_size);
	memset(dev->read_buffer_primary + (3 * in_end_size), 'd', in_end_size);

	dev->read_buffer_secondary = kmalloc((4 * in_end_size), GFP_KERNEL);
	if (!dev->read_buffer_secondary) {
		dev_err(&interface->dev, "Couldn't allocate read_buffer_secondary\n");
		retval = -ENOMEM;
		goto error;
	}

	/* debug code prime the buffer */
	memset(dev->read_buffer_secondary, 'e', in_end_size);
	memset(dev->read_buffer_secondary + in_end_size, 'f', in_end_size);
	memset(dev->read_buffer_secondary + (2 * in_end_size), 'g', in_end_size);
	memset(dev->read_buffer_secondary + (3 * in_end_size), 'h', in_end_size);

	dev->interrupt_in_buffer = kmalloc(in_end_size, GFP_KERNEL);
	if (!dev->interrupt_in_buffer) {
		dev_err(&interface->dev, "Couldn't allocate interrupt_in_buffer\n");
		goto error;
	}

	/* debug code prime the buffer */
	memset(dev->interrupt_in_buffer, 'i', in_end_size);

	dev->interrupt_in_urb = usb_alloc_urb(0, GFP_KERNEL);
	if (!dev->interrupt_in_urb) {
		dev_err(&interface->dev, "Couldn't allocate interrupt_in_urb\n");
		goto error;
	}
	dev->interrupt_out_buffer = kmalloc(out_end_size, GFP_KERNEL);
	if (!dev->interrupt_out_buffer) {
		dev_err(&interface->dev, "Couldn't allocate interrupt_out_buffer\n");
		goto error;
	}
	dev->interrupt_out_urb = usb_alloc_urb(0, GFP_KERNEL);
	if (!dev->interrupt_out_urb) {
		dev_err(&interface->dev, "Couldn't allocate interrupt_out_urb\n");
		goto error;
	}

	if (!usb_string(udev, udev->descriptor.iSerialNumber, dev->serial_number,
			sizeof(dev->serial_number))) {
		dev_err(&interface->dev, "Could not retrieve serial number\n");
		goto error;
	}
767
	dev_dbg(&interface->dev,"serial_number=%s", dev->serial_number);
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783

	/* we can register the device now, as it is ready */
	usb_set_intfdata(interface, dev);

	retval = usb_register_dev(interface, &adu_class);

	if (retval) {
		/* something prevented us from registering this driver */
		dev_err(&interface->dev, "Not able to get a minor for this device.\n");
		usb_set_intfdata(interface, NULL);
		goto error;
	}

	dev->minor = interface->minor;

	/* let the user know what node this device is now attached to */
784
	dev_info(&interface->dev, "ADU%d %s now attached to /dev/usb/adutux%d\n",
785
		 le16_to_cpu(udev->descriptor.idProduct), dev->serial_number,
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
		 (dev->minor - ADU_MINOR_BASE));
exit:
	return retval;

error:
	adu_delete(dev);
	return retval;
}

/**
 * adu_disconnect
 *
 * Called by the usb core when the device is removed from the system.
 */
static void adu_disconnect(struct usb_interface *interface)
{
	struct adu_device *dev;
	int minor;

	dev = usb_get_intfdata(interface);

807 808
	mutex_lock(&dev->mtx);	/* not interruptible */
	dev->udev = NULL;	/* poison */
809 810
	minor = dev->minor;
	usb_deregister_dev(interface, &adu_class);
811
	mutex_unlock(&dev->mtx);
812

813 814
	mutex_lock(&adutux_mutex);
	usb_set_intfdata(interface, NULL);
815

816
	/* if the device is not opened, then we clean up right now */
817
	if (!dev->open_count)
818
		adu_delete(dev);
819 820

	mutex_unlock(&adutux_mutex);
821 822 823 824 825 826 827 828 829 830
}

/* usb specific object needed to register this driver with the usb subsystem */
static struct usb_driver adu_driver = {
	.name = "adutux",
	.probe = adu_probe,
	.disconnect = adu_disconnect,
	.id_table = device_table,
};

831
module_usb_driver(adu_driver);
832 833 834 835

MODULE_AUTHOR(DRIVER_AUTHOR);
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_LICENSE("GPL");