fc_exch.c 66.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Copyright(c) 2007 Intel Corporation. All rights reserved.
 * Copyright(c) 2008 Red Hat, Inc.  All rights reserved.
 * Copyright(c) 2008 Mike Christie
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Maintained at www.Open-FCoE.org
 */

/*
 * Fibre Channel exchange and sequence handling.
 */

#include <linux/timer.h>
27
#include <linux/slab.h>
28
#include <linux/err.h>
29
#include <linux/export.h>
30 31 32 33 34 35

#include <scsi/fc/fc_fc2.h>

#include <scsi/libfc.h>
#include <scsi/fc_encode.h>

36 37
#include "fc_libfc.h"

38 39 40
u16	fc_cpu_mask;		/* cpu mask for possible cpus */
EXPORT_SYMBOL(fc_cpu_mask);
static u16	fc_cpu_order;	/* 2's power to represent total possible cpus */
41
static struct kmem_cache *fc_em_cachep;	       /* cache for exchanges */
42
static struct workqueue_struct *fc_exch_workqueue;
43 44 45 46 47 48 49 50 51 52 53 54 55 56

/*
 * Structure and function definitions for managing Fibre Channel Exchanges
 * and Sequences.
 *
 * The three primary structures used here are fc_exch_mgr, fc_exch, and fc_seq.
 *
 * fc_exch_mgr holds the exchange state for an N port
 *
 * fc_exch holds state for one exchange and links to its active sequence.
 *
 * fc_seq holds the state for an individual sequence.
 */

57 58 59 60 61 62
/**
 * struct fc_exch_pool - Per cpu exchange pool
 * @next_index:	  Next possible free exchange index
 * @total_exches: Total allocated exchanges
 * @lock:	  Exch pool lock
 * @ex_list:	  List of exchanges
63 64 65 66 67 68
 *
 * This structure manages per cpu exchanges in array of exchange pointers.
 * This array is allocated followed by struct fc_exch_pool memory for
 * assigned range of exchanges to per cpu pool.
 */
struct fc_exch_pool {
V
Vasu Dev 已提交
69 70
	spinlock_t	 lock;
	struct list_head ex_list;
71 72
	u16		 next_index;
	u16		 total_exches;
73 74 75 76

	/* two cache of free slot in exch array */
	u16		 left;
	u16		 right;
V
Vasu Dev 已提交
77
} ____cacheline_aligned_in_smp;
78

79 80 81 82 83 84 85 86 87 88
/**
 * struct fc_exch_mgr - The Exchange Manager (EM).
 * @class:	    Default class for new sequences
 * @kref:	    Reference counter
 * @min_xid:	    Minimum exchange ID
 * @max_xid:	    Maximum exchange ID
 * @ep_pool:	    Reserved exchange pointers
 * @pool_max_index: Max exch array index in exch pool
 * @pool:	    Per cpu exch pool
 * @stats:	    Statistics structure
89 90 91 92 93
 *
 * This structure is the center for creating exchanges and sequences.
 * It manages the allocation of exchange IDs.
 */
struct fc_exch_mgr {
94
	struct fc_exch_pool __percpu *pool;
V
Vasu Dev 已提交
95
	mempool_t	*ep_pool;
96 97 98 99 100
	enum fc_class	class;
	struct kref	kref;
	u16		min_xid;
	u16		max_xid;
	u16		pool_max_index;
101 102 103 104 105 106 107 108 109 110 111

	struct {
		atomic_t no_free_exch;
		atomic_t no_free_exch_xid;
		atomic_t xid_not_found;
		atomic_t xid_busy;
		atomic_t seq_not_found;
		atomic_t non_bls_resp;
	} stats;
};

112 113 114 115 116 117 118 119 120 121
/**
 * struct fc_exch_mgr_anchor - primary structure for list of EMs
 * @ema_list: Exchange Manager Anchor list
 * @mp:	      Exchange Manager associated with this anchor
 * @match:    Routine to determine if this anchor's EM should be used
 *
 * When walking the list of anchors the match routine will be called
 * for each anchor to determine if that EM should be used. The last
 * anchor in the list will always match to handle any exchanges not
 * handled by other EMs. The non-default EMs would be added to the
122
 * anchor list by HW that provides offloads.
123
 */
124 125 126 127 128 129
struct fc_exch_mgr_anchor {
	struct list_head ema_list;
	struct fc_exch_mgr *mp;
	bool (*match)(struct fc_frame *);
};

130
static void fc_exch_rrq(struct fc_exch *);
131 132
static void fc_seq_ls_acc(struct fc_frame *);
static void fc_seq_ls_rjt(struct fc_frame *, enum fc_els_rjt_reason,
133
			  enum fc_els_rjt_explan);
134 135
static void fc_exch_els_rec(struct fc_frame *);
static void fc_exch_els_rrq(struct fc_frame *);
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211

/*
 * Internal implementation notes.
 *
 * The exchange manager is one by default in libfc but LLD may choose
 * to have one per CPU. The sequence manager is one per exchange manager
 * and currently never separated.
 *
 * Section 9.8 in FC-FS-2 specifies:  "The SEQ_ID is a one-byte field
 * assigned by the Sequence Initiator that shall be unique for a specific
 * D_ID and S_ID pair while the Sequence is open."   Note that it isn't
 * qualified by exchange ID, which one might think it would be.
 * In practice this limits the number of open sequences and exchanges to 256
 * per session.	 For most targets we could treat this limit as per exchange.
 *
 * The exchange and its sequence are freed when the last sequence is received.
 * It's possible for the remote port to leave an exchange open without
 * sending any sequences.
 *
 * Notes on reference counts:
 *
 * Exchanges are reference counted and exchange gets freed when the reference
 * count becomes zero.
 *
 * Timeouts:
 * Sequences are timed out for E_D_TOV and R_A_TOV.
 *
 * Sequence event handling:
 *
 * The following events may occur on initiator sequences:
 *
 *	Send.
 *	    For now, the whole thing is sent.
 *	Receive ACK
 *	    This applies only to class F.
 *	    The sequence is marked complete.
 *	ULP completion.
 *	    The upper layer calls fc_exch_done() when done
 *	    with exchange and sequence tuple.
 *	RX-inferred completion.
 *	    When we receive the next sequence on the same exchange, we can
 *	    retire the previous sequence ID.  (XXX not implemented).
 *	Timeout.
 *	    R_A_TOV frees the sequence ID.  If we're waiting for ACK,
 *	    E_D_TOV causes abort and calls upper layer response handler
 *	    with FC_EX_TIMEOUT error.
 *	Receive RJT
 *	    XXX defer.
 *	Send ABTS
 *	    On timeout.
 *
 * The following events may occur on recipient sequences:
 *
 *	Receive
 *	    Allocate sequence for first frame received.
 *	    Hold during receive handler.
 *	    Release when final frame received.
 *	    Keep status of last N of these for the ELS RES command.  XXX TBD.
 *	Receive ABTS
 *	    Deallocate sequence
 *	Send RJT
 *	    Deallocate
 *
 * For now, we neglect conditions where only part of a sequence was
 * received or transmitted, or where out-of-order receipt is detected.
 */

/*
 * Locking notes:
 *
 * The EM code run in a per-CPU worker thread.
 *
 * To protect against concurrency between a worker thread code and timers,
 * sequence allocation and deallocation must be locked.
 *  - exchange refcnt can be done atomicly without locks.
 *  - sequence allocation must be locked by exch lock.
212 213
 *  - If the EM pool lock and ex_lock must be taken at the same time, then the
 *    EM pool lock must be taken before the ex_lock.
214 215 216 217 218 219 220
 */

/*
 * opcode names for debugging.
 */
static char *fc_exch_rctl_names[] = FC_RCTL_NAMES_INIT;

221 222 223 224 225 226 227 228 229
/**
 * fc_exch_name_lookup() - Lookup name by opcode
 * @op:	       Opcode to be looked up
 * @table:     Opcode/name table
 * @max_index: Index not to be exceeded
 *
 * This routine is used to determine a human-readable string identifying
 * a R_CTL opcode.
 */
230 231 232 233 234 235 236 237 238 239 240 241
static inline const char *fc_exch_name_lookup(unsigned int op, char **table,
					      unsigned int max_index)
{
	const char *name = NULL;

	if (op < max_index)
		name = table[op];
	if (!name)
		name = "unknown";
	return name;
}

242 243 244 245
/**
 * fc_exch_rctl_name() - Wrapper routine for fc_exch_name_lookup()
 * @op: The opcode to be looked up
 */
246 247 248
static const char *fc_exch_rctl_name(unsigned int op)
{
	return fc_exch_name_lookup(op, fc_exch_rctl_names,
K
Kulikov Vasiliy 已提交
249
				   ARRAY_SIZE(fc_exch_rctl_names));
250 251
}

252 253 254
/**
 * fc_exch_hold() - Increment an exchange's reference count
 * @ep: Echange to be held
255
 */
256
static inline void fc_exch_hold(struct fc_exch *ep)
257 258 259 260
{
	atomic_inc(&ep->ex_refcnt);
}

261 262 263 264 265 266 267 268 269
/**
 * fc_exch_setup_hdr() - Initialize a FC header by initializing some fields
 *			 and determine SOF and EOF.
 * @ep:	   The exchange to that will use the header
 * @fp:	   The frame whose header is to be modified
 * @f_ctl: F_CTL bits that will be used for the frame header
 *
 * The fields initialized by this routine are: fh_ox_id, fh_rx_id,
 * fh_seq_id, fh_seq_cnt and the SOF and EOF.
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
 */
static void fc_exch_setup_hdr(struct fc_exch *ep, struct fc_frame *fp,
			      u32 f_ctl)
{
	struct fc_frame_header *fh = fc_frame_header_get(fp);
	u16 fill;

	fr_sof(fp) = ep->class;
	if (ep->seq.cnt)
		fr_sof(fp) = fc_sof_normal(ep->class);

	if (f_ctl & FC_FC_END_SEQ) {
		fr_eof(fp) = FC_EOF_T;
		if (fc_sof_needs_ack(ep->class))
			fr_eof(fp) = FC_EOF_N;
		/*
286
		 * From F_CTL.
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
		 * The number of fill bytes to make the length a 4-byte
		 * multiple is the low order 2-bits of the f_ctl.
		 * The fill itself will have been cleared by the frame
		 * allocation.
		 * After this, the length will be even, as expected by
		 * the transport.
		 */
		fill = fr_len(fp) & 3;
		if (fill) {
			fill = 4 - fill;
			/* TODO, this may be a problem with fragmented skb */
			skb_put(fp_skb(fp), fill);
			hton24(fh->fh_f_ctl, f_ctl | fill);
		}
	} else {
		WARN_ON(fr_len(fp) % 4 != 0);	/* no pad to non last frame */
		fr_eof(fp) = FC_EOF_N;
	}

306
	/* Initialize remaining fh fields from fc_fill_fc_hdr */
307 308 309 310 311 312
	fh->fh_ox_id = htons(ep->oxid);
	fh->fh_rx_id = htons(ep->rxid);
	fh->fh_seq_id = ep->seq.id;
	fh->fh_seq_cnt = htons(ep->seq.cnt);
}

313 314 315 316 317 318
/**
 * fc_exch_release() - Decrement an exchange's reference count
 * @ep: Exchange to be released
 *
 * If the reference count reaches zero and the exchange is complete,
 * it is freed.
319 320 321 322 323 324 325 326 327
 */
static void fc_exch_release(struct fc_exch *ep)
{
	struct fc_exch_mgr *mp;

	if (atomic_dec_and_test(&ep->ex_refcnt)) {
		mp = ep->em;
		if (ep->destructor)
			ep->destructor(&ep->seq, ep->arg);
328
		WARN_ON(!(ep->esb_stat & ESB_ST_COMPLETE));
329 330 331 332
		mempool_free(ep, mp->ep_pool);
	}
}

333 334 335 336
/**
 * fc_exch_timer_cancel() - cancel exch timer
 * @ep:		The exchange whose timer to be canceled
 */
337
static inline void fc_exch_timer_cancel(struct fc_exch *ep)
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
{
	if (cancel_delayed_work(&ep->timeout_work)) {
		FC_EXCH_DBG(ep, "Exchange timer canceled\n");
		atomic_dec(&ep->ex_refcnt); /* drop hold for timer */
	}
}

/**
 * fc_exch_timer_set_locked() - Start a timer for an exchange w/ the
 *				the exchange lock held
 * @ep:		The exchange whose timer will start
 * @timer_msec: The timeout period
 *
 * Used for upper level protocols to time out the exchange.
 * The timer is cancelled when it fires or when the exchange completes.
 */
static inline void fc_exch_timer_set_locked(struct fc_exch *ep,
					    unsigned int timer_msec)
{
	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
		return;

	FC_EXCH_DBG(ep, "Exchange timer armed : %d msecs\n", timer_msec);

	if (queue_delayed_work(fc_exch_workqueue, &ep->timeout_work,
			       msecs_to_jiffies(timer_msec)))
		fc_exch_hold(ep);		/* hold for timer */
}

/**
 * fc_exch_timer_set() - Lock the exchange and set the timer
 * @ep:		The exchange whose timer will start
 * @timer_msec: The timeout period
 */
static void fc_exch_timer_set(struct fc_exch *ep, unsigned int timer_msec)
{
	spin_lock_bh(&ep->ex_lock);
	fc_exch_timer_set_locked(ep, timer_msec);
	spin_unlock_bh(&ep->ex_lock);
}

379 380 381 382
/**
 * fc_exch_done_locked() - Complete an exchange with the exchange lock held
 * @ep: The exchange that is complete
 */
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
static int fc_exch_done_locked(struct fc_exch *ep)
{
	int rc = 1;

	/*
	 * We must check for completion in case there are two threads
	 * tyring to complete this. But the rrq code will reuse the
	 * ep, and in that case we only clear the resp and set it as
	 * complete, so it can be reused by the timer to send the rrq.
	 */
	ep->resp = NULL;
	if (ep->state & FC_EX_DONE)
		return rc;
	ep->esb_stat |= ESB_ST_COMPLETE;

	if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
		ep->state |= FC_EX_DONE;
400
		fc_exch_timer_cancel(ep);
401 402 403 404 405
		rc = 0;
	}
	return rc;
}

406 407 408 409 410 411 412 413 414
/**
 * fc_exch_ptr_get() - Return an exchange from an exchange pool
 * @pool:  Exchange Pool to get an exchange from
 * @index: Index of the exchange within the pool
 *
 * Use the index to get an exchange from within an exchange pool. exches
 * will point to an array of exchange pointers. The index will select
 * the exchange within the array.
 */
415 416 417 418 419 420 421
static inline struct fc_exch *fc_exch_ptr_get(struct fc_exch_pool *pool,
					      u16 index)
{
	struct fc_exch **exches = (struct fc_exch **)(pool + 1);
	return exches[index];
}

422 423 424 425 426 427
/**
 * fc_exch_ptr_set() - Assign an exchange to a slot in an exchange pool
 * @pool:  The pool to assign the exchange to
 * @index: The index in the pool where the exchange will be assigned
 * @ep:	   The exchange to assign to the pool
 */
428 429 430 431 432 433
static inline void fc_exch_ptr_set(struct fc_exch_pool *pool, u16 index,
				   struct fc_exch *ep)
{
	((struct fc_exch **)(pool + 1))[index] = ep;
}

434 435 436 437
/**
 * fc_exch_delete() - Delete an exchange
 * @ep: The exchange to be deleted
 */
438
static void fc_exch_delete(struct fc_exch *ep)
439
{
440
	struct fc_exch_pool *pool;
441
	u16 index;
442

443 444 445 446
	pool = ep->pool;
	spin_lock_bh(&pool->lock);
	WARN_ON(pool->total_exches <= 0);
	pool->total_exches--;
447 448 449 450 451 452 453 454 455 456 457

	/* update cache of free slot */
	index = (ep->xid - ep->em->min_xid) >> fc_cpu_order;
	if (pool->left == FC_XID_UNKNOWN)
		pool->left = index;
	else if (pool->right == FC_XID_UNKNOWN)
		pool->right = index;
	else
		pool->next_index = index;

	fc_exch_ptr_set(pool, index, NULL);
458
	list_del(&ep->ex_list);
459
	spin_unlock_bh(&pool->lock);
460 461 462
	fc_exch_release(ep);	/* drop hold for exch in mp */
}

463
static int fc_seq_send_locked(struct fc_lport *lport, struct fc_seq *sp,
464 465 466 467 468
		       struct fc_frame *fp)
{
	struct fc_exch *ep;
	struct fc_frame_header *fh = fc_frame_header_get(fp);
	int error;
469
	u32 f_ctl;
V
Vasu Dev 已提交
470
	u8 fh_type = fh->fh_type;
471 472

	ep = fc_seq_exch(sp);
473
	WARN_ON(!(ep->esb_stat & ESB_ST_SEQ_INIT));
474 475 476

	f_ctl = ntoh24(fh->fh_f_ctl);
	fc_exch_setup_hdr(ep, fp, f_ctl);
J
Joe Eykholt 已提交
477
	fr_encaps(fp) = ep->encaps;
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492

	/*
	 * update sequence count if this frame is carrying
	 * multiple FC frames when sequence offload is enabled
	 * by LLD.
	 */
	if (fr_max_payload(fp))
		sp->cnt += DIV_ROUND_UP((fr_len(fp) - sizeof(*fh)),
					fr_max_payload(fp));
	else
		sp->cnt++;

	/*
	 * Send the frame.
	 */
493
	error = lport->tt.frame_send(lport, fp);
494

V
Vasu Dev 已提交
495
	if (fh_type == FC_TYPE_BLS)
496
		goto out;
V
Vasu Dev 已提交
497

498 499 500 501 502 503
	/*
	 * Update the exchange and sequence flags,
	 * assuming all frames for the sequence have been sent.
	 * We can only be called to send once for each sequence.
	 */
	ep->f_ctl = f_ctl & ~FC_FC_FIRST_SEQ;	/* not first seq */
504
	if (f_ctl & FC_FC_SEQ_INIT)
505
		ep->esb_stat &= ~ESB_ST_SEQ_INIT;
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
out:
	return error;
}

/**
 * fc_seq_send() - Send a frame using existing sequence/exchange pair
 * @lport: The local port that the exchange will be sent on
 * @sp:	   The sequence to be sent
 * @fp:	   The frame to be sent on the exchange
 */
static int fc_seq_send(struct fc_lport *lport, struct fc_seq *sp,
		       struct fc_frame *fp)
{
	struct fc_exch *ep;
	int error;
	ep = fc_seq_exch(sp);
	spin_lock_bh(&ep->ex_lock);
	error = fc_seq_send_locked(lport, sp, fp);
524 525 526 527 528
	spin_unlock_bh(&ep->ex_lock);
	return error;
}

/**
529 530 531
 * fc_seq_alloc() - Allocate a sequence for a given exchange
 * @ep:	    The exchange to allocate a new sequence for
 * @seq_id: The sequence ID to be used
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
 *
 * We don't support multiple originated sequences on the same exchange.
 * By implication, any previously originated sequence on this exchange
 * is complete, and we reallocate the same sequence.
 */
static struct fc_seq *fc_seq_alloc(struct fc_exch *ep, u8 seq_id)
{
	struct fc_seq *sp;

	sp = &ep->seq;
	sp->ssb_stat = 0;
	sp->cnt = 0;
	sp->id = seq_id;
	return sp;
}

548 549 550 551 552
/**
 * fc_seq_start_next_locked() - Allocate a new sequence on the same
 *				exchange as the supplied sequence
 * @sp: The sequence/exchange to get a new sequence for
 */
553 554 555 556 557 558 559 560 561 562 563
static struct fc_seq *fc_seq_start_next_locked(struct fc_seq *sp)
{
	struct fc_exch *ep = fc_seq_exch(sp);

	sp = fc_seq_alloc(ep, ep->seq_id++);
	FC_EXCH_DBG(ep, "f_ctl %6x seq %2x\n",
		    ep->f_ctl, sp->id);
	return sp;
}

/**
564 565 566
 * fc_seq_start_next() - Lock the exchange and get a new sequence
 *			 for a given sequence/exchange pair
 * @sp: The sequence/exchange to get a new exchange for
567 568 569 570 571 572 573 574 575 576 577 578
 */
static struct fc_seq *fc_seq_start_next(struct fc_seq *sp)
{
	struct fc_exch *ep = fc_seq_exch(sp);

	spin_lock_bh(&ep->ex_lock);
	sp = fc_seq_start_next_locked(sp);
	spin_unlock_bh(&ep->ex_lock);

	return sp;
}

579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
/*
 * Set the response handler for the exchange associated with a sequence.
 */
static void fc_seq_set_resp(struct fc_seq *sp,
			    void (*resp)(struct fc_seq *, struct fc_frame *,
					 void *),
			    void *arg)
{
	struct fc_exch *ep = fc_seq_exch(sp);

	spin_lock_bh(&ep->ex_lock);
	ep->resp = resp;
	ep->arg = arg;
	spin_unlock_bh(&ep->ex_lock);
}

595
/**
V
Vasu Dev 已提交
596 597
 * fc_exch_abort_locked() - Abort an exchange
 * @ep:	The exchange to be aborted
598 599
 * @timer_msec: The period of time to wait before aborting
 *
V
Vasu Dev 已提交
600 601 602
 * Locking notes:  Called with exch lock held
 *
 * Return value: 0 on success else error code
603
 */
V
Vasu Dev 已提交
604 605
static int fc_exch_abort_locked(struct fc_exch *ep,
				unsigned int timer_msec)
606 607 608 609 610 611
{
	struct fc_seq *sp;
	struct fc_frame *fp;
	int error;

	if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL) ||
V
Vasu Dev 已提交
612
	    ep->state & (FC_EX_DONE | FC_EX_RST_CLEANUP))
613 614 615 616 617 618
		return -ENXIO;

	/*
	 * Send the abort on a new sequence if possible.
	 */
	sp = fc_seq_start_next_locked(&ep->seq);
V
Vasu Dev 已提交
619
	if (!sp)
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
		return -ENOMEM;

	ep->esb_stat |= ESB_ST_SEQ_INIT | ESB_ST_ABNORMAL;
	if (timer_msec)
		fc_exch_timer_set_locked(ep, timer_msec);

	/*
	 * If not logged into the fabric, don't send ABTS but leave
	 * sequence active until next timeout.
	 */
	if (!ep->sid)
		return 0;

	/*
	 * Send an abort for the sequence that timed out.
	 */
	fp = fc_frame_alloc(ep->lp, 0);
	if (fp) {
		fc_fill_fc_hdr(fp, FC_RCTL_BA_ABTS, ep->did, ep->sid,
			       FC_TYPE_BLS, FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
640
		error = fc_seq_send_locked(ep->lp, sp, fp);
641 642 643 644 645
	} else
		error = -ENOBUFS;
	return error;
}

V
Vasu Dev 已提交
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
/**
 * fc_seq_exch_abort() - Abort an exchange and sequence
 * @req_sp:	The sequence to be aborted
 * @timer_msec: The period of time to wait before aborting
 *
 * Generally called because of a timeout or an abort from the upper layer.
 *
 * Return value: 0 on success else error code
 */
static int fc_seq_exch_abort(const struct fc_seq *req_sp,
			     unsigned int timer_msec)
{
	struct fc_exch *ep;
	int error;

	ep = fc_seq_exch(req_sp);
	spin_lock_bh(&ep->ex_lock);
	error = fc_exch_abort_locked(ep, timer_msec);
	spin_unlock_bh(&ep->ex_lock);
	return error;
}

668 669 670
/**
 * fc_exch_timeout() - Handle exchange timer expiration
 * @work: The work_struct identifying the exchange that timed out
671 672 673 674 675 676 677 678 679 680 681
 */
static void fc_exch_timeout(struct work_struct *work)
{
	struct fc_exch *ep = container_of(work, struct fc_exch,
					  timeout_work.work);
	struct fc_seq *sp = &ep->seq;
	void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
	void *arg;
	u32 e_stat;
	int rc = 1;

682 683
	FC_EXCH_DBG(ep, "Exchange timed out\n");

684 685 686 687 688 689 690
	spin_lock_bh(&ep->ex_lock);
	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
		goto unlock;

	e_stat = ep->esb_stat;
	if (e_stat & ESB_ST_COMPLETE) {
		ep->esb_stat = e_stat & ~ESB_ST_REC_QUAL;
691
		spin_unlock_bh(&ep->ex_lock);
692 693 694 695 696 697 698 699 700 701
		if (e_stat & ESB_ST_REC_QUAL)
			fc_exch_rrq(ep);
		goto done;
	} else {
		resp = ep->resp;
		arg = ep->arg;
		ep->resp = NULL;
		if (e_stat & ESB_ST_ABNORMAL)
			rc = fc_exch_done_locked(ep);
		spin_unlock_bh(&ep->ex_lock);
702 703
		if (!rc)
			fc_exch_delete(ep);
704 705 706 707 708 709 710 711 712 713 714 715 716 717
		if (resp)
			resp(sp, ERR_PTR(-FC_EX_TIMEOUT), arg);
		fc_seq_exch_abort(sp, 2 * ep->r_a_tov);
		goto done;
	}
unlock:
	spin_unlock_bh(&ep->ex_lock);
done:
	/*
	 * This release matches the hold taken when the timer was set.
	 */
	fc_exch_release(ep);
}

718
/**
719 720 721
 * fc_exch_em_alloc() - Allocate an exchange from a specified EM.
 * @lport: The local port that the exchange is for
 * @mp:	   The exchange manager that will allocate the exchange
722
 *
723
 * Returns pointer to allocated fc_exch with exch lock held.
724
 */
725
static struct fc_exch *fc_exch_em_alloc(struct fc_lport *lport,
726
					struct fc_exch_mgr *mp)
727 728
{
	struct fc_exch *ep;
729 730 731
	unsigned int cpu;
	u16 index;
	struct fc_exch_pool *pool;
732 733 734 735 736 737 738 739 740

	/* allocate memory for exchange */
	ep = mempool_alloc(mp->ep_pool, GFP_ATOMIC);
	if (!ep) {
		atomic_inc(&mp->stats.no_free_exch);
		goto out;
	}
	memset(ep, 0, sizeof(*ep));

741
	cpu = get_cpu();
742 743
	pool = per_cpu_ptr(mp->pool, cpu);
	spin_lock_bh(&pool->lock);
744
	put_cpu();
745 746 747 748 749 750 751 752 753 754 755 756 757

	/* peek cache of free slot */
	if (pool->left != FC_XID_UNKNOWN) {
		index = pool->left;
		pool->left = FC_XID_UNKNOWN;
		goto hit;
	}
	if (pool->right != FC_XID_UNKNOWN) {
		index = pool->right;
		pool->right = FC_XID_UNKNOWN;
		goto hit;
	}

758 759 760 761 762
	index = pool->next_index;
	/* allocate new exch from pool */
	while (fc_exch_ptr_get(pool, index)) {
		index = index == mp->pool_max_index ? 0 : index + 1;
		if (index == pool->next_index)
763 764
			goto err;
	}
765
	pool->next_index = index == mp->pool_max_index ? 0 : index + 1;
766
hit:
767 768 769 770 771 772 773 774 775
	fc_exch_hold(ep);	/* hold for exch in mp */
	spin_lock_init(&ep->ex_lock);
	/*
	 * Hold exch lock for caller to prevent fc_exch_reset()
	 * from releasing exch	while fc_exch_alloc() caller is
	 * still working on exch.
	 */
	spin_lock_bh(&ep->ex_lock);

776 777
	fc_exch_ptr_set(pool, index, ep);
	list_add_tail(&ep->ex_list, &pool->ex_list);
778
	fc_seq_alloc(ep, ep->seq_id++);
779 780
	pool->total_exches++;
	spin_unlock_bh(&pool->lock);
781 782 783 784

	/*
	 *  update exchange
	 */
785
	ep->oxid = ep->xid = (index << fc_cpu_order | cpu) + mp->min_xid;
786
	ep->em = mp;
787
	ep->pool = pool;
788
	ep->lp = lport;
789 790 791 792 793 794 795
	ep->f_ctl = FC_FC_FIRST_SEQ;	/* next seq is first seq */
	ep->rxid = FC_XID_UNKNOWN;
	ep->class = mp->class;
	INIT_DELAYED_WORK(&ep->timeout_work, fc_exch_timeout);
out:
	return ep;
err:
796
	spin_unlock_bh(&pool->lock);
797 798 799 800
	atomic_inc(&mp->stats.no_free_exch_xid);
	mempool_free(ep, mp->ep_pool);
	return NULL;
}
801 802

/**
803 804 805 806
 * fc_exch_alloc() - Allocate an exchange from an EM on a
 *		     local port's list of EMs.
 * @lport: The local port that will own the exchange
 * @fp:	   The FC frame that the exchange will be for
807
 *
808 809 810 811
 * This function walks the list of exchange manager(EM)
 * anchors to select an EM for a new exchange allocation. The
 * EM is selected when a NULL match function pointer is encountered
 * or when a call to a match function returns true.
812
 */
813 814
static inline struct fc_exch *fc_exch_alloc(struct fc_lport *lport,
					    struct fc_frame *fp)
815 816 817
{
	struct fc_exch_mgr_anchor *ema;

818 819 820
	list_for_each_entry(ema, &lport->ema_list, ema_list)
		if (!ema->match || ema->match(fp))
			return fc_exch_em_alloc(lport, ema->mp);
821 822
	return NULL;
}
823

824 825 826 827
/**
 * fc_exch_find() - Lookup and hold an exchange
 * @mp:	 The exchange manager to lookup the exchange from
 * @xid: The XID of the exchange to look up
828 829 830
 */
static struct fc_exch *fc_exch_find(struct fc_exch_mgr *mp, u16 xid)
{
831
	struct fc_exch_pool *pool;
832 833 834
	struct fc_exch *ep = NULL;

	if ((xid >= mp->min_xid) && (xid <= mp->max_xid)) {
835 836 837
		pool = per_cpu_ptr(mp->pool, xid & fc_cpu_mask);
		spin_lock_bh(&pool->lock);
		ep = fc_exch_ptr_get(pool, (xid - mp->min_xid) >> fc_cpu_order);
838
		if (ep && ep->xid == xid)
839
			fc_exch_hold(ep);
840
		spin_unlock_bh(&pool->lock);
841 842 843 844
	}
	return ep;
}

845 846 847

/**
 * fc_exch_done() - Indicate that an exchange/sequence tuple is complete and
848 849
 *		    the memory allocated for the related objects may be freed.
 * @sp: The sequence that has completed
850 851
 */
static void fc_exch_done(struct fc_seq *sp)
852 853 854 855 856 857 858 859
{
	struct fc_exch *ep = fc_seq_exch(sp);
	int rc;

	spin_lock_bh(&ep->ex_lock);
	rc = fc_exch_done_locked(ep);
	spin_unlock_bh(&ep->ex_lock);
	if (!rc)
860
		fc_exch_delete(ep);
861 862
}

863 864 865 866 867 868
/**
 * fc_exch_resp() - Allocate a new exchange for a response frame
 * @lport: The local port that the exchange was for
 * @mp:	   The exchange manager to allocate the exchange from
 * @fp:	   The response frame
 *
869 870
 * Sets the responder ID in the frame header.
 */
871 872 873
static struct fc_exch *fc_exch_resp(struct fc_lport *lport,
				    struct fc_exch_mgr *mp,
				    struct fc_frame *fp)
874 875 876 877
{
	struct fc_exch *ep;
	struct fc_frame_header *fh;

878
	ep = fc_exch_alloc(lport, fp);
879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
	if (ep) {
		ep->class = fc_frame_class(fp);

		/*
		 * Set EX_CTX indicating we're responding on this exchange.
		 */
		ep->f_ctl |= FC_FC_EX_CTX;	/* we're responding */
		ep->f_ctl &= ~FC_FC_FIRST_SEQ;	/* not new */
		fh = fc_frame_header_get(fp);
		ep->sid = ntoh24(fh->fh_d_id);
		ep->did = ntoh24(fh->fh_s_id);
		ep->oid = ep->did;

		/*
		 * Allocated exchange has placed the XID in the
		 * originator field. Move it to the responder field,
		 * and set the originator XID from the frame.
		 */
		ep->rxid = ep->xid;
		ep->oxid = ntohs(fh->fh_ox_id);
		ep->esb_stat |= ESB_ST_RESP | ESB_ST_SEQ_INIT;
		if ((ntoh24(fh->fh_f_ctl) & FC_FC_SEQ_INIT) == 0)
			ep->esb_stat &= ~ESB_ST_SEQ_INIT;

		fc_exch_hold(ep);	/* hold for caller */
904
		spin_unlock_bh(&ep->ex_lock);	/* lock from fc_exch_alloc */
905 906 907 908
	}
	return ep;
}

909 910 911 912 913 914 915
/**
 * fc_seq_lookup_recip() - Find a sequence where the other end
 *			   originated the sequence
 * @lport: The local port that the frame was sent to
 * @mp:	   The Exchange Manager to lookup the exchange from
 * @fp:	   The frame associated with the sequence we're looking for
 *
916 917 918
 * If fc_pf_rjt_reason is FC_RJT_NONE then this function will have a hold
 * on the ep that should be released by the caller.
 */
919 920
static enum fc_pf_rjt_reason fc_seq_lookup_recip(struct fc_lport *lport,
						 struct fc_exch_mgr *mp,
921
						 struct fc_frame *fp)
922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
{
	struct fc_frame_header *fh = fc_frame_header_get(fp);
	struct fc_exch *ep = NULL;
	struct fc_seq *sp = NULL;
	enum fc_pf_rjt_reason reject = FC_RJT_NONE;
	u32 f_ctl;
	u16 xid;

	f_ctl = ntoh24(fh->fh_f_ctl);
	WARN_ON((f_ctl & FC_FC_SEQ_CTX) != 0);

	/*
	 * Lookup or create the exchange if we will be creating the sequence.
	 */
	if (f_ctl & FC_FC_EX_CTX) {
		xid = ntohs(fh->fh_ox_id);	/* we originated exch */
		ep = fc_exch_find(mp, xid);
		if (!ep) {
			atomic_inc(&mp->stats.xid_not_found);
			reject = FC_RJT_OX_ID;
			goto out;
		}
		if (ep->rxid == FC_XID_UNKNOWN)
			ep->rxid = ntohs(fh->fh_rx_id);
		else if (ep->rxid != ntohs(fh->fh_rx_id)) {
			reject = FC_RJT_OX_ID;
			goto rel;
		}
	} else {
		xid = ntohs(fh->fh_rx_id);	/* we are the responder */

		/*
		 * Special case for MDS issuing an ELS TEST with a
		 * bad rxid of 0.
		 * XXX take this out once we do the proper reject.
		 */
		if (xid == 0 && fh->fh_r_ctl == FC_RCTL_ELS_REQ &&
		    fc_frame_payload_op(fp) == ELS_TEST) {
			fh->fh_rx_id = htons(FC_XID_UNKNOWN);
			xid = FC_XID_UNKNOWN;
		}

		/*
		 * new sequence - find the exchange
		 */
		ep = fc_exch_find(mp, xid);
		if ((f_ctl & FC_FC_FIRST_SEQ) && fc_sof_is_init(fr_sof(fp))) {
			if (ep) {
				atomic_inc(&mp->stats.xid_busy);
				reject = FC_RJT_RX_ID;
				goto rel;
			}
974
			ep = fc_exch_resp(lport, mp, fp);
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
			if (!ep) {
				reject = FC_RJT_EXCH_EST;	/* XXX */
				goto out;
			}
			xid = ep->xid;	/* get our XID */
		} else if (!ep) {
			atomic_inc(&mp->stats.xid_not_found);
			reject = FC_RJT_RX_ID;	/* XID not found */
			goto out;
		}
	}

	/*
	 * At this point, we have the exchange held.
	 * Find or create the sequence.
	 */
	if (fc_sof_is_init(fr_sof(fp))) {
992
		sp = &ep->seq;
993
		sp->ssb_stat |= SSB_ST_RESP;
994
		sp->id = fh->fh_seq_id;
995 996 997 998
	} else {
		sp = &ep->seq;
		if (sp->id != fh->fh_seq_id) {
			atomic_inc(&mp->stats.seq_not_found);
999 1000 1001 1002
			if (f_ctl & FC_FC_END_SEQ) {
				/*
				 * Update sequence_id based on incoming last
				 * frame of sequence exchange. This is needed
1003
				 * for FC target where DDP has been used
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
				 * on target where, stack is indicated only
				 * about last frame's (payload _header) header.
				 * Whereas "seq_id" which is part of
				 * frame_header is allocated by initiator
				 * which is totally different from "seq_id"
				 * allocated when XFER_RDY was sent by target.
				 * To avoid false -ve which results into not
				 * sending RSP, hence write request on other
				 * end never finishes.
				 */
				spin_lock_bh(&ep->ex_lock);
				sp->ssb_stat |= SSB_ST_RESP;
				sp->id = fh->fh_seq_id;
				spin_unlock_bh(&ep->ex_lock);
			} else {
				/* sequence/exch should exist */
				reject = FC_RJT_SEQ_ID;
				goto rel;
			}
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
		}
	}
	WARN_ON(ep != fc_seq_exch(sp));

	if (f_ctl & FC_FC_SEQ_INIT)
		ep->esb_stat |= ESB_ST_SEQ_INIT;

	fr_seq(fp) = sp;
out:
	return reject;
rel:
	fc_exch_done(&ep->seq);
	fc_exch_release(ep);	/* hold from fc_exch_find/fc_exch_resp */
	return reject;
}

1039 1040 1041 1042 1043 1044
/**
 * fc_seq_lookup_orig() - Find a sequence where this end
 *			  originated the sequence
 * @mp:	   The Exchange Manager to lookup the exchange from
 * @fp:	   The frame associated with the sequence we're looking for
 *
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
 * Does not hold the sequence for the caller.
 */
static struct fc_seq *fc_seq_lookup_orig(struct fc_exch_mgr *mp,
					 struct fc_frame *fp)
{
	struct fc_frame_header *fh = fc_frame_header_get(fp);
	struct fc_exch *ep;
	struct fc_seq *sp = NULL;
	u32 f_ctl;
	u16 xid;

	f_ctl = ntoh24(fh->fh_f_ctl);
	WARN_ON((f_ctl & FC_FC_SEQ_CTX) != FC_FC_SEQ_CTX);
	xid = ntohs((f_ctl & FC_FC_EX_CTX) ? fh->fh_ox_id : fh->fh_rx_id);
	ep = fc_exch_find(mp, xid);
	if (!ep)
		return NULL;
	if (ep->seq.id == fh->fh_seq_id) {
		/*
		 * Save the RX_ID if we didn't previously know it.
		 */
		sp = &ep->seq;
		if ((f_ctl & FC_FC_EX_CTX) != 0 &&
		    ep->rxid == FC_XID_UNKNOWN) {
			ep->rxid = ntohs(fh->fh_rx_id);
		}
	}
	fc_exch_release(ep);
	return sp;
}

1076 1077 1078 1079 1080 1081
/**
 * fc_exch_set_addr() - Set the source and destination IDs for an exchange
 * @ep:	     The exchange to set the addresses for
 * @orig_id: The originator's ID
 * @resp_id: The responder's ID
 *
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
 * Note this must be done before the first sequence of the exchange is sent.
 */
static void fc_exch_set_addr(struct fc_exch *ep,
			     u32 orig_id, u32 resp_id)
{
	ep->oid = orig_id;
	if (ep->esb_stat & ESB_ST_RESP) {
		ep->sid = resp_id;
		ep->did = orig_id;
	} else {
		ep->sid = orig_id;
		ep->did = resp_id;
	}
}

1097
/**
L
Lucas De Marchi 已提交
1098
 * fc_seq_els_rsp_send() - Send an ELS response using information from
1099
 *			   the existing sequence/exchange.
1100
 * @fp:	      The received frame
1101 1102
 * @els_cmd:  The ELS command to be sent
 * @els_data: The ELS data to be sent
1103 1104
 *
 * The received frame is not freed.
1105
 */
1106
static void fc_seq_els_rsp_send(struct fc_frame *fp, enum fc_els_cmd els_cmd,
1107
				struct fc_seq_els_data *els_data)
1108 1109 1110
{
	switch (els_cmd) {
	case ELS_LS_RJT:
1111
		fc_seq_ls_rjt(fp, els_data->reason, els_data->explan);
1112 1113
		break;
	case ELS_LS_ACC:
1114
		fc_seq_ls_acc(fp);
1115 1116
		break;
	case ELS_RRQ:
1117
		fc_exch_els_rrq(fp);
1118 1119
		break;
	case ELS_REC:
1120
		fc_exch_els_rec(fp);
1121 1122
		break;
	default:
1123
		FC_LPORT_DBG(fr_dev(fp), "Invalid ELS CMD:%x\n", els_cmd);
1124 1125 1126
	}
}

1127 1128 1129 1130 1131 1132
/**
 * fc_seq_send_last() - Send a sequence that is the last in the exchange
 * @sp:	     The sequence that is to be sent
 * @fp:	     The frame that will be sent on the sequence
 * @rctl:    The R_CTL information to be sent
 * @fh_type: The frame header type
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
 */
static void fc_seq_send_last(struct fc_seq *sp, struct fc_frame *fp,
			     enum fc_rctl rctl, enum fc_fh_type fh_type)
{
	u32 f_ctl;
	struct fc_exch *ep = fc_seq_exch(sp);

	f_ctl = FC_FC_LAST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT;
	f_ctl |= ep->f_ctl;
	fc_fill_fc_hdr(fp, rctl, ep->did, ep->sid, fh_type, f_ctl, 0);
1143
	fc_seq_send_locked(ep->lp, sp, fp);
1144 1145
}

1146 1147 1148 1149 1150
/**
 * fc_seq_send_ack() - Send an acknowledgement that we've received a frame
 * @sp:	   The sequence to send the ACK on
 * @rx_fp: The received frame that is being acknoledged
 *
1151 1152 1153 1154 1155 1156 1157 1158
 * Send ACK_1 (or equiv.) indicating we received something.
 */
static void fc_seq_send_ack(struct fc_seq *sp, const struct fc_frame *rx_fp)
{
	struct fc_frame *fp;
	struct fc_frame_header *rx_fh;
	struct fc_frame_header *fh;
	struct fc_exch *ep = fc_seq_exch(sp);
1159
	struct fc_lport *lport = ep->lp;
1160 1161 1162 1163 1164 1165
	unsigned int f_ctl;

	/*
	 * Don't send ACKs for class 3.
	 */
	if (fc_sof_needs_ack(fr_sof(rx_fp))) {
1166
		fp = fc_frame_alloc(lport, 0);
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
		if (!fp)
			return;

		fh = fc_frame_header_get(fp);
		fh->fh_r_ctl = FC_RCTL_ACK_1;
		fh->fh_type = FC_TYPE_BLS;

		/*
		 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
		 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
		 * Bits 9-8 are meaningful (retransmitted or unidirectional).
		 * Last ACK uses bits 7-6 (continue sequence),
		 * bits 5-4 are meaningful (what kind of ACK to use).
		 */
		rx_fh = fc_frame_header_get(rx_fp);
		f_ctl = ntoh24(rx_fh->fh_f_ctl);
		f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
			FC_FC_FIRST_SEQ | FC_FC_LAST_SEQ |
			FC_FC_END_SEQ | FC_FC_END_CONN | FC_FC_SEQ_INIT |
			FC_FC_RETX_SEQ | FC_FC_UNI_TX;
		f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
		hton24(fh->fh_f_ctl, f_ctl);

		fc_exch_setup_hdr(ep, fp, f_ctl);
		fh->fh_seq_id = rx_fh->fh_seq_id;
		fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
		fh->fh_parm_offset = htonl(1);	/* ack single frame */

		fr_sof(fp) = fr_sof(rx_fp);
		if (f_ctl & FC_FC_END_SEQ)
			fr_eof(fp) = FC_EOF_T;
		else
			fr_eof(fp) = FC_EOF_N;

1201
		lport->tt.frame_send(lport, fp);
1202 1203 1204
	}
}

1205 1206 1207 1208
/**
 * fc_exch_send_ba_rjt() - Send BLS Reject
 * @rx_fp:  The frame being rejected
 * @reason: The reason the frame is being rejected
L
Lucas De Marchi 已提交
1209
 * @explan: The explanation for the rejection
1210
 *
1211 1212
 * This is for rejecting BA_ABTS only.
 */
1213 1214 1215
static void fc_exch_send_ba_rjt(struct fc_frame *rx_fp,
				enum fc_ba_rjt_reason reason,
				enum fc_ba_rjt_explan explan)
1216 1217 1218 1219 1220
{
	struct fc_frame *fp;
	struct fc_frame_header *rx_fh;
	struct fc_frame_header *fh;
	struct fc_ba_rjt *rp;
1221
	struct fc_lport *lport;
1222 1223
	unsigned int f_ctl;

1224 1225
	lport = fr_dev(rx_fp);
	fp = fc_frame_alloc(lport, sizeof(*rp));
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
	if (!fp)
		return;
	fh = fc_frame_header_get(fp);
	rx_fh = fc_frame_header_get(rx_fp);

	memset(fh, 0, sizeof(*fh) + sizeof(*rp));

	rp = fc_frame_payload_get(fp, sizeof(*rp));
	rp->br_reason = reason;
	rp->br_explan = explan;

	/*
	 * seq_id, cs_ctl, df_ctl and param/offset are zero.
	 */
	memcpy(fh->fh_s_id, rx_fh->fh_d_id, 3);
	memcpy(fh->fh_d_id, rx_fh->fh_s_id, 3);
1242 1243
	fh->fh_ox_id = rx_fh->fh_ox_id;
	fh->fh_rx_id = rx_fh->fh_rx_id;
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
	fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
	fh->fh_r_ctl = FC_RCTL_BA_RJT;
	fh->fh_type = FC_TYPE_BLS;

	/*
	 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
	 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
	 * Bits 9-8 are meaningful (retransmitted or unidirectional).
	 * Last ACK uses bits 7-6 (continue sequence),
	 * bits 5-4 are meaningful (what kind of ACK to use).
	 * Always set LAST_SEQ, END_SEQ.
	 */
	f_ctl = ntoh24(rx_fh->fh_f_ctl);
	f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
		FC_FC_END_CONN | FC_FC_SEQ_INIT |
		FC_FC_RETX_SEQ | FC_FC_UNI_TX;
	f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
	f_ctl |= FC_FC_LAST_SEQ | FC_FC_END_SEQ;
	f_ctl &= ~FC_FC_FIRST_SEQ;
	hton24(fh->fh_f_ctl, f_ctl);

	fr_sof(fp) = fc_sof_class(fr_sof(rx_fp));
	fr_eof(fp) = FC_EOF_T;
	if (fc_sof_needs_ack(fr_sof(fp)))
		fr_eof(fp) = FC_EOF_N;

1270
	lport->tt.frame_send(lport, fp);
1271 1272
}

1273 1274 1275 1276 1277 1278 1279 1280
/**
 * fc_exch_recv_abts() - Handle an incoming ABTS
 * @ep:	   The exchange the abort was on
 * @rx_fp: The ABTS frame
 *
 * This would be for target mode usually, but could be due to lost
 * FCP transfer ready, confirm or RRQ. We always handle this as an
 * exchange abort, ignoring the parameter.
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
 */
static void fc_exch_recv_abts(struct fc_exch *ep, struct fc_frame *rx_fp)
{
	struct fc_frame *fp;
	struct fc_ba_acc *ap;
	struct fc_frame_header *fh;
	struct fc_seq *sp;

	if (!ep)
		goto reject;
	spin_lock_bh(&ep->ex_lock);
	if (ep->esb_stat & ESB_ST_COMPLETE) {
		spin_unlock_bh(&ep->ex_lock);
		goto reject;
	}
	if (!(ep->esb_stat & ESB_ST_REC_QUAL))
		fc_exch_hold(ep);		/* hold for REC_QUAL */
	ep->esb_stat |= ESB_ST_ABNORMAL | ESB_ST_REC_QUAL;
	fc_exch_timer_set_locked(ep, ep->r_a_tov);

	fp = fc_frame_alloc(ep->lp, sizeof(*ap));
	if (!fp) {
		spin_unlock_bh(&ep->ex_lock);
		goto free;
	}
	fh = fc_frame_header_get(fp);
	ap = fc_frame_payload_get(fp, sizeof(*ap));
	memset(ap, 0, sizeof(*ap));
	sp = &ep->seq;
	ap->ba_high_seq_cnt = htons(0xffff);
	if (sp->ssb_stat & SSB_ST_RESP) {
		ap->ba_seq_id = sp->id;
		ap->ba_seq_id_val = FC_BA_SEQ_ID_VAL;
		ap->ba_high_seq_cnt = fh->fh_seq_cnt;
		ap->ba_low_seq_cnt = htons(sp->cnt);
	}
1317
	sp = fc_seq_start_next_locked(sp);
1318
	fc_seq_send_last(sp, fp, FC_RCTL_BA_ACC, FC_TYPE_BLS);
1319
	spin_unlock_bh(&ep->ex_lock);
1320 1321 1322 1323 1324 1325 1326 1327 1328
	fc_frame_free(rx_fp);
	return;

reject:
	fc_exch_send_ba_rjt(rx_fp, FC_BA_RJT_UNABLE, FC_BA_RJT_INV_XID);
free:
	fc_frame_free(rx_fp);
}

1329 1330 1331 1332 1333 1334
/**
 * fc_seq_assign() - Assign exchange and sequence for incoming request
 * @lport: The local port that received the request
 * @fp:    The request frame
 *
 * On success, the sequence pointer will be returned and also in fr_seq(@fp).
1335 1336
 * A reference will be held on the exchange/sequence for the caller, which
 * must call fc_seq_release().
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
 */
static struct fc_seq *fc_seq_assign(struct fc_lport *lport, struct fc_frame *fp)
{
	struct fc_exch_mgr_anchor *ema;

	WARN_ON(lport != fr_dev(fp));
	WARN_ON(fr_seq(fp));
	fr_seq(fp) = NULL;

	list_for_each_entry(ema, &lport->ema_list, ema_list)
		if ((!ema->match || ema->match(fp)) &&
1348
		    fc_seq_lookup_recip(lport, ema->mp, fp) == FC_RJT_NONE)
1349 1350 1351 1352
			break;
	return fr_seq(fp);
}

1353 1354 1355 1356 1357 1358 1359 1360 1361
/**
 * fc_seq_release() - Release the hold
 * @sp:    The sequence.
 */
static void fc_seq_release(struct fc_seq *sp)
{
	fc_exch_release(fc_seq_exch(sp));
}

1362
/**
1363
 * fc_exch_recv_req() - Handler for an incoming request
1364 1365 1366
 * @lport: The local port that received the request
 * @mp:	   The EM that the exchange is on
 * @fp:	   The request frame
1367 1368 1369
 *
 * This is used when the other end is originating the exchange
 * and the sequence.
1370
 */
1371
static void fc_exch_recv_req(struct fc_lport *lport, struct fc_exch_mgr *mp,
1372 1373 1374 1375 1376 1377 1378
			     struct fc_frame *fp)
{
	struct fc_frame_header *fh = fc_frame_header_get(fp);
	struct fc_seq *sp = NULL;
	struct fc_exch *ep = NULL;
	enum fc_pf_rjt_reason reject;

1379 1380 1381
	/* We can have the wrong fc_lport at this point with NPIV, which is a
	 * problem now that we know a new exchange needs to be allocated
	 */
1382 1383
	lport = fc_vport_id_lookup(lport, ntoh24(fh->fh_d_id));
	if (!lport) {
1384 1385 1386
		fc_frame_free(fp);
		return;
	}
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
	fr_dev(fp) = lport;

	BUG_ON(fr_seq(fp));		/* XXX remove later */

	/*
	 * If the RX_ID is 0xffff, don't allocate an exchange.
	 * The upper-level protocol may request one later, if needed.
	 */
	if (fh->fh_rx_id == htons(FC_XID_UNKNOWN))
		return lport->tt.lport_recv(lport, fp);
1397

1398
	reject = fc_seq_lookup_recip(lport, mp, fp);
1399 1400 1401 1402
	if (reject == FC_RJT_NONE) {
		sp = fr_seq(fp);	/* sequence will be held */
		ep = fc_seq_exch(sp);
		fc_seq_send_ack(sp, fp);
J
Joe Eykholt 已提交
1403
		ep->encaps = fr_encaps(fp);
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418

		/*
		 * Call the receive function.
		 *
		 * The receive function may allocate a new sequence
		 * over the old one, so we shouldn't change the
		 * sequence after this.
		 *
		 * The frame will be freed by the receive function.
		 * If new exch resp handler is valid then call that
		 * first.
		 */
		if (ep->resp)
			ep->resp(sp, fp, ep->arg);
		else
1419
			lport->tt.lport_recv(lport, fp);
1420 1421
		fc_exch_release(ep);	/* release from lookup */
	} else {
1422 1423
		FC_LPORT_DBG(lport, "exch/seq lookup failed: reject %x\n",
			     reject);
1424 1425 1426 1427
		fc_frame_free(fp);
	}
}

1428 1429 1430 1431 1432 1433
/**
 * fc_exch_recv_seq_resp() - Handler for an incoming response where the other
 *			     end is the originator of the sequence that is a
 *			     response to our initial exchange
 * @mp: The EM that the exchange is on
 * @fp: The response frame
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
 */
static void fc_exch_recv_seq_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
{
	struct fc_frame_header *fh = fc_frame_header_get(fp);
	struct fc_seq *sp;
	struct fc_exch *ep;
	enum fc_sof sof;
	u32 f_ctl;
	void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
	void *ex_resp_arg;
	int rc;

	ep = fc_exch_find(mp, ntohs(fh->fh_ox_id));
	if (!ep) {
		atomic_inc(&mp->stats.xid_not_found);
		goto out;
	}
1451 1452
	if (ep->esb_stat & ESB_ST_COMPLETE) {
		atomic_inc(&mp->stats.xid_not_found);
1453
		goto rel;
1454
	}
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
	if (ep->rxid == FC_XID_UNKNOWN)
		ep->rxid = ntohs(fh->fh_rx_id);
	if (ep->sid != 0 && ep->sid != ntoh24(fh->fh_d_id)) {
		atomic_inc(&mp->stats.xid_not_found);
		goto rel;
	}
	if (ep->did != ntoh24(fh->fh_s_id) &&
	    ep->did != FC_FID_FLOGI) {
		atomic_inc(&mp->stats.xid_not_found);
		goto rel;
	}
	sof = fr_sof(fp);
1467
	sp = &ep->seq;
1468
	if (fc_sof_is_init(sof)) {
1469
		sp->ssb_stat |= SSB_ST_RESP;
1470 1471 1472 1473
		sp->id = fh->fh_seq_id;
	} else if (sp->id != fh->fh_seq_id) {
		atomic_inc(&mp->stats.seq_not_found);
		goto rel;
1474
	}
1475

1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
	f_ctl = ntoh24(fh->fh_f_ctl);
	fr_seq(fp) = sp;
	if (f_ctl & FC_FC_SEQ_INIT)
		ep->esb_stat |= ESB_ST_SEQ_INIT;

	if (fc_sof_needs_ack(sof))
		fc_seq_send_ack(sp, fp);
	resp = ep->resp;
	ex_resp_arg = ep->arg;

	if (fh->fh_type != FC_TYPE_FCP && fr_eof(fp) == FC_EOF_T &&
	    (f_ctl & (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) ==
	    (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) {
		spin_lock_bh(&ep->ex_lock);
1490
		resp = ep->resp;
1491 1492 1493 1494
		rc = fc_exch_done_locked(ep);
		WARN_ON(fc_seq_exch(sp) != ep);
		spin_unlock_bh(&ep->ex_lock);
		if (!rc)
1495
			fc_exch_delete(ep);
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
	}

	/*
	 * Call the receive function.
	 * The sequence is held (has a refcnt) for us,
	 * but not for the receive function.
	 *
	 * The receive function may allocate a new sequence
	 * over the old one, so we shouldn't change the
	 * sequence after this.
	 *
	 * The frame will be freed by the receive function.
	 * If new exch resp handler is valid then call that
	 * first.
	 */
	if (resp)
		resp(sp, fp, ex_resp_arg);
	else
		fc_frame_free(fp);
	fc_exch_release(ep);
	return;
rel:
	fc_exch_release(ep);
out:
	fc_frame_free(fp);
}

1523 1524 1525 1526 1527
/**
 * fc_exch_recv_resp() - Handler for a sequence where other end is
 *			 responding to our sequence
 * @mp: The EM that the exchange is on
 * @fp: The response frame
1528 1529 1530 1531 1532 1533
 */
static void fc_exch_recv_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
{
	struct fc_seq *sp;

	sp = fc_seq_lookup_orig(mp, fp);	/* doesn't hold sequence */
1534 1535

	if (!sp)
1536
		atomic_inc(&mp->stats.xid_not_found);
1537
	else
1538
		atomic_inc(&mp->stats.non_bls_resp);
1539

1540 1541 1542
	fc_frame_free(fp);
}

1543 1544 1545 1546 1547 1548 1549
/**
 * fc_exch_abts_resp() - Handler for a response to an ABT
 * @ep: The exchange that the frame is on
 * @fp: The response frame
 *
 * This response would be to an ABTS cancelling an exchange or sequence.
 * The response can be either BA_ACC or BA_RJT
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
 */
static void fc_exch_abts_resp(struct fc_exch *ep, struct fc_frame *fp)
{
	void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
	void *ex_resp_arg;
	struct fc_frame_header *fh;
	struct fc_ba_acc *ap;
	struct fc_seq *sp;
	u16 low;
	u16 high;
	int rc = 1, has_rec = 0;

	fh = fc_frame_header_get(fp);
1563 1564
	FC_EXCH_DBG(ep, "exch: BLS rctl %x - %s\n", fh->fh_r_ctl,
		    fc_exch_rctl_name(fh->fh_r_ctl));
1565

1566
	if (cancel_delayed_work_sync(&ep->timeout_work)) {
1567
		FC_EXCH_DBG(ep, "Exchange timer canceled due to ABTS response\n");
1568
		fc_exch_release(ep);	/* release from pending timer hold */
1569
	}
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613

	spin_lock_bh(&ep->ex_lock);
	switch (fh->fh_r_ctl) {
	case FC_RCTL_BA_ACC:
		ap = fc_frame_payload_get(fp, sizeof(*ap));
		if (!ap)
			break;

		/*
		 * Decide whether to establish a Recovery Qualifier.
		 * We do this if there is a non-empty SEQ_CNT range and
		 * SEQ_ID is the same as the one we aborted.
		 */
		low = ntohs(ap->ba_low_seq_cnt);
		high = ntohs(ap->ba_high_seq_cnt);
		if ((ep->esb_stat & ESB_ST_REC_QUAL) == 0 &&
		    (ap->ba_seq_id_val != FC_BA_SEQ_ID_VAL ||
		     ap->ba_seq_id == ep->seq_id) && low != high) {
			ep->esb_stat |= ESB_ST_REC_QUAL;
			fc_exch_hold(ep);  /* hold for recovery qualifier */
			has_rec = 1;
		}
		break;
	case FC_RCTL_BA_RJT:
		break;
	default:
		break;
	}

	resp = ep->resp;
	ex_resp_arg = ep->arg;

	/* do we need to do some other checks here. Can we reuse more of
	 * fc_exch_recv_seq_resp
	 */
	sp = &ep->seq;
	/*
	 * do we want to check END_SEQ as well as LAST_SEQ here?
	 */
	if (ep->fh_type != FC_TYPE_FCP &&
	    ntoh24(fh->fh_f_ctl) & FC_FC_LAST_SEQ)
		rc = fc_exch_done_locked(ep);
	spin_unlock_bh(&ep->ex_lock);
	if (!rc)
1614
		fc_exch_delete(ep);
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625

	if (resp)
		resp(sp, fp, ex_resp_arg);
	else
		fc_frame_free(fp);

	if (has_rec)
		fc_exch_timer_set(ep, ep->r_a_tov);

}

1626 1627 1628 1629 1630 1631
/**
 * fc_exch_recv_bls() - Handler for a BLS sequence
 * @mp: The EM that the exchange is on
 * @fp: The request frame
 *
 * The BLS frame is always a sequence initiated by the remote side.
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
 * We may be either the originator or recipient of the exchange.
 */
static void fc_exch_recv_bls(struct fc_exch_mgr *mp, struct fc_frame *fp)
{
	struct fc_frame_header *fh;
	struct fc_exch *ep;
	u32 f_ctl;

	fh = fc_frame_header_get(fp);
	f_ctl = ntoh24(fh->fh_f_ctl);
	fr_seq(fp) = NULL;

	ep = fc_exch_find(mp, (f_ctl & FC_FC_EX_CTX) ?
			  ntohs(fh->fh_ox_id) : ntohs(fh->fh_rx_id));
	if (ep && (f_ctl & FC_FC_SEQ_INIT)) {
		spin_lock_bh(&ep->ex_lock);
		ep->esb_stat |= ESB_ST_SEQ_INIT;
		spin_unlock_bh(&ep->ex_lock);
	}
	if (f_ctl & FC_FC_SEQ_CTX) {
		/*
		 * A response to a sequence we initiated.
		 * This should only be ACKs for class 2 or F.
		 */
		switch (fh->fh_r_ctl) {
		case FC_RCTL_ACK_1:
		case FC_RCTL_ACK_0:
			break;
		default:
1661 1662 1663 1664
			if (ep)
				FC_EXCH_DBG(ep, "BLS rctl %x - %s received",
					    fh->fh_r_ctl,
					    fc_exch_rctl_name(fh->fh_r_ctl));
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
			break;
		}
		fc_frame_free(fp);
	} else {
		switch (fh->fh_r_ctl) {
		case FC_RCTL_BA_RJT:
		case FC_RCTL_BA_ACC:
			if (ep)
				fc_exch_abts_resp(ep, fp);
			else
				fc_frame_free(fp);
			break;
		case FC_RCTL_BA_ABTS:
			fc_exch_recv_abts(ep, fp);
			break;
		default:			/* ignore junk */
			fc_frame_free(fp);
			break;
		}
	}
	if (ep)
		fc_exch_release(ep);	/* release hold taken by fc_exch_find */
}

1689 1690
/**
 * fc_seq_ls_acc() - Accept sequence with LS_ACC
1691
 * @rx_fp: The received frame, not freed here.
1692
 *
1693 1694 1695
 * If this fails due to allocation or transmit congestion, assume the
 * originator will repeat the sequence.
 */
1696
static void fc_seq_ls_acc(struct fc_frame *rx_fp)
1697
{
1698
	struct fc_lport *lport;
1699 1700 1701
	struct fc_els_ls_acc *acc;
	struct fc_frame *fp;

1702 1703 1704 1705 1706 1707 1708 1709 1710
	lport = fr_dev(rx_fp);
	fp = fc_frame_alloc(lport, sizeof(*acc));
	if (!fp)
		return;
	acc = fc_frame_payload_get(fp, sizeof(*acc));
	memset(acc, 0, sizeof(*acc));
	acc->la_cmd = ELS_LS_ACC;
	fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
	lport->tt.frame_send(lport, fp);
1711 1712
}

1713 1714
/**
 * fc_seq_ls_rjt() - Reject a sequence with ELS LS_RJT
1715
 * @rx_fp: The received frame, not freed here.
1716
 * @reason: The reason the sequence is being rejected
1717
 * @explan: The explanation for the rejection
1718
 *
1719 1720 1721
 * If this fails due to allocation or transmit congestion, assume the
 * originator will repeat the sequence.
 */
1722
static void fc_seq_ls_rjt(struct fc_frame *rx_fp, enum fc_els_rjt_reason reason,
1723 1724
			  enum fc_els_rjt_explan explan)
{
1725
	struct fc_lport *lport;
1726 1727 1728
	struct fc_els_ls_rjt *rjt;
	struct fc_frame *fp;

1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
	lport = fr_dev(rx_fp);
	fp = fc_frame_alloc(lport, sizeof(*rjt));
	if (!fp)
		return;
	rjt = fc_frame_payload_get(fp, sizeof(*rjt));
	memset(rjt, 0, sizeof(*rjt));
	rjt->er_cmd = ELS_LS_RJT;
	rjt->er_reason = reason;
	rjt->er_explan = explan;
	fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
	lport->tt.frame_send(lport, fp);
1740 1741
}

1742 1743 1744 1745
/**
 * fc_exch_reset() - Reset an exchange
 * @ep: The exchange to be reset
 */
1746 1747 1748 1749 1750 1751 1752 1753
static void fc_exch_reset(struct fc_exch *ep)
{
	struct fc_seq *sp;
	void (*resp)(struct fc_seq *, struct fc_frame *, void *);
	void *arg;
	int rc = 1;

	spin_lock_bh(&ep->ex_lock);
V
Vasu Dev 已提交
1754
	fc_exch_abort_locked(ep, 0);
1755
	ep->state |= FC_EX_RST_CLEANUP;
1756
	fc_exch_timer_cancel(ep);
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
	resp = ep->resp;
	ep->resp = NULL;
	if (ep->esb_stat & ESB_ST_REC_QUAL)
		atomic_dec(&ep->ex_refcnt);	/* drop hold for rec_qual */
	ep->esb_stat &= ~ESB_ST_REC_QUAL;
	arg = ep->arg;
	sp = &ep->seq;
	rc = fc_exch_done_locked(ep);
	spin_unlock_bh(&ep->ex_lock);
	if (!rc)
1767
		fc_exch_delete(ep);
1768 1769 1770 1771 1772

	if (resp)
		resp(sp, ERR_PTR(-FC_EX_CLOSED), arg);
}

1773
/**
1774 1775 1776 1777 1778
 * fc_exch_pool_reset() - Reset a per cpu exchange pool
 * @lport: The local port that the exchange pool is on
 * @pool:  The exchange pool to be reset
 * @sid:   The source ID
 * @did:   The destination ID
1779
 *
1780 1781 1782 1783
 * Resets a per cpu exches pool, releasing all of its sequences
 * and exchanges. If sid is non-zero then reset only exchanges
 * we sourced from the local port's FID. If did is non-zero then
 * only reset exchanges destined for the local port's FID.
1784
 */
1785 1786 1787
static void fc_exch_pool_reset(struct fc_lport *lport,
			       struct fc_exch_pool *pool,
			       u32 sid, u32 did)
1788 1789 1790 1791
{
	struct fc_exch *ep;
	struct fc_exch *next;

1792
	spin_lock_bh(&pool->lock);
1793
restart:
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
	list_for_each_entry_safe(ep, next, &pool->ex_list, ex_list) {
		if ((lport == ep->lp) &&
		    (sid == 0 || sid == ep->sid) &&
		    (did == 0 || did == ep->did)) {
			fc_exch_hold(ep);
			spin_unlock_bh(&pool->lock);

			fc_exch_reset(ep);

			fc_exch_release(ep);
			spin_lock_bh(&pool->lock);

			/*
			 * must restart loop incase while lock
			 * was down multiple eps were released.
			 */
			goto restart;
1811
		}
1812
	}
1813 1814 1815
	pool->next_index = 0;
	pool->left = FC_XID_UNKNOWN;
	pool->right = FC_XID_UNKNOWN;
1816 1817 1818 1819
	spin_unlock_bh(&pool->lock);
}

/**
1820 1821 1822 1823
 * fc_exch_mgr_reset() - Reset all EMs of a local port
 * @lport: The local port whose EMs are to be reset
 * @sid:   The source ID
 * @did:   The destination ID
1824
 *
1825 1826 1827 1828
 * Reset all EMs associated with a given local port. Release all
 * sequences and exchanges. If sid is non-zero then reset only the
 * exchanges sent from the local port's FID. If did is non-zero then
 * reset only exchanges destined for the local port's FID.
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
 */
void fc_exch_mgr_reset(struct fc_lport *lport, u32 sid, u32 did)
{
	struct fc_exch_mgr_anchor *ema;
	unsigned int cpu;

	list_for_each_entry(ema, &lport->ema_list, ema_list) {
		for_each_possible_cpu(cpu)
			fc_exch_pool_reset(lport,
					   per_cpu_ptr(ema->mp->pool, cpu),
					   sid, did);
1840 1841 1842 1843
	}
}
EXPORT_SYMBOL(fc_exch_mgr_reset);

1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
/**
 * fc_exch_lookup() - find an exchange
 * @lport: The local port
 * @xid: The exchange ID
 *
 * Returns exchange pointer with hold for caller, or NULL if not found.
 */
static struct fc_exch *fc_exch_lookup(struct fc_lport *lport, u32 xid)
{
	struct fc_exch_mgr_anchor *ema;

	list_for_each_entry(ema, &lport->ema_list, ema_list)
		if (ema->mp->min_xid <= xid && xid <= ema->mp->max_xid)
			return fc_exch_find(ema->mp, xid);
	return NULL;
}

1861 1862
/**
 * fc_exch_els_rec() - Handler for ELS REC (Read Exchange Concise) requests
1863
 * @rfp: The REC frame, not freed here.
1864
 *
1865 1866
 * Note that the requesting port may be different than the S_ID in the request.
 */
1867
static void fc_exch_els_rec(struct fc_frame *rfp)
1868
{
1869
	struct fc_lport *lport;
1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
	struct fc_frame *fp;
	struct fc_exch *ep;
	struct fc_els_rec *rp;
	struct fc_els_rec_acc *acc;
	enum fc_els_rjt_reason reason = ELS_RJT_LOGIC;
	enum fc_els_rjt_explan explan;
	u32 sid;
	u16 rxid;
	u16 oxid;

1880
	lport = fr_dev(rfp);
1881 1882 1883 1884 1885 1886 1887 1888
	rp = fc_frame_payload_get(rfp, sizeof(*rp));
	explan = ELS_EXPL_INV_LEN;
	if (!rp)
		goto reject;
	sid = ntoh24(rp->rec_s_id);
	rxid = ntohs(rp->rec_rx_id);
	oxid = ntohs(rp->rec_ox_id);

1889 1890
	ep = fc_exch_lookup(lport,
			    sid == fc_host_port_id(lport->host) ? oxid : rxid);
1891
	explan = ELS_EXPL_OXID_RXID;
1892 1893 1894 1895 1896 1897 1898 1899
	if (!ep)
		goto reject;
	if (ep->oid != sid || oxid != ep->oxid)
		goto rel;
	if (rxid != FC_XID_UNKNOWN && rxid != ep->rxid)
		goto rel;
	fp = fc_frame_alloc(lport, sizeof(*acc));
	if (!fp)
1900
		goto out;
1901

1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
	acc = fc_frame_payload_get(fp, sizeof(*acc));
	memset(acc, 0, sizeof(*acc));
	acc->reca_cmd = ELS_LS_ACC;
	acc->reca_ox_id = rp->rec_ox_id;
	memcpy(acc->reca_ofid, rp->rec_s_id, 3);
	acc->reca_rx_id = htons(ep->rxid);
	if (ep->sid == ep->oid)
		hton24(acc->reca_rfid, ep->did);
	else
		hton24(acc->reca_rfid, ep->sid);
	acc->reca_fc4value = htonl(ep->seq.rec_data);
	acc->reca_e_stat = htonl(ep->esb_stat & (ESB_ST_RESP |
						 ESB_ST_SEQ_INIT |
						 ESB_ST_COMPLETE));
1916 1917
	fc_fill_reply_hdr(fp, rfp, FC_RCTL_ELS_REP, 0);
	lport->tt.frame_send(lport, fp);
1918 1919 1920 1921 1922 1923 1924
out:
	fc_exch_release(ep);
	return;

rel:
	fc_exch_release(ep);
reject:
1925
	fc_seq_ls_rjt(rfp, reason, explan);
1926 1927
}

1928 1929 1930 1931 1932
/**
 * fc_exch_rrq_resp() - Handler for RRQ responses
 * @sp:	 The sequence that the RRQ is on
 * @fp:	 The RRQ frame
 * @arg: The exchange that the RRQ is on
1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
 *
 * TODO: fix error handler.
 */
static void fc_exch_rrq_resp(struct fc_seq *sp, struct fc_frame *fp, void *arg)
{
	struct fc_exch *aborted_ep = arg;
	unsigned int op;

	if (IS_ERR(fp)) {
		int err = PTR_ERR(fp);

V
Vasu Dev 已提交
1944
		if (err == -FC_EX_CLOSED || err == -FC_EX_TIMEOUT)
1945
			goto cleanup;
1946 1947
		FC_EXCH_DBG(aborted_ep, "Cannot process RRQ, "
			    "frame error %d\n", err);
1948 1949 1950 1951 1952 1953 1954 1955
		return;
	}

	op = fc_frame_payload_op(fp);
	fc_frame_free(fp);

	switch (op) {
	case ELS_LS_RJT:
1956
		FC_EXCH_DBG(aborted_ep, "LS_RJT for RRQ");
1957 1958 1959 1960
		/* fall through */
	case ELS_LS_ACC:
		goto cleanup;
	default:
1961 1962
		FC_EXCH_DBG(aborted_ep, "unexpected response op %x "
			    "for RRQ", op);
1963 1964 1965 1966 1967 1968 1969 1970 1971
		return;
	}

cleanup:
	fc_exch_done(&aborted_ep->seq);
	/* drop hold for rec qual */
	fc_exch_release(aborted_ep);
}

1972 1973

/**
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
 * fc_exch_seq_send() - Send a frame using a new exchange and sequence
 * @lport:	The local port to send the frame on
 * @fp:		The frame to be sent
 * @resp:	The response handler for this request
 * @destructor: The destructor for the exchange
 * @arg:	The argument to be passed to the response handler
 * @timer_msec: The timeout period for the exchange
 *
 * The frame pointer with some of the header's fields must be
 * filled before calling this routine, those fields are:
 *
 * - routing control
 * - FC port did
 * - FC port sid
 * - FC header type
 * - frame control
 * - parameter or relative offset
1991
 */
1992
static struct fc_seq *fc_exch_seq_send(struct fc_lport *lport,
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
				       struct fc_frame *fp,
				       void (*resp)(struct fc_seq *,
						    struct fc_frame *fp,
						    void *arg),
				       void (*destructor)(struct fc_seq *,
							  void *),
				       void *arg, u32 timer_msec)
{
	struct fc_exch *ep;
	struct fc_seq *sp = NULL;
	struct fc_frame_header *fh;
2004
	struct fc_fcp_pkt *fsp = NULL;
2005 2006
	int rc = 1;

2007
	ep = fc_exch_alloc(lport, fp);
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
	if (!ep) {
		fc_frame_free(fp);
		return NULL;
	}
	ep->esb_stat |= ESB_ST_SEQ_INIT;
	fh = fc_frame_header_get(fp);
	fc_exch_set_addr(ep, ntoh24(fh->fh_s_id), ntoh24(fh->fh_d_id));
	ep->resp = resp;
	ep->destructor = destructor;
	ep->arg = arg;
	ep->r_a_tov = FC_DEF_R_A_TOV;
2019
	ep->lp = lport;
2020 2021 2022 2023 2024 2025 2026
	sp = &ep->seq;

	ep->fh_type = fh->fh_type; /* save for possbile timeout handling */
	ep->f_ctl = ntoh24(fh->fh_f_ctl);
	fc_exch_setup_hdr(ep, fp, ep->f_ctl);
	sp->cnt++;

2027 2028
	if (ep->xid <= lport->lro_xid && fh->fh_r_ctl == FC_RCTL_DD_UNSOL_CMD) {
		fsp = fr_fsp(fp);
2029
		fc_fcp_ddp_setup(fr_fsp(fp), ep->xid);
2030
	}
2031

2032
	if (unlikely(lport->tt.frame_send(lport, fp)))
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
		goto err;

	if (timer_msec)
		fc_exch_timer_set_locked(ep, timer_msec);
	ep->f_ctl &= ~FC_FC_FIRST_SEQ;	/* not first seq */

	if (ep->f_ctl & FC_FC_SEQ_INIT)
		ep->esb_stat &= ~ESB_ST_SEQ_INIT;
	spin_unlock_bh(&ep->ex_lock);
	return sp;
err:
2044 2045
	if (fsp)
		fc_fcp_ddp_done(fsp);
2046 2047 2048 2049 2050 2051 2052
	rc = fc_exch_done_locked(ep);
	spin_unlock_bh(&ep->ex_lock);
	if (!rc)
		fc_exch_delete(ep);
	return NULL;
}

2053 2054 2055 2056
/**
 * fc_exch_rrq() - Send an ELS RRQ (Reinstate Recovery Qualifier) command
 * @ep: The exchange to send the RRQ on
 *
2057 2058 2059 2060 2061
 * This tells the remote port to stop blocking the use of
 * the exchange and the seq_cnt range.
 */
static void fc_exch_rrq(struct fc_exch *ep)
{
2062
	struct fc_lport *lport;
2063 2064 2065 2066
	struct fc_els_rrq *rrq;
	struct fc_frame *fp;
	u32 did;

2067
	lport = ep->lp;
2068

2069
	fp = fc_frame_alloc(lport, sizeof(*rrq));
2070
	if (!fp)
2071 2072
		goto retry;

2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
	rrq = fc_frame_payload_get(fp, sizeof(*rrq));
	memset(rrq, 0, sizeof(*rrq));
	rrq->rrq_cmd = ELS_RRQ;
	hton24(rrq->rrq_s_id, ep->sid);
	rrq->rrq_ox_id = htons(ep->oxid);
	rrq->rrq_rx_id = htons(ep->rxid);

	did = ep->did;
	if (ep->esb_stat & ESB_ST_RESP)
		did = ep->sid;

	fc_fill_fc_hdr(fp, FC_RCTL_ELS_REQ, did,
2085
		       lport->port_id, FC_TYPE_ELS,
2086 2087
		       FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);

2088 2089
	if (fc_exch_seq_send(lport, fp, fc_exch_rrq_resp, NULL, ep,
			     lport->e_d_tov))
2090 2091 2092 2093 2094 2095 2096 2097
		return;

retry:
	spin_lock_bh(&ep->ex_lock);
	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) {
		spin_unlock_bh(&ep->ex_lock);
		/* drop hold for rec qual */
		fc_exch_release(ep);
2098 2099
		return;
	}
2100 2101 2102
	ep->esb_stat |= ESB_ST_REC_QUAL;
	fc_exch_timer_set_locked(ep, ep->r_a_tov);
	spin_unlock_bh(&ep->ex_lock);
2103 2104
}

2105 2106
/**
 * fc_exch_els_rrq() - Handler for ELS RRQ (Reset Recovery Qualifier) requests
2107
 * @fp: The RRQ frame, not freed here.
2108
 */
2109
static void fc_exch_els_rrq(struct fc_frame *fp)
2110
{
2111
	struct fc_lport *lport;
2112
	struct fc_exch *ep = NULL;	/* request or subject exchange */
2113 2114 2115 2116 2117
	struct fc_els_rrq *rp;
	u32 sid;
	u16 xid;
	enum fc_els_rjt_explan explan;

2118
	lport = fr_dev(fp);
2119 2120 2121 2122 2123 2124 2125 2126 2127
	rp = fc_frame_payload_get(fp, sizeof(*rp));
	explan = ELS_EXPL_INV_LEN;
	if (!rp)
		goto reject;

	/*
	 * lookup subject exchange.
	 */
	sid = ntoh24(rp->rrq_s_id);		/* subject source */
2128 2129 2130
	xid = fc_host_port_id(lport->host) == sid ?
			ntohs(rp->rrq_ox_id) : ntohs(rp->rrq_rx_id);
	ep = fc_exch_lookup(lport, xid);
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
	explan = ELS_EXPL_OXID_RXID;
	if (!ep)
		goto reject;
	spin_lock_bh(&ep->ex_lock);
	if (ep->oxid != ntohs(rp->rrq_ox_id))
		goto unlock_reject;
	if (ep->rxid != ntohs(rp->rrq_rx_id) &&
	    ep->rxid != FC_XID_UNKNOWN)
		goto unlock_reject;
	explan = ELS_EXPL_SID;
	if (ep->sid != sid)
		goto unlock_reject;

	/*
	 * Clear Recovery Qualifier state, and cancel timer if complete.
	 */
	if (ep->esb_stat & ESB_ST_REC_QUAL) {
		ep->esb_stat &= ~ESB_ST_REC_QUAL;
		atomic_dec(&ep->ex_refcnt);	/* drop hold for rec qual */
	}
2151 2152
	if (ep->esb_stat & ESB_ST_COMPLETE)
		fc_exch_timer_cancel(ep);
2153 2154 2155 2156 2157 2158

	spin_unlock_bh(&ep->ex_lock);

	/*
	 * Send LS_ACC.
	 */
2159
	fc_seq_ls_acc(fp);
2160
	goto out;
2161 2162 2163 2164

unlock_reject:
	spin_unlock_bh(&ep->ex_lock);
reject:
2165
	fc_seq_ls_rjt(fp, ELS_RJT_LOGIC, explan);
2166 2167 2168
out:
	if (ep)
		fc_exch_release(ep);	/* drop hold from fc_exch_find */
2169 2170
}

2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
/**
 * fc_exch_update_stats() - update exches stats to lport
 * @lport: The local port to update exchange manager stats
 */
void fc_exch_update_stats(struct fc_lport *lport)
{
	struct fc_host_statistics *st;
	struct fc_exch_mgr_anchor *ema;
	struct fc_exch_mgr *mp;

	st = &lport->host_stats;

	list_for_each_entry(ema, &lport->ema_list, ema_list) {
		mp = ema->mp;
		st->fc_no_free_exch += atomic_read(&mp->stats.no_free_exch);
		st->fc_no_free_exch_xid +=
				atomic_read(&mp->stats.no_free_exch_xid);
		st->fc_xid_not_found += atomic_read(&mp->stats.xid_not_found);
		st->fc_xid_busy += atomic_read(&mp->stats.xid_busy);
		st->fc_seq_not_found += atomic_read(&mp->stats.seq_not_found);
		st->fc_non_bls_resp += atomic_read(&mp->stats.non_bls_resp);
	}
}
EXPORT_SYMBOL(fc_exch_update_stats);

2196 2197 2198 2199 2200 2201
/**
 * fc_exch_mgr_add() - Add an exchange manager to a local port's list of EMs
 * @lport: The local port to add the exchange manager to
 * @mp:	   The exchange manager to be added to the local port
 * @match: The match routine that indicates when this EM should be used
 */
2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
struct fc_exch_mgr_anchor *fc_exch_mgr_add(struct fc_lport *lport,
					   struct fc_exch_mgr *mp,
					   bool (*match)(struct fc_frame *))
{
	struct fc_exch_mgr_anchor *ema;

	ema = kmalloc(sizeof(*ema), GFP_ATOMIC);
	if (!ema)
		return ema;

	ema->mp = mp;
	ema->match = match;
	/* add EM anchor to EM anchors list */
	list_add_tail(&ema->ema_list, &lport->ema_list);
	kref_get(&mp->kref);
	return ema;
}
EXPORT_SYMBOL(fc_exch_mgr_add);

2221 2222 2223 2224
/**
 * fc_exch_mgr_destroy() - Destroy an exchange manager
 * @kref: The reference to the EM to be destroyed
 */
2225 2226 2227 2228 2229
static void fc_exch_mgr_destroy(struct kref *kref)
{
	struct fc_exch_mgr *mp = container_of(kref, struct fc_exch_mgr, kref);

	mempool_destroy(mp->ep_pool);
2230
	free_percpu(mp->pool);
2231 2232 2233
	kfree(mp);
}

2234 2235 2236 2237
/**
 * fc_exch_mgr_del() - Delete an EM from a local port's list
 * @ema: The exchange manager anchor identifying the EM to be deleted
 */
2238 2239 2240 2241 2242 2243 2244 2245 2246
void fc_exch_mgr_del(struct fc_exch_mgr_anchor *ema)
{
	/* remove EM anchor from EM anchors list */
	list_del(&ema->ema_list);
	kref_put(&ema->mp->kref, fc_exch_mgr_destroy);
	kfree(ema);
}
EXPORT_SYMBOL(fc_exch_mgr_del);

2247
/**
2248 2249 2250
 * fc_exch_mgr_list_clone() - Share all exchange manager objects
 * @src: Source lport to clone exchange managers from
 * @dst: New lport that takes references to all the exchange managers
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
 */
int fc_exch_mgr_list_clone(struct fc_lport *src, struct fc_lport *dst)
{
	struct fc_exch_mgr_anchor *ema, *tmp;

	list_for_each_entry(ema, &src->ema_list, ema_list) {
		if (!fc_exch_mgr_add(dst, ema->mp, ema->match))
			goto err;
	}
	return 0;
err:
	list_for_each_entry_safe(ema, tmp, &dst->ema_list, ema_list)
		fc_exch_mgr_del(ema);
	return -ENOMEM;
}
2266
EXPORT_SYMBOL(fc_exch_mgr_list_clone);
2267

2268 2269 2270 2271 2272 2273 2274 2275 2276
/**
 * fc_exch_mgr_alloc() - Allocate an exchange manager
 * @lport:   The local port that the new EM will be associated with
 * @class:   The default FC class for new exchanges
 * @min_xid: The minimum XID for exchanges from the new EM
 * @max_xid: The maximum XID for exchanges from the new EM
 * @match:   The match routine for the new EM
 */
struct fc_exch_mgr *fc_exch_mgr_alloc(struct fc_lport *lport,
2277
				      enum fc_class class,
2278 2279
				      u16 min_xid, u16 max_xid,
				      bool (*match)(struct fc_frame *))
2280 2281
{
	struct fc_exch_mgr *mp;
2282 2283 2284 2285
	u16 pool_exch_range;
	size_t pool_size;
	unsigned int cpu;
	struct fc_exch_pool *pool;
2286

2287 2288
	if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN ||
	    (min_xid & fc_cpu_mask) != 0) {
2289
		FC_LPORT_DBG(lport, "Invalid min_xid 0x:%x and max_xid 0x:%x\n",
2290
			     min_xid, max_xid);
2291 2292 2293 2294
		return NULL;
	}

	/*
2295
	 * allocate memory for EM
2296
	 */
2297
	mp = kzalloc(sizeof(struct fc_exch_mgr), GFP_ATOMIC);
2298 2299 2300 2301 2302 2303
	if (!mp)
		return NULL;

	mp->class = class;
	/* adjust em exch xid range for offload */
	mp->min_xid = min_xid;
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315

       /* reduce range so per cpu pool fits into PCPU_MIN_UNIT_SIZE pool */
	pool_exch_range = (PCPU_MIN_UNIT_SIZE - sizeof(*pool)) /
		sizeof(struct fc_exch *);
	if ((max_xid - min_xid + 1) / (fc_cpu_mask + 1) > pool_exch_range) {
		mp->max_xid = pool_exch_range * (fc_cpu_mask + 1) +
			min_xid - 1;
	} else {
		mp->max_xid = max_xid;
		pool_exch_range = (mp->max_xid - mp->min_xid + 1) /
			(fc_cpu_mask + 1);
	}
2316 2317 2318 2319 2320

	mp->ep_pool = mempool_create_slab_pool(2, fc_em_cachep);
	if (!mp->ep_pool)
		goto free_mp;

2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
	/*
	 * Setup per cpu exch pool with entire exchange id range equally
	 * divided across all cpus. The exch pointers array memory is
	 * allocated for exch range per pool.
	 */
	mp->pool_max_index = pool_exch_range - 1;

	/*
	 * Allocate and initialize per cpu exch pool
	 */
	pool_size = sizeof(*pool) + pool_exch_range * sizeof(struct fc_exch *);
	mp->pool = __alloc_percpu(pool_size, __alignof__(struct fc_exch_pool));
	if (!mp->pool)
		goto free_mempool;
	for_each_possible_cpu(cpu) {
		pool = per_cpu_ptr(mp->pool, cpu);
2337
		pool->next_index = 0;
2338 2339
		pool->left = FC_XID_UNKNOWN;
		pool->right = FC_XID_UNKNOWN;
2340 2341 2342 2343
		spin_lock_init(&pool->lock);
		INIT_LIST_HEAD(&pool->ex_list);
	}

2344
	kref_init(&mp->kref);
2345
	if (!fc_exch_mgr_add(lport, mp, match)) {
2346 2347
		free_percpu(mp->pool);
		goto free_mempool;
2348 2349 2350 2351 2352 2353 2354 2355
	}

	/*
	 * Above kref_init() sets mp->kref to 1 and then
	 * call to fc_exch_mgr_add incremented mp->kref again,
	 * so adjust that extra increment.
	 */
	kref_put(&mp->kref, fc_exch_mgr_destroy);
2356 2357
	return mp;

2358 2359
free_mempool:
	mempool_destroy(mp->ep_pool);
2360 2361 2362 2363 2364 2365
free_mp:
	kfree(mp);
	return NULL;
}
EXPORT_SYMBOL(fc_exch_mgr_alloc);

2366 2367 2368 2369
/**
 * fc_exch_mgr_free() - Free all exchange managers on a local port
 * @lport: The local port whose EMs are to be freed
 */
2370
void fc_exch_mgr_free(struct fc_lport *lport)
2371
{
2372 2373
	struct fc_exch_mgr_anchor *ema, *next;

2374
	flush_workqueue(fc_exch_workqueue);
2375 2376
	list_for_each_entry_safe(ema, next, &lport->ema_list, ema_list)
		fc_exch_mgr_del(ema);
2377 2378 2379
}
EXPORT_SYMBOL(fc_exch_mgr_free);

2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
/**
 * fc_find_ema() - Lookup and return appropriate Exchange Manager Anchor depending
 * upon 'xid'.
 * @f_ctl: f_ctl
 * @lport: The local port the frame was received on
 * @fh: The received frame header
 */
static struct fc_exch_mgr_anchor *fc_find_ema(u32 f_ctl,
					      struct fc_lport *lport,
					      struct fc_frame_header *fh)
{
	struct fc_exch_mgr_anchor *ema;
	u16 xid;

	if (f_ctl & FC_FC_EX_CTX)
		xid = ntohs(fh->fh_ox_id);
	else {
		xid = ntohs(fh->fh_rx_id);
		if (xid == FC_XID_UNKNOWN)
			return list_entry(lport->ema_list.prev,
					  typeof(*ema), ema_list);
	}

	list_for_each_entry(ema, &lport->ema_list, ema_list) {
		if ((xid >= ema->mp->min_xid) &&
		    (xid <= ema->mp->max_xid))
			return ema;
	}
	return NULL;
}
2410 2411 2412
/**
 * fc_exch_recv() - Handler for received frames
 * @lport: The local port the frame was received on
2413
 * @fp:	The received frame
2414
 */
2415
void fc_exch_recv(struct fc_lport *lport, struct fc_frame *fp)
2416 2417
{
	struct fc_frame_header *fh = fc_frame_header_get(fp);
2418
	struct fc_exch_mgr_anchor *ema;
2419
	u32 f_ctl;
2420 2421

	/* lport lock ? */
2422 2423
	if (!lport || lport->state == LPORT_ST_DISABLED) {
		FC_LPORT_DBG(lport, "Receiving frames for an lport that "
2424
			     "has not been initialized correctly\n");
2425 2426 2427 2428
		fc_frame_free(fp);
		return;
	}

2429
	f_ctl = ntoh24(fh->fh_f_ctl);
2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
	ema = fc_find_ema(f_ctl, lport, fh);
	if (!ema) {
		FC_LPORT_DBG(lport, "Unable to find Exchange Manager Anchor,"
				    "fc_ctl <0x%x>, xid <0x%x>\n",
				     f_ctl,
				     (f_ctl & FC_FC_EX_CTX) ?
				     ntohs(fh->fh_ox_id) :
				     ntohs(fh->fh_rx_id));
		fc_frame_free(fp);
		return;
	}
2441

2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
	/*
	 * If frame is marked invalid, just drop it.
	 */
	switch (fr_eof(fp)) {
	case FC_EOF_T:
		if (f_ctl & FC_FC_END_SEQ)
			skb_trim(fp_skb(fp), fr_len(fp) - FC_FC_FILL(f_ctl));
		/* fall through */
	case FC_EOF_N:
		if (fh->fh_type == FC_TYPE_BLS)
2452
			fc_exch_recv_bls(ema->mp, fp);
2453 2454
		else if ((f_ctl & (FC_FC_EX_CTX | FC_FC_SEQ_CTX)) ==
			 FC_FC_EX_CTX)
2455
			fc_exch_recv_seq_resp(ema->mp, fp);
2456
		else if (f_ctl & FC_FC_SEQ_CTX)
2457
			fc_exch_recv_resp(ema->mp, fp);
2458
		else	/* no EX_CTX and no SEQ_CTX */
2459
			fc_exch_recv_req(lport, ema->mp, fp);
2460 2461
		break;
	default:
2462 2463
		FC_LPORT_DBG(lport, "dropping invalid frame (eof %x)",
			     fr_eof(fp));
2464 2465 2466 2467 2468
		fc_frame_free(fp);
	}
}
EXPORT_SYMBOL(fc_exch_recv);

2469 2470 2471 2472 2473
/**
 * fc_exch_init() - Initialize the exchange layer for a local port
 * @lport: The local port to initialize the exchange layer for
 */
int fc_exch_init(struct fc_lport *lport)
2474
{
2475 2476
	if (!lport->tt.seq_start_next)
		lport->tt.seq_start_next = fc_seq_start_next;
2477

2478 2479 2480
	if (!lport->tt.seq_set_resp)
		lport->tt.seq_set_resp = fc_seq_set_resp;

2481 2482
	if (!lport->tt.exch_seq_send)
		lport->tt.exch_seq_send = fc_exch_seq_send;
2483

2484 2485
	if (!lport->tt.seq_send)
		lport->tt.seq_send = fc_seq_send;
2486

2487 2488
	if (!lport->tt.seq_els_rsp_send)
		lport->tt.seq_els_rsp_send = fc_seq_els_rsp_send;
2489

2490 2491
	if (!lport->tt.exch_done)
		lport->tt.exch_done = fc_exch_done;
2492

2493 2494
	if (!lport->tt.exch_mgr_reset)
		lport->tt.exch_mgr_reset = fc_exch_mgr_reset;
2495

2496 2497
	if (!lport->tt.seq_exch_abort)
		lport->tt.seq_exch_abort = fc_seq_exch_abort;
2498

2499 2500 2501
	if (!lport->tt.seq_assign)
		lport->tt.seq_assign = fc_seq_assign;

2502 2503 2504
	if (!lport->tt.seq_release)
		lport->tt.seq_release = fc_seq_release;

2505 2506 2507 2508 2509 2510 2511
	return 0;
}
EXPORT_SYMBOL(fc_exch_init);

/**
 * fc_setup_exch_mgr() - Setup an exchange manager
 */
2512
int fc_setup_exch_mgr(void)
2513 2514 2515 2516 2517 2518
{
	fc_em_cachep = kmem_cache_create("libfc_em", sizeof(struct fc_exch),
					 0, SLAB_HWCACHE_ALIGN, NULL);
	if (!fc_em_cachep)
		return -ENOMEM;

2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540
	/*
	 * Initialize fc_cpu_mask and fc_cpu_order. The
	 * fc_cpu_mask is set for nr_cpu_ids rounded up
	 * to order of 2's * power and order is stored
	 * in fc_cpu_order as this is later required in
	 * mapping between an exch id and exch array index
	 * in per cpu exch pool.
	 *
	 * This round up is required to align fc_cpu_mask
	 * to exchange id's lower bits such that all incoming
	 * frames of an exchange gets delivered to the same
	 * cpu on which exchange originated by simple bitwise
	 * AND operation between fc_cpu_mask and exchange id.
	 */
	fc_cpu_mask = 1;
	fc_cpu_order = 0;
	while (fc_cpu_mask < nr_cpu_ids) {
		fc_cpu_mask <<= 1;
		fc_cpu_order++;
	}
	fc_cpu_mask--;

2541 2542
	fc_exch_workqueue = create_singlethread_workqueue("fc_exch_workqueue");
	if (!fc_exch_workqueue)
H
Hillf Danton 已提交
2543
		goto err;
2544
	return 0;
H
Hillf Danton 已提交
2545 2546 2547
err:
	kmem_cache_destroy(fc_em_cachep);
	return -ENOMEM;
2548 2549
}

2550 2551 2552
/**
 * fc_destroy_exch_mgr() - Destroy an exchange manager
 */
2553
void fc_destroy_exch_mgr(void)
2554
{
2555
	destroy_workqueue(fc_exch_workqueue);
2556 2557
	kmem_cache_destroy(fc_em_cachep);
}