sb_edac.c 44.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
 *
 * This driver supports the memory controllers found on the Intel
 * processor family Sandy Bridge.
 *
 * This file may be distributed under the terms of the
 * GNU General Public License version 2 only.
 *
 * Copyright (c) 2011 by:
 *	 Mauro Carvalho Chehab <mchehab@redhat.com>
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/edac.h>
#include <linux/mmzone.h>
#include <linux/smp.h>
#include <linux/bitmap.h>
23
#include <linux/math64.h>
24
#include <asm/processor.h>
25
#include <asm/mce.h>
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368

#include "edac_core.h"

/* Static vars */
static LIST_HEAD(sbridge_edac_list);
static DEFINE_MUTEX(sbridge_edac_lock);
static int probed;

/*
 * Alter this version for the module when modifications are made
 */
#define SBRIDGE_REVISION    " Ver: 1.0.0 "
#define EDAC_MOD_STR      "sbridge_edac"

/*
 * Debug macros
 */
#define sbridge_printk(level, fmt, arg...)			\
	edac_printk(level, "sbridge", fmt, ##arg)

#define sbridge_mc_printk(mci, level, fmt, arg...)		\
	edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)

/*
 * Get a bit field at register value <v>, from bit <lo> to bit <hi>
 */
#define GET_BITFIELD(v, lo, hi)	\
	(((v) & ((1ULL << ((hi) - (lo) + 1)) - 1) << (lo)) >> (lo))

/*
 * sbridge Memory Controller Registers
 */

/*
 * FIXME: For now, let's order by device function, as it makes
 * easier for driver's development proccess. This table should be
 * moved to pci_id.h when submitted upstream
 */
#define PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0	0x3cf4	/* 12.6 */
#define PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1	0x3cf6	/* 12.7 */
#define PCI_DEVICE_ID_INTEL_SBRIDGE_BR		0x3cf5	/* 13.6 */
#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0	0x3ca0	/* 14.0 */
#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA	0x3ca8	/* 15.0 */
#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS	0x3c71	/* 15.1 */
#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0	0x3caa	/* 15.2 */
#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1	0x3cab	/* 15.3 */
#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2	0x3cac	/* 15.4 */
#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3	0x3cad	/* 15.5 */
#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO	0x3cb8	/* 17.0 */

	/*
	 * Currently, unused, but will be needed in the future
	 * implementations, as they hold the error counters
	 */
#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR0	0x3c72	/* 16.2 */
#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR1	0x3c73	/* 16.3 */
#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR2	0x3c76	/* 16.6 */
#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR3	0x3c77	/* 16.7 */

/* Devices 12 Function 6, Offsets 0x80 to 0xcc */
static const u32 dram_rule[] = {
	0x80, 0x88, 0x90, 0x98, 0xa0,
	0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
};
#define MAX_SAD		ARRAY_SIZE(dram_rule)

#define SAD_LIMIT(reg)		((GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff)
#define DRAM_ATTR(reg)		GET_BITFIELD(reg, 2,  3)
#define INTERLEAVE_MODE(reg)	GET_BITFIELD(reg, 1,  1)
#define DRAM_RULE_ENABLE(reg)	GET_BITFIELD(reg, 0,  0)

static char *get_dram_attr(u32 reg)
{
	switch(DRAM_ATTR(reg)) {
		case 0:
			return "DRAM";
		case 1:
			return "MMCFG";
		case 2:
			return "NXM";
		default:
			return "unknown";
	}
}

static const u32 interleave_list[] = {
	0x84, 0x8c, 0x94, 0x9c, 0xa4,
	0xac, 0xb4, 0xbc, 0xc4, 0xcc,
};
#define MAX_INTERLEAVE	ARRAY_SIZE(interleave_list)

#define SAD_PKG0(reg)		GET_BITFIELD(reg, 0, 2)
#define SAD_PKG1(reg)		GET_BITFIELD(reg, 3, 5)
#define SAD_PKG2(reg)		GET_BITFIELD(reg, 8, 10)
#define SAD_PKG3(reg)		GET_BITFIELD(reg, 11, 13)
#define SAD_PKG4(reg)		GET_BITFIELD(reg, 16, 18)
#define SAD_PKG5(reg)		GET_BITFIELD(reg, 19, 21)
#define SAD_PKG6(reg)		GET_BITFIELD(reg, 24, 26)
#define SAD_PKG7(reg)		GET_BITFIELD(reg, 27, 29)

static inline int sad_pkg(u32 reg, int interleave)
{
	switch (interleave) {
	case 0:
		return SAD_PKG0(reg);
	case 1:
		return SAD_PKG1(reg);
	case 2:
		return SAD_PKG2(reg);
	case 3:
		return SAD_PKG3(reg);
	case 4:
		return SAD_PKG4(reg);
	case 5:
		return SAD_PKG5(reg);
	case 6:
		return SAD_PKG6(reg);
	case 7:
		return SAD_PKG7(reg);
	default:
		return -EINVAL;
	}
}

/* Devices 12 Function 7 */

#define TOLM		0x80
#define	TOHM		0x84

#define GET_TOLM(reg)		((GET_BITFIELD(reg, 0,  3) << 28) | 0x3ffffff)
#define GET_TOHM(reg)		((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)

/* Device 13 Function 6 */

#define SAD_TARGET	0xf0

#define SOURCE_ID(reg)		GET_BITFIELD(reg, 9, 11)

#define SAD_CONTROL	0xf4

#define NODE_ID(reg)		GET_BITFIELD(reg, 0, 2)

/* Device 14 function 0 */

static const u32 tad_dram_rule[] = {
	0x40, 0x44, 0x48, 0x4c,
	0x50, 0x54, 0x58, 0x5c,
	0x60, 0x64, 0x68, 0x6c,
};
#define MAX_TAD	ARRAY_SIZE(tad_dram_rule)

#define TAD_LIMIT(reg)		((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
#define TAD_SOCK(reg)		GET_BITFIELD(reg, 10, 11)
#define TAD_CH(reg)		GET_BITFIELD(reg,  8,  9)
#define TAD_TGT3(reg)		GET_BITFIELD(reg,  6,  7)
#define TAD_TGT2(reg)		GET_BITFIELD(reg,  4,  5)
#define TAD_TGT1(reg)		GET_BITFIELD(reg,  2,  3)
#define TAD_TGT0(reg)		GET_BITFIELD(reg,  0,  1)

/* Device 15, function 0 */

#define MCMTR			0x7c

#define IS_ECC_ENABLED(mcmtr)		GET_BITFIELD(mcmtr, 2, 2)
#define IS_LOCKSTEP_ENABLED(mcmtr)	GET_BITFIELD(mcmtr, 1, 1)
#define IS_CLOSE_PG(mcmtr)		GET_BITFIELD(mcmtr, 0, 0)

/* Device 15, function 1 */

#define RASENABLES		0xac
#define IS_MIRROR_ENABLED(reg)		GET_BITFIELD(reg, 0, 0)

/* Device 15, functions 2-5 */

static const int mtr_regs[] = {
	0x80, 0x84, 0x88,
};

#define RANK_DISABLE(mtr)		GET_BITFIELD(mtr, 16, 19)
#define IS_DIMM_PRESENT(mtr)		GET_BITFIELD(mtr, 14, 14)
#define RANK_CNT_BITS(mtr)		GET_BITFIELD(mtr, 12, 13)
#define RANK_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 2, 4)
#define COL_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 0, 1)

static const u32 tad_ch_nilv_offset[] = {
	0x90, 0x94, 0x98, 0x9c,
	0xa0, 0xa4, 0xa8, 0xac,
	0xb0, 0xb4, 0xb8, 0xbc,
};
#define CHN_IDX_OFFSET(reg)		GET_BITFIELD(reg, 28, 29)
#define TAD_OFFSET(reg)			(GET_BITFIELD(reg,  6, 25) << 26)

static const u32 rir_way_limit[] = {
	0x108, 0x10c, 0x110, 0x114, 0x118,
};
#define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)

#define IS_RIR_VALID(reg)	GET_BITFIELD(reg, 31, 31)
#define RIR_WAY(reg)		GET_BITFIELD(reg, 28, 29)
#define RIR_LIMIT(reg)		((GET_BITFIELD(reg,  1, 10) << 29)| 0x1fffffff)

#define MAX_RIR_WAY	8

static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
	{ 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
	{ 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
	{ 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
	{ 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
	{ 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
};

#define RIR_RNK_TGT(reg)		GET_BITFIELD(reg, 16, 19)
#define RIR_OFFSET(reg)		GET_BITFIELD(reg,  2, 14)

/* Device 16, functions 2-7 */

/*
 * FIXME: Implement the error count reads directly
 */

static const u32 correrrcnt[] = {
	0x104, 0x108, 0x10c, 0x110,
};

#define RANK_ODD_OV(reg)		GET_BITFIELD(reg, 31, 31)
#define RANK_ODD_ERR_CNT(reg)		GET_BITFIELD(reg, 16, 30)
#define RANK_EVEN_OV(reg)		GET_BITFIELD(reg, 15, 15)
#define RANK_EVEN_ERR_CNT(reg)		GET_BITFIELD(reg,  0, 14)

static const u32 correrrthrsld[] = {
	0x11c, 0x120, 0x124, 0x128,
};

#define RANK_ODD_ERR_THRSLD(reg)	GET_BITFIELD(reg, 16, 30)
#define RANK_EVEN_ERR_THRSLD(reg)	GET_BITFIELD(reg,  0, 14)


/* Device 17, function 0 */

#define RANK_CFG_A		0x0328

#define IS_RDIMM_ENABLED(reg)		GET_BITFIELD(reg, 11, 11)

/*
 * sbridge structs
 */

#define NUM_CHANNELS	4
#define MAX_DIMMS	3		/* Max DIMMS per channel */

struct sbridge_info {
	u32	mcmtr;
};

struct sbridge_channel {
	u32		ranks;
	u32		dimms;
};

struct pci_id_descr {
	int			dev;
	int			func;
	int 			dev_id;
	int			optional;
};

struct pci_id_table {
	const struct pci_id_descr	*descr;
	int				n_devs;
};

struct sbridge_dev {
	struct list_head	list;
	u8			bus, mc;
	u8			node_id, source_id;
	struct pci_dev		**pdev;
	int			n_devs;
	struct mem_ctl_info	*mci;
};

struct sbridge_pvt {
	struct pci_dev		*pci_ta, *pci_ddrio, *pci_ras;
	struct pci_dev		*pci_sad0, *pci_sad1, *pci_ha0;
	struct pci_dev		*pci_br;
	struct pci_dev		*pci_tad[NUM_CHANNELS];

	struct sbridge_dev	*sbridge_dev;

	struct sbridge_info	info;
	struct sbridge_channel	channel[NUM_CHANNELS];

	/* Memory type detection */
	bool			is_mirrored, is_lockstep, is_close_pg;

	/* Fifo double buffers */
	struct mce		mce_entry[MCE_LOG_LEN];
	struct mce		mce_outentry[MCE_LOG_LEN];

	/* Fifo in/out counters */
	unsigned		mce_in, mce_out;

	/* Count indicator to show errors not got */
	unsigned		mce_overrun;

	/* Memory description */
	u64			tolm, tohm;
};

#define PCI_DESCR(device, function, device_id)	\
	.dev = (device),			\
	.func = (function),			\
	.dev_id = (device_id)

static const struct pci_id_descr pci_dev_descr_sbridge[] = {
		/* Processor Home Agent */
	{ PCI_DESCR(14, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0)		},

		/* Memory controller */
	{ PCI_DESCR(15, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA)		},
	{ PCI_DESCR(15, 1, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS)		},
	{ PCI_DESCR(15, 2, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0)	},
	{ PCI_DESCR(15, 3, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1)	},
	{ PCI_DESCR(15, 4, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2)	},
	{ PCI_DESCR(15, 5, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3)	},
	{ PCI_DESCR(17, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO)	},

		/* System Address Decoder */
	{ PCI_DESCR(12, 6, PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0)		},
	{ PCI_DESCR(12, 7, PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1)		},

		/* Broadcast Registers */
	{ PCI_DESCR(13, 6, PCI_DEVICE_ID_INTEL_SBRIDGE_BR)		},
};

#define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
	PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge),
	{0,}			/* 0 terminated list. */
};

/*
 *	pci_device_id	table for which devices we are looking for
 */
369
static DEFINE_PCI_DEVICE_TABLE(sbridge_pci_tbl) = {
370 371 372 373 374 375 376 377 378 379 380 381 382 383
	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA)},
	{0,}			/* 0 terminated list. */
};


/****************************************************************************
			Anciliary status routines
 ****************************************************************************/

static inline int numrank(u32 mtr)
{
	int ranks = (1 << RANK_CNT_BITS(mtr));

	if (ranks > 4) {
384 385
		edac_dbg(0, "Invalid number of ranks: %d (max = 4) raw value = %x (%04x)\n",
			 ranks, (unsigned int)RANK_CNT_BITS(mtr), mtr);
386 387 388 389 390 391 392 393 394 395 396
		return -EINVAL;
	}

	return ranks;
}

static inline int numrow(u32 mtr)
{
	int rows = (RANK_WIDTH_BITS(mtr) + 12);

	if (rows < 13 || rows > 18) {
397 398
		edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
			 rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
399 400 401 402 403 404 405 406 407 408 409
		return -EINVAL;
	}

	return 1 << rows;
}

static inline int numcol(u32 mtr)
{
	int cols = (COL_WIDTH_BITS(mtr) + 10);

	if (cols > 12) {
410 411
		edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
			 cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
		return -EINVAL;
	}

	return 1 << cols;
}

static struct sbridge_dev *get_sbridge_dev(u8 bus)
{
	struct sbridge_dev *sbridge_dev;

	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
		if (sbridge_dev->bus == bus)
			return sbridge_dev;
	}

	return NULL;
}

static struct sbridge_dev *alloc_sbridge_dev(u8 bus,
					   const struct pci_id_table *table)
{
	struct sbridge_dev *sbridge_dev;

	sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
	if (!sbridge_dev)
		return NULL;

	sbridge_dev->pdev = kzalloc(sizeof(*sbridge_dev->pdev) * table->n_devs,
				   GFP_KERNEL);
	if (!sbridge_dev->pdev) {
		kfree(sbridge_dev);
		return NULL;
	}

	sbridge_dev->bus = bus;
	sbridge_dev->n_devs = table->n_devs;
	list_add_tail(&sbridge_dev->list, &sbridge_edac_list);

	return sbridge_dev;
}

static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
{
	list_del(&sbridge_dev->list);
	kfree(sbridge_dev->pdev);
	kfree(sbridge_dev);
}

/****************************************************************************
			Memory check routines
 ****************************************************************************/
static struct pci_dev *get_pdev_slot_func(u8 bus, unsigned slot,
					  unsigned func)
{
	struct sbridge_dev *sbridge_dev = get_sbridge_dev(bus);
	int i;

	if (!sbridge_dev)
		return NULL;

	for (i = 0; i < sbridge_dev->n_devs; i++) {
		if (!sbridge_dev->pdev[i])
			continue;

		if (PCI_SLOT(sbridge_dev->pdev[i]->devfn) == slot &&
		    PCI_FUNC(sbridge_dev->pdev[i]->devfn) == func) {
478 479
			edac_dbg(1, "Associated %02x.%02x.%d with %p\n",
				 bus, slot, func, sbridge_dev->pdev[i]);
480 481 482 483 484 485 486 487
			return sbridge_dev->pdev[i];
		}
	}

	return NULL;
}

/**
488
 * check_if_ecc_is_active() - Checks if ECC is active
489 490
 * bus:		Device bus
 */
491
static int check_if_ecc_is_active(const u8 bus)
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
{
	struct pci_dev *pdev = NULL;
	u32 mcmtr;

	pdev = get_pdev_slot_func(bus, 15, 0);
	if (!pdev) {
		sbridge_printk(KERN_ERR, "Couldn't find PCI device "
					"%2x.%02d.%d!!!\n",
					bus, 15, 0);
		return -ENODEV;
	}

	pci_read_config_dword(pdev, MCMTR, &mcmtr);
	if (!IS_ECC_ENABLED(mcmtr)) {
		sbridge_printk(KERN_ERR, "ECC is disabled. Aborting\n");
		return -ENODEV;
	}
	return 0;
}

512
static int get_dimm_config(struct mem_ctl_info *mci)
513 514
{
	struct sbridge_pvt *pvt = mci->pvt_info;
515
	struct dimm_info *dimm;
516 517 518
	int i, j, banks, ranks, rows, cols, size, npages;
	u32 reg;
	enum edac_type mode;
519
	enum mem_type mtype;
520 521 522 523 524 525

	pci_read_config_dword(pvt->pci_br, SAD_TARGET, &reg);
	pvt->sbridge_dev->source_id = SOURCE_ID(reg);

	pci_read_config_dword(pvt->pci_br, SAD_CONTROL, &reg);
	pvt->sbridge_dev->node_id = NODE_ID(reg);
526 527 528 529
	edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
		 pvt->sbridge_dev->mc,
		 pvt->sbridge_dev->node_id,
		 pvt->sbridge_dev->source_id);
530 531 532

	pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg);
	if (IS_MIRROR_ENABLED(reg)) {
533
		edac_dbg(0, "Memory mirror is enabled\n");
534 535
		pvt->is_mirrored = true;
	} else {
536
		edac_dbg(0, "Memory mirror is disabled\n");
537 538 539 540 541
		pvt->is_mirrored = false;
	}

	pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr);
	if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
542
		edac_dbg(0, "Lockstep is enabled\n");
543 544 545
		mode = EDAC_S8ECD8ED;
		pvt->is_lockstep = true;
	} else {
546
		edac_dbg(0, "Lockstep is disabled\n");
547 548 549 550
		mode = EDAC_S4ECD4ED;
		pvt->is_lockstep = false;
	}
	if (IS_CLOSE_PG(pvt->info.mcmtr)) {
551
		edac_dbg(0, "address map is on closed page mode\n");
552 553
		pvt->is_close_pg = true;
	} else {
554
		edac_dbg(0, "address map is on open page mode\n");
555 556 557 558 559 560
		pvt->is_close_pg = false;
	}

	pci_read_config_dword(pvt->pci_ta, RANK_CFG_A, &reg);
	if (IS_RDIMM_ENABLED(reg)) {
		/* FIXME: Can also be LRDIMM */
561
		edac_dbg(0, "Memory is registered\n");
562
		mtype = MEM_RDDR3;
563
	} else {
564
		edac_dbg(0, "Memory is unregistered\n");
565
		mtype = MEM_DDR3;
566 567 568 569 570 571 572 573 574
	}

	/* On all supported DDR3 DIMM types, there are 8 banks available */
	banks = 8;

	for (i = 0; i < NUM_CHANNELS; i++) {
		u32 mtr;

		for (j = 0; j < ARRAY_SIZE(mtr_regs); j++) {
575 576
			dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
				       i, j, 0);
577 578
			pci_read_config_dword(pvt->pci_tad[i],
					      mtr_regs[j], &mtr);
579
			edac_dbg(4, "Channel #%d  MTR%d = %x\n", i, j, mtr);
580 581 582 583 584 585 586 587 588 589 590
			if (IS_DIMM_PRESENT(mtr)) {
				pvt->channel[i].dimms++;

				ranks = numrank(mtr);
				rows = numrow(mtr);
				cols = numcol(mtr);

				/* DDR3 has 8 I/O banks */
				size = (rows * cols * banks * ranks) >> (20 - 3);
				npages = MiB_TO_PAGES(size);

591 592 593 594
				edac_dbg(0, "mc#%d: channel %d, dimm %d, %d Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
					 pvt->sbridge_dev->mc, i, j,
					 size, npages,
					 banks, ranks, rows, cols);
595

596
				dimm->nr_pages = npages;
597 598 599 600 601 602 603
				dimm->grain = 32;
				dimm->dtype = (banks == 8) ? DEV_X8 : DEV_X4;
				dimm->mtype = mtype;
				dimm->edac_mode = mode;
				snprintf(dimm->label, sizeof(dimm->label),
					 "CPU_SrcID#%u_Channel#%u_DIMM#%u",
					 pvt->sbridge_dev->source_id, i, j);
604 605 606 607 608 609 610 611 612 613 614 615 616 617
			}
		}
	}

	return 0;
}

static void get_memory_layout(const struct mem_ctl_info *mci)
{
	struct sbridge_pvt *pvt = mci->pvt_info;
	int i, j, k, n_sads, n_tads, sad_interl;
	u32 reg;
	u64 limit, prv = 0;
	u64 tmp_mb;
618
	u32 mb, kb;
619 620 621 622 623 624 625 626 627 628 629 630
	u32 rir_way;

	/*
	 * Step 1) Get TOLM/TOHM ranges
	 */

	/* Address range is 32:28 */
	pci_read_config_dword(pvt->pci_sad1, TOLM,
			      &reg);
	pvt->tolm = GET_TOLM(reg);
	tmp_mb = (1 + pvt->tolm) >> 20;

631
	mb = div_u64_rem(tmp_mb, 1000, &kb);
632
	edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n", mb, kb, (u64)pvt->tolm);
633 634 635 636 637 638 639

	/* Address range is already 45:25 */
	pci_read_config_dword(pvt->pci_sad1, TOHM,
			      &reg);
	pvt->tohm = GET_TOHM(reg);
	tmp_mb = (1 + pvt->tohm) >> 20;

640
	mb = div_u64_rem(tmp_mb, 1000, &kb);
641
	edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)", mb, kb, (u64)pvt->tohm);
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662

	/*
	 * Step 2) Get SAD range and SAD Interleave list
	 * TAD registers contain the interleave wayness. However, it
	 * seems simpler to just discover it indirectly, with the
	 * algorithm bellow.
	 */
	prv = 0;
	for (n_sads = 0; n_sads < MAX_SAD; n_sads++) {
		/* SAD_LIMIT Address range is 45:26 */
		pci_read_config_dword(pvt->pci_sad0, dram_rule[n_sads],
				      &reg);
		limit = SAD_LIMIT(reg);

		if (!DRAM_RULE_ENABLE(reg))
			continue;

		if (limit <= prv)
			break;

		tmp_mb = (limit + 1) >> 20;
663
		mb = div_u64_rem(tmp_mb, 1000, &kb);
664 665 666 667 668 669 670
		edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
			 n_sads,
			 get_dram_attr(reg),
			 mb, kb,
			 ((u64)tmp_mb) << 20L,
			 INTERLEAVE_MODE(reg) ? "8:6" : "[8:6]XOR[18:16]",
			 reg);
671 672 673 674 675 676 677 678 679
		prv = limit;

		pci_read_config_dword(pvt->pci_sad0, interleave_list[n_sads],
				      &reg);
		sad_interl = sad_pkg(reg, 0);
		for (j = 0; j < 8; j++) {
			if (j > 0 && sad_interl == sad_pkg(reg, j))
				break;

680 681
			edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
				 n_sads, j, sad_pkg(reg, j));
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
		}
	}

	/*
	 * Step 3) Get TAD range
	 */
	prv = 0;
	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
		pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
				      &reg);
		limit = TAD_LIMIT(reg);
		if (limit <= prv)
			break;
		tmp_mb = (limit + 1) >> 20;

697
		mb = div_u64_rem(tmp_mb, 1000, &kb);
698 699 700 701 702 703 704 705 706 707
		edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
			 n_tads, mb, kb,
			 ((u64)tmp_mb) << 20L,
			 (u32)TAD_SOCK(reg),
			 (u32)TAD_CH(reg),
			 (u32)TAD_TGT0(reg),
			 (u32)TAD_TGT1(reg),
			 (u32)TAD_TGT2(reg),
			 (u32)TAD_TGT3(reg),
			 reg);
708
		prv = limit;
709 710 711 712 713 714 715 716 717 718 719 720 721
	}

	/*
	 * Step 4) Get TAD offsets, per each channel
	 */
	for (i = 0; i < NUM_CHANNELS; i++) {
		if (!pvt->channel[i].dimms)
			continue;
		for (j = 0; j < n_tads; j++) {
			pci_read_config_dword(pvt->pci_tad[i],
					      tad_ch_nilv_offset[j],
					      &reg);
			tmp_mb = TAD_OFFSET(reg) >> 20;
722
			mb = div_u64_rem(tmp_mb, 1000, &kb);
723 724 725 726 727
			edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
				 i, j,
				 mb, kb,
				 ((u64)tmp_mb) << 20L,
				 reg);
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
		}
	}

	/*
	 * Step 6) Get RIR Wayness/Limit, per each channel
	 */
	for (i = 0; i < NUM_CHANNELS; i++) {
		if (!pvt->channel[i].dimms)
			continue;
		for (j = 0; j < MAX_RIR_RANGES; j++) {
			pci_read_config_dword(pvt->pci_tad[i],
					      rir_way_limit[j],
					      &reg);

			if (!IS_RIR_VALID(reg))
				continue;

			tmp_mb = RIR_LIMIT(reg) >> 20;
			rir_way = 1 << RIR_WAY(reg);
747
			mb = div_u64_rem(tmp_mb, 1000, &kb);
748 749 750 751 752 753
			edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
				 i, j,
				 mb, kb,
				 ((u64)tmp_mb) << 20L,
				 rir_way,
				 reg);
754 755 756 757 758 759 760

			for (k = 0; k < rir_way; k++) {
				pci_read_config_dword(pvt->pci_tad[i],
						      rir_offset[j][k],
						      &reg);
				tmp_mb = RIR_OFFSET(reg) << 6;

761
				mb = div_u64_rem(tmp_mb, 1000, &kb);
762 763 764 765 766 767
				edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
					 i, j, k,
					 mb, kb,
					 ((u64)tmp_mb) << 20L,
					 (u32)RIR_RNK_TGT(reg),
					 reg);
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
			}
		}
	}
}

struct mem_ctl_info *get_mci_for_node_id(u8 node_id)
{
	struct sbridge_dev *sbridge_dev;

	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
		if (sbridge_dev->node_id == node_id)
			return sbridge_dev->mci;
	}
	return NULL;
}

static int get_memory_error_data(struct mem_ctl_info *mci,
				 u64 addr,
				 u8 *socket,
				 long *channel_mask,
				 u8 *rank,
789
				 char **area_type, char *msg)
790 791 792 793 794 795 796 797 798 799 800
{
	struct mem_ctl_info	*new_mci;
	struct sbridge_pvt *pvt = mci->pvt_info;
	int 			n_rir, n_sads, n_tads, sad_way, sck_xch;
	int			sad_interl, idx, base_ch;
	int			interleave_mode;
	unsigned		sad_interleave[MAX_INTERLEAVE];
	u32			reg;
	u8			ch_way,sck_way;
	u32			tad_offset;
	u32			rir_way;
801
	u32			mb, kb;
802 803 804 805 806 807 808 809 810 811
	u64			ch_addr, offset, limit, prv = 0;


	/*
	 * Step 0) Check if the address is at special memory ranges
	 * The check bellow is probably enough to fill all cases where
	 * the error is not inside a memory, except for the legacy
	 * range (e. g. VGA addresses). It is unlikely, however, that the
	 * memory controller would generate an error on that range.
	 */
812
	if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
		sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
		return -EINVAL;
	}
	if (addr >= (u64)pvt->tohm) {
		sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
		return -EINVAL;
	}

	/*
	 * Step 1) Get socket
	 */
	for (n_sads = 0; n_sads < MAX_SAD; n_sads++) {
		pci_read_config_dword(pvt->pci_sad0, dram_rule[n_sads],
				      &reg);

		if (!DRAM_RULE_ENABLE(reg))
			continue;

		limit = SAD_LIMIT(reg);
		if (limit <= prv) {
			sprintf(msg, "Can't discover the memory socket");
			return -EINVAL;
		}
		if  (addr <= limit)
			break;
		prv = limit;
	}
	if (n_sads == MAX_SAD) {
		sprintf(msg, "Can't discover the memory socket");
		return -EINVAL;
	}
844
	*area_type = get_dram_attr(reg);
845 846 847 848 849 850 851 852 853
	interleave_mode = INTERLEAVE_MODE(reg);

	pci_read_config_dword(pvt->pci_sad0, interleave_list[n_sads],
			      &reg);
	sad_interl = sad_pkg(reg, 0);
	for (sad_way = 0; sad_way < 8; sad_way++) {
		if (sad_way > 0 && sad_interl == sad_pkg(reg, sad_way))
			break;
		sad_interleave[sad_way] = sad_pkg(reg, sad_way);
854 855
		edac_dbg(0, "SAD interleave #%d: %d\n",
			 sad_way, sad_interleave[sad_way]);
856
	}
857 858 859 860 861 862 863
	edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
		 pvt->sbridge_dev->mc,
		 n_sads,
		 addr,
		 limit,
		 sad_way + 7,
		 interleave_mode ? "" : "XOR[18:16]");
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
	if (interleave_mode)
		idx = ((addr >> 6) ^ (addr >> 16)) & 7;
	else
		idx = (addr >> 6) & 7;
	switch (sad_way) {
	case 1:
		idx = 0;
		break;
	case 2:
		idx = idx & 1;
		break;
	case 4:
		idx = idx & 3;
		break;
	case 8:
		break;
	default:
		sprintf(msg, "Can't discover socket interleave");
		return -EINVAL;
	}
	*socket = sad_interleave[idx];
885 886
	edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
		 idx, sad_way, *socket);
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972

	/*
	 * Move to the proper node structure, in order to access the
	 * right PCI registers
	 */
	new_mci = get_mci_for_node_id(*socket);
	if (!new_mci) {
		sprintf(msg, "Struct for socket #%u wasn't initialized",
			*socket);
		return -EINVAL;
	}
	mci = new_mci;
	pvt = mci->pvt_info;

	/*
	 * Step 2) Get memory channel
	 */
	prv = 0;
	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
		pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
				      &reg);
		limit = TAD_LIMIT(reg);
		if (limit <= prv) {
			sprintf(msg, "Can't discover the memory channel");
			return -EINVAL;
		}
		if  (addr <= limit)
			break;
		prv = limit;
	}
	ch_way = TAD_CH(reg) + 1;
	sck_way = TAD_SOCK(reg) + 1;
	/*
	 * FIXME: Is it right to always use channel 0 for offsets?
	 */
	pci_read_config_dword(pvt->pci_tad[0],
				tad_ch_nilv_offset[n_tads],
				&tad_offset);

	if (ch_way == 3)
		idx = addr >> 6;
	else
		idx = addr >> (6 + sck_way);
	idx = idx % ch_way;

	/*
	 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
	 */
	switch (idx) {
	case 0:
		base_ch = TAD_TGT0(reg);
		break;
	case 1:
		base_ch = TAD_TGT1(reg);
		break;
	case 2:
		base_ch = TAD_TGT2(reg);
		break;
	case 3:
		base_ch = TAD_TGT3(reg);
		break;
	default:
		sprintf(msg, "Can't discover the TAD target");
		return -EINVAL;
	}
	*channel_mask = 1 << base_ch;

	if (pvt->is_mirrored) {
		*channel_mask |= 1 << ((base_ch + 2) % 4);
		switch(ch_way) {
		case 2:
		case 4:
			sck_xch = 1 << sck_way * (ch_way >> 1);
			break;
		default:
			sprintf(msg, "Invalid mirror set. Can't decode addr");
			return -EINVAL;
		}
	} else
		sck_xch = (1 << sck_way) * ch_way;

	if (pvt->is_lockstep)
		*channel_mask |= 1 << ((base_ch + 1) % 4);

	offset = TAD_OFFSET(tad_offset);

973 974 975 976 977 978 979 980 981 982
	edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
		 n_tads,
		 addr,
		 limit,
		 (u32)TAD_SOCK(reg),
		 ch_way,
		 offset,
		 idx,
		 base_ch,
		 *channel_mask);
983 984 985 986 987 988 989 990 991 992 993 994 995 996

	/* Calculate channel address */
	/* Remove the TAD offset */

	if (offset > addr) {
		sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
			offset, addr);
		return -EINVAL;
	}
	addr -= offset;
	/* Store the low bits [0:6] of the addr */
	ch_addr = addr & 0x7f;
	/* Remove socket wayness and remove 6 bits */
	addr >>= 6;
997
	addr = div_u64(addr, sck_xch);
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
#if 0
	/* Divide by channel way */
	addr = addr / ch_way;
#endif
	/* Recover the last 6 bits */
	ch_addr |= addr << 6;

	/*
	 * Step 3) Decode rank
	 */
	for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
		pci_read_config_dword(pvt->pci_tad[base_ch],
				      rir_way_limit[n_rir],
				      &reg);

		if (!IS_RIR_VALID(reg))
			continue;

		limit = RIR_LIMIT(reg);
1017
		mb = div_u64_rem(limit >> 20, 1000, &kb);
1018 1019 1020 1021 1022
		edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
			 n_rir,
			 mb, kb,
			 limit,
			 1 << RIR_WAY(reg));
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
		if  (ch_addr <= limit)
			break;
	}
	if (n_rir == MAX_RIR_RANGES) {
		sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
			ch_addr);
		return -EINVAL;
	}
	rir_way = RIR_WAY(reg);
	if (pvt->is_close_pg)
		idx = (ch_addr >> 6);
	else
		idx = (ch_addr >> 13);	/* FIXME: Datasheet says to shift by 15 */
	idx %= 1 << rir_way;

	pci_read_config_dword(pvt->pci_tad[base_ch],
			      rir_offset[n_rir][idx],
			      &reg);
	*rank = RIR_RNK_TGT(reg);

1043 1044 1045 1046 1047 1048
	edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
		 n_rir,
		 ch_addr,
		 limit,
		 rir_way,
		 idx);
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064

	return 0;
}

/****************************************************************************
	Device initialization routines: put/get, init/exit
 ****************************************************************************/

/*
 *	sbridge_put_all_devices	'put' all the devices that we have
 *				reserved via 'get'
 */
static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
{
	int i;

1065
	edac_dbg(0, "\n");
1066 1067 1068 1069
	for (i = 0; i < sbridge_dev->n_devs; i++) {
		struct pci_dev *pdev = sbridge_dev->pdev[i];
		if (!pdev)
			continue;
1070 1071 1072
		edac_dbg(0, "Removing dev %02x:%02x.%d\n",
			 pdev->bus->number,
			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
		pci_dev_put(pdev);
	}
}

static void sbridge_put_all_devices(void)
{
	struct sbridge_dev *sbridge_dev, *tmp;

	list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
		sbridge_put_devices(sbridge_dev);
		free_sbridge_dev(sbridge_dev);
	}
}

/*
 *	sbridge_get_all_devices	Find and perform 'get' operation on the MCH's
 *			device/functions we want to reference for this driver
 *
 *			Need to 'get' device 16 func 1 and func 2
 */
static int sbridge_get_onedevice(struct pci_dev **prev,
				 u8 *num_mc,
				 const struct pci_id_table *table,
				 const unsigned devno)
{
	struct sbridge_dev *sbridge_dev;
	const struct pci_id_descr *dev_descr = &table->descr[devno];

	struct pci_dev *pdev = NULL;
	u8 bus = 0;

	sbridge_printk(KERN_INFO,
		"Seeking for: dev %02x.%d PCI ID %04x:%04x\n",
		dev_descr->dev, dev_descr->func,
		PCI_VENDOR_ID_INTEL, dev_descr->dev_id);

	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
			      dev_descr->dev_id, *prev);

	if (!pdev) {
		if (*prev) {
			*prev = pdev;
			return 0;
		}

		if (dev_descr->optional)
			return 0;

		if (devno == 0)
			return -ENODEV;

		sbridge_printk(KERN_INFO,
			"Device not found: dev %02x.%d PCI ID %04x:%04x\n",
			dev_descr->dev, dev_descr->func,
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);

		/* End of list, leave */
		return -ENODEV;
	}
	bus = pdev->bus->number;

	sbridge_dev = get_sbridge_dev(bus);
	if (!sbridge_dev) {
		sbridge_dev = alloc_sbridge_dev(bus, table);
		if (!sbridge_dev) {
			pci_dev_put(pdev);
			return -ENOMEM;
		}
		(*num_mc)++;
	}

	if (sbridge_dev->pdev[devno]) {
		sbridge_printk(KERN_ERR,
			"Duplicated device for "
			"dev %02x:%d.%d PCI ID %04x:%04x\n",
			bus, dev_descr->dev, dev_descr->func,
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
		pci_dev_put(pdev);
		return -ENODEV;
	}

	sbridge_dev->pdev[devno] = pdev;

	/* Sanity check */
	if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev ||
			PCI_FUNC(pdev->devfn) != dev_descr->func)) {
		sbridge_printk(KERN_ERR,
			"Device PCI ID %04x:%04x "
			"has dev %02x:%d.%d instead of dev %02x:%02x.%d\n",
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id,
			bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
			bus, dev_descr->dev, dev_descr->func);
		return -ENODEV;
	}

	/* Be sure that the device is enabled */
	if (unlikely(pci_enable_device(pdev) < 0)) {
		sbridge_printk(KERN_ERR,
			"Couldn't enable "
			"dev %02x:%d.%d PCI ID %04x:%04x\n",
			bus, dev_descr->dev, dev_descr->func,
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
		return -ENODEV;
	}

1178 1179 1180
	edac_dbg(0, "Detected dev %02x:%d.%d PCI ID %04x:%04x\n",
		 bus, dev_descr->dev, dev_descr->func,
		 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296

	/*
	 * As stated on drivers/pci/search.c, the reference count for
	 * @from is always decremented if it is not %NULL. So, as we need
	 * to get all devices up to null, we need to do a get for the device
	 */
	pci_dev_get(pdev);

	*prev = pdev;

	return 0;
}

static int sbridge_get_all_devices(u8 *num_mc)
{
	int i, rc;
	struct pci_dev *pdev = NULL;
	const struct pci_id_table *table = pci_dev_descr_sbridge_table;

	while (table && table->descr) {
		for (i = 0; i < table->n_devs; i++) {
			pdev = NULL;
			do {
				rc = sbridge_get_onedevice(&pdev, num_mc,
							   table, i);
				if (rc < 0) {
					if (i == 0) {
						i = table->n_devs;
						break;
					}
					sbridge_put_all_devices();
					return -ENODEV;
				}
			} while (pdev);
		}
		table++;
	}

	return 0;
}

static int mci_bind_devs(struct mem_ctl_info *mci,
			 struct sbridge_dev *sbridge_dev)
{
	struct sbridge_pvt *pvt = mci->pvt_info;
	struct pci_dev *pdev;
	int i, func, slot;

	for (i = 0; i < sbridge_dev->n_devs; i++) {
		pdev = sbridge_dev->pdev[i];
		if (!pdev)
			continue;
		slot = PCI_SLOT(pdev->devfn);
		func = PCI_FUNC(pdev->devfn);
		switch (slot) {
		case 12:
			switch (func) {
			case 6:
				pvt->pci_sad0 = pdev;
				break;
			case 7:
				pvt->pci_sad1 = pdev;
				break;
			default:
				goto error;
			}
			break;
		case 13:
			switch (func) {
			case 6:
				pvt->pci_br = pdev;
				break;
			default:
				goto error;
			}
			break;
		case 14:
			switch (func) {
			case 0:
				pvt->pci_ha0 = pdev;
				break;
			default:
				goto error;
			}
			break;
		case 15:
			switch (func) {
			case 0:
				pvt->pci_ta = pdev;
				break;
			case 1:
				pvt->pci_ras = pdev;
				break;
			case 2:
			case 3:
			case 4:
			case 5:
				pvt->pci_tad[func - 2] = pdev;
				break;
			default:
				goto error;
			}
			break;
		case 17:
			switch (func) {
			case 0:
				pvt->pci_ddrio = pdev;
				break;
			default:
				goto error;
			}
			break;
		default:
			goto error;
		}

1297 1298 1299 1300
		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
			 sbridge_dev->bus,
			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
			 pdev);
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
	}

	/* Check if everything were registered */
	if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha0 ||
	    !pvt-> pci_tad || !pvt->pci_ras  || !pvt->pci_ta ||
	    !pvt->pci_ddrio)
		goto enodev;

	for (i = 0; i < NUM_CHANNELS; i++) {
		if (!pvt->pci_tad[i])
			goto enodev;
	}
	return 0;

enodev:
	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
	return -ENODEV;

error:
	sbridge_printk(KERN_ERR, "Device %d, function %d "
		      "is out of the expected range\n",
		      slot, func);
	return -EINVAL;
}

/****************************************************************************
			Error check routines
 ****************************************************************************/

/*
 * While Sandy Bridge has error count registers, SMI BIOS read values from
 * and resets the counters. So, they are not reliable for the OS to read
 * from them. So, we have no option but to just trust on whatever MCE is
 * telling us about the errors.
 */
static void sbridge_mce_output_error(struct mem_ctl_info *mci,
				    const struct mce *m)
{
	struct mem_ctl_info *new_mci;
	struct sbridge_pvt *pvt = mci->pvt_info;
1341
	enum hw_event_mc_err_type tp_event;
1342
	char *type, *optype, msg[256];
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
	bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
	bool overflow = GET_BITFIELD(m->status, 62, 62);
	bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
	bool recoverable = GET_BITFIELD(m->status, 56, 56);
	u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
	u32 mscod = GET_BITFIELD(m->status, 16, 31);
	u32 errcode = GET_BITFIELD(m->status, 0, 15);
	u32 channel = GET_BITFIELD(m->status, 0, 3);
	u32 optypenum = GET_BITFIELD(m->status, 4, 6);
	long channel_mask, first_channel;
	u8  rank, socket;
1354
	int rc, dimm;
1355
	char *area_type = NULL;
1356

1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
	if (uncorrected_error) {
		if (ripv) {
			type = "FATAL";
			tp_event = HW_EVENT_ERR_FATAL;
		} else {
			type = "NON_FATAL";
			tp_event = HW_EVENT_ERR_UNCORRECTED;
		}
	} else {
		type = "CORRECTED";
		tp_event = HW_EVENT_ERR_CORRECTED;
	}
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385

	/*
	 * According with Table 15-9 of the Intel Archictecture spec vol 3A,
	 * memory errors should fit in this mask:
	 *	000f 0000 1mmm cccc (binary)
	 * where:
	 *	f = Correction Report Filtering Bit. If 1, subsequent errors
	 *	    won't be shown
	 *	mmm = error type
	 *	cccc = channel
	 * If the mask doesn't match, report an error to the parsing logic
	 */
	if (! ((errcode & 0xef80) == 0x80)) {
		optype = "Can't parse: it is not a mem";
	} else {
		switch (optypenum) {
		case 0:
1386
			optype = "generic undef request error";
1387 1388
			break;
		case 1:
1389
			optype = "memory read error";
1390 1391
			break;
		case 2:
1392
			optype = "memory write error";
1393 1394
			break;
		case 3:
1395
			optype = "addr/cmd error";
1396 1397
			break;
		case 4:
1398
			optype = "memory scrubbing error";
1399 1400 1401 1402 1403 1404 1405 1406
			break;
		default:
			optype = "reserved";
			break;
		}
	}

	rc = get_memory_error_data(mci, m->addr, &socket,
1407
				   &channel_mask, &rank, &area_type, msg);
1408
	if (rc < 0)
1409
		goto err_parsing;
1410 1411
	new_mci = get_mci_for_node_id(socket);
	if (!new_mci) {
1412 1413
		strcpy(msg, "Error: socket got corrupted!");
		goto err_parsing;
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
	}
	mci = new_mci;
	pvt = mci->pvt_info;

	first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);

	if (rank < 4)
		dimm = 0;
	else if (rank < 8)
		dimm = 1;
	else
		dimm = 2;


	/*
1429 1430 1431 1432
	 * FIXME: On some memory configurations (mirror, lockstep), the
	 * Memory Controller can't point the error to a single DIMM. The
	 * EDAC core should be handling the channel mask, in order to point
	 * to the group of dimm's where the error may be happening.
1433
	 */
1434
	snprintf(msg, sizeof(msg),
1435
		 "%s%s area:%s err_code:%04x:%04x socket:%d channel_mask:%ld rank:%d",
1436 1437 1438 1439 1440 1441 1442
		 overflow ? " OVERFLOW" : "",
		 (uncorrected_error && recoverable) ? " recoverable" : "",
		 area_type,
		 mscod, errcode,
		 socket,
		 channel_mask,
		 rank);
1443

1444
	edac_dbg(0, "%s\n", msg);
1445

1446 1447
	/* FIXME: need support for channel mask */

1448
	/* Call the helper to output message */
1449
	edac_mc_handle_error(tp_event, mci, core_err_cnt,
1450 1451
			     m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
			     channel, dimm, -1,
1452
			     optype, msg);
1453 1454
	return;
err_parsing:
1455
	edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
1456
			     -1, -1, -1,
1457
			     msg, "");
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519

}

/*
 *	sbridge_check_error	Retrieve and process errors reported by the
 *				hardware. Called by the Core module.
 */
static void sbridge_check_error(struct mem_ctl_info *mci)
{
	struct sbridge_pvt *pvt = mci->pvt_info;
	int i;
	unsigned count = 0;
	struct mce *m;

	/*
	 * MCE first step: Copy all mce errors into a temporary buffer
	 * We use a double buffering here, to reduce the risk of
	 * loosing an error.
	 */
	smp_rmb();
	count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
		% MCE_LOG_LEN;
	if (!count)
		return;

	m = pvt->mce_outentry;
	if (pvt->mce_in + count > MCE_LOG_LEN) {
		unsigned l = MCE_LOG_LEN - pvt->mce_in;

		memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
		smp_wmb();
		pvt->mce_in = 0;
		count -= l;
		m += l;
	}
	memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
	smp_wmb();
	pvt->mce_in += count;

	smp_rmb();
	if (pvt->mce_overrun) {
		sbridge_printk(KERN_ERR, "Lost %d memory errors\n",
			      pvt->mce_overrun);
		smp_wmb();
		pvt->mce_overrun = 0;
	}

	/*
	 * MCE second step: parse errors and display
	 */
	for (i = 0; i < count; i++)
		sbridge_mce_output_error(mci, &pvt->mce_outentry[i]);
}

/*
 * sbridge_mce_check_error	Replicates mcelog routine to get errors
 *				This routine simply queues mcelog errors, and
 *				return. The error itself should be handled later
 *				by sbridge_check_error.
 * WARNING: As this routine should be called at NMI time, extra care should
 * be taken to avoid deadlocks, and to be as fast as possible.
 */
1520 1521
static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
				   void *data)
1522
{
1523 1524 1525 1526 1527 1528 1529 1530
	struct mce *mce = (struct mce *)data;
	struct mem_ctl_info *mci;
	struct sbridge_pvt *pvt;

	mci = get_mci_for_node_id(mce->socketid);
	if (!mci)
		return NOTIFY_BAD;
	pvt = mci->pvt_info;
1531 1532 1533 1534 1535 1536 1537 1538

	/*
	 * Just let mcelog handle it if the error is
	 * outside the memory controller. A memory error
	 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
	 * bit 12 has an special meaning.
	 */
	if ((mce->status & 0xefff) >> 7 != 1)
1539
		return NOTIFY_DONE;
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554

	printk("sbridge: HANDLING MCE MEMORY ERROR\n");

	printk("CPU %d: Machine Check Exception: %Lx Bank %d: %016Lx\n",
	       mce->extcpu, mce->mcgstatus, mce->bank, mce->status);
	printk("TSC %llx ", mce->tsc);
	printk("ADDR %llx ", mce->addr);
	printk("MISC %llx ", mce->misc);

	printk("PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n",
		mce->cpuvendor, mce->cpuid, mce->time,
		mce->socketid, mce->apicid);

	/* Only handle if it is the right mc controller */
	if (cpu_data(mce->cpu).phys_proc_id != pvt->sbridge_dev->mc)
1555
		return NOTIFY_DONE;
1556 1557 1558 1559 1560

	smp_rmb();
	if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
		smp_wmb();
		pvt->mce_overrun++;
1561
		return NOTIFY_DONE;
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
	}

	/* Copy memory error at the ringbuffer */
	memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
	smp_wmb();
	pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;

	/* Handle fatal errors immediately */
	if (mce->mcgstatus & 1)
		sbridge_check_error(mci);

	/* Advice mcelog that the error were handled */
1574
	return NOTIFY_STOP;
1575 1576
}

1577 1578 1579 1580
static struct notifier_block sbridge_mce_dec = {
	.notifier_call      = sbridge_mce_check_error,
};

1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
/****************************************************************************
			EDAC register/unregister logic
 ****************************************************************************/

static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
{
	struct mem_ctl_info *mci = sbridge_dev->mci;
	struct sbridge_pvt *pvt;

	if (unlikely(!mci || !mci->pvt_info)) {
1591
		edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
1592 1593 1594 1595 1596 1597 1598

		sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
		return;
	}

	pvt = mci->pvt_info;

1599 1600
	edac_dbg(0, "MC: mci = %p, dev = %p\n",
		 mci, &sbridge_dev->pdev[0]->dev);
1601

1602
	mce_unregister_decode_chain(&sbridge_mce_dec);
1603 1604

	/* Remove MC sysfs nodes */
1605
	edac_mc_del_mc(mci->pdev);
1606

1607
	edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
1608 1609 1610 1611 1612 1613 1614 1615
	kfree(mci->ctl_name);
	edac_mc_free(mci);
	sbridge_dev->mci = NULL;
}

static int sbridge_register_mci(struct sbridge_dev *sbridge_dev)
{
	struct mem_ctl_info *mci;
1616
	struct edac_mc_layer layers[2];
1617
	struct sbridge_pvt *pvt;
1618
	int rc;
1619 1620

	/* Check the number of active and not disabled channels */
1621
	rc = check_if_ecc_is_active(sbridge_dev->bus);
1622 1623 1624 1625
	if (unlikely(rc < 0))
		return rc;

	/* allocate a new MC control structure */
1626 1627 1628 1629 1630 1631
	layers[0].type = EDAC_MC_LAYER_CHANNEL;
	layers[0].size = NUM_CHANNELS;
	layers[0].is_virt_csrow = false;
	layers[1].type = EDAC_MC_LAYER_SLOT;
	layers[1].size = MAX_DIMMS;
	layers[1].is_virt_csrow = true;
1632
	mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
1633 1634
			    sizeof(*pvt));

1635 1636 1637
	if (unlikely(!mci))
		return -ENOMEM;

1638 1639
	edac_dbg(0, "MC: mci = %p, dev = %p\n",
		 mci, &sbridge_dev->pdev[0]->dev);
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669

	pvt = mci->pvt_info;
	memset(pvt, 0, sizeof(*pvt));

	/* Associate sbridge_dev and mci for future usage */
	pvt->sbridge_dev = sbridge_dev;
	sbridge_dev->mci = mci;

	mci->mtype_cap = MEM_FLAG_DDR3;
	mci->edac_ctl_cap = EDAC_FLAG_NONE;
	mci->edac_cap = EDAC_FLAG_NONE;
	mci->mod_name = "sbridge_edac.c";
	mci->mod_ver = SBRIDGE_REVISION;
	mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge Socket#%d", mci->mc_idx);
	mci->dev_name = pci_name(sbridge_dev->pdev[0]);
	mci->ctl_page_to_phys = NULL;

	/* Set the function pointer to an actual operation function */
	mci->edac_check = sbridge_check_error;

	/* Store pci devices at mci for faster access */
	rc = mci_bind_devs(mci, sbridge_dev);
	if (unlikely(rc < 0))
		goto fail0;

	/* Get dimm basic config and the memory layout */
	get_dimm_config(mci);
	get_memory_layout(mci);

	/* record ptr to the generic device */
1670
	mci->pdev = &sbridge_dev->pdev[0]->dev;
1671 1672 1673

	/* add this new MC control structure to EDAC's list of MCs */
	if (unlikely(edac_mc_add_mc(mci))) {
1674
		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
1675 1676 1677 1678
		rc = -EINVAL;
		goto fail0;
	}

1679
	mce_register_decode_chain(&sbridge_mce_dec);
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
	return 0;

fail0:
	kfree(mci->ctl_name);
	edac_mc_free(mci);
	sbridge_dev->mci = NULL;
	return rc;
}

/*
 *	sbridge_probe	Probe for ONE instance of device to see if it is
 *			present.
 *	return:
 *		0 for FOUND a device
 *		< 0 for error code
 */

static int __devinit sbridge_probe(struct pci_dev *pdev,
				  const struct pci_device_id *id)
{
	int rc;
	u8 mc, num_mc = 0;
	struct sbridge_dev *sbridge_dev;

	/* get the pci devices we want to reserve for our use */
	mutex_lock(&sbridge_edac_lock);

	/*
	 * All memory controllers are allocated at the first pass.
	 */
	if (unlikely(probed >= 1)) {
		mutex_unlock(&sbridge_edac_lock);
		return -ENODEV;
	}
	probed++;

	rc = sbridge_get_all_devices(&num_mc);
	if (unlikely(rc < 0))
		goto fail0;
	mc = 0;

	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
1722 1723
		edac_dbg(0, "Registering MC#%d (%d of %d)\n",
			 mc, mc + 1, num_mc);
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
		sbridge_dev->mc = mc++;
		rc = sbridge_register_mci(sbridge_dev);
		if (unlikely(rc < 0))
			goto fail1;
	}

	sbridge_printk(KERN_INFO, "Driver loaded.\n");

	mutex_unlock(&sbridge_edac_lock);
	return 0;

fail1:
	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
		sbridge_unregister_mci(sbridge_dev);

	sbridge_put_all_devices();
fail0:
	mutex_unlock(&sbridge_edac_lock);
	return rc;
}

/*
 *	sbridge_remove	destructor for one instance of device
 *
 */
static void __devexit sbridge_remove(struct pci_dev *pdev)
{
	struct sbridge_dev *sbridge_dev;

1753
	edac_dbg(0, "\n");
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801

	/*
	 * we have a trouble here: pdev value for removal will be wrong, since
	 * it will point to the X58 register used to detect that the machine
	 * is a Nehalem or upper design. However, due to the way several PCI
	 * devices are grouped together to provide MC functionality, we need
	 * to use a different method for releasing the devices
	 */

	mutex_lock(&sbridge_edac_lock);

	if (unlikely(!probed)) {
		mutex_unlock(&sbridge_edac_lock);
		return;
	}

	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
		sbridge_unregister_mci(sbridge_dev);

	/* Release PCI resources */
	sbridge_put_all_devices();

	probed--;

	mutex_unlock(&sbridge_edac_lock);
}

MODULE_DEVICE_TABLE(pci, sbridge_pci_tbl);

/*
 *	sbridge_driver	pci_driver structure for this module
 *
 */
static struct pci_driver sbridge_driver = {
	.name     = "sbridge_edac",
	.probe    = sbridge_probe,
	.remove   = __devexit_p(sbridge_remove),
	.id_table = sbridge_pci_tbl,
};

/*
 *	sbridge_init		Module entry function
 *			Try to initialize this module for its devices
 */
static int __init sbridge_init(void)
{
	int pci_rc;

1802
	edac_dbg(2, "\n");
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823

	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
	opstate_init();

	pci_rc = pci_register_driver(&sbridge_driver);

	if (pci_rc >= 0)
		return 0;

	sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
		      pci_rc);

	return pci_rc;
}

/*
 *	sbridge_exit()	Module exit function
 *			Unregister the driver
 */
static void __exit sbridge_exit(void)
{
1824
	edac_dbg(2, "\n");
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
	pci_unregister_driver(&sbridge_driver);
}

module_init(sbridge_init);
module_exit(sbridge_exit);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge memory controllers - "
		   SBRIDGE_REVISION);