ttm_tt.c 13.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
/**************************************************************************
 *
 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
 * All Rights Reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sub license, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice (including the
 * next paragraph) shall be included in all copies or substantial portions
 * of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
 * USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 **************************************************************************/
/*
 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
 */

#include <linux/vmalloc.h>
#include <linux/sched.h>
#include <linux/highmem.h>
#include <linux/pagemap.h>
#include <linux/file.h>
#include <linux/swap.h>
37
#include "drm_cache.h"
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
#include "ttm/ttm_module.h"
#include "ttm/ttm_bo_driver.h"
#include "ttm/ttm_placement.h"

static int ttm_tt_swapin(struct ttm_tt *ttm);

/**
 * Allocates storage for pointers to the pages that back the ttm.
 *
 * Uses kmalloc if possible. Otherwise falls back to vmalloc.
 */
static void ttm_tt_alloc_page_directory(struct ttm_tt *ttm)
{
	unsigned long size = ttm->num_pages * sizeof(*ttm->pages);
	ttm->pages = NULL;

	if (size <= PAGE_SIZE)
		ttm->pages = kzalloc(size, GFP_KERNEL);

	if (!ttm->pages) {
		ttm->pages = vmalloc_user(size);
		if (ttm->pages)
			ttm->page_flags |= TTM_PAGE_FLAG_VMALLOC;
	}
}

static void ttm_tt_free_page_directory(struct ttm_tt *ttm)
{
	if (ttm->page_flags & TTM_PAGE_FLAG_VMALLOC) {
		vfree(ttm->pages);
		ttm->page_flags &= ~TTM_PAGE_FLAG_VMALLOC;
	} else {
		kfree(ttm->pages);
	}
	ttm->pages = NULL;
}

static struct page *ttm_tt_alloc_page(unsigned page_flags)
{
77
	gfp_t gfp_flags = GFP_USER;
D
Dave Airlie 已提交
78

79
	if (page_flags & TTM_PAGE_FLAG_ZERO_ALLOC)
D
Dave Airlie 已提交
80 81 82 83
		gfp_flags |= __GFP_ZERO;

	if (page_flags & TTM_PAGE_FLAG_DMA32)
		gfp_flags |= __GFP_DMA32;
84 85
	else
		gfp_flags |= __GFP_HIGHMEM;
86

D
Dave Airlie 已提交
87
	return alloc_page(gfp_flags);
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
}

static void ttm_tt_free_user_pages(struct ttm_tt *ttm)
{
	int write;
	int dirty;
	struct page *page;
	int i;
	struct ttm_backend *be = ttm->be;

	BUG_ON(!(ttm->page_flags & TTM_PAGE_FLAG_USER));
	write = ((ttm->page_flags & TTM_PAGE_FLAG_WRITE) != 0);
	dirty = ((ttm->page_flags & TTM_PAGE_FLAG_USER_DIRTY) != 0);

	if (be)
		be->func->clear(be);

	for (i = 0; i < ttm->num_pages; ++i) {
		page = ttm->pages[i];
		if (page == NULL)
			continue;

		if (page == ttm->dummy_read_page) {
			BUG_ON(write);
			continue;
		}

		if (write && dirty && !PageReserved(page))
			set_page_dirty_lock(page);

		ttm->pages[i] = NULL;
119
		ttm_mem_global_free(ttm->glob->mem_glob, PAGE_SIZE);
120 121 122 123 124 125 126 127 128 129
		put_page(page);
	}
	ttm->state = tt_unpopulated;
	ttm->first_himem_page = ttm->num_pages;
	ttm->last_lomem_page = -1;
}

static struct page *__ttm_tt_get_page(struct ttm_tt *ttm, int index)
{
	struct page *p;
130
	struct ttm_mem_global *mem_glob = ttm->glob->mem_glob;
131 132 133 134 135 136 137 138
	int ret;

	while (NULL == (p = ttm->pages[index])) {
		p = ttm_tt_alloc_page(ttm->page_flags);

		if (!p)
			return NULL;

139 140 141 142 143
		ret = ttm_mem_global_alloc_page(mem_glob, p, false, false);
		if (unlikely(ret != 0))
			goto out_err;

		if (PageHighMem(p))
144
			ttm->pages[--ttm->first_himem_page] = p;
145
		else
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
			ttm->pages[++ttm->last_lomem_page] = p;
	}
	return p;
out_err:
	put_page(p);
	return NULL;
}

struct page *ttm_tt_get_page(struct ttm_tt *ttm, int index)
{
	int ret;

	if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
		ret = ttm_tt_swapin(ttm);
		if (unlikely(ret != 0))
			return NULL;
	}
	return __ttm_tt_get_page(ttm, index);
}

int ttm_tt_populate(struct ttm_tt *ttm)
{
	struct page *page;
	unsigned long i;
	struct ttm_backend *be;
	int ret;

	if (ttm->state != tt_unpopulated)
		return 0;

	if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
		ret = ttm_tt_swapin(ttm);
		if (unlikely(ret != 0))
			return ret;
	}

	be = ttm->be;

	for (i = 0; i < ttm->num_pages; ++i) {
		page = __ttm_tt_get_page(ttm, i);
		if (!page)
			return -ENOMEM;
	}

	be->func->populate(be, ttm->num_pages, ttm->pages,
			   ttm->dummy_read_page);
	ttm->state = tt_unbound;
	return 0;
}

#ifdef CONFIG_X86
static inline int ttm_tt_set_page_caching(struct page *p,
					  enum ttm_caching_state c_state)
{
	if (PageHighMem(p))
		return 0;

	switch (c_state) {
	case tt_cached:
		return set_pages_wb(p, 1);
	case tt_wc:
	    return set_memory_wc((unsigned long) page_address(p), 1);
	default:
		return set_pages_uc(p, 1);
	}
}
#else /* CONFIG_X86 */
static inline int ttm_tt_set_page_caching(struct page *p,
					  enum ttm_caching_state c_state)
{
	return 0;
}
#endif /* CONFIG_X86 */

/*
 * Change caching policy for the linear kernel map
 * for range of pages in a ttm.
 */

static int ttm_tt_set_caching(struct ttm_tt *ttm,
			      enum ttm_caching_state c_state)
{
	int i, j;
	struct page *cur_page;
	int ret;

	if (ttm->caching_state == c_state)
		return 0;

	if (c_state != tt_cached) {
		ret = ttm_tt_populate(ttm);
		if (unlikely(ret != 0))
			return ret;
	}

	if (ttm->caching_state == tt_cached)
242
		drm_clflush_pages(ttm->pages, ttm->num_pages);
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299

	for (i = 0; i < ttm->num_pages; ++i) {
		cur_page = ttm->pages[i];
		if (likely(cur_page != NULL)) {
			ret = ttm_tt_set_page_caching(cur_page, c_state);
			if (unlikely(ret != 0))
				goto out_err;
		}
	}

	ttm->caching_state = c_state;

	return 0;

out_err:
	for (j = 0; j < i; ++j) {
		cur_page = ttm->pages[j];
		if (likely(cur_page != NULL)) {
			(void)ttm_tt_set_page_caching(cur_page,
						      ttm->caching_state);
		}
	}

	return ret;
}

int ttm_tt_set_placement_caching(struct ttm_tt *ttm, uint32_t placement)
{
	enum ttm_caching_state state;

	if (placement & TTM_PL_FLAG_WC)
		state = tt_wc;
	else if (placement & TTM_PL_FLAG_UNCACHED)
		state = tt_uncached;
	else
		state = tt_cached;

	return ttm_tt_set_caching(ttm, state);
}

static void ttm_tt_free_alloced_pages(struct ttm_tt *ttm)
{
	int i;
	struct page *cur_page;
	struct ttm_backend *be = ttm->be;

	if (be)
		be->func->clear(be);
	(void)ttm_tt_set_caching(ttm, tt_cached);
	for (i = 0; i < ttm->num_pages; ++i) {
		cur_page = ttm->pages[i];
		ttm->pages[i] = NULL;
		if (cur_page) {
			if (page_count(cur_page) != 1)
				printk(KERN_ERR TTM_PFX
				       "Erroneous page count. "
				       "Leaking pages.\n");
300
			ttm_mem_global_free_page(ttm->glob->mem_glob,
301
						 cur_page);
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
			__free_page(cur_page);
		}
	}
	ttm->state = tt_unpopulated;
	ttm->first_himem_page = ttm->num_pages;
	ttm->last_lomem_page = -1;
}

void ttm_tt_destroy(struct ttm_tt *ttm)
{
	struct ttm_backend *be;

	if (unlikely(ttm == NULL))
		return;

	be = ttm->be;
	if (likely(be != NULL)) {
		be->func->destroy(be);
		ttm->be = NULL;
	}

	if (likely(ttm->pages != NULL)) {
		if (ttm->page_flags & TTM_PAGE_FLAG_USER)
			ttm_tt_free_user_pages(ttm);
		else
			ttm_tt_free_alloced_pages(ttm);

		ttm_tt_free_page_directory(ttm);
	}

	if (!(ttm->page_flags & TTM_PAGE_FLAG_PERSISTANT_SWAP) &&
	    ttm->swap_storage)
		fput(ttm->swap_storage);

	kfree(ttm);
}

int ttm_tt_set_user(struct ttm_tt *ttm,
		    struct task_struct *tsk,
		    unsigned long start, unsigned long num_pages)
{
	struct mm_struct *mm = tsk->mm;
	int ret;
	int write = (ttm->page_flags & TTM_PAGE_FLAG_WRITE) != 0;
346
	struct ttm_mem_global *mem_glob = ttm->glob->mem_glob;
347 348 349 350 351 352 353 354 355

	BUG_ON(num_pages != ttm->num_pages);
	BUG_ON((ttm->page_flags & TTM_PAGE_FLAG_USER) == 0);

	/**
	 * Account user pages as lowmem pages for now.
	 */

	ret = ttm_mem_global_alloc(mem_glob, num_pages * PAGE_SIZE,
356
				   false, false);
357 358 359 360 361 362 363 364 365 366
	if (unlikely(ret != 0))
		return ret;

	down_read(&mm->mmap_sem);
	ret = get_user_pages(tsk, mm, start, num_pages,
			     write, 0, ttm->pages, NULL);
	up_read(&mm->mmap_sem);

	if (ret != num_pages && write) {
		ttm_tt_free_user_pages(ttm);
367
		ttm_mem_global_free(mem_glob, num_pages * PAGE_SIZE);
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
		return -ENOMEM;
	}

	ttm->tsk = tsk;
	ttm->start = start;
	ttm->state = tt_unbound;

	return 0;
}

struct ttm_tt *ttm_tt_create(struct ttm_bo_device *bdev, unsigned long size,
			     uint32_t page_flags, struct page *dummy_read_page)
{
	struct ttm_bo_driver *bo_driver = bdev->driver;
	struct ttm_tt *ttm;

	if (!bo_driver)
		return NULL;

	ttm = kzalloc(sizeof(*ttm), GFP_KERNEL);
	if (!ttm)
		return NULL;

391
	ttm->glob = bdev->glob;
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
	ttm->num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
	ttm->first_himem_page = ttm->num_pages;
	ttm->last_lomem_page = -1;
	ttm->caching_state = tt_cached;
	ttm->page_flags = page_flags;

	ttm->dummy_read_page = dummy_read_page;

	ttm_tt_alloc_page_directory(ttm);
	if (!ttm->pages) {
		ttm_tt_destroy(ttm);
		printk(KERN_ERR TTM_PFX "Failed allocating page table\n");
		return NULL;
	}
	ttm->be = bo_driver->create_ttm_backend_entry(bdev);
	if (!ttm->be) {
		ttm_tt_destroy(ttm);
		printk(KERN_ERR TTM_PFX "Failed creating ttm backend entry\n");
		return NULL;
	}
	ttm->state = tt_unpopulated;
	return ttm;
}

void ttm_tt_unbind(struct ttm_tt *ttm)
{
	int ret;
	struct ttm_backend *be = ttm->be;

	if (ttm->state == tt_bound) {
		ret = be->func->unbind(be);
		BUG_ON(ret);
		ttm->state = tt_unbound;
	}
}

int ttm_tt_bind(struct ttm_tt *ttm, struct ttm_mem_reg *bo_mem)
{
	int ret = 0;
	struct ttm_backend *be;

	if (!ttm)
		return -EINVAL;

	if (ttm->state == tt_bound)
		return 0;

	be = ttm->be;

	ret = ttm_tt_populate(ttm);
	if (ret)
		return ret;

	ret = be->func->bind(be, bo_mem);
	if (ret) {
		printk(KERN_ERR TTM_PFX "Couldn't bind backend.\n");
		return ret;
	}

	ttm->state = tt_bound;

	if (ttm->page_flags & TTM_PAGE_FLAG_USER)
		ttm->page_flags |= TTM_PAGE_FLAG_USER_DIRTY;
	return 0;
}
EXPORT_SYMBOL(ttm_tt_bind);

static int ttm_tt_swapin(struct ttm_tt *ttm)
{
	struct address_space *swap_space;
	struct file *swap_storage;
	struct page *from_page;
	struct page *to_page;
	void *from_virtual;
	void *to_virtual;
	int i;
	int ret;

	if (ttm->page_flags & TTM_PAGE_FLAG_USER) {
		ret = ttm_tt_set_user(ttm, ttm->tsk, ttm->start,
				      ttm->num_pages);
		if (unlikely(ret != 0))
			return ret;

		ttm->page_flags &= ~TTM_PAGE_FLAG_SWAPPED;
		return 0;
	}

	swap_storage = ttm->swap_storage;
	BUG_ON(swap_storage == NULL);

	swap_space = swap_storage->f_path.dentry->d_inode->i_mapping;

	for (i = 0; i < ttm->num_pages; ++i) {
		from_page = read_mapping_page(swap_space, i, NULL);
		if (IS_ERR(from_page))
			goto out_err;
		to_page = __ttm_tt_get_page(ttm, i);
		if (unlikely(to_page == NULL))
			goto out_err;

		preempt_disable();
		from_virtual = kmap_atomic(from_page, KM_USER0);
		to_virtual = kmap_atomic(to_page, KM_USER1);
		memcpy(to_virtual, from_virtual, PAGE_SIZE);
		kunmap_atomic(to_virtual, KM_USER1);
		kunmap_atomic(from_virtual, KM_USER0);
		preempt_enable();
		page_cache_release(from_page);
	}

	if (!(ttm->page_flags & TTM_PAGE_FLAG_PERSISTANT_SWAP))
		fput(swap_storage);
	ttm->swap_storage = NULL;
	ttm->page_flags &= ~TTM_PAGE_FLAG_SWAPPED;

	return 0;
out_err:
	ttm_tt_free_alloced_pages(ttm);
	return -ENOMEM;
}

int ttm_tt_swapout(struct ttm_tt *ttm, struct file *persistant_swap_storage)
{
	struct address_space *swap_space;
	struct file *swap_storage;
	struct page *from_page;
	struct page *to_page;
	void *from_virtual;
	void *to_virtual;
	int i;

	BUG_ON(ttm->state != tt_unbound && ttm->state != tt_unpopulated);
	BUG_ON(ttm->caching_state != tt_cached);

	/*
	 * For user buffers, just unpin the pages, as there should be
	 * vma references.
	 */

	if (ttm->page_flags & TTM_PAGE_FLAG_USER) {
		ttm_tt_free_user_pages(ttm);
		ttm->page_flags |= TTM_PAGE_FLAG_SWAPPED;
		ttm->swap_storage = NULL;
		return 0;
	}

	if (!persistant_swap_storage) {
		swap_storage = shmem_file_setup("ttm swap",
						ttm->num_pages << PAGE_SHIFT,
						0);
		if (unlikely(IS_ERR(swap_storage))) {
			printk(KERN_ERR "Failed allocating swap storage.\n");
			return -ENOMEM;
		}
	} else
		swap_storage = persistant_swap_storage;

	swap_space = swap_storage->f_path.dentry->d_inode->i_mapping;

	for (i = 0; i < ttm->num_pages; ++i) {
		from_page = ttm->pages[i];
		if (unlikely(from_page == NULL))
			continue;
		to_page = read_mapping_page(swap_space, i, NULL);
		if (unlikely(to_page == NULL))
			goto out_err;

		preempt_disable();
		from_virtual = kmap_atomic(from_page, KM_USER0);
		to_virtual = kmap_atomic(to_page, KM_USER1);
		memcpy(to_virtual, from_virtual, PAGE_SIZE);
		kunmap_atomic(to_virtual, KM_USER1);
		kunmap_atomic(from_virtual, KM_USER0);
		preempt_enable();
		set_page_dirty(to_page);
		mark_page_accessed(to_page);
		page_cache_release(to_page);
	}

	ttm_tt_free_alloced_pages(ttm);
	ttm->swap_storage = swap_storage;
	ttm->page_flags |= TTM_PAGE_FLAG_SWAPPED;
	if (persistant_swap_storage)
		ttm->page_flags |= TTM_PAGE_FLAG_PERSISTANT_SWAP;

	return 0;
out_err:
	if (!persistant_swap_storage)
		fput(swap_storage);

	return -ENOMEM;
}