wl.c 43.3 KB
Newer Older
A
Artem B. Bityutskiy 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
/*
 * Copyright (c) International Business Machines Corp., 2006
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
 * the GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 *
 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
 */

/*
 * UBI wear-leveling unit.
 *
 * This unit is responsible for wear-leveling. It works in terms of physical
 * eraseblocks and erase counters and knows nothing about logical eraseblocks,
 * volumes, etc. From this unit's perspective all physical eraseblocks are of
 * two types - used and free. Used physical eraseblocks are those that were
 * "get" by the 'ubi_wl_get_peb()' function, and free physical eraseblocks are
 * those that were put by the 'ubi_wl_put_peb()' function.
 *
 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
 * header. The rest of the physical eraseblock contains only 0xFF bytes.
 *
 * When physical eraseblocks are returned to the WL unit by means of the
 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
 * done asynchronously in context of the per-UBI device background thread,
 * which is also managed by the WL unit.
 *
 * The wear-leveling is ensured by means of moving the contents of used
 * physical eraseblocks with low erase counter to free physical eraseblocks
 * with high erase counter.
 *
 * The 'ubi_wl_get_peb()' function accepts data type hints which help to pick
 * an "optimal" physical eraseblock. For example, when it is known that the
 * physical eraseblock will be "put" soon because it contains short-term data,
 * the WL unit may pick a free physical eraseblock with low erase counter, and
 * so forth.
 *
 * If the WL unit fails to erase a physical eraseblock, it marks it as bad.
 *
 * This unit is also responsible for scrubbing. If a bit-flip is detected in a
 * physical eraseblock, it has to be moved. Technically this is the same as
 * moving it for wear-leveling reasons.
 *
 * As it was said, for the UBI unit all physical eraseblocks are either "free"
 * or "used". Free eraseblock are kept in the @wl->free RB-tree, while used
 * eraseblocks are kept in a set of different RB-trees: @wl->used,
 * @wl->prot.pnum, @wl->prot.aec, and @wl->scrub.
 *
 * Note, in this implementation, we keep a small in-RAM object for each physical
 * eraseblock. This is surely not a scalable solution. But it appears to be good
 * enough for moderately large flashes and it is simple. In future, one may
 * re-work this unit and make it more scalable.
 *
 * At the moment this unit does not utilize the sequence number, which was
 * introduced relatively recently. But it would be wise to do this because the
 * sequence number of a logical eraseblock characterizes how old is it. For
 * example, when we move a PEB with low erase counter, and we need to pick the
 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
 * pick target PEB with an average EC if our PEB is not very "old". This is a
 * room for future re-works of the WL unit.
 *
 * FIXME: looks too complex, should be simplified (later).
 */

#include <linux/slab.h>
#include <linux/crc32.h>
#include <linux/freezer.h>
#include <linux/kthread.h>
#include "ubi.h"

/* Number of physical eraseblocks reserved for wear-leveling purposes */
#define WL_RESERVED_PEBS 1

/*
 * How many erase cycles are short term, unknown, and long term physical
 * eraseblocks protected.
 */
#define ST_PROTECTION 16
#define U_PROTECTION  10
#define LT_PROTECTION 4

/*
 * Maximum difference between two erase counters. If this threshold is
 * exceeded, the WL unit starts moving data from used physical eraseblocks with
 * low erase counter to free physical eraseblocks with high erase counter.
 */
#define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD

/*
 * When a physical eraseblock is moved, the WL unit has to pick the target
 * physical eraseblock to move to. The simplest way would be just to pick the
 * one with the highest erase counter. But in certain workloads this could lead
 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
 * situation when the picked physical eraseblock is constantly erased after the
 * data is written to it. So, we have a constant which limits the highest erase
 * counter of the free physical eraseblock to pick. Namely, the WL unit does
 * not pick eraseblocks with erase counter greater then the lowest erase
 * counter plus %WL_FREE_MAX_DIFF.
 */
#define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)

/*
 * Maximum number of consecutive background thread failures which is enough to
 * switch to read-only mode.
 */
#define WL_MAX_FAILURES 32

/**
 * struct ubi_wl_entry - wear-leveling entry.
 * @rb: link in the corresponding RB-tree
 * @ec: erase counter
 * @pnum: physical eraseblock number
 *
 * Each physical eraseblock has a corresponding &struct wl_entry object which
 * may be kept in different RB-trees.
 */
struct ubi_wl_entry {
	struct rb_node rb;
	int ec;
	int pnum;
};

/**
 * struct ubi_wl_prot_entry - PEB protection entry.
 * @rb_pnum: link in the @wl->prot.pnum RB-tree
 * @rb_aec: link in the @wl->prot.aec RB-tree
 * @abs_ec: the absolute erase counter value when the protection ends
 * @e: the wear-leveling entry of the physical eraseblock under protection
 *
 * When the WL unit returns a physical eraseblock, the physical eraseblock is
 * protected from being moved for some "time". For this reason, the physical
 * eraseblock is not directly moved from the @wl->free tree to the @wl->used
 * tree. There is one more tree in between where this physical eraseblock is
 * temporarily stored (@wl->prot).
 *
 * All this protection stuff is needed because:
 *  o we don't want to move physical eraseblocks just after we have given them
 *    to the user; instead, we first want to let users fill them up with data;
 *
 *  o there is a chance that the user will put the physical eraseblock very
 *    soon, so it makes sense not to move it for some time, but wait; this is
 *    especially important in case of "short term" physical eraseblocks.
 *
 * Physical eraseblocks stay protected only for limited time. But the "time" is
 * measured in erase cycles in this case. This is implemented with help of the
 * absolute erase counter (@wl->abs_ec). When it reaches certain value, the
 * physical eraseblocks are moved from the protection trees (@wl->prot.*) to
 * the @wl->used tree.
 *
 * Protected physical eraseblocks are searched by physical eraseblock number
 * (when they are put) and by the absolute erase counter (to check if it is
 * time to move them to the @wl->used tree). So there are actually 2 RB-trees
 * storing the protected physical eraseblocks: @wl->prot.pnum and
 * @wl->prot.aec. They are referred to as the "protection" trees. The
 * first one is indexed by the physical eraseblock number. The second one is
 * indexed by the absolute erase counter. Both trees store
 * &struct ubi_wl_prot_entry objects.
 *
 * Each physical eraseblock has 2 main states: free and used. The former state
 * corresponds to the @wl->free tree. The latter state is split up on several
 * sub-states:
 * o the WL movement is allowed (@wl->used tree);
 * o the WL movement is temporarily prohibited (@wl->prot.pnum and
 * @wl->prot.aec trees);
 * o scrubbing is needed (@wl->scrub tree).
 *
 * Depending on the sub-state, wear-leveling entries of the used physical
 * eraseblocks may be kept in one of those trees.
 */
struct ubi_wl_prot_entry {
	struct rb_node rb_pnum;
	struct rb_node rb_aec;
	unsigned long long abs_ec;
	struct ubi_wl_entry *e;
};

/**
 * struct ubi_work - UBI work description data structure.
 * @list: a link in the list of pending works
 * @func: worker function
 * @priv: private data of the worker function
 *
 * @e: physical eraseblock to erase
 * @torture: if the physical eraseblock has to be tortured
 *
 * The @func pointer points to the worker function. If the @cancel argument is
 * not zero, the worker has to free the resources and exit immediately. The
 * worker has to return zero in case of success and a negative error code in
 * case of failure.
 */
struct ubi_work {
	struct list_head list;
	int (*func)(struct ubi_device *ubi, struct ubi_work *wrk, int cancel);
	/* The below fields are only relevant to erasure works */
	struct ubi_wl_entry *e;
	int torture;
};

#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
static int paranoid_check_ec(const struct ubi_device *ubi, int pnum, int ec);
static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e,
				     struct rb_root *root);
#else
#define paranoid_check_ec(ubi, pnum, ec) 0
#define paranoid_check_in_wl_tree(e, root)
#endif

/* Slab cache for wear-leveling entries */
static struct kmem_cache *wl_entries_slab;

/**
 * tree_empty - a helper function to check if an RB-tree is empty.
 * @root: the root of the tree
 *
 * This function returns non-zero if the RB-tree is empty and zero if not.
 */
static inline int tree_empty(struct rb_root *root)
{
	return root->rb_node == NULL;
}

/**
 * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
 * @e: the wear-leveling entry to add
 * @root: the root of the tree
 *
 * Note, we use (erase counter, physical eraseblock number) pairs as keys in
 * the @ubi->used and @ubi->free RB-trees.
 */
static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
{
	struct rb_node **p, *parent = NULL;

	p = &root->rb_node;
	while (*p) {
		struct ubi_wl_entry *e1;

		parent = *p;
		e1 = rb_entry(parent, struct ubi_wl_entry, rb);

		if (e->ec < e1->ec)
			p = &(*p)->rb_left;
		else if (e->ec > e1->ec)
			p = &(*p)->rb_right;
		else {
			ubi_assert(e->pnum != e1->pnum);
			if (e->pnum < e1->pnum)
				p = &(*p)->rb_left;
			else
				p = &(*p)->rb_right;
		}
	}

	rb_link_node(&e->rb, parent, p);
	rb_insert_color(&e->rb, root);
}


/*
 * Helper functions to add and delete wear-leveling entries from different
 * trees.
 */

static void free_tree_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
{
	wl_tree_add(e, &ubi->free);
}
static inline void used_tree_add(struct ubi_device *ubi,
				 struct ubi_wl_entry *e)
{
	wl_tree_add(e, &ubi->used);
}
static inline void scrub_tree_add(struct ubi_device *ubi,
				  struct ubi_wl_entry *e)
{
	wl_tree_add(e, &ubi->scrub);
}
static inline void free_tree_del(struct ubi_device *ubi,
				 struct ubi_wl_entry *e)
{
	paranoid_check_in_wl_tree(e, &ubi->free);
	rb_erase(&e->rb, &ubi->free);
}
static inline void used_tree_del(struct ubi_device *ubi,
				 struct ubi_wl_entry *e)
{
	paranoid_check_in_wl_tree(e, &ubi->used);
	rb_erase(&e->rb, &ubi->used);
}
static inline void scrub_tree_del(struct ubi_device *ubi,
				  struct ubi_wl_entry *e)
{
	paranoid_check_in_wl_tree(e, &ubi->scrub);
	rb_erase(&e->rb, &ubi->scrub);
}

/**
 * do_work - do one pending work.
 * @ubi: UBI device description object
 *
 * This function returns zero in case of success and a negative error code in
 * case of failure.
 */
static int do_work(struct ubi_device *ubi)
{
	int err;
	struct ubi_work *wrk;

	spin_lock(&ubi->wl_lock);

	if (list_empty(&ubi->works)) {
		spin_unlock(&ubi->wl_lock);
		return 0;
	}

	wrk = list_entry(ubi->works.next, struct ubi_work, list);
	list_del(&wrk->list);
	spin_unlock(&ubi->wl_lock);

	/*
	 * Call the worker function. Do not touch the work structure
	 * after this call as it will have been freed or reused by that
	 * time by the worker function.
	 */
	err = wrk->func(ubi, wrk, 0);
	if (err)
		ubi_err("work failed with error code %d", err);

	spin_lock(&ubi->wl_lock);
	ubi->works_count -= 1;
	ubi_assert(ubi->works_count >= 0);
	spin_unlock(&ubi->wl_lock);
	return err;
}

/**
 * produce_free_peb - produce a free physical eraseblock.
 * @ubi: UBI device description object
 *
 * This function tries to make a free PEB by means of synchronous execution of
 * pending works. This may be needed if, for example the background thread is
 * disabled. Returns zero in case of success and a negative error code in case
 * of failure.
 */
static int produce_free_peb(struct ubi_device *ubi)
{
	int err;

	spin_lock(&ubi->wl_lock);
	while (tree_empty(&ubi->free)) {
		spin_unlock(&ubi->wl_lock);

		dbg_wl("do one work synchronously");
		err = do_work(ubi);
		if (err)
			return err;

		spin_lock(&ubi->wl_lock);
	}
	spin_unlock(&ubi->wl_lock);

	return 0;
}

/**
 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
 * @e: the wear-leveling entry to check
 * @root: the root of the tree
 *
 * This function returns non-zero if @e is in the @root RB-tree and zero if it
 * is not.
 */
static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
{
	struct rb_node *p;

	p = root->rb_node;
	while (p) {
		struct ubi_wl_entry *e1;

		e1 = rb_entry(p, struct ubi_wl_entry, rb);

		if (e->pnum == e1->pnum) {
			ubi_assert(e == e1);
			return 1;
		}

		if (e->ec < e1->ec)
			p = p->rb_left;
		else if (e->ec > e1->ec)
			p = p->rb_right;
		else {
			ubi_assert(e->pnum != e1->pnum);
			if (e->pnum < e1->pnum)
				p = p->rb_left;
			else
				p = p->rb_right;
		}
	}

	return 0;
}

/**
 * prot_tree_add - add physical eraseblock to protection trees.
 * @ubi: UBI device description object
 * @e: the physical eraseblock to add
 * @pe: protection entry object to use
 * @abs_ec: absolute erase counter value when this physical eraseblock has
 * to be removed from the protection trees.
 *
 * @wl->lock has to be locked.
 */
static void prot_tree_add(struct ubi_device *ubi, struct ubi_wl_entry *e,
			  struct ubi_wl_prot_entry *pe, int abs_ec)
{
	struct rb_node **p, *parent = NULL;
	struct ubi_wl_prot_entry *pe1;

	pe->e = e;
	pe->abs_ec = ubi->abs_ec + abs_ec;

	p = &ubi->prot.pnum.rb_node;
	while (*p) {
		parent = *p;
		pe1 = rb_entry(parent, struct ubi_wl_prot_entry, rb_pnum);

		if (e->pnum < pe1->e->pnum)
			p = &(*p)->rb_left;
		else
			p = &(*p)->rb_right;
	}
	rb_link_node(&pe->rb_pnum, parent, p);
	rb_insert_color(&pe->rb_pnum, &ubi->prot.pnum);

	p = &ubi->prot.aec.rb_node;
	parent = NULL;
	while (*p) {
		parent = *p;
		pe1 = rb_entry(parent, struct ubi_wl_prot_entry, rb_aec);

		if (pe->abs_ec < pe1->abs_ec)
			p = &(*p)->rb_left;
		else
			p = &(*p)->rb_right;
	}
	rb_link_node(&pe->rb_aec, parent, p);
	rb_insert_color(&pe->rb_aec, &ubi->prot.aec);
}

/**
 * find_wl_entry - find wear-leveling entry closest to certain erase counter.
 * @root: the RB-tree where to look for
 * @max: highest possible erase counter
 *
 * This function looks for a wear leveling entry with erase counter closest to
 * @max and less then @max.
 */
static struct ubi_wl_entry *find_wl_entry(struct rb_root *root, int max)
{
	struct rb_node *p;
	struct ubi_wl_entry *e;

	e = rb_entry(rb_first(root), struct ubi_wl_entry, rb);
	max += e->ec;

	p = root->rb_node;
	while (p) {
		struct ubi_wl_entry *e1;

		e1 = rb_entry(p, struct ubi_wl_entry, rb);
		if (e1->ec >= max)
			p = p->rb_left;
		else {
			p = p->rb_right;
			e = e1;
		}
	}

	return e;
}

/**
 * ubi_wl_get_peb - get a physical eraseblock.
 * @ubi: UBI device description object
 * @dtype: type of data which will be stored in this physical eraseblock
 *
 * This function returns a physical eraseblock in case of success and a
 * negative error code in case of failure. Might sleep.
 */
int ubi_wl_get_peb(struct ubi_device *ubi, int dtype)
{
	int err, protect, medium_ec;
	struct ubi_wl_entry *e, *first, *last;
	struct ubi_wl_prot_entry *pe;

	ubi_assert(dtype == UBI_LONGTERM || dtype == UBI_SHORTTERM ||
		   dtype == UBI_UNKNOWN);

	pe = kmalloc(sizeof(struct ubi_wl_prot_entry), GFP_KERNEL);
	if (!pe)
		return -ENOMEM;

retry:
	spin_lock(&ubi->wl_lock);
	if (tree_empty(&ubi->free)) {
		if (ubi->works_count == 0) {
			ubi_assert(list_empty(&ubi->works));
			ubi_err("no free eraseblocks");
			spin_unlock(&ubi->wl_lock);
			kfree(pe);
			return -ENOSPC;
		}
		spin_unlock(&ubi->wl_lock);

		err = produce_free_peb(ubi);
		if (err < 0) {
			kfree(pe);
			return err;
		}
		goto retry;
	}

	switch (dtype) {
		case UBI_LONGTERM:
			/*
			 * For long term data we pick a physical eraseblock
			 * with high erase counter. But the highest erase
			 * counter we can pick is bounded by the the lowest
			 * erase counter plus %WL_FREE_MAX_DIFF.
			 */
			e = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
			protect = LT_PROTECTION;
			break;
		case UBI_UNKNOWN:
			/*
			 * For unknown data we pick a physical eraseblock with
			 * medium erase counter. But we by no means can pick a
			 * physical eraseblock with erase counter greater or
			 * equivalent than the lowest erase counter plus
			 * %WL_FREE_MAX_DIFF.
			 */
			first = rb_entry(rb_first(&ubi->free),
					 struct ubi_wl_entry, rb);
			last = rb_entry(rb_last(&ubi->free),
					struct ubi_wl_entry, rb);

			if (last->ec - first->ec < WL_FREE_MAX_DIFF)
				e = rb_entry(ubi->free.rb_node,
						struct ubi_wl_entry, rb);
			else {
				medium_ec = (first->ec + WL_FREE_MAX_DIFF)/2;
				e = find_wl_entry(&ubi->free, medium_ec);
			}
			protect = U_PROTECTION;
			break;
		case UBI_SHORTTERM:
			/*
			 * For short term data we pick a physical eraseblock
			 * with the lowest erase counter as we expect it will
			 * be erased soon.
			 */
			e = rb_entry(rb_first(&ubi->free),
				     struct ubi_wl_entry, rb);
			protect = ST_PROTECTION;
			break;
		default:
			protect = 0;
			e = NULL;
			BUG();
	}

	/*
	 * Move the physical eraseblock to the protection trees where it will
	 * be protected from being moved for some time.
	 */
	free_tree_del(ubi, e);
	prot_tree_add(ubi, e, pe, protect);

	dbg_wl("PEB %d EC %d, protection %d", e->pnum, e->ec, protect);
	spin_unlock(&ubi->wl_lock);

	return e->pnum;
}

/**
 * prot_tree_del - remove a physical eraseblock from the protection trees
 * @ubi: UBI device description object
 * @pnum: the physical eraseblock to remove
 */
static void prot_tree_del(struct ubi_device *ubi, int pnum)
{
	struct rb_node *p;
	struct ubi_wl_prot_entry *pe = NULL;

	p = ubi->prot.pnum.rb_node;
	while (p) {

		pe = rb_entry(p, struct ubi_wl_prot_entry, rb_pnum);

		if (pnum == pe->e->pnum)
			break;

		if (pnum < pe->e->pnum)
			p = p->rb_left;
		else
			p = p->rb_right;
	}

	ubi_assert(pe->e->pnum == pnum);
	rb_erase(&pe->rb_aec, &ubi->prot.aec);
	rb_erase(&pe->rb_pnum, &ubi->prot.pnum);
	kfree(pe);
}

/**
 * sync_erase - synchronously erase a physical eraseblock.
 * @ubi: UBI device description object
 * @e: the the physical eraseblock to erase
 * @torture: if the physical eraseblock has to be tortured
 *
 * This function returns zero in case of success and a negative error code in
 * case of failure.
 */
static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, int torture)
{
	int err;
	struct ubi_ec_hdr *ec_hdr;
	unsigned long long ec = e->ec;

	dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);

	err = paranoid_check_ec(ubi, e->pnum, e->ec);
	if (err > 0)
		return -EINVAL;

	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
	if (!ec_hdr)
		return -ENOMEM;

	err = ubi_io_sync_erase(ubi, e->pnum, torture);
	if (err < 0)
		goto out_free;

	ec += err;
	if (ec > UBI_MAX_ERASECOUNTER) {
		/*
		 * Erase counter overflow. Upgrade UBI and use 64-bit
		 * erase counters internally.
		 */
		ubi_err("erase counter overflow at PEB %d, EC %llu",
			e->pnum, ec);
		err = -EINVAL;
		goto out_free;
	}

	dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);

	ec_hdr->ec = cpu_to_ubi64(ec);

	err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
	if (err)
		goto out_free;

	e->ec = ec;
	spin_lock(&ubi->wl_lock);
	if (e->ec > ubi->max_ec)
		ubi->max_ec = e->ec;
	spin_unlock(&ubi->wl_lock);

out_free:
	kfree(ec_hdr);
	return err;
}

/**
 * check_protection_over - check if it is time to stop protecting some
 * physical eraseblocks.
 * @ubi: UBI device description object
 *
 * This function is called after each erase operation, when the absolute erase
 * counter is incremented, to check if some physical eraseblock  have not to be
 * protected any longer. These physical eraseblocks are moved from the
 * protection trees to the used tree.
 */
static void check_protection_over(struct ubi_device *ubi)
{
	struct ubi_wl_prot_entry *pe;

	/*
	 * There may be several protected physical eraseblock to remove,
	 * process them all.
	 */
	while (1) {
		spin_lock(&ubi->wl_lock);
		if (tree_empty(&ubi->prot.aec)) {
			spin_unlock(&ubi->wl_lock);
			break;
		}

		pe = rb_entry(rb_first(&ubi->prot.aec),
			      struct ubi_wl_prot_entry, rb_aec);

		if (pe->abs_ec > ubi->abs_ec) {
			spin_unlock(&ubi->wl_lock);
			break;
		}

		dbg_wl("PEB %d protection over, abs_ec %llu, PEB abs_ec %llu",
		       pe->e->pnum, ubi->abs_ec, pe->abs_ec);
		rb_erase(&pe->rb_aec, &ubi->prot.aec);
		rb_erase(&pe->rb_pnum, &ubi->prot.pnum);
		used_tree_add(ubi, pe->e);
		spin_unlock(&ubi->wl_lock);

		kfree(pe);
		cond_resched();
	}
}

/**
 * schedule_ubi_work - schedule a work.
 * @ubi: UBI device description object
 * @wrk: the work to schedule
 *
 * This function enqueues a work defined by @wrk to the tail of the pending
 * works list.
 */
static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
{
	spin_lock(&ubi->wl_lock);
	list_add_tail(&wrk->list, &ubi->works);
	ubi_assert(ubi->works_count >= 0);
	ubi->works_count += 1;
	if (ubi->thread_enabled)
		wake_up_process(ubi->bgt_thread);
	spin_unlock(&ubi->wl_lock);
}

static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
			int cancel);

/**
 * schedule_erase - schedule an erase work.
 * @ubi: UBI device description object
 * @e: the WL entry of the physical eraseblock to erase
 * @torture: if the physical eraseblock has to be tortured
 *
 * This function returns zero in case of success and a %-ENOMEM in case of
 * failure.
 */
static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
			  int torture)
{
	struct ubi_work *wl_wrk;

	dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
	       e->pnum, e->ec, torture);

	wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_KERNEL);
	if (!wl_wrk)
		return -ENOMEM;

	wl_wrk->func = &erase_worker;
	wl_wrk->e = e;
	wl_wrk->torture = torture;

	schedule_ubi_work(ubi, wl_wrk);
	return 0;
}

/**
 * wear_leveling_worker - wear-leveling worker function.
 * @ubi: UBI device description object
 * @wrk: the work object
 * @cancel: non-zero if the worker has to free memory and exit
 *
 * This function copies a more worn out physical eraseblock to a less worn out
 * one. Returns zero in case of success and a negative error code in case of
 * failure.
 */
static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
				int cancel)
{
	int err, put = 0;
	struct ubi_wl_entry *e1, *e2;
	struct ubi_vid_hdr *vid_hdr;

	kfree(wrk);

	if (cancel)
		return 0;

	vid_hdr = ubi_zalloc_vid_hdr(ubi);
	if (!vid_hdr)
		return -ENOMEM;

	spin_lock(&ubi->wl_lock);

	/*
	 * Only one WL worker at a time is supported at this implementation, so
	 * make sure a PEB is not being moved already.
	 */
	if (ubi->move_to || tree_empty(&ubi->free) ||
	    (tree_empty(&ubi->used) && tree_empty(&ubi->scrub))) {
		/*
		 * Only one WL worker at a time is supported at this
		 * implementation, so if a LEB is already being moved, cancel.
		 *
		 * No free physical eraseblocks? Well, we cancel wear-leveling
		 * then. It will be triggered again when a free physical
		 * eraseblock appears.
		 *
		 * No used physical eraseblocks? They must be temporarily
		 * protected from being moved. They will be moved to the
		 * @ubi->used tree later and the wear-leveling will be
		 * triggered again.
		 */
		dbg_wl("cancel WL, a list is empty: free %d, used %d",
		       tree_empty(&ubi->free), tree_empty(&ubi->used));
		ubi->wl_scheduled = 0;
		spin_unlock(&ubi->wl_lock);
		ubi_free_vid_hdr(ubi, vid_hdr);
		return 0;
	}

	if (tree_empty(&ubi->scrub)) {
		/*
		 * Now pick the least worn-out used physical eraseblock and a
		 * highly worn-out free physical eraseblock. If the erase
		 * counters differ much enough, start wear-leveling.
		 */
		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, rb);
		e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);

		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
			dbg_wl("no WL needed: min used EC %d, max free EC %d",
			       e1->ec, e2->ec);
			ubi->wl_scheduled = 0;
			spin_unlock(&ubi->wl_lock);
			ubi_free_vid_hdr(ubi, vid_hdr);
			return 0;
		}
		used_tree_del(ubi, e1);
		dbg_wl("move PEB %d EC %d to PEB %d EC %d",
		       e1->pnum, e1->ec, e2->pnum, e2->ec);
	} else {
		e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, rb);
		e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
		scrub_tree_del(ubi, e1);
		dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
	}

	free_tree_del(ubi, e2);
	ubi_assert(!ubi->move_from && !ubi->move_to);
	ubi_assert(!ubi->move_to_put && !ubi->move_from_put);
	ubi->move_from = e1;
	ubi->move_to = e2;
	spin_unlock(&ubi->wl_lock);

	/*
	 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
	 * We so far do not know which logical eraseblock our physical
	 * eraseblock (@e1) belongs to. We have to read the volume identifier
	 * header first.
	 */

	err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
	if (err && err != UBI_IO_BITFLIPS) {
		if (err == UBI_IO_PEB_FREE) {
			/*
			 * We are trying to move PEB without a VID header. UBI
			 * always write VID headers shortly after the PEB was
			 * given, so we have a situation when it did not have
			 * chance to write it down because it was preempted.
			 * Just re-schedule the work, so that next time it will
			 * likely have the VID header in place.
			 */
			dbg_wl("PEB %d has no VID header", e1->pnum);
			err = 0;
		} else {
			ubi_err("error %d while reading VID header from PEB %d",
				err, e1->pnum);
			if (err > 0)
				err = -EIO;
		}
		goto error;
	}

	err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
	if (err) {
		if (err == UBI_IO_BITFLIPS)
			err = 0;
		goto error;
	}

	ubi_free_vid_hdr(ubi, vid_hdr);
	spin_lock(&ubi->wl_lock);
	if (!ubi->move_to_put)
		used_tree_add(ubi, e2);
	else
		put = 1;
	ubi->move_from = ubi->move_to = NULL;
	ubi->move_from_put = ubi->move_to_put = 0;
	ubi->wl_scheduled = 0;
	spin_unlock(&ubi->wl_lock);

	if (put) {
		/*
		 * Well, the target PEB was put meanwhile, schedule it for
		 * erasure.
		 */
		dbg_wl("PEB %d was put meanwhile, erase", e2->pnum);
		err = schedule_erase(ubi, e2, 0);
		if (err) {
			kmem_cache_free(wl_entries_slab, e2);
			ubi_ro_mode(ubi);
		}
	}

	err = schedule_erase(ubi, e1, 0);
	if (err) {
		kmem_cache_free(wl_entries_slab, e1);
		ubi_ro_mode(ubi);
	}

	dbg_wl("done");
	return err;

	/*
	 * Some error occurred. @e1 was not changed, so return it back. @e2
	 * might be changed, schedule it for erasure.
	 */
error:
	if (err)
		dbg_wl("error %d occurred, cancel operation", err);
	ubi_assert(err <= 0);

	ubi_free_vid_hdr(ubi, vid_hdr);
	spin_lock(&ubi->wl_lock);
	ubi->wl_scheduled = 0;
	if (ubi->move_from_put)
		put = 1;
	else
		used_tree_add(ubi, e1);
	ubi->move_from = ubi->move_to = NULL;
	ubi->move_from_put = ubi->move_to_put = 0;
	spin_unlock(&ubi->wl_lock);

	if (put) {
		/*
		 * Well, the target PEB was put meanwhile, schedule it for
		 * erasure.
		 */
		dbg_wl("PEB %d was put meanwhile, erase", e1->pnum);
		err = schedule_erase(ubi, e1, 0);
		if (err) {
			kmem_cache_free(wl_entries_slab, e1);
			ubi_ro_mode(ubi);
		}
	}

	err = schedule_erase(ubi, e2, 0);
	if (err) {
		kmem_cache_free(wl_entries_slab, e2);
		ubi_ro_mode(ubi);
	}

	yield();
	return err;
}

/**
 * ensure_wear_leveling - schedule wear-leveling if it is needed.
 * @ubi: UBI device description object
 *
 * This function checks if it is time to start wear-leveling and schedules it
 * if yes. This function returns zero in case of success and a negative error
 * code in case of failure.
 */
static int ensure_wear_leveling(struct ubi_device *ubi)
{
	int err = 0;
	struct ubi_wl_entry *e1;
	struct ubi_wl_entry *e2;
	struct ubi_work *wrk;

	spin_lock(&ubi->wl_lock);
	if (ubi->wl_scheduled)
		/* Wear-leveling is already in the work queue */
		goto out_unlock;

	/*
	 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
	 * the WL worker has to be scheduled anyway.
	 */
	if (tree_empty(&ubi->scrub)) {
		if (tree_empty(&ubi->used) || tree_empty(&ubi->free))
			/* No physical eraseblocks - no deal */
			goto out_unlock;

		/*
		 * We schedule wear-leveling only if the difference between the
		 * lowest erase counter of used physical eraseblocks and a high
		 * erase counter of free physical eraseblocks is greater then
		 * %UBI_WL_THRESHOLD.
		 */
		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, rb);
		e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);

		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
			goto out_unlock;
		dbg_wl("schedule wear-leveling");
	} else
		dbg_wl("schedule scrubbing");

	ubi->wl_scheduled = 1;
	spin_unlock(&ubi->wl_lock);

	wrk = kmalloc(sizeof(struct ubi_work), GFP_KERNEL);
	if (!wrk) {
		err = -ENOMEM;
		goto out_cancel;
	}

	wrk->func = &wear_leveling_worker;
	schedule_ubi_work(ubi, wrk);
	return err;

out_cancel:
	spin_lock(&ubi->wl_lock);
	ubi->wl_scheduled = 0;
out_unlock:
	spin_unlock(&ubi->wl_lock);
	return err;
}

/**
 * erase_worker - physical eraseblock erase worker function.
 * @ubi: UBI device description object
 * @wl_wrk: the work object
 * @cancel: non-zero if the worker has to free memory and exit
 *
 * This function erases a physical eraseblock and perform torture testing if
 * needed. It also takes care about marking the physical eraseblock bad if
 * needed. Returns zero in case of success and a negative error code in case of
 * failure.
 */
static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
			int cancel)
{
	int err;
	struct ubi_wl_entry *e = wl_wrk->e;
	int pnum = e->pnum;

	if (cancel) {
		dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
		kfree(wl_wrk);
		kmem_cache_free(wl_entries_slab, e);
		return 0;
	}

	dbg_wl("erase PEB %d EC %d", pnum, e->ec);

	err = sync_erase(ubi, e, wl_wrk->torture);
	if (!err) {
		/* Fine, we've erased it successfully */
		kfree(wl_wrk);

		spin_lock(&ubi->wl_lock);
		ubi->abs_ec += 1;
		free_tree_add(ubi, e);
		spin_unlock(&ubi->wl_lock);

		/*
		 * One more erase operation has happened, take care about protected
		 * physical eraseblocks.
		 */
		check_protection_over(ubi);

		/* And take care about wear-leveling */
		err = ensure_wear_leveling(ubi);
		return err;
	}

	kfree(wl_wrk);
	kmem_cache_free(wl_entries_slab, e);

	if (err != -EIO) {
		/*
		 * If this is not %-EIO, we have no idea what to do. Scheduling
		 * this physical eraseblock for erasure again would cause
		 * errors again and again. Well, lets switch to RO mode.
		 */
		ubi_ro_mode(ubi);
		return err;
	}

	/* It is %-EIO, the PEB went bad */

	if (!ubi->bad_allowed) {
		ubi_err("bad physical eraseblock %d detected", pnum);
		ubi_ro_mode(ubi);
		err = -EIO;
	} else {
		int need;

		spin_lock(&ubi->volumes_lock);
		need = ubi->beb_rsvd_level - ubi->beb_rsvd_pebs + 1;
		if (need > 0) {
			need = ubi->avail_pebs >= need ? need : ubi->avail_pebs;
			ubi->avail_pebs -= need;
			ubi->rsvd_pebs += need;
			ubi->beb_rsvd_pebs += need;
			if (need > 0)
				ubi_msg("reserve more %d PEBs", need);
		}

		if (ubi->beb_rsvd_pebs == 0) {
			spin_unlock(&ubi->volumes_lock);
			ubi_err("no reserved physical eraseblocks");
			ubi_ro_mode(ubi);
			return -EIO;
		}

		spin_unlock(&ubi->volumes_lock);
		ubi_msg("mark PEB %d as bad", pnum);

		err = ubi_io_mark_bad(ubi, pnum);
		if (err) {
			ubi_ro_mode(ubi);
			return err;
		}

		spin_lock(&ubi->volumes_lock);
		ubi->beb_rsvd_pebs -= 1;
		ubi->bad_peb_count += 1;
		ubi->good_peb_count -= 1;
		ubi_calculate_reserved(ubi);
		if (ubi->beb_rsvd_pebs == 0)
			ubi_warn("last PEB from the reserved pool was used");
		spin_unlock(&ubi->volumes_lock);
	}

	return err;
}

/**
 * ubi_wl_put_peb - return a physical eraseblock to the wear-leveling
 * unit.
 * @ubi: UBI device description object
 * @pnum: physical eraseblock to return
 * @torture: if this physical eraseblock has to be tortured
 *
 * This function is called to return physical eraseblock @pnum to the pool of
 * free physical eraseblocks. The @torture flag has to be set if an I/O error
 * occurred to this @pnum and it has to be tested. This function returns zero
 * in case of success and a negative error code in case of failure.
 */
int ubi_wl_put_peb(struct ubi_device *ubi, int pnum, int torture)
{
	int err;
	struct ubi_wl_entry *e;

	dbg_wl("PEB %d", pnum);
	ubi_assert(pnum >= 0);
	ubi_assert(pnum < ubi->peb_count);

	spin_lock(&ubi->wl_lock);

	e = ubi->lookuptbl[pnum];
	if (e == ubi->move_from) {
		/*
		 * User is putting the physical eraseblock which was selected to
		 * be moved. It will be scheduled for erasure in the
		 * wear-leveling worker.
		 */
		dbg_wl("PEB %d is being moved", pnum);
		ubi_assert(!ubi->move_from_put);
		ubi->move_from_put = 1;
		spin_unlock(&ubi->wl_lock);
		return 0;
	} else if (e == ubi->move_to) {
		/*
		 * User is putting the physical eraseblock which was selected
		 * as the target the data is moved to. It may happen if the EBA
		 * unit already re-mapped the LEB but the WL unit did has not
		 * put the PEB to the "used" tree.
		 */
		dbg_wl("PEB %d is the target of data moving", pnum);
		ubi_assert(!ubi->move_to_put);
		ubi->move_to_put = 1;
		spin_unlock(&ubi->wl_lock);
		return 0;
	} else {
		if (in_wl_tree(e, &ubi->used))
			used_tree_del(ubi, e);
		else if (in_wl_tree(e, &ubi->scrub))
			scrub_tree_del(ubi, e);
		else
			prot_tree_del(ubi, e->pnum);
	}
	spin_unlock(&ubi->wl_lock);

	err = schedule_erase(ubi, e, torture);
	if (err) {
		spin_lock(&ubi->wl_lock);
		used_tree_add(ubi, e);
		spin_unlock(&ubi->wl_lock);
	}

	return err;
}

/**
 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
 * @ubi: UBI device description object
 * @pnum: the physical eraseblock to schedule
 *
 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
 * needs scrubbing. This function schedules a physical eraseblock for
 * scrubbing which is done in background. This function returns zero in case of
 * success and a negative error code in case of failure.
 */
int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
{
	struct ubi_wl_entry *e;

	ubi_msg("schedule PEB %d for scrubbing", pnum);

retry:
	spin_lock(&ubi->wl_lock);
	e = ubi->lookuptbl[pnum];
	if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub)) {
		spin_unlock(&ubi->wl_lock);
		return 0;
	}

	if (e == ubi->move_to) {
		/*
		 * This physical eraseblock was used to move data to. The data
		 * was moved but the PEB was not yet inserted to the proper
		 * tree. We should just wait a little and let the WL worker
		 * proceed.
		 */
		spin_unlock(&ubi->wl_lock);
		dbg_wl("the PEB %d is not in proper tree, retry", pnum);
		yield();
		goto retry;
	}

	if (in_wl_tree(e, &ubi->used))
		used_tree_del(ubi, e);
	else
		prot_tree_del(ubi, pnum);

	scrub_tree_add(ubi, e);
	spin_unlock(&ubi->wl_lock);

	/*
	 * Technically scrubbing is the same as wear-leveling, so it is done
	 * by the WL worker.
	 */
	return ensure_wear_leveling(ubi);
}

/**
 * ubi_wl_flush - flush all pending works.
 * @ubi: UBI device description object
 *
 * This function returns zero in case of success and a negative error code in
 * case of failure.
 */
int ubi_wl_flush(struct ubi_device *ubi)
{
	int err, pending_count;

	pending_count = ubi->works_count;

	dbg_wl("flush (%d pending works)", pending_count);

	/*
	 * Erase while the pending works queue is not empty, but not more then
	 * the number of currently pending works.
	 */
	while (pending_count-- > 0) {
		err = do_work(ubi);
		if (err)
			return err;
	}

	return 0;
}

/**
 * tree_destroy - destroy an RB-tree.
 * @root: the root of the tree to destroy
 */
static void tree_destroy(struct rb_root *root)
{
	struct rb_node *rb;
	struct ubi_wl_entry *e;

	rb = root->rb_node;
	while (rb) {
		if (rb->rb_left)
			rb = rb->rb_left;
		else if (rb->rb_right)
			rb = rb->rb_right;
		else {
			e = rb_entry(rb, struct ubi_wl_entry, rb);

			rb = rb_parent(rb);
			if (rb) {
				if (rb->rb_left == &e->rb)
					rb->rb_left = NULL;
				else
					rb->rb_right = NULL;
			}

			kmem_cache_free(wl_entries_slab, e);
		}
	}
}

/**
 * ubi_thread - UBI background thread.
 * @u: the UBI device description object pointer
 */
static int ubi_thread(void *u)
{
	int failures = 0;
	struct ubi_device *ubi = u;

	ubi_msg("background thread \"%s\" started, PID %d",
		ubi->bgt_name, current->pid);

1349
	set_freezable();
A
Artem B. Bityutskiy 已提交
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
	for (;;) {
		int err;

		if (kthread_should_stop())
			goto out;

		if (try_to_freeze())
			continue;

		spin_lock(&ubi->wl_lock);
		if (list_empty(&ubi->works) || ubi->ro_mode ||
			       !ubi->thread_enabled) {
			set_current_state(TASK_INTERRUPTIBLE);
			spin_unlock(&ubi->wl_lock);
			schedule();
			continue;
		}
		spin_unlock(&ubi->wl_lock);

		err = do_work(ubi);
		if (err) {
			ubi_err("%s: work failed with error code %d",
				ubi->bgt_name, err);
			if (failures++ > WL_MAX_FAILURES) {
				/*
				 * Too many failures, disable the thread and
				 * switch to read-only mode.
				 */
				ubi_msg("%s: %d consecutive failures",
					ubi->bgt_name, WL_MAX_FAILURES);
				ubi_ro_mode(ubi);
				break;
			}
		} else
			failures = 0;

		cond_resched();
	}

out:
	dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
	return 0;
}

/**
 * cancel_pending - cancel all pending works.
 * @ubi: UBI device description object
 */
static void cancel_pending(struct ubi_device *ubi)
{
	while (!list_empty(&ubi->works)) {
		struct ubi_work *wrk;

		wrk = list_entry(ubi->works.next, struct ubi_work, list);
		list_del(&wrk->list);
		wrk->func(ubi, wrk, 1);
		ubi->works_count -= 1;
		ubi_assert(ubi->works_count >= 0);
	}
}

/**
 * ubi_wl_init_scan - initialize the wear-leveling unit using scanning
 * information.
 * @ubi: UBI device description object
 * @si: scanning information
 *
 * This function returns zero in case of success, and a negative error code in
 * case of failure.
 */
int ubi_wl_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si)
{
	int err;
	struct rb_node *rb1, *rb2;
	struct ubi_scan_volume *sv;
	struct ubi_scan_leb *seb, *tmp;
	struct ubi_wl_entry *e;


	ubi->used = ubi->free = ubi->scrub = RB_ROOT;
	ubi->prot.pnum = ubi->prot.aec = RB_ROOT;
	spin_lock_init(&ubi->wl_lock);
	ubi->max_ec = si->max_ec;
	INIT_LIST_HEAD(&ubi->works);

	sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);

	ubi->bgt_thread = kthread_create(ubi_thread, ubi, ubi->bgt_name);
	if (IS_ERR(ubi->bgt_thread)) {
		err = PTR_ERR(ubi->bgt_thread);
		ubi_err("cannot spawn \"%s\", error %d", ubi->bgt_name,
			err);
		return err;
	}

	if (ubi_devices_cnt == 0) {
		wl_entries_slab = kmem_cache_create("ubi_wl_entry_slab",
						    sizeof(struct ubi_wl_entry),
						    0, 0, NULL, NULL);
		if (!wl_entries_slab)
			return -ENOMEM;
	}

	err = -ENOMEM;
	ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
	if (!ubi->lookuptbl)
		goto out_free;

	list_for_each_entry_safe(seb, tmp, &si->erase, u.list) {
		cond_resched();

		e = kmem_cache_alloc(wl_entries_slab, GFP_KERNEL);
		if (!e)
			goto out_free;

		e->pnum = seb->pnum;
		e->ec = seb->ec;
		ubi->lookuptbl[e->pnum] = e;
		if (schedule_erase(ubi, e, 0)) {
			kmem_cache_free(wl_entries_slab, e);
			goto out_free;
		}
	}

	list_for_each_entry(seb, &si->free, u.list) {
		cond_resched();

		e = kmem_cache_alloc(wl_entries_slab, GFP_KERNEL);
		if (!e)
			goto out_free;

		e->pnum = seb->pnum;
		e->ec = seb->ec;
		ubi_assert(e->ec >= 0);
		free_tree_add(ubi, e);
		ubi->lookuptbl[e->pnum] = e;
	}

	list_for_each_entry(seb, &si->corr, u.list) {
		cond_resched();

		e = kmem_cache_alloc(wl_entries_slab, GFP_KERNEL);
		if (!e)
			goto out_free;

		e->pnum = seb->pnum;
		e->ec = seb->ec;
		ubi->lookuptbl[e->pnum] = e;
		if (schedule_erase(ubi, e, 0)) {
			kmem_cache_free(wl_entries_slab, e);
			goto out_free;
		}
	}

	ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
		ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
			cond_resched();

			e = kmem_cache_alloc(wl_entries_slab, GFP_KERNEL);
			if (!e)
				goto out_free;

			e->pnum = seb->pnum;
			e->ec = seb->ec;
			ubi->lookuptbl[e->pnum] = e;
			if (!seb->scrub) {
				dbg_wl("add PEB %d EC %d to the used tree",
				       e->pnum, e->ec);
				used_tree_add(ubi, e);
			} else {
				dbg_wl("add PEB %d EC %d to the scrub tree",
				       e->pnum, e->ec);
				scrub_tree_add(ubi, e);
			}
		}
	}

	if (WL_RESERVED_PEBS > ubi->avail_pebs) {
		ubi_err("no enough physical eraseblocks (%d, need %d)",
			ubi->avail_pebs, WL_RESERVED_PEBS);
		goto out_free;
	}
	ubi->avail_pebs -= WL_RESERVED_PEBS;
	ubi->rsvd_pebs += WL_RESERVED_PEBS;

	/* Schedule wear-leveling if needed */
	err = ensure_wear_leveling(ubi);
	if (err)
		goto out_free;

	return 0;

out_free:
	cancel_pending(ubi);
	tree_destroy(&ubi->used);
	tree_destroy(&ubi->free);
	tree_destroy(&ubi->scrub);
	kfree(ubi->lookuptbl);
	if (ubi_devices_cnt == 0)
		kmem_cache_destroy(wl_entries_slab);
	return err;
}

/**
 * protection_trees_destroy - destroy the protection RB-trees.
 * @ubi: UBI device description object
 */
static void protection_trees_destroy(struct ubi_device *ubi)
{
	struct rb_node *rb;
	struct ubi_wl_prot_entry *pe;

	rb = ubi->prot.aec.rb_node;
	while (rb) {
		if (rb->rb_left)
			rb = rb->rb_left;
		else if (rb->rb_right)
			rb = rb->rb_right;
		else {
			pe = rb_entry(rb, struct ubi_wl_prot_entry, rb_aec);

			rb = rb_parent(rb);
			if (rb) {
				if (rb->rb_left == &pe->rb_aec)
					rb->rb_left = NULL;
				else
					rb->rb_right = NULL;
			}

			kmem_cache_free(wl_entries_slab, pe->e);
			kfree(pe);
		}
	}
}

/**
 * ubi_wl_close - close the wear-leveling unit.
 * @ubi: UBI device description object
 */
void ubi_wl_close(struct ubi_device *ubi)
{
	dbg_wl("disable \"%s\"", ubi->bgt_name);
	if (ubi->bgt_thread)
		kthread_stop(ubi->bgt_thread);

	dbg_wl("close the UBI wear-leveling unit");

	cancel_pending(ubi);
	protection_trees_destroy(ubi);
	tree_destroy(&ubi->used);
	tree_destroy(&ubi->free);
	tree_destroy(&ubi->scrub);
	kfree(ubi->lookuptbl);
	if (ubi_devices_cnt == 1)
		kmem_cache_destroy(wl_entries_slab);
}

#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID

/**
 * paranoid_check_ec - make sure that the erase counter of a physical eraseblock
 * is correct.
 * @ubi: UBI device description object
 * @pnum: the physical eraseblock number to check
 * @ec: the erase counter to check
 *
 * This function returns zero if the erase counter of physical eraseblock @pnum
 * is equivalent to @ec, %1 if not, and a negative error code if an error
 * occurred.
 */
static int paranoid_check_ec(const struct ubi_device *ubi, int pnum, int ec)
{
	int err;
	long long read_ec;
	struct ubi_ec_hdr *ec_hdr;

	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
	if (!ec_hdr)
		return -ENOMEM;

	err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
	if (err && err != UBI_IO_BITFLIPS) {
		/* The header does not have to exist */
		err = 0;
		goto out_free;
	}

	read_ec = ubi64_to_cpu(ec_hdr->ec);
	if (ec != read_ec) {
		ubi_err("paranoid check failed for PEB %d", pnum);
		ubi_err("read EC is %lld, should be %d", read_ec, ec);
		ubi_dbg_dump_stack();
		err = 1;
	} else
		err = 0;

out_free:
	kfree(ec_hdr);
	return err;
}

/**
 * paranoid_check_in_wl_tree - make sure that a wear-leveling entry is present
 * in a WL RB-tree.
 * @e: the wear-leveling entry to check
 * @root: the root of the tree
 *
 * This function returns zero if @e is in the @root RB-tree and %1 if it
 * is not.
 */
static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e,
				     struct rb_root *root)
{
	if (in_wl_tree(e, root))
		return 0;

	ubi_err("paranoid check failed for PEB %d, EC %d, RB-tree %p ",
		e->pnum, e->ec, root);
	ubi_dbg_dump_stack();
	return 1;
}

#endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */