rcutree_plugin.h 57.3 KB
Newer Older
1 2 3
/*
 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
 * Internal non-public definitions that provide either classic
P
Paul E. McKenney 已提交
4
 * or preemptible semantics.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright Red Hat, 2009
 * Copyright IBM Corporation, 2009
 *
 * Author: Ingo Molnar <mingo@elte.hu>
 *	   Paul E. McKenney <paulmck@linux.vnet.ibm.com>
 */

27
#include <linux/delay.h>
28
#include <linux/stop_machine.h>
29

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
/*
 * Check the RCU kernel configuration parameters and print informative
 * messages about anything out of the ordinary.  If you like #ifdef, you
 * will love this function.
 */
static void __init rcu_bootup_announce_oddness(void)
{
#ifdef CONFIG_RCU_TRACE
	printk(KERN_INFO "\tRCU debugfs-based tracing is enabled.\n");
#endif
#if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
	printk(KERN_INFO "\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
	       CONFIG_RCU_FANOUT);
#endif
#ifdef CONFIG_RCU_FANOUT_EXACT
	printk(KERN_INFO "\tHierarchical RCU autobalancing is disabled.\n");
#endif
#ifdef CONFIG_RCU_FAST_NO_HZ
	printk(KERN_INFO
	       "\tRCU dyntick-idle grace-period acceleration is enabled.\n");
#endif
#ifdef CONFIG_PROVE_RCU
	printk(KERN_INFO "\tRCU lockdep checking is enabled.\n");
#endif
#ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
	printk(KERN_INFO "\tRCU torture testing starts during boot.\n");
#endif
57
#if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
58 59 60 61 62 63 64
	printk(KERN_INFO "\tVerbose stalled-CPUs detection is disabled.\n");
#endif
#if NUM_RCU_LVL_4 != 0
	printk(KERN_INFO "\tExperimental four-level hierarchy is enabled.\n");
#endif
}

65 66 67 68
#ifdef CONFIG_TREE_PREEMPT_RCU

struct rcu_state rcu_preempt_state = RCU_STATE_INITIALIZER(rcu_preempt_state);
DEFINE_PER_CPU(struct rcu_data, rcu_preempt_data);
69
static struct rcu_state *rcu_state = &rcu_preempt_state;
70

71 72
static int rcu_preempted_readers_exp(struct rcu_node *rnp);

73 74 75
/*
 * Tell them what RCU they are running.
 */
76
static void __init rcu_bootup_announce(void)
77
{
P
Paul E. McKenney 已提交
78
	printk(KERN_INFO "Preemptible hierarchical RCU implementation.\n");
79
	rcu_bootup_announce_oddness();
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
}

/*
 * Return the number of RCU-preempt batches processed thus far
 * for debug and statistics.
 */
long rcu_batches_completed_preempt(void)
{
	return rcu_preempt_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);

/*
 * Return the number of RCU batches processed thus far for debug & stats.
 */
long rcu_batches_completed(void)
{
	return rcu_batches_completed_preempt();
}
EXPORT_SYMBOL_GPL(rcu_batches_completed);

101 102 103 104 105 106 107 108 109
/*
 * Force a quiescent state for preemptible RCU.
 */
void rcu_force_quiescent_state(void)
{
	force_quiescent_state(&rcu_preempt_state, 0);
}
EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);

110
/*
P
Paul E. McKenney 已提交
111
 * Record a preemptible-RCU quiescent state for the specified CPU.  Note
112 113 114
 * that this just means that the task currently running on the CPU is
 * not in a quiescent state.  There might be any number of tasks blocked
 * while in an RCU read-side critical section.
115 116 117 118
 *
 * Unlike the other rcu_*_qs() functions, callers to this function
 * must disable irqs in order to protect the assignment to
 * ->rcu_read_unlock_special.
119
 */
120
static void rcu_preempt_qs(int cpu)
121 122
{
	struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
123

124
	rdp->passed_quiesc_completed = rdp->gpnum - 1;
125 126
	barrier();
	rdp->passed_quiesc = 1;
127
	current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
128 129 130
}

/*
131 132 133
 * We have entered the scheduler, and the current task might soon be
 * context-switched away from.  If this task is in an RCU read-side
 * critical section, we will no longer be able to rely on the CPU to
134 135 136 137 138 139
 * record that fact, so we enqueue the task on the blkd_tasks list.
 * The task will dequeue itself when it exits the outermost enclosing
 * RCU read-side critical section.  Therefore, the current grace period
 * cannot be permitted to complete until the blkd_tasks list entries
 * predating the current grace period drain, in other words, until
 * rnp->gp_tasks becomes NULL.
140 141
 *
 * Caller must disable preemption.
142
 */
143
static void rcu_preempt_note_context_switch(int cpu)
144 145
{
	struct task_struct *t = current;
146
	unsigned long flags;
147 148 149 150 151 152 153
	struct rcu_data *rdp;
	struct rcu_node *rnp;

	if (t->rcu_read_lock_nesting &&
	    (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {

		/* Possibly blocking in an RCU read-side critical section. */
154
		rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
155
		rnp = rdp->mynode;
P
Paul E. McKenney 已提交
156
		raw_spin_lock_irqsave(&rnp->lock, flags);
157
		t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
158
		t->rcu_blocked_node = rnp;
159 160 161 162 163 164 165 166 167

		/*
		 * If this CPU has already checked in, then this task
		 * will hold up the next grace period rather than the
		 * current grace period.  Queue the task accordingly.
		 * If the task is queued for the current grace period
		 * (i.e., this CPU has not yet passed through a quiescent
		 * state for the current grace period), then as long
		 * as that task remains queued, the current grace period
168 169 170 171 172 173
		 * cannot end.  Note that there is some uncertainty as
		 * to exactly when the current grace period started.
		 * We take a conservative approach, which can result
		 * in unnecessarily waiting on tasks that started very
		 * slightly after the current grace period began.  C'est
		 * la vie!!!
174 175 176
		 *
		 * But first, note that the current CPU must still be
		 * on line!
177
		 */
178
		WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
179
		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
180 181 182
		if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
			list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
			rnp->gp_tasks = &t->rcu_node_entry;
183 184 185 186
#ifdef CONFIG_RCU_BOOST
			if (rnp->boost_tasks != NULL)
				rnp->boost_tasks = rnp->gp_tasks;
#endif /* #ifdef CONFIG_RCU_BOOST */
187 188 189 190 191
		} else {
			list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
			if (rnp->qsmask & rdp->grpmask)
				rnp->gp_tasks = &t->rcu_node_entry;
		}
P
Paul E. McKenney 已提交
192
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
193 194 195 196 197 198 199 200 201 202 203
	}

	/*
	 * Either we were not in an RCU read-side critical section to
	 * begin with, or we have now recorded that critical section
	 * globally.  Either way, we can now note a quiescent state
	 * for this CPU.  Again, if we were in an RCU read-side critical
	 * section, and if that critical section was blocking the current
	 * grace period, then the fact that the task has been enqueued
	 * means that we continue to block the current grace period.
	 */
204
	local_irq_save(flags);
205
	rcu_preempt_qs(cpu);
206
	local_irq_restore(flags);
207 208 209
}

/*
P
Paul E. McKenney 已提交
210
 * Tree-preemptible RCU implementation for rcu_read_lock().
211 212 213 214 215
 * Just increment ->rcu_read_lock_nesting, shared state will be updated
 * if we block.
 */
void __rcu_read_lock(void)
{
216
	current->rcu_read_lock_nesting++;
217 218 219 220
	barrier();  /* needed if we ever invoke rcu_read_lock in rcutree.c */
}
EXPORT_SYMBOL_GPL(__rcu_read_lock);

221 222 223 224 225
/*
 * Check for preempted RCU readers blocking the current grace period
 * for the specified rcu_node structure.  If the caller needs a reliable
 * answer, it must hold the rcu_node's ->lock.
 */
226
static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
227
{
228
	return rnp->gp_tasks != NULL;
229 230
}

231 232 233 234 235 236 237
/*
 * Record a quiescent state for all tasks that were previously queued
 * on the specified rcu_node structure and that were blocking the current
 * RCU grace period.  The caller must hold the specified rnp->lock with
 * irqs disabled, and this lock is released upon return, but irqs remain
 * disabled.
 */
P
Paul E. McKenney 已提交
238
static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
239 240 241 242 243
	__releases(rnp->lock)
{
	unsigned long mask;
	struct rcu_node *rnp_p;

244
	if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
P
Paul E. McKenney 已提交
245
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
246 247 248 249 250 251 252 253 254 255
		return;  /* Still need more quiescent states! */
	}

	rnp_p = rnp->parent;
	if (rnp_p == NULL) {
		/*
		 * Either there is only one rcu_node in the tree,
		 * or tasks were kicked up to root rcu_node due to
		 * CPUs going offline.
		 */
P
Paul E. McKenney 已提交
256
		rcu_report_qs_rsp(&rcu_preempt_state, flags);
257 258 259 260 261
		return;
	}

	/* Report up the rest of the hierarchy. */
	mask = rnp->grpmask;
P
Paul E. McKenney 已提交
262 263
	raw_spin_unlock(&rnp->lock);	/* irqs remain disabled. */
	raw_spin_lock(&rnp_p->lock);	/* irqs already disabled. */
P
Paul E. McKenney 已提交
264
	rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
265 266
}

267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
/*
 * Advance a ->blkd_tasks-list pointer to the next entry, instead
 * returning NULL if at the end of the list.
 */
static struct list_head *rcu_next_node_entry(struct task_struct *t,
					     struct rcu_node *rnp)
{
	struct list_head *np;

	np = t->rcu_node_entry.next;
	if (np == &rnp->blkd_tasks)
		np = NULL;
	return np;
}

282 283 284 285 286
/*
 * Handle special cases during rcu_read_unlock(), such as needing to
 * notify RCU core processing or task having blocked during the RCU
 * read-side critical section.
 */
287
static noinline void rcu_read_unlock_special(struct task_struct *t)
288 289
{
	int empty;
290
	int empty_exp;
291
	unsigned long flags;
292
	struct list_head *np;
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
	struct rcu_node *rnp;
	int special;

	/* NMI handlers cannot block and cannot safely manipulate state. */
	if (in_nmi())
		return;

	local_irq_save(flags);

	/*
	 * If RCU core is waiting for this CPU to exit critical section,
	 * let it know that we have done so.
	 */
	special = t->rcu_read_unlock_special;
	if (special & RCU_READ_UNLOCK_NEED_QS) {
308
		rcu_preempt_qs(smp_processor_id());
309 310 311 312 313 314 315 316 317 318 319 320
	}

	/* Hardware IRQ handlers cannot block. */
	if (in_irq()) {
		local_irq_restore(flags);
		return;
	}

	/* Clean up if blocked during RCU read-side critical section. */
	if (special & RCU_READ_UNLOCK_BLOCKED) {
		t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;

321 322 323 324 325 326
		/*
		 * Remove this task from the list it blocked on.  The
		 * task can migrate while we acquire the lock, but at
		 * most one time.  So at most two passes through loop.
		 */
		for (;;) {
327
			rnp = t->rcu_blocked_node;
P
Paul E. McKenney 已提交
328
			raw_spin_lock(&rnp->lock);  /* irqs already disabled. */
329
			if (rnp == t->rcu_blocked_node)
330
				break;
P
Paul E. McKenney 已提交
331
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
332
		}
333
		empty = !rcu_preempt_blocked_readers_cgp(rnp);
334 335
		empty_exp = !rcu_preempted_readers_exp(rnp);
		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
336
		np = rcu_next_node_entry(t, rnp);
337
		list_del_init(&t->rcu_node_entry);
338 339 340 341
		if (&t->rcu_node_entry == rnp->gp_tasks)
			rnp->gp_tasks = np;
		if (&t->rcu_node_entry == rnp->exp_tasks)
			rnp->exp_tasks = np;
342 343 344
#ifdef CONFIG_RCU_BOOST
		if (&t->rcu_node_entry == rnp->boost_tasks)
			rnp->boost_tasks = np;
345 346 347 348 349
		/* Snapshot and clear ->rcu_boosted with rcu_node lock held. */
		if (t->rcu_boosted) {
			special |= RCU_READ_UNLOCK_BOOSTED;
			t->rcu_boosted = 0;
		}
350
#endif /* #ifdef CONFIG_RCU_BOOST */
351
		t->rcu_blocked_node = NULL;
352 353 354 355

		/*
		 * If this was the last task on the current list, and if
		 * we aren't waiting on any CPUs, report the quiescent state.
P
Paul E. McKenney 已提交
356
		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock.
357
		 */
358
		if (empty)
P
Paul E. McKenney 已提交
359
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
360
		else
P
Paul E. McKenney 已提交
361
			rcu_report_unblock_qs_rnp(rnp, flags);
362

363 364 365 366 367 368 369 370
#ifdef CONFIG_RCU_BOOST
		/* Unboost if we were boosted. */
		if (special & RCU_READ_UNLOCK_BOOSTED) {
			rt_mutex_unlock(t->rcu_boost_mutex);
			t->rcu_boost_mutex = NULL;
		}
#endif /* #ifdef CONFIG_RCU_BOOST */

371 372 373 374 375 376
		/*
		 * If this was the last task on the expedited lists,
		 * then we need to report up the rcu_node hierarchy.
		 */
		if (!empty_exp && !rcu_preempted_readers_exp(rnp))
			rcu_report_exp_rnp(&rcu_preempt_state, rnp);
377 378
	} else {
		local_irq_restore(flags);
379 380 381 382
	}
}

/*
P
Paul E. McKenney 已提交
383
 * Tree-preemptible RCU implementation for rcu_read_unlock().
384 385 386 387 388 389 390 391 392 393
 * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
 * invoke rcu_read_unlock_special() to clean up after a context switch
 * in an RCU read-side critical section and other special cases.
 */
void __rcu_read_unlock(void)
{
	struct task_struct *t = current;

	barrier();  /* needed if we ever invoke rcu_read_unlock in rcutree.c */
394 395 396 397 398
	if (--t->rcu_read_lock_nesting == 0) {
		barrier();  /* decr before ->rcu_read_unlock_special load */
		if (unlikely(ACCESS_ONCE(t->rcu_read_unlock_special)))
			rcu_read_unlock_special(t);
	}
399 400 401
#ifdef CONFIG_PROVE_LOCKING
	WARN_ON_ONCE(ACCESS_ONCE(t->rcu_read_lock_nesting) < 0);
#endif /* #ifdef CONFIG_PROVE_LOCKING */
402 403 404
}
EXPORT_SYMBOL_GPL(__rcu_read_unlock);

405 406 407 408 409 410 411 412 413 414 415
#ifdef CONFIG_RCU_CPU_STALL_VERBOSE

/*
 * Dump detailed information for all tasks blocking the current RCU
 * grace period on the specified rcu_node structure.
 */
static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
{
	unsigned long flags;
	struct task_struct *t;

416
	if (!rcu_preempt_blocked_readers_cgp(rnp))
417 418 419 420 421 422 423
		return;
	raw_spin_lock_irqsave(&rnp->lock, flags);
	t = list_entry(rnp->gp_tasks,
		       struct task_struct, rcu_node_entry);
	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
		sched_show_task(t);
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
}

/*
 * Dump detailed information for all tasks blocking the current RCU
 * grace period.
 */
static void rcu_print_detail_task_stall(struct rcu_state *rsp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);

	rcu_print_detail_task_stall_rnp(rnp);
	rcu_for_each_leaf_node(rsp, rnp)
		rcu_print_detail_task_stall_rnp(rnp);
}

#else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */

static void rcu_print_detail_task_stall(struct rcu_state *rsp)
{
}

#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */

447 448 449 450 451 452 453 454
/*
 * Scan the current list of tasks blocked within RCU read-side critical
 * sections, printing out the tid of each.
 */
static void rcu_print_task_stall(struct rcu_node *rnp)
{
	struct task_struct *t;

455
	if (!rcu_preempt_blocked_readers_cgp(rnp))
456 457 458 459 460
		return;
	t = list_entry(rnp->gp_tasks,
		       struct task_struct, rcu_node_entry);
	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
		printk(" P%d", t->pid);
461 462
}

463 464 465 466 467 468 469 470 471 472
/*
 * Suppress preemptible RCU's CPU stall warnings by pushing the
 * time of the next stall-warning message comfortably far into the
 * future.
 */
static void rcu_preempt_stall_reset(void)
{
	rcu_preempt_state.jiffies_stall = jiffies + ULONG_MAX / 2;
}

473 474 475 476 477 478
/*
 * Check that the list of blocked tasks for the newly completed grace
 * period is in fact empty.  It is a serious bug to complete a grace
 * period that still has RCU readers blocked!  This function must be
 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
 * must be held by the caller.
479 480 481
 *
 * Also, if there are blocked tasks on the list, they automatically
 * block the newly created grace period, so set up ->gp_tasks accordingly.
482 483 484
 */
static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
{
485
	WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
486 487
	if (!list_empty(&rnp->blkd_tasks))
		rnp->gp_tasks = rnp->blkd_tasks.next;
488
	WARN_ON_ONCE(rnp->qsmask);
489 490
}

491 492
#ifdef CONFIG_HOTPLUG_CPU

493 494 495 496 497 498
/*
 * Handle tasklist migration for case in which all CPUs covered by the
 * specified rcu_node have gone offline.  Move them up to the root
 * rcu_node.  The reason for not just moving them to the immediate
 * parent is to remove the need for rcu_read_unlock_special() to
 * make more than two attempts to acquire the target rcu_node's lock.
499 500
 * Returns true if there were tasks blocking the current RCU grace
 * period.
501
 *
502 503 504
 * Returns 1 if there was previously a task blocking the current grace
 * period on the specified rcu_node structure.
 *
505 506
 * The caller must hold rnp->lock with irqs disabled.
 */
507 508 509
static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
				     struct rcu_node *rnp,
				     struct rcu_data *rdp)
510 511 512
{
	struct list_head *lp;
	struct list_head *lp_root;
513
	int retval = 0;
514
	struct rcu_node *rnp_root = rcu_get_root(rsp);
515
	struct task_struct *t;
516

517 518
	if (rnp == rnp_root) {
		WARN_ONCE(1, "Last CPU thought to be offlined?");
519
		return 0;  /* Shouldn't happen: at least one CPU online. */
520
	}
521 522 523

	/* If we are on an internal node, complain bitterly. */
	WARN_ON_ONCE(rnp != rdp->mynode);
524 525

	/*
526 527 528 529 530 531 532
	 * Move tasks up to root rcu_node.  Don't try to get fancy for
	 * this corner-case operation -- just put this node's tasks
	 * at the head of the root node's list, and update the root node's
	 * ->gp_tasks and ->exp_tasks pointers to those of this node's,
	 * if non-NULL.  This might result in waiting for more tasks than
	 * absolutely necessary, but this is a good performance/complexity
	 * tradeoff.
533
	 */
534
	if (rcu_preempt_blocked_readers_cgp(rnp))
535 536 537
		retval |= RCU_OFL_TASKS_NORM_GP;
	if (rcu_preempted_readers_exp(rnp))
		retval |= RCU_OFL_TASKS_EXP_GP;
538 539 540 541 542 543 544 545 546 547 548 549
	lp = &rnp->blkd_tasks;
	lp_root = &rnp_root->blkd_tasks;
	while (!list_empty(lp)) {
		t = list_entry(lp->next, typeof(*t), rcu_node_entry);
		raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
		list_del(&t->rcu_node_entry);
		t->rcu_blocked_node = rnp_root;
		list_add(&t->rcu_node_entry, lp_root);
		if (&t->rcu_node_entry == rnp->gp_tasks)
			rnp_root->gp_tasks = rnp->gp_tasks;
		if (&t->rcu_node_entry == rnp->exp_tasks)
			rnp_root->exp_tasks = rnp->exp_tasks;
550 551 552 553
#ifdef CONFIG_RCU_BOOST
		if (&t->rcu_node_entry == rnp->boost_tasks)
			rnp_root->boost_tasks = rnp->boost_tasks;
#endif /* #ifdef CONFIG_RCU_BOOST */
554
		raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
555
	}
556 557 558 559 560 561 562 563 564 565

#ifdef CONFIG_RCU_BOOST
	/* In case root is being boosted and leaf is not. */
	raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
	if (rnp_root->boost_tasks != NULL &&
	    rnp_root->boost_tasks != rnp_root->gp_tasks)
		rnp_root->boost_tasks = rnp_root->gp_tasks;
	raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
#endif /* #ifdef CONFIG_RCU_BOOST */

566 567
	rnp->gp_tasks = NULL;
	rnp->exp_tasks = NULL;
568
	return retval;
569 570
}

571
/*
P
Paul E. McKenney 已提交
572
 * Do CPU-offline processing for preemptible RCU.
573 574 575 576 577 578 579 580
 */
static void rcu_preempt_offline_cpu(int cpu)
{
	__rcu_offline_cpu(cpu, &rcu_preempt_state);
}

#endif /* #ifdef CONFIG_HOTPLUG_CPU */

581 582 583 584 585 586 587 588 589 590 591 592
/*
 * Check for a quiescent state from the current CPU.  When a task blocks,
 * the task is recorded in the corresponding CPU's rcu_node structure,
 * which is checked elsewhere.
 *
 * Caller must disable hard irqs.
 */
static void rcu_preempt_check_callbacks(int cpu)
{
	struct task_struct *t = current;

	if (t->rcu_read_lock_nesting == 0) {
593
		rcu_preempt_qs(cpu);
594 595
		return;
	}
596
	if (per_cpu(rcu_preempt_data, cpu).qs_pending)
597
		t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
598 599 600
}

/*
P
Paul E. McKenney 已提交
601
 * Process callbacks for preemptible RCU.
602 603 604 605 606 607 608
 */
static void rcu_preempt_process_callbacks(void)
{
	__rcu_process_callbacks(&rcu_preempt_state,
				&__get_cpu_var(rcu_preempt_data));
}

609 610
#ifdef CONFIG_RCU_BOOST

611 612 613 614 615
static void rcu_preempt_do_callbacks(void)
{
	rcu_do_batch(&rcu_preempt_state, &__get_cpu_var(rcu_preempt_data));
}

616 617
#endif /* #ifdef CONFIG_RCU_BOOST */

618
/*
P
Paul E. McKenney 已提交
619
 * Queue a preemptible-RCU callback for invocation after a grace period.
620 621 622 623 624 625 626
 */
void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
	__call_rcu(head, func, &rcu_preempt_state);
}
EXPORT_SYMBOL_GPL(call_rcu);

627 628 629 630 631
/**
 * synchronize_rcu - wait until a grace period has elapsed.
 *
 * Control will return to the caller some time after a full grace
 * period has elapsed, in other words after all currently executing RCU
632 633 634 635 636
 * read-side critical sections have completed.  Note, however, that
 * upon return from synchronize_rcu(), the caller might well be executing
 * concurrently with new RCU read-side critical sections that began while
 * synchronize_rcu() was waiting.  RCU read-side critical sections are
 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
637 638 639 640 641 642 643 644
 */
void synchronize_rcu(void)
{
	struct rcu_synchronize rcu;

	if (!rcu_scheduler_active)
		return;

645
	init_rcu_head_on_stack(&rcu.head);
646 647 648 649 650
	init_completion(&rcu.completion);
	/* Will wake me after RCU finished. */
	call_rcu(&rcu.head, wakeme_after_rcu);
	/* Wait for it. */
	wait_for_completion(&rcu.completion);
651
	destroy_rcu_head_on_stack(&rcu.head);
652 653 654
}
EXPORT_SYMBOL_GPL(synchronize_rcu);

655 656 657 658 659 660 661 662 663 664 665 666
static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
static long sync_rcu_preempt_exp_count;
static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);

/*
 * Return non-zero if there are any tasks in RCU read-side critical
 * sections blocking the current preemptible-RCU expedited grace period.
 * If there is no preemptible-RCU expedited grace period currently in
 * progress, returns zero unconditionally.
 */
static int rcu_preempted_readers_exp(struct rcu_node *rnp)
{
667
	return rnp->exp_tasks != NULL;
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
}

/*
 * return non-zero if there is no RCU expedited grace period in progress
 * for the specified rcu_node structure, in other words, if all CPUs and
 * tasks covered by the specified rcu_node structure have done their bit
 * for the current expedited grace period.  Works only for preemptible
 * RCU -- other RCU implementation use other means.
 *
 * Caller must hold sync_rcu_preempt_exp_mutex.
 */
static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
{
	return !rcu_preempted_readers_exp(rnp) &&
	       ACCESS_ONCE(rnp->expmask) == 0;
}

/*
 * Report the exit from RCU read-side critical section for the last task
 * that queued itself during or before the current expedited preemptible-RCU
 * grace period.  This event is reported either to the rcu_node structure on
 * which the task was queued or to one of that rcu_node structure's ancestors,
 * recursively up the tree.  (Calm down, calm down, we do the recursion
 * iteratively!)
 *
 * Caller must hold sync_rcu_preempt_exp_mutex.
 */
static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp)
{
	unsigned long flags;
	unsigned long mask;

P
Paul E. McKenney 已提交
700
	raw_spin_lock_irqsave(&rnp->lock, flags);
701
	for (;;) {
702 703
		if (!sync_rcu_preempt_exp_done(rnp)) {
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
704
			break;
705
		}
706
		if (rnp->parent == NULL) {
707
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
708 709 710 711
			wake_up(&sync_rcu_preempt_exp_wq);
			break;
		}
		mask = rnp->grpmask;
P
Paul E. McKenney 已提交
712
		raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
713
		rnp = rnp->parent;
P
Paul E. McKenney 已提交
714
		raw_spin_lock(&rnp->lock); /* irqs already disabled */
715 716 717 718 719 720 721 722 723 724 725 726 727 728
		rnp->expmask &= ~mask;
	}
}

/*
 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
 * grace period for the specified rcu_node structure.  If there are no such
 * tasks, report it up the rcu_node hierarchy.
 *
 * Caller must hold sync_rcu_preempt_exp_mutex and rsp->onofflock.
 */
static void
sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
{
729
	unsigned long flags;
730
	int must_wait = 0;
731

732 733 734 735
	raw_spin_lock_irqsave(&rnp->lock, flags);
	if (list_empty(&rnp->blkd_tasks))
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	else {
736
		rnp->exp_tasks = rnp->blkd_tasks.next;
737
		rcu_initiate_boost(rnp, flags);  /* releases rnp->lock */
738 739
		must_wait = 1;
	}
740 741 742 743
	if (!must_wait)
		rcu_report_exp_rnp(rsp, rnp);
}

744
/*
745 746
 * Wait for an rcu-preempt grace period, but expedite it.  The basic idea
 * is to invoke synchronize_sched_expedited() to push all the tasks to
747
 * the ->blkd_tasks lists and wait for this list to drain.
748 749 750
 */
void synchronize_rcu_expedited(void)
{
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
	unsigned long flags;
	struct rcu_node *rnp;
	struct rcu_state *rsp = &rcu_preempt_state;
	long snap;
	int trycount = 0;

	smp_mb(); /* Caller's modifications seen first by other CPUs. */
	snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
	smp_mb(); /* Above access cannot bleed into critical section. */

	/*
	 * Acquire lock, falling back to synchronize_rcu() if too many
	 * lock-acquisition failures.  Of course, if someone does the
	 * expedited grace period for us, just leave.
	 */
	while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
		if (trycount++ < 10)
			udelay(trycount * num_online_cpus());
		else {
			synchronize_rcu();
			return;
		}
		if ((ACCESS_ONCE(sync_rcu_preempt_exp_count) - snap) > 0)
			goto mb_ret; /* Others did our work for us. */
	}
	if ((ACCESS_ONCE(sync_rcu_preempt_exp_count) - snap) > 0)
		goto unlock_mb_ret; /* Others did our work for us. */

779
	/* force all RCU readers onto ->blkd_tasks lists. */
780 781
	synchronize_sched_expedited();

P
Paul E. McKenney 已提交
782
	raw_spin_lock_irqsave(&rsp->onofflock, flags);
783 784 785

	/* Initialize ->expmask for all non-leaf rcu_node structures. */
	rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
P
Paul E. McKenney 已提交
786
		raw_spin_lock(&rnp->lock); /* irqs already disabled. */
787
		rnp->expmask = rnp->qsmaskinit;
P
Paul E. McKenney 已提交
788
		raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
789 790
	}

791
	/* Snapshot current state of ->blkd_tasks lists. */
792 793 794 795 796
	rcu_for_each_leaf_node(rsp, rnp)
		sync_rcu_preempt_exp_init(rsp, rnp);
	if (NUM_RCU_NODES > 1)
		sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));

P
Paul E. McKenney 已提交
797
	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
798

799
	/* Wait for snapshotted ->blkd_tasks lists to drain. */
800 801 802 803 804 805 806 807 808 809 810
	rnp = rcu_get_root(rsp);
	wait_event(sync_rcu_preempt_exp_wq,
		   sync_rcu_preempt_exp_done(rnp));

	/* Clean up and exit. */
	smp_mb(); /* ensure expedited GP seen before counter increment. */
	ACCESS_ONCE(sync_rcu_preempt_exp_count)++;
unlock_mb_ret:
	mutex_unlock(&sync_rcu_preempt_exp_mutex);
mb_ret:
	smp_mb(); /* ensure subsequent action seen after grace period. */
811 812 813
}
EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);

814
/*
P
Paul E. McKenney 已提交
815
 * Check to see if there is any immediate preemptible-RCU-related work
816 817 818 819 820 821 822 823 824
 * to be done.
 */
static int rcu_preempt_pending(int cpu)
{
	return __rcu_pending(&rcu_preempt_state,
			     &per_cpu(rcu_preempt_data, cpu));
}

/*
P
Paul E. McKenney 已提交
825
 * Does preemptible RCU need the CPU to stay out of dynticks mode?
826 827 828 829 830 831
 */
static int rcu_preempt_needs_cpu(int cpu)
{
	return !!per_cpu(rcu_preempt_data, cpu).nxtlist;
}

832 833 834 835 836 837 838 839 840
/**
 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
 */
void rcu_barrier(void)
{
	_rcu_barrier(&rcu_preempt_state, call_rcu);
}
EXPORT_SYMBOL_GPL(rcu_barrier);

841
/*
P
Paul E. McKenney 已提交
842
 * Initialize preemptible RCU's per-CPU data.
843 844 845 846 847 848
 */
static void __cpuinit rcu_preempt_init_percpu_data(int cpu)
{
	rcu_init_percpu_data(cpu, &rcu_preempt_state, 1);
}

849
/*
P
Paul E. McKenney 已提交
850
 * Move preemptible RCU's callbacks from dying CPU to other online CPU.
851
 */
852
static void rcu_preempt_send_cbs_to_online(void)
853
{
854
	rcu_send_cbs_to_online(&rcu_preempt_state);
855 856
}

857
/*
P
Paul E. McKenney 已提交
858
 * Initialize preemptible RCU's state structures.
859 860 861
 */
static void __init __rcu_init_preempt(void)
{
862
	rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
863 864
}

865
/*
P
Paul E. McKenney 已提交
866
 * Check for a task exiting while in a preemptible-RCU read-side
867 868 869 870 871 872 873 874 875 876 877
 * critical section, clean up if so.  No need to issue warnings,
 * as debug_check_no_locks_held() already does this if lockdep
 * is enabled.
 */
void exit_rcu(void)
{
	struct task_struct *t = current;

	if (t->rcu_read_lock_nesting == 0)
		return;
	t->rcu_read_lock_nesting = 1;
878
	__rcu_read_unlock();
879 880 881 882
}

#else /* #ifdef CONFIG_TREE_PREEMPT_RCU */

883 884
static struct rcu_state *rcu_state = &rcu_sched_state;

885 886 887
/*
 * Tell them what RCU they are running.
 */
888
static void __init rcu_bootup_announce(void)
889 890
{
	printk(KERN_INFO "Hierarchical RCU implementation.\n");
891
	rcu_bootup_announce_oddness();
892 893 894 895 896 897 898 899 900 901 902
}

/*
 * Return the number of RCU batches processed thus far for debug & stats.
 */
long rcu_batches_completed(void)
{
	return rcu_batches_completed_sched();
}
EXPORT_SYMBOL_GPL(rcu_batches_completed);

903 904 905 906 907 908 909 910 911 912
/*
 * Force a quiescent state for RCU, which, because there is no preemptible
 * RCU, becomes the same as rcu-sched.
 */
void rcu_force_quiescent_state(void)
{
	rcu_sched_force_quiescent_state();
}
EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);

913
/*
P
Paul E. McKenney 已提交
914
 * Because preemptible RCU does not exist, we never have to check for
915 916
 * CPUs being in quiescent states.
 */
917
static void rcu_preempt_note_context_switch(int cpu)
918 919 920
{
}

921
/*
P
Paul E. McKenney 已提交
922
 * Because preemptible RCU does not exist, there are never any preempted
923 924
 * RCU readers.
 */
925
static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
926 927 928 929
{
	return 0;
}

930 931 932
#ifdef CONFIG_HOTPLUG_CPU

/* Because preemptible RCU does not exist, no quieting of tasks. */
P
Paul E. McKenney 已提交
933
static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
934
{
P
Paul E. McKenney 已提交
935
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
936 937 938 939
}

#endif /* #ifdef CONFIG_HOTPLUG_CPU */

940
/*
P
Paul E. McKenney 已提交
941
 * Because preemptible RCU does not exist, we never have to check for
942 943 944 945 946 947
 * tasks blocked within RCU read-side critical sections.
 */
static void rcu_print_detail_task_stall(struct rcu_state *rsp)
{
}

948
/*
P
Paul E. McKenney 已提交
949
 * Because preemptible RCU does not exist, we never have to check for
950 951 952 953 954 955
 * tasks blocked within RCU read-side critical sections.
 */
static void rcu_print_task_stall(struct rcu_node *rnp)
{
}

956 957 958 959 960 961 962 963
/*
 * Because preemptible RCU does not exist, there is no need to suppress
 * its CPU stall warnings.
 */
static void rcu_preempt_stall_reset(void)
{
}

964
/*
P
Paul E. McKenney 已提交
965
 * Because there is no preemptible RCU, there can be no readers blocked,
966 967
 * so there is no need to check for blocked tasks.  So check only for
 * bogus qsmask values.
968 969 970
 */
static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
{
971
	WARN_ON_ONCE(rnp->qsmask);
972 973
}

974 975
#ifdef CONFIG_HOTPLUG_CPU

976
/*
P
Paul E. McKenney 已提交
977
 * Because preemptible RCU does not exist, it never needs to migrate
978 979 980
 * tasks that were blocked within RCU read-side critical sections, and
 * such non-existent tasks cannot possibly have been blocking the current
 * grace period.
981
 */
982 983 984
static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
				     struct rcu_node *rnp,
				     struct rcu_data *rdp)
985
{
986
	return 0;
987 988
}

989
/*
P
Paul E. McKenney 已提交
990
 * Because preemptible RCU does not exist, it never needs CPU-offline
991 992 993 994 995 996 997 998
 * processing.
 */
static void rcu_preempt_offline_cpu(int cpu)
{
}

#endif /* #ifdef CONFIG_HOTPLUG_CPU */

999
/*
P
Paul E. McKenney 已提交
1000
 * Because preemptible RCU does not exist, it never has any callbacks
1001 1002
 * to check.
 */
1003
static void rcu_preempt_check_callbacks(int cpu)
1004 1005 1006 1007
{
}

/*
P
Paul E. McKenney 已提交
1008
 * Because preemptible RCU does not exist, it never has any callbacks
1009 1010
 * to process.
 */
1011
static void rcu_preempt_process_callbacks(void)
1012 1013 1014
{
}

1015 1016
/*
 * Wait for an rcu-preempt grace period, but make it happen quickly.
P
Paul E. McKenney 已提交
1017
 * But because preemptible RCU does not exist, map to rcu-sched.
1018 1019 1020 1021 1022 1023 1024
 */
void synchronize_rcu_expedited(void)
{
	synchronize_sched_expedited();
}
EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);

1025 1026 1027
#ifdef CONFIG_HOTPLUG_CPU

/*
P
Paul E. McKenney 已提交
1028
 * Because preemptible RCU does not exist, there is never any need to
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
 * report on tasks preempted in RCU read-side critical sections during
 * expedited RCU grace periods.
 */
static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp)
{
	return;
}

#endif /* #ifdef CONFIG_HOTPLUG_CPU */

1039
/*
P
Paul E. McKenney 已提交
1040
 * Because preemptible RCU does not exist, it never has any work to do.
1041 1042 1043 1044 1045 1046 1047
 */
static int rcu_preempt_pending(int cpu)
{
	return 0;
}

/*
P
Paul E. McKenney 已提交
1048
 * Because preemptible RCU does not exist, it never needs any CPU.
1049 1050 1051 1052 1053 1054
 */
static int rcu_preempt_needs_cpu(int cpu)
{
	return 0;
}

1055
/*
P
Paul E. McKenney 已提交
1056
 * Because preemptible RCU does not exist, rcu_barrier() is just
1057 1058 1059 1060 1061 1062 1063 1064
 * another name for rcu_barrier_sched().
 */
void rcu_barrier(void)
{
	rcu_barrier_sched();
}
EXPORT_SYMBOL_GPL(rcu_barrier);

1065
/*
P
Paul E. McKenney 已提交
1066
 * Because preemptible RCU does not exist, there is no per-CPU
1067 1068 1069 1070 1071 1072
 * data to initialize.
 */
static void __cpuinit rcu_preempt_init_percpu_data(int cpu)
{
}

1073
/*
P
Paul E. McKenney 已提交
1074
 * Because there is no preemptible RCU, there are no callbacks to move.
1075
 */
1076
static void rcu_preempt_send_cbs_to_online(void)
1077 1078 1079
{
}

1080
/*
P
Paul E. McKenney 已提交
1081
 * Because preemptible RCU does not exist, it need not be initialized.
1082 1083 1084 1085 1086
 */
static void __init __rcu_init_preempt(void)
{
}

1087
#endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
1088

1089 1090 1091 1092
#ifdef CONFIG_RCU_BOOST

#include "rtmutex_common.h"

1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
#ifdef CONFIG_RCU_TRACE

static void rcu_initiate_boost_trace(struct rcu_node *rnp)
{
	if (list_empty(&rnp->blkd_tasks))
		rnp->n_balk_blkd_tasks++;
	else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
		rnp->n_balk_exp_gp_tasks++;
	else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
		rnp->n_balk_boost_tasks++;
	else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
		rnp->n_balk_notblocked++;
	else if (rnp->gp_tasks != NULL &&
1106
		 ULONG_CMP_LT(jiffies, rnp->boost_time))
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
		rnp->n_balk_notyet++;
	else
		rnp->n_balk_nos++;
}

#else /* #ifdef CONFIG_RCU_TRACE */

static void rcu_initiate_boost_trace(struct rcu_node *rnp)
{
}

#endif /* #else #ifdef CONFIG_RCU_TRACE */

1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
/*
 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
 * or ->boost_tasks, advancing the pointer to the next task in the
 * ->blkd_tasks list.
 *
 * Note that irqs must be enabled: boosting the task can block.
 * Returns 1 if there are more tasks needing to be boosted.
 */
static int rcu_boost(struct rcu_node *rnp)
{
	unsigned long flags;
	struct rt_mutex mtx;
	struct task_struct *t;
	struct list_head *tb;

	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL)
		return 0;  /* Nothing left to boost. */

	raw_spin_lock_irqsave(&rnp->lock, flags);

	/*
	 * Recheck under the lock: all tasks in need of boosting
	 * might exit their RCU read-side critical sections on their own.
	 */
	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		return 0;
	}

	/*
	 * Preferentially boost tasks blocking expedited grace periods.
	 * This cannot starve the normal grace periods because a second
	 * expedited grace period must boost all blocked tasks, including
	 * those blocking the pre-existing normal grace period.
	 */
1155
	if (rnp->exp_tasks != NULL) {
1156
		tb = rnp->exp_tasks;
1157 1158
		rnp->n_exp_boosts++;
	} else {
1159
		tb = rnp->boost_tasks;
1160 1161 1162
		rnp->n_normal_boosts++;
	}
	rnp->n_tasks_boosted++;
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182

	/*
	 * We boost task t by manufacturing an rt_mutex that appears to
	 * be held by task t.  We leave a pointer to that rt_mutex where
	 * task t can find it, and task t will release the mutex when it
	 * exits its outermost RCU read-side critical section.  Then
	 * simply acquiring this artificial rt_mutex will boost task
	 * t's priority.  (Thanks to tglx for suggesting this approach!)
	 *
	 * Note that task t must acquire rnp->lock to remove itself from
	 * the ->blkd_tasks list, which it will do from exit() if from
	 * nowhere else.  We therefore are guaranteed that task t will
	 * stay around at least until we drop rnp->lock.  Note that
	 * rnp->lock also resolves races between our priority boosting
	 * and task t's exiting its outermost RCU read-side critical
	 * section.
	 */
	t = container_of(tb, struct task_struct, rcu_node_entry);
	rt_mutex_init_proxy_locked(&mtx, t);
	t->rcu_boost_mutex = &mtx;
1183
	t->rcu_boosted = 1;
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
	rt_mutex_lock(&mtx);  /* Side effect: boosts task t's priority. */
	rt_mutex_unlock(&mtx);  /* Keep lockdep happy. */

	return rnp->exp_tasks != NULL || rnp->boost_tasks != NULL;
}

/*
 * Timer handler to initiate waking up of boost kthreads that
 * have yielded the CPU due to excessive numbers of tasks to
 * boost.  We wake up the per-rcu_node kthread, which in turn
 * will wake up the booster kthread.
 */
static void rcu_boost_kthread_timer(unsigned long arg)
{
1199
	invoke_rcu_node_kthread((struct rcu_node *)arg);
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
}

/*
 * Priority-boosting kthread.  One per leaf rcu_node and one for the
 * root rcu_node.
 */
static int rcu_boost_kthread(void *arg)
{
	struct rcu_node *rnp = (struct rcu_node *)arg;
	int spincnt = 0;
	int more2boost;

	for (;;) {
1213
		rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1214
		rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1215
		rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
		more2boost = rcu_boost(rnp);
		if (more2boost)
			spincnt++;
		else
			spincnt = 0;
		if (spincnt > 10) {
			rcu_yield(rcu_boost_kthread_timer, (unsigned long)rnp);
			spincnt = 0;
		}
	}
1226
	/* NOTREACHED */
1227 1228 1229 1230 1231 1232 1233 1234 1235
	return 0;
}

/*
 * Check to see if it is time to start boosting RCU readers that are
 * blocking the current grace period, and, if so, tell the per-rcu_node
 * kthread to start boosting them.  If there is an expedited grace
 * period in progress, it is always time to boost.
 *
1236 1237 1238
 * The caller must hold rnp->lock, which this function releases,
 * but irqs remain disabled.  The ->boost_kthread_task is immortal,
 * so we don't need to worry about it going away.
1239
 */
1240
static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1241 1242 1243
{
	struct task_struct *t;

1244 1245
	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
		rnp->n_balk_exp_gp_tasks++;
1246
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1247
		return;
1248
	}
1249 1250 1251 1252 1253 1254 1255
	if (rnp->exp_tasks != NULL ||
	    (rnp->gp_tasks != NULL &&
	     rnp->boost_tasks == NULL &&
	     rnp->qsmask == 0 &&
	     ULONG_CMP_GE(jiffies, rnp->boost_time))) {
		if (rnp->exp_tasks == NULL)
			rnp->boost_tasks = rnp->gp_tasks;
1256
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1257 1258 1259
		t = rnp->boost_kthread_task;
		if (t != NULL)
			wake_up_process(t);
1260
	} else {
1261
		rcu_initiate_boost_trace(rnp);
1262 1263
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	}
1264 1265
}

1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
/*
 * Wake up the per-CPU kthread to invoke RCU callbacks.
 */
static void invoke_rcu_callbacks_kthread(void)
{
	unsigned long flags;

	local_irq_save(flags);
	__this_cpu_write(rcu_cpu_has_work, 1);
	if (__this_cpu_read(rcu_cpu_kthread_task) == NULL) {
		local_irq_restore(flags);
		return;
	}
	wake_up_process(__this_cpu_read(rcu_cpu_kthread_task));
	local_irq_restore(flags);
}

1283 1284 1285 1286 1287
/*
 * Set the affinity of the boost kthread.  The CPU-hotplug locks are
 * held, so no one should be messing with the existence of the boost
 * kthread.
 */
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp,
					  cpumask_var_t cm)
{
	struct task_struct *t;

	t = rnp->boost_kthread_task;
	if (t != NULL)
		set_cpus_allowed_ptr(rnp->boost_kthread_task, cm);
}

#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)

/*
 * Do priority-boost accounting for the start of a new grace period.
 */
static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
{
	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
}

/*
 * Create an RCU-boost kthread for the specified node if one does not
 * already exist.  We only create this kthread for preemptible RCU.
 * Returns zero if all is well, a negated errno otherwise.
 */
static int __cpuinit rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
						 struct rcu_node *rnp,
						 int rnp_index)
{
	unsigned long flags;
	struct sched_param sp;
	struct task_struct *t;

	if (&rcu_preempt_state != rsp)
		return 0;
1323
	rsp->boost = 1;
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
	if (rnp->boost_kthread_task != NULL)
		return 0;
	t = kthread_create(rcu_boost_kthread, (void *)rnp,
			   "rcub%d", rnp_index);
	if (IS_ERR(t))
		return PTR_ERR(t);
	raw_spin_lock_irqsave(&rnp->lock, flags);
	rnp->boost_kthread_task = t;
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
	sp.sched_priority = RCU_KTHREAD_PRIO;
	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1335
	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1336 1337 1338
	return 0;
}

1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
#ifdef CONFIG_HOTPLUG_CPU

/*
 * Stop the RCU's per-CPU kthread when its CPU goes offline,.
 */
static void rcu_stop_cpu_kthread(int cpu)
{
	struct task_struct *t;

	/* Stop the CPU's kthread. */
	t = per_cpu(rcu_cpu_kthread_task, cpu);
	if (t != NULL) {
		per_cpu(rcu_cpu_kthread_task, cpu) = NULL;
		kthread_stop(t);
	}
}

#endif /* #ifdef CONFIG_HOTPLUG_CPU */

static void rcu_kthread_do_work(void)
{
	rcu_do_batch(&rcu_sched_state, &__get_cpu_var(rcu_sched_data));
	rcu_do_batch(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
	rcu_preempt_do_callbacks();
}

/*
 * Wake up the specified per-rcu_node-structure kthread.
 * Because the per-rcu_node kthreads are immortal, we don't need
 * to do anything to keep them alive.
 */
static void invoke_rcu_node_kthread(struct rcu_node *rnp)
{
	struct task_struct *t;

	t = rnp->node_kthread_task;
	if (t != NULL)
		wake_up_process(t);
}

/*
 * Set the specified CPU's kthread to run RT or not, as specified by
 * the to_rt argument.  The CPU-hotplug locks are held, so the task
 * is not going away.
 */
static void rcu_cpu_kthread_setrt(int cpu, int to_rt)
{
	int policy;
	struct sched_param sp;
	struct task_struct *t;

	t = per_cpu(rcu_cpu_kthread_task, cpu);
	if (t == NULL)
		return;
	if (to_rt) {
		policy = SCHED_FIFO;
		sp.sched_priority = RCU_KTHREAD_PRIO;
	} else {
		policy = SCHED_NORMAL;
		sp.sched_priority = 0;
	}
	sched_setscheduler_nocheck(t, policy, &sp);
}

/*
 * Timer handler to initiate the waking up of per-CPU kthreads that
 * have yielded the CPU due to excess numbers of RCU callbacks.
 * We wake up the per-rcu_node kthread, which in turn will wake up
 * the booster kthread.
 */
static void rcu_cpu_kthread_timer(unsigned long arg)
{
	struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, arg);
	struct rcu_node *rnp = rdp->mynode;

	atomic_or(rdp->grpmask, &rnp->wakemask);
	invoke_rcu_node_kthread(rnp);
}

/*
 * Drop to non-real-time priority and yield, but only after posting a
 * timer that will cause us to regain our real-time priority if we
 * remain preempted.  Either way, we restore our real-time priority
 * before returning.
 */
static void rcu_yield(void (*f)(unsigned long), unsigned long arg)
{
	struct sched_param sp;
	struct timer_list yield_timer;

	setup_timer_on_stack(&yield_timer, f, arg);
	mod_timer(&yield_timer, jiffies + 2);
	sp.sched_priority = 0;
	sched_setscheduler_nocheck(current, SCHED_NORMAL, &sp);
	set_user_nice(current, 19);
	schedule();
	sp.sched_priority = RCU_KTHREAD_PRIO;
	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
	del_timer(&yield_timer);
}

/*
 * Handle cases where the rcu_cpu_kthread() ends up on the wrong CPU.
 * This can happen while the corresponding CPU is either coming online
 * or going offline.  We cannot wait until the CPU is fully online
 * before starting the kthread, because the various notifier functions
 * can wait for RCU grace periods.  So we park rcu_cpu_kthread() until
 * the corresponding CPU is online.
 *
 * Return 1 if the kthread needs to stop, 0 otherwise.
 *
 * Caller must disable bh.  This function can momentarily enable it.
 */
static int rcu_cpu_kthread_should_stop(int cpu)
{
	while (cpu_is_offline(cpu) ||
	       !cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)) ||
	       smp_processor_id() != cpu) {
		if (kthread_should_stop())
			return 1;
		per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
		per_cpu(rcu_cpu_kthread_cpu, cpu) = raw_smp_processor_id();
		local_bh_enable();
		schedule_timeout_uninterruptible(1);
		if (!cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)))
			set_cpus_allowed_ptr(current, cpumask_of(cpu));
		local_bh_disable();
	}
	per_cpu(rcu_cpu_kthread_cpu, cpu) = cpu;
	return 0;
}

/*
 * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
 * earlier RCU softirq.
 */
static int rcu_cpu_kthread(void *arg)
{
	int cpu = (int)(long)arg;
	unsigned long flags;
	int spincnt = 0;
	unsigned int *statusp = &per_cpu(rcu_cpu_kthread_status, cpu);
	char work;
	char *workp = &per_cpu(rcu_cpu_has_work, cpu);

	for (;;) {
		*statusp = RCU_KTHREAD_WAITING;
		rcu_wait(*workp != 0 || kthread_should_stop());
		local_bh_disable();
		if (rcu_cpu_kthread_should_stop(cpu)) {
			local_bh_enable();
			break;
		}
		*statusp = RCU_KTHREAD_RUNNING;
		per_cpu(rcu_cpu_kthread_loops, cpu)++;
		local_irq_save(flags);
		work = *workp;
		*workp = 0;
		local_irq_restore(flags);
		if (work)
			rcu_kthread_do_work();
		local_bh_enable();
		if (*workp != 0)
			spincnt++;
		else
			spincnt = 0;
		if (spincnt > 10) {
			*statusp = RCU_KTHREAD_YIELDING;
			rcu_yield(rcu_cpu_kthread_timer, (unsigned long)cpu);
			spincnt = 0;
		}
	}
	*statusp = RCU_KTHREAD_STOPPED;
	return 0;
}

/*
 * Spawn a per-CPU kthread, setting up affinity and priority.
 * Because the CPU hotplug lock is held, no other CPU will be attempting
 * to manipulate rcu_cpu_kthread_task.  There might be another CPU
 * attempting to access it during boot, but the locking in kthread_bind()
 * will enforce sufficient ordering.
 *
 * Please note that we cannot simply refuse to wake up the per-CPU
 * kthread because kthreads are created in TASK_UNINTERRUPTIBLE state,
 * which can result in softlockup complaints if the task ends up being
 * idle for more than a couple of minutes.
 *
 * However, please note also that we cannot bind the per-CPU kthread to its
 * CPU until that CPU is fully online.  We also cannot wait until the
 * CPU is fully online before we create its per-CPU kthread, as this would
 * deadlock the system when CPU notifiers tried waiting for grace
 * periods.  So we bind the per-CPU kthread to its CPU only if the CPU
 * is online.  If its CPU is not yet fully online, then the code in
 * rcu_cpu_kthread() will wait until it is fully online, and then do
 * the binding.
 */
static int __cpuinit rcu_spawn_one_cpu_kthread(int cpu)
{
	struct sched_param sp;
	struct task_struct *t;

1541
	if (!rcu_scheduler_fully_active ||
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
	    per_cpu(rcu_cpu_kthread_task, cpu) != NULL)
		return 0;
	t = kthread_create(rcu_cpu_kthread, (void *)(long)cpu, "rcuc%d", cpu);
	if (IS_ERR(t))
		return PTR_ERR(t);
	if (cpu_online(cpu))
		kthread_bind(t, cpu);
	per_cpu(rcu_cpu_kthread_cpu, cpu) = cpu;
	WARN_ON_ONCE(per_cpu(rcu_cpu_kthread_task, cpu) != NULL);
	sp.sched_priority = RCU_KTHREAD_PRIO;
	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
	per_cpu(rcu_cpu_kthread_task, cpu) = t;
	wake_up_process(t); /* Get to TASK_INTERRUPTIBLE quickly. */
	return 0;
}

/*
 * Per-rcu_node kthread, which is in charge of waking up the per-CPU
 * kthreads when needed.  We ignore requests to wake up kthreads
 * for offline CPUs, which is OK because force_quiescent_state()
 * takes care of this case.
 */
static int rcu_node_kthread(void *arg)
{
	int cpu;
	unsigned long flags;
	unsigned long mask;
	struct rcu_node *rnp = (struct rcu_node *)arg;
	struct sched_param sp;
	struct task_struct *t;

	for (;;) {
		rnp->node_kthread_status = RCU_KTHREAD_WAITING;
		rcu_wait(atomic_read(&rnp->wakemask) != 0);
		rnp->node_kthread_status = RCU_KTHREAD_RUNNING;
		raw_spin_lock_irqsave(&rnp->lock, flags);
		mask = atomic_xchg(&rnp->wakemask, 0);
		rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
		for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1) {
			if ((mask & 0x1) == 0)
				continue;
			preempt_disable();
			t = per_cpu(rcu_cpu_kthread_task, cpu);
			if (!cpu_online(cpu) || t == NULL) {
				preempt_enable();
				continue;
			}
			per_cpu(rcu_cpu_has_work, cpu) = 1;
			sp.sched_priority = RCU_KTHREAD_PRIO;
			sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
			preempt_enable();
		}
	}
	/* NOTREACHED */
	rnp->node_kthread_status = RCU_KTHREAD_STOPPED;
	return 0;
}

/*
 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
 * served by the rcu_node in question.  The CPU hotplug lock is still
 * held, so the value of rnp->qsmaskinit will be stable.
 *
 * We don't include outgoingcpu in the affinity set, use -1 if there is
 * no outgoing CPU.  If there are no CPUs left in the affinity set,
 * this function allows the kthread to execute on any CPU.
 */
static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
{
	cpumask_var_t cm;
	int cpu;
	unsigned long mask = rnp->qsmaskinit;

	if (rnp->node_kthread_task == NULL)
		return;
	if (!alloc_cpumask_var(&cm, GFP_KERNEL))
		return;
	cpumask_clear(cm);
	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
		if ((mask & 0x1) && cpu != outgoingcpu)
			cpumask_set_cpu(cpu, cm);
	if (cpumask_weight(cm) == 0) {
		cpumask_setall(cm);
		for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
			cpumask_clear_cpu(cpu, cm);
		WARN_ON_ONCE(cpumask_weight(cm) == 0);
	}
	set_cpus_allowed_ptr(rnp->node_kthread_task, cm);
	rcu_boost_kthread_setaffinity(rnp, cm);
	free_cpumask_var(cm);
}

/*
 * Spawn a per-rcu_node kthread, setting priority and affinity.
 * Called during boot before online/offline can happen, or, if
 * during runtime, with the main CPU-hotplug locks held.  So only
 * one of these can be executing at a time.
 */
static int __cpuinit rcu_spawn_one_node_kthread(struct rcu_state *rsp,
						struct rcu_node *rnp)
{
	unsigned long flags;
	int rnp_index = rnp - &rsp->node[0];
	struct sched_param sp;
	struct task_struct *t;

1648
	if (!rcu_scheduler_fully_active ||
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
	    rnp->qsmaskinit == 0)
		return 0;
	if (rnp->node_kthread_task == NULL) {
		t = kthread_create(rcu_node_kthread, (void *)rnp,
				   "rcun%d", rnp_index);
		if (IS_ERR(t))
			return PTR_ERR(t);
		raw_spin_lock_irqsave(&rnp->lock, flags);
		rnp->node_kthread_task = t;
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		sp.sched_priority = 99;
		sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
		wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
	}
	return rcu_spawn_one_boost_kthread(rsp, rnp, rnp_index);
}

/*
 * Spawn all kthreads -- called as soon as the scheduler is running.
 */
static int __init rcu_spawn_kthreads(void)
{
	int cpu;
	struct rcu_node *rnp;

1674
	rcu_scheduler_fully_active = 1;
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
	for_each_possible_cpu(cpu) {
		per_cpu(rcu_cpu_has_work, cpu) = 0;
		if (cpu_online(cpu))
			(void)rcu_spawn_one_cpu_kthread(cpu);
	}
	rnp = rcu_get_root(rcu_state);
	(void)rcu_spawn_one_node_kthread(rcu_state, rnp);
	if (NUM_RCU_NODES > 1) {
		rcu_for_each_leaf_node(rcu_state, rnp)
			(void)rcu_spawn_one_node_kthread(rcu_state, rnp);
	}
	return 0;
}
early_initcall(rcu_spawn_kthreads);

static void __cpuinit rcu_prepare_kthreads(int cpu)
{
	struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
	struct rcu_node *rnp = rdp->mynode;

	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1696
	if (rcu_scheduler_fully_active) {
1697 1698 1699 1700 1701 1702
		(void)rcu_spawn_one_cpu_kthread(cpu);
		if (rnp->node_kthread_task == NULL)
			(void)rcu_spawn_one_node_kthread(rcu_state, rnp);
	}
}

1703 1704
#else /* #ifdef CONFIG_RCU_BOOST */

1705
static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1706
{
1707
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1708 1709
}

1710
static void invoke_rcu_callbacks_kthread(void)
1711
{
1712
	WARN_ON_ONCE(1);
1713 1714 1715 1716 1717 1718
}

static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
{
}

1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
#ifdef CONFIG_HOTPLUG_CPU

static void rcu_stop_cpu_kthread(int cpu)
{
}

#endif /* #ifdef CONFIG_HOTPLUG_CPU */

static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
{
}

static void rcu_cpu_kthread_setrt(int cpu, int to_rt)
{
}

1735 1736 1737 1738 1739 1740 1741
static int __init rcu_scheduler_really_started(void)
{
	rcu_scheduler_fully_active = 1;
	return 0;
}
early_initcall(rcu_scheduler_really_started);

1742 1743 1744 1745
static void __cpuinit rcu_prepare_kthreads(int cpu)
{
}

1746 1747
#endif /* #else #ifdef CONFIG_RCU_BOOST */

1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
#ifndef CONFIG_SMP

void synchronize_sched_expedited(void)
{
	cond_resched();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#else /* #ifndef CONFIG_SMP */

1758 1759
static atomic_t sync_sched_expedited_started = ATOMIC_INIT(0);
static atomic_t sync_sched_expedited_done = ATOMIC_INIT(0);
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786

static int synchronize_sched_expedited_cpu_stop(void *data)
{
	/*
	 * There must be a full memory barrier on each affected CPU
	 * between the time that try_stop_cpus() is called and the
	 * time that it returns.
	 *
	 * In the current initial implementation of cpu_stop, the
	 * above condition is already met when the control reaches
	 * this point and the following smp_mb() is not strictly
	 * necessary.  Do smp_mb() anyway for documentation and
	 * robustness against future implementation changes.
	 */
	smp_mb(); /* See above comment block. */
	return 0;
}

/*
 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
 * approach to force grace period to end quickly.  This consumes
 * significant time on all CPUs, and is thus not recommended for
 * any sort of common-case code.
 *
 * Note that it is illegal to call this function while holding any
 * lock that is acquired by a CPU-hotplug notifier.  Failing to
 * observe this restriction will result in deadlock.
1787
 *
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
 * This implementation can be thought of as an application of ticket
 * locking to RCU, with sync_sched_expedited_started and
 * sync_sched_expedited_done taking on the roles of the halves
 * of the ticket-lock word.  Each task atomically increments
 * sync_sched_expedited_started upon entry, snapshotting the old value,
 * then attempts to stop all the CPUs.  If this succeeds, then each
 * CPU will have executed a context switch, resulting in an RCU-sched
 * grace period.  We are then done, so we use atomic_cmpxchg() to
 * update sync_sched_expedited_done to match our snapshot -- but
 * only if someone else has not already advanced past our snapshot.
 *
 * On the other hand, if try_stop_cpus() fails, we check the value
 * of sync_sched_expedited_done.  If it has advanced past our
 * initial snapshot, then someone else must have forced a grace period
 * some time after we took our snapshot.  In this case, our work is
 * done for us, and we can simply return.  Otherwise, we try again,
 * but keep our initial snapshot for purposes of checking for someone
 * doing our work for us.
 *
 * If we fail too many times in a row, we fall back to synchronize_sched().
1808 1809 1810
 */
void synchronize_sched_expedited(void)
{
1811
	int firstsnap, s, snap, trycount = 0;
1812

1813 1814
	/* Note that atomic_inc_return() implies full memory barrier. */
	firstsnap = snap = atomic_inc_return(&sync_sched_expedited_started);
1815
	get_online_cpus();
1816 1817 1818 1819 1820

	/*
	 * Each pass through the following loop attempts to force a
	 * context switch on each CPU.
	 */
1821 1822 1823 1824
	while (try_stop_cpus(cpu_online_mask,
			     synchronize_sched_expedited_cpu_stop,
			     NULL) == -EAGAIN) {
		put_online_cpus();
1825 1826

		/* No joy, try again later.  Or just synchronize_sched(). */
1827 1828 1829 1830 1831 1832
		if (trycount++ < 10)
			udelay(trycount * num_online_cpus());
		else {
			synchronize_sched();
			return;
		}
1833 1834 1835 1836

		/* Check to see if someone else did our work for us. */
		s = atomic_read(&sync_sched_expedited_done);
		if (UINT_CMP_GE((unsigned)s, (unsigned)firstsnap)) {
1837 1838 1839
			smp_mb(); /* ensure test happens before caller kfree */
			return;
		}
1840 1841 1842 1843 1844 1845 1846 1847 1848

		/*
		 * Refetching sync_sched_expedited_started allows later
		 * callers to piggyback on our grace period.  We subtract
		 * 1 to get the same token that the last incrementer got.
		 * We retry after they started, so our grace period works
		 * for them, and they started after our first try, so their
		 * grace period works for us.
		 */
1849
		get_online_cpus();
1850 1851
		snap = atomic_read(&sync_sched_expedited_started) - 1;
		smp_mb(); /* ensure read is before try_stop_cpus(). */
1852
	}
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867

	/*
	 * Everyone up to our most recent fetch is covered by our grace
	 * period.  Update the counter, but only if our work is still
	 * relevant -- which it won't be if someone who started later
	 * than we did beat us to the punch.
	 */
	do {
		s = atomic_read(&sync_sched_expedited_done);
		if (UINT_CMP_GE((unsigned)s, (unsigned)snap)) {
			smp_mb(); /* ensure test happens before caller kfree */
			break;
		}
	} while (atomic_cmpxchg(&sync_sched_expedited_done, s, snap) != s);

1868 1869 1870 1871 1872 1873
	put_online_cpus();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#endif /* #else #ifndef CONFIG_SMP */

1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
#if !defined(CONFIG_RCU_FAST_NO_HZ)

/*
 * Check to see if any future RCU-related work will need to be done
 * by the current CPU, even if none need be done immediately, returning
 * 1 if so.  This function is part of the RCU implementation; it is -not-
 * an exported member of the RCU API.
 *
 * Because we have preemptible RCU, just check whether this CPU needs
 * any flavor of RCU.  Do not chew up lots of CPU cycles with preemption
 * disabled in a most-likely vain attempt to cause RCU not to need this CPU.
 */
int rcu_needs_cpu(int cpu)
{
	return rcu_needs_cpu_quick_check(cpu);
}

1891 1892 1893 1894 1895 1896 1897 1898 1899
/*
 * Check to see if we need to continue a callback-flush operations to
 * allow the last CPU to enter dyntick-idle mode.  But fast dyntick-idle
 * entry is not configured, so we never do need to.
 */
static void rcu_needs_cpu_flush(void)
{
}

1900 1901 1902
#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */

#define RCU_NEEDS_CPU_FLUSHES 5
1903
static DEFINE_PER_CPU(int, rcu_dyntick_drain);
1904
static DEFINE_PER_CPU(unsigned long, rcu_dyntick_holdoff);
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916

/*
 * Check to see if any future RCU-related work will need to be done
 * by the current CPU, even if none need be done immediately, returning
 * 1 if so.  This function is part of the RCU implementation; it is -not-
 * an exported member of the RCU API.
 *
 * Because we are not supporting preemptible RCU, attempt to accelerate
 * any current grace periods so that RCU no longer needs this CPU, but
 * only if all other CPUs are already in dynticks-idle mode.  This will
 * allow the CPU cores to be powered down immediately, as opposed to after
 * waiting many milliseconds for grace periods to elapse.
1917 1918 1919
 *
 * Because it is not legal to invoke rcu_process_callbacks() with irqs
 * disabled, we do one pass of force_quiescent_state(), then do a
1920
 * invoke_rcu_core() to cause rcu_process_callbacks() to be invoked
1921
 * later.  The per-cpu rcu_dyntick_drain variable controls the sequencing.
1922 1923 1924
 */
int rcu_needs_cpu(int cpu)
{
1925
	int c = 0;
1926
	int snap;
1927 1928
	int thatcpu;

1929 1930 1931 1932
	/* Check for being in the holdoff period. */
	if (per_cpu(rcu_dyntick_holdoff, cpu) == jiffies)
		return rcu_needs_cpu_quick_check(cpu);

1933
	/* Don't bother unless we are the last non-dyntick-idle CPU. */
1934 1935 1936
	for_each_online_cpu(thatcpu) {
		if (thatcpu == cpu)
			continue;
1937 1938
		snap = atomic_add_return(0, &per_cpu(rcu_dynticks,
						     thatcpu).dynticks);
1939
		smp_mb(); /* Order sampling of snap with end of grace period. */
1940
		if ((snap & 0x1) != 0) {
1941
			per_cpu(rcu_dyntick_drain, cpu) = 0;
1942
			per_cpu(rcu_dyntick_holdoff, cpu) = jiffies - 1;
1943 1944
			return rcu_needs_cpu_quick_check(cpu);
		}
1945
	}
1946 1947 1948 1949 1950 1951 1952

	/* Check and update the rcu_dyntick_drain sequencing. */
	if (per_cpu(rcu_dyntick_drain, cpu) <= 0) {
		/* First time through, initialize the counter. */
		per_cpu(rcu_dyntick_drain, cpu) = RCU_NEEDS_CPU_FLUSHES;
	} else if (--per_cpu(rcu_dyntick_drain, cpu) <= 0) {
		/* We have hit the limit, so time to give up. */
1953
		per_cpu(rcu_dyntick_holdoff, cpu) = jiffies;
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
		return rcu_needs_cpu_quick_check(cpu);
	}

	/* Do one step pushing remaining RCU callbacks through. */
	if (per_cpu(rcu_sched_data, cpu).nxtlist) {
		rcu_sched_qs(cpu);
		force_quiescent_state(&rcu_sched_state, 0);
		c = c || per_cpu(rcu_sched_data, cpu).nxtlist;
	}
	if (per_cpu(rcu_bh_data, cpu).nxtlist) {
		rcu_bh_qs(cpu);
		force_quiescent_state(&rcu_bh_state, 0);
		c = c || per_cpu(rcu_bh_data, cpu).nxtlist;
1967 1968 1969
	}

	/* If RCU callbacks are still pending, RCU still needs this CPU. */
1970
	if (c)
1971
		invoke_rcu_core();
1972 1973 1974
	return c;
}

1975 1976 1977 1978 1979 1980 1981
/*
 * Check to see if we need to continue a callback-flush operations to
 * allow the last CPU to enter dyntick-idle mode.
 */
static void rcu_needs_cpu_flush(void)
{
	int cpu = smp_processor_id();
1982
	unsigned long flags;
1983 1984 1985

	if (per_cpu(rcu_dyntick_drain, cpu) <= 0)
		return;
1986
	local_irq_save(flags);
1987
	(void)rcu_needs_cpu(cpu);
1988
	local_irq_restore(flags);
1989 1990
}

1991
#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */