sata_mv.c 49.2 KB
Newer Older
1 2 3
/*
 * sata_mv.c - Marvell SATA support
 *
4
 * Copyright 2005: EMC Corporation, all rights reserved.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
 *
 * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; version 2 of the License.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
#include <linux/dma-mapping.h>
32
#include <linux/device.h>
33
#include <scsi/scsi_host.h>
34
#include <scsi/scsi_cmnd.h>
35 36 37 38
#include <linux/libata.h>
#include <asm/io.h>

#define DRV_NAME	"sata_mv"
B
Brett Russ 已提交
39
#define DRV_VERSION	"0.25"
40 41 42 43 44 45 46 47 48 49 50 51 52

enum {
	/* BAR's are enumerated in terms of pci_resource_start() terms */
	MV_PRIMARY_BAR		= 0,	/* offset 0x10: memory space */
	MV_IO_BAR		= 2,	/* offset 0x18: IO space */
	MV_MISC_BAR		= 3,	/* offset 0x1c: FLASH, NVRAM, SRAM */

	MV_MAJOR_REG_AREA_SZ	= 0x10000,	/* 64KB */
	MV_MINOR_REG_AREA_SZ	= 0x2000,	/* 8KB */

	MV_PCI_REG_BASE		= 0,
	MV_IRQ_COAL_REG_BASE	= 0x18000,	/* 6xxx part only */
	MV_SATAHC0_REG_BASE	= 0x20000,
53 54
	MV_GPIO_PORT_CTL	= 0x104f0,
	MV_RESET_CFG		= 0x180d8,
55 56 57 58 59 60

	MV_PCI_REG_SZ		= MV_MAJOR_REG_AREA_SZ,
	MV_SATAHC_REG_SZ	= MV_MAJOR_REG_AREA_SZ,
	MV_SATAHC_ARBTR_REG_SZ	= MV_MINOR_REG_AREA_SZ,		/* arbiter */
	MV_PORT_REG_SZ		= MV_MINOR_REG_AREA_SZ,

61
	MV_USE_Q_DEPTH		= ATA_DEF_QUEUE,
62

63 64 65 66 67 68 69 70 71 72 73 74 75 76
	MV_MAX_Q_DEPTH		= 32,
	MV_MAX_Q_DEPTH_MASK	= MV_MAX_Q_DEPTH - 1,

	/* CRQB needs alignment on a 1KB boundary. Size == 1KB
	 * CRPB needs alignment on a 256B boundary. Size == 256B
	 * SG count of 176 leads to MV_PORT_PRIV_DMA_SZ == 4KB
	 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
	 */
	MV_CRQB_Q_SZ		= (32 * MV_MAX_Q_DEPTH),
	MV_CRPB_Q_SZ		= (8 * MV_MAX_Q_DEPTH),
	MV_MAX_SG_CT		= 176,
	MV_SG_TBL_SZ		= (16 * MV_MAX_SG_CT),
	MV_PORT_PRIV_DMA_SZ	= (MV_CRQB_Q_SZ + MV_CRPB_Q_SZ + MV_SG_TBL_SZ),

77 78 79
	MV_PORTS_PER_HC		= 4,
	/* == (port / MV_PORTS_PER_HC) to determine HC from 0-7 port */
	MV_PORT_HC_SHIFT	= 2,
80
	/* == (port % MV_PORTS_PER_HC) to determine hard port from 0-7 port */
81 82 83 84 85
	MV_PORT_MASK		= 3,

	/* Host Flags */
	MV_FLAG_DUAL_HC		= (1 << 30),  /* two SATA Host Controllers */
	MV_FLAG_IRQ_COALESCE	= (1 << 29),  /* IRQ coalescing capability */
86 87 88
	MV_FLAG_GLBL_SFT_RST	= (1 << 28),  /* Global Soft Reset support */
	MV_COMMON_FLAGS		= (ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
				   ATA_FLAG_SATA_RESET | ATA_FLAG_MMIO),
89
	MV_6XXX_FLAGS		= (MV_FLAG_IRQ_COALESCE |
90
				   MV_FLAG_GLBL_SFT_RST),
91 92 93 94 95 96

	chip_504x		= 0,
	chip_508x		= 1,
	chip_604x		= 2,
	chip_608x		= 3,

97 98 99 100 101 102 103 104 105 106
	CRQB_FLAG_READ		= (1 << 0),
	CRQB_TAG_SHIFT		= 1,
	CRQB_CMD_ADDR_SHIFT	= 8,
	CRQB_CMD_CS		= (0x2 << 11),
	CRQB_CMD_LAST		= (1 << 15),

	CRPB_FLAG_STATUS_SHIFT	= 8,

	EPRD_FLAG_END_OF_TBL	= (1 << 31),

107 108
	/* PCI interface registers */

109 110
	PCI_COMMAND_OFS		= 0xc00,

111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
	PCI_MAIN_CMD_STS_OFS	= 0xd30,
	STOP_PCI_MASTER		= (1 << 2),
	PCI_MASTER_EMPTY	= (1 << 3),
	GLOB_SFT_RST		= (1 << 4),

	PCI_IRQ_CAUSE_OFS	= 0x1d58,
	PCI_IRQ_MASK_OFS	= 0x1d5c,
	PCI_UNMASK_ALL_IRQS	= 0x7fffff,	/* bits 22-0 */

	HC_MAIN_IRQ_CAUSE_OFS	= 0x1d60,
	HC_MAIN_IRQ_MASK_OFS	= 0x1d64,
	PORT0_ERR		= (1 << 0),	/* shift by port # */
	PORT0_DONE		= (1 << 1),	/* shift by port # */
	HC0_IRQ_PEND		= 0x1ff,	/* bits 0-8 = HC0's ports */
	HC_SHIFT		= 9,		/* bits 9-17 = HC1's ports */
	PCI_ERR			= (1 << 18),
	TRAN_LO_DONE		= (1 << 19),	/* 6xxx: IRQ coalescing */
	TRAN_HI_DONE		= (1 << 20),	/* 6xxx: IRQ coalescing */
	PORTS_0_7_COAL_DONE	= (1 << 21),	/* 6xxx: IRQ coalescing */
	GPIO_INT		= (1 << 22),
	SELF_INT		= (1 << 23),
	TWSI_INT		= (1 << 24),
	HC_MAIN_RSVD		= (0x7f << 25),	/* bits 31-25 */
134
	HC_MAIN_MASKED_IRQS	= (TRAN_LO_DONE | TRAN_HI_DONE |
135 136 137 138 139 140 141
				   PORTS_0_7_COAL_DONE | GPIO_INT | TWSI_INT |
				   HC_MAIN_RSVD),

	/* SATAHC registers */
	HC_CFG_OFS		= 0,

	HC_IRQ_CAUSE_OFS	= 0x14,
142
	CRPB_DMA_DONE		= (1 << 0),	/* shift by port # */
143 144 145 146
	HC_IRQ_COAL		= (1 << 4),	/* IRQ coalescing */
	DEV_IRQ			= (1 << 8),	/* shift by port # */

	/* Shadow block registers */
147 148
	SHD_BLK_OFS		= 0x100,
	SHD_CTL_AST_OFS		= 0x20,		/* ofs from SHD_BLK_OFS */
149 150 151 152

	/* SATA registers */
	SATA_STATUS_OFS		= 0x300,  /* ctrl, err regs follow status */
	SATA_ACTIVE_OFS		= 0x350,
153 154 155 156 157
	PHY_MODE4		= 0x314,
	PHY_MODE2		= 0x330,
	SATA_INTERFACE_CTL	= 0x050,

	MV_M2_PREAMP_MASK	= 0x7e0,
158 159 160

	/* Port registers */
	EDMA_CFG_OFS		= 0,
161 162 163 164 165
	EDMA_CFG_Q_DEPTH	= 0,			/* queueing disabled */
	EDMA_CFG_NCQ		= (1 << 5),
	EDMA_CFG_NCQ_GO_ON_ERR	= (1 << 14),		/* continue on error */
	EDMA_CFG_RD_BRST_EXT	= (1 << 11),		/* read burst 512B */
	EDMA_CFG_WR_BUFF_LEN	= (1 << 13),		/* write buffer 512B */
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186

	EDMA_ERR_IRQ_CAUSE_OFS	= 0x8,
	EDMA_ERR_IRQ_MASK_OFS	= 0xc,
	EDMA_ERR_D_PAR		= (1 << 0),
	EDMA_ERR_PRD_PAR	= (1 << 1),
	EDMA_ERR_DEV		= (1 << 2),
	EDMA_ERR_DEV_DCON	= (1 << 3),
	EDMA_ERR_DEV_CON	= (1 << 4),
	EDMA_ERR_SERR		= (1 << 5),
	EDMA_ERR_SELF_DIS	= (1 << 7),
	EDMA_ERR_BIST_ASYNC	= (1 << 8),
	EDMA_ERR_CRBQ_PAR	= (1 << 9),
	EDMA_ERR_CRPB_PAR	= (1 << 10),
	EDMA_ERR_INTRL_PAR	= (1 << 11),
	EDMA_ERR_IORDY		= (1 << 12),
	EDMA_ERR_LNK_CTRL_RX	= (0xf << 13),
	EDMA_ERR_LNK_CTRL_RX_2	= (1 << 15),
	EDMA_ERR_LNK_DATA_RX	= (0xf << 17),
	EDMA_ERR_LNK_CTRL_TX	= (0x1f << 21),
	EDMA_ERR_LNK_DATA_TX	= (0x1f << 26),
	EDMA_ERR_TRANS_PROTO	= (1 << 31),
187
	EDMA_ERR_FATAL		= (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
188 189
				   EDMA_ERR_DEV_DCON | EDMA_ERR_CRBQ_PAR |
				   EDMA_ERR_CRPB_PAR | EDMA_ERR_INTRL_PAR |
190
				   EDMA_ERR_IORDY | EDMA_ERR_LNK_CTRL_RX_2 |
191
				   EDMA_ERR_LNK_DATA_RX |
192
				   EDMA_ERR_LNK_DATA_TX |
193 194
				   EDMA_ERR_TRANS_PROTO),

195 196 197 198 199 200 201 202 203 204 205
	EDMA_REQ_Q_BASE_HI_OFS	= 0x10,
	EDMA_REQ_Q_IN_PTR_OFS	= 0x14,		/* also contains BASE_LO */

	EDMA_REQ_Q_OUT_PTR_OFS	= 0x18,
	EDMA_REQ_Q_PTR_SHIFT	= 5,

	EDMA_RSP_Q_BASE_HI_OFS	= 0x1c,
	EDMA_RSP_Q_IN_PTR_OFS	= 0x20,
	EDMA_RSP_Q_OUT_PTR_OFS	= 0x24,		/* also contains BASE_LO */
	EDMA_RSP_Q_PTR_SHIFT	= 3,

206 207 208 209 210
	EDMA_CMD_OFS		= 0x28,
	EDMA_EN			= (1 << 0),
	EDMA_DS			= (1 << 1),
	ATA_RST			= (1 << 2),

211 212 213
	EDMA_ARB_CFG		= 0x38,
	EDMA_NO_SNOOP		= (1 << 6),

214 215
	/* Host private flags (hp_flags) */
	MV_HP_FLAG_MSI		= (1 << 0),
216 217 218 219 220 221
	MV_HP_ERRATA_60X1A1	= (1 << 1),
	MV_HP_ERRATA_60X1B0	= (1 << 2),
	MV_HP_ERRATA_50XXB0	= (1 << 3),
	MV_HP_ERRATA_50XXB1	= (1 << 4),
	MV_HP_ERRATA_50XXB2	= (1 << 5),
	MV_HP_50XX		= (1 << 6),
222

223 224 225
	/* Port private flags (pp_flags) */
	MV_PP_FLAG_EDMA_EN	= (1 << 0),
	MV_PP_FLAG_EDMA_DS_ACT	= (1 << 1),
226 227
};

228 229 230
#define IS_50XX(hpriv) ((hpriv)->hp_flags & MV_HP_50XX)
#define IS_60XX(hpriv) (((hpriv)->hp_flags & MV_HP_50XX) == 0)

J
Jeff Garzik 已提交
231 232 233 234 235 236 237 238 239 240 241
enum {
	/* Our DMA boundary is determined by an ePRD being unable to handle
	 * anything larger than 64KB
	 */
	MV_DMA_BOUNDARY		= 0xffffU,

	EDMA_REQ_Q_BASE_LO_MASK	= 0xfffffc00U,

	EDMA_RSP_Q_BASE_LO_MASK	= 0xffffff00U,
};

242 243 244 245 246 247 248
/* Command ReQuest Block: 32B */
struct mv_crqb {
	u32			sg_addr;
	u32			sg_addr_hi;
	u16			ctrl_flags;
	u16			ata_cmd[11];
};
249

250 251 252 253 254
/* Command ResPonse Block: 8B */
struct mv_crpb {
	u16			id;
	u16			flags;
	u32			tmstmp;
255 256
};

257 258 259 260 261 262 263
/* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
struct mv_sg {
	u32			addr;
	u32			flags_size;
	u32			addr_hi;
	u32			reserved;
};
264

265 266 267 268 269 270 271 272 273 274 275 276 277
struct mv_port_priv {
	struct mv_crqb		*crqb;
	dma_addr_t		crqb_dma;
	struct mv_crpb		*crpb;
	dma_addr_t		crpb_dma;
	struct mv_sg		*sg_tbl;
	dma_addr_t		sg_tbl_dma;

	unsigned		req_producer;		/* cp of req_in_ptr */
	unsigned		rsp_consumer;		/* cp of rsp_out_ptr */
	u32			pp_flags;
};

278 279 280 281 282
struct mv_port_signal {
	u32			amps;
	u32			pre;
};

283 284
struct mv_host_priv {
	u32			hp_flags;
285
	struct mv_port_signal	signal[8];
286 287 288 289 290 291
};

static void mv_irq_clear(struct ata_port *ap);
static u32 mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in);
static void mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val);
static void mv_phy_reset(struct ata_port *ap);
292 293 294 295 296
static void mv_host_stop(struct ata_host_set *host_set);
static int mv_port_start(struct ata_port *ap);
static void mv_port_stop(struct ata_port *ap);
static void mv_qc_prep(struct ata_queued_cmd *qc);
static int mv_qc_issue(struct ata_queued_cmd *qc);
297 298
static irqreturn_t mv_interrupt(int irq, void *dev_instance,
				struct pt_regs *regs);
299
static void mv_eng_timeout(struct ata_port *ap);
300 301
static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent);

302
static struct scsi_host_template mv_sht = {
303 304 305 306 307
	.module			= THIS_MODULE,
	.name			= DRV_NAME,
	.ioctl			= ata_scsi_ioctl,
	.queuecommand		= ata_scsi_queuecmd,
	.eh_strategy_handler	= ata_scsi_error,
308
	.can_queue		= MV_USE_Q_DEPTH,
309
	.this_id		= ATA_SHT_THIS_ID,
310
	.sg_tablesize		= MV_MAX_SG_CT,
311 312 313
	.max_sectors		= ATA_MAX_SECTORS,
	.cmd_per_lun		= ATA_SHT_CMD_PER_LUN,
	.emulated		= ATA_SHT_EMULATED,
314
	.use_clustering		= ATA_SHT_USE_CLUSTERING,
315 316 317 318 319 320 321
	.proc_name		= DRV_NAME,
	.dma_boundary		= MV_DMA_BOUNDARY,
	.slave_configure	= ata_scsi_slave_config,
	.bios_param		= ata_std_bios_param,
	.ordered_flush		= 1,
};

J
Jeff Garzik 已提交
322
static const struct ata_port_operations mv_ops = {
323 324 325 326 327 328 329 330 331 332
	.port_disable		= ata_port_disable,

	.tf_load		= ata_tf_load,
	.tf_read		= ata_tf_read,
	.check_status		= ata_check_status,
	.exec_command		= ata_exec_command,
	.dev_select		= ata_std_dev_select,

	.phy_reset		= mv_phy_reset,

333 334
	.qc_prep		= mv_qc_prep,
	.qc_issue		= mv_qc_issue,
335

336
	.eng_timeout		= mv_eng_timeout,
337 338 339 340 341 342 343

	.irq_handler		= mv_interrupt,
	.irq_clear		= mv_irq_clear,

	.scr_read		= mv_scr_read,
	.scr_write		= mv_scr_write,

344 345 346
	.port_start		= mv_port_start,
	.port_stop		= mv_port_stop,
	.host_stop		= mv_host_stop,
347 348 349 350 351
};

static struct ata_port_info mv_port_info[] = {
	{  /* chip_504x */
		.sht		= &mv_sht,
352 353 354
		.host_flags	= MV_COMMON_FLAGS,
		.pio_mask	= 0x1f,	/* pio0-4 */
		.udma_mask	= 0,	/* 0x7f (udma0-6 disabled for now) */
355 356 357 358
		.port_ops	= &mv_ops,
	},
	{  /* chip_508x */
		.sht		= &mv_sht,
359 360 361
		.host_flags	= (MV_COMMON_FLAGS | MV_FLAG_DUAL_HC),
		.pio_mask	= 0x1f,	/* pio0-4 */
		.udma_mask	= 0,	/* 0x7f (udma0-6 disabled for now) */
362 363 364 365
		.port_ops	= &mv_ops,
	},
	{  /* chip_604x */
		.sht		= &mv_sht,
366 367 368
		.host_flags	= (MV_COMMON_FLAGS | MV_6XXX_FLAGS),
		.pio_mask	= 0x1f,	/* pio0-4 */
		.udma_mask	= 0x7f,	/* udma0-6 */
369 370 371 372
		.port_ops	= &mv_ops,
	},
	{  /* chip_608x */
		.sht		= &mv_sht,
373
		.host_flags	= (MV_COMMON_FLAGS | MV_6XXX_FLAGS |
374 375 376
				   MV_FLAG_DUAL_HC),
		.pio_mask	= 0x1f,	/* pio0-4 */
		.udma_mask	= 0x7f,	/* udma0-6 */
377 378 379 380
		.port_ops	= &mv_ops,
	},
};

381
static const struct pci_device_id mv_pci_tbl[] = {
382
#if 0 /* unusably broken right now */
383 384 385 386
	{PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5040), 0, 0, chip_504x},
	{PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5041), 0, 0, chip_504x},
	{PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5080), 0, 0, chip_508x},
	{PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5081), 0, 0, chip_508x},
387
#endif
388 389 390 391 392

	{PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x6040), 0, 0, chip_604x},
	{PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x6041), 0, 0, chip_604x},
	{PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x6080), 0, 0, chip_608x},
	{PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x6081), 0, 0, chip_608x},
393 394

	{PCI_DEVICE(PCI_VENDOR_ID_ADAPTEC2, 0x0241), 0, 0, chip_604x},
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
	{}			/* terminate list */
};

static struct pci_driver mv_pci_driver = {
	.name			= DRV_NAME,
	.id_table		= mv_pci_tbl,
	.probe			= mv_init_one,
	.remove			= ata_pci_remove_one,
};

/*
 * Functions
 */

static inline void writelfl(unsigned long data, void __iomem *addr)
{
	writel(data, addr);
	(void) readl(addr);	/* flush to avoid PCI posted write */
}

static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
{
	return (base + MV_SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
}

static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
{
	return (mv_hc_base(base, port >> MV_PORT_HC_SHIFT) +
423
		MV_SATAHC_ARBTR_REG_SZ +
424 425 426 427 428 429 430 431
		((port & MV_PORT_MASK) * MV_PORT_REG_SZ));
}

static inline void __iomem *mv_ap_base(struct ata_port *ap)
{
	return mv_port_base(ap->host_set->mmio_base, ap->port_no);
}

432
static inline int mv_get_hc_count(unsigned long host_flags)
433
{
434
	return ((host_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
435 436 437
}

static void mv_irq_clear(struct ata_port *ap)
438 439 440
{
}

441 442 443 444 445 446 447 448 449 450 451
/**
 *      mv_start_dma - Enable eDMA engine
 *      @base: port base address
 *      @pp: port private data
 *
 *      Verify the local cache of the eDMA state is accurate with an
 *      assert.
 *
 *      LOCKING:
 *      Inherited from caller.
 */
452
static void mv_start_dma(void __iomem *base, struct mv_port_priv *pp)
453
{
454 455 456 457 458
	if (!(MV_PP_FLAG_EDMA_EN & pp->pp_flags)) {
		writelfl(EDMA_EN, base + EDMA_CMD_OFS);
		pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
	}
	assert(EDMA_EN & readl(base + EDMA_CMD_OFS));
459 460
}

461 462 463 464 465 466 467 468 469 470
/**
 *      mv_stop_dma - Disable eDMA engine
 *      @ap: ATA channel to manipulate
 *
 *      Verify the local cache of the eDMA state is accurate with an
 *      assert.
 *
 *      LOCKING:
 *      Inherited from caller.
 */
471
static void mv_stop_dma(struct ata_port *ap)
472
{
473 474 475 476 477
	void __iomem *port_mmio = mv_ap_base(ap);
	struct mv_port_priv *pp	= ap->private_data;
	u32 reg;
	int i;

478 479
	if (MV_PP_FLAG_EDMA_EN & pp->pp_flags) {
		/* Disable EDMA if active.   The disable bit auto clears.
480 481 482
		 */
		writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS);
		pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
483 484 485
	} else {
		assert(!(EDMA_EN & readl(port_mmio + EDMA_CMD_OFS)));
  	}
486

487 488 489 490 491 492 493 494 495 496 497
	/* now properly wait for the eDMA to stop */
	for (i = 1000; i > 0; i--) {
		reg = readl(port_mmio + EDMA_CMD_OFS);
		if (!(EDMA_EN & reg)) {
			break;
		}
		udelay(100);
	}

	if (EDMA_EN & reg) {
		printk(KERN_ERR "ata%u: Unable to stop eDMA\n", ap->id);
498
		/* FIXME: Consider doing a reset here to recover */
499
	}
500 501
}

J
Jeff Garzik 已提交
502
#ifdef ATA_DEBUG
503
static void mv_dump_mem(void __iomem *start, unsigned bytes)
504
{
505 506 507 508 509 510 511 512 513 514
	int b, w;
	for (b = 0; b < bytes; ) {
		DPRINTK("%p: ", start + b);
		for (w = 0; b < bytes && w < 4; w++) {
			printk("%08x ",readl(start + b));
			b += sizeof(u32);
		}
		printk("\n");
	}
}
J
Jeff Garzik 已提交
515 516
#endif

517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
{
#ifdef ATA_DEBUG
	int b, w;
	u32 dw;
	for (b = 0; b < bytes; ) {
		DPRINTK("%02x: ", b);
		for (w = 0; b < bytes && w < 4; w++) {
			(void) pci_read_config_dword(pdev,b,&dw);
			printk("%08x ",dw);
			b += sizeof(u32);
		}
		printk("\n");
	}
#endif
}
static void mv_dump_all_regs(void __iomem *mmio_base, int port,
			     struct pci_dev *pdev)
{
#ifdef ATA_DEBUG
537
	void __iomem *hc_base = mv_hc_base(mmio_base,
538 539 540 541 542 543 544 545 546 547 548 549 550
					   port >> MV_PORT_HC_SHIFT);
	void __iomem *port_base;
	int start_port, num_ports, p, start_hc, num_hcs, hc;

	if (0 > port) {
		start_hc = start_port = 0;
		num_ports = 8;		/* shld be benign for 4 port devs */
		num_hcs = 2;
	} else {
		start_hc = port >> MV_PORT_HC_SHIFT;
		start_port = port;
		num_ports = num_hcs = 1;
	}
551
	DPRINTK("All registers for port(s) %u-%u:\n", start_port,
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
		num_ports > 1 ? num_ports - 1 : start_port);

	if (NULL != pdev) {
		DPRINTK("PCI config space regs:\n");
		mv_dump_pci_cfg(pdev, 0x68);
	}
	DPRINTK("PCI regs:\n");
	mv_dump_mem(mmio_base+0xc00, 0x3c);
	mv_dump_mem(mmio_base+0xd00, 0x34);
	mv_dump_mem(mmio_base+0xf00, 0x4);
	mv_dump_mem(mmio_base+0x1d00, 0x6c);
	for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
		hc_base = mv_hc_base(mmio_base, port >> MV_PORT_HC_SHIFT);
		DPRINTK("HC regs (HC %i):\n", hc);
		mv_dump_mem(hc_base, 0x1c);
	}
	for (p = start_port; p < start_port + num_ports; p++) {
		port_base = mv_port_base(mmio_base, p);
		DPRINTK("EDMA regs (port %i):\n",p);
		mv_dump_mem(port_base, 0x54);
		DPRINTK("SATA regs (port %i):\n",p);
		mv_dump_mem(port_base+0x300, 0x60);
	}
#endif
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
}

static unsigned int mv_scr_offset(unsigned int sc_reg_in)
{
	unsigned int ofs;

	switch (sc_reg_in) {
	case SCR_STATUS:
	case SCR_CONTROL:
	case SCR_ERROR:
		ofs = SATA_STATUS_OFS + (sc_reg_in * sizeof(u32));
		break;
	case SCR_ACTIVE:
		ofs = SATA_ACTIVE_OFS;   /* active is not with the others */
		break;
	default:
		ofs = 0xffffffffU;
		break;
	}
	return ofs;
}

static u32 mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in)
{
	unsigned int ofs = mv_scr_offset(sc_reg_in);

	if (0xffffffffU != ofs) {
		return readl(mv_ap_base(ap) + ofs);
	} else {
		return (u32) ofs;
	}
}

static void mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val)
{
	unsigned int ofs = mv_scr_offset(sc_reg_in);

	if (0xffffffffU != ofs) {
		writelfl(val, mv_ap_base(ap) + ofs);
	}
}

618 619 620 621 622 623 624 625 626
/**
 *      mv_global_soft_reset - Perform the 6xxx global soft reset
 *      @mmio_base: base address of the HBA
 *
 *      This routine only applies to 6xxx parts.
 *
 *      LOCKING:
 *      Inherited from caller.
 */
627
static int mv_global_soft_reset(void __iomem *mmio_base)
628 629 630 631 632 633 634 635 636 637 638
{
	void __iomem *reg = mmio_base + PCI_MAIN_CMD_STS_OFS;
	int i, rc = 0;
	u32 t;

	/* Following procedure defined in PCI "main command and status
	 * register" table.
	 */
	t = readl(reg);
	writel(t | STOP_PCI_MASTER, reg);

639 640
	for (i = 0; i < 1000; i++) {
		udelay(1);
641 642 643 644 645 646
		t = readl(reg);
		if (PCI_MASTER_EMPTY & t) {
			break;
		}
	}
	if (!(PCI_MASTER_EMPTY & t)) {
647 648
		printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
		rc = 1;
649 650 651 652 653 654 655 656 657 658 659 660
		goto done;
	}

	/* set reset */
	i = 5;
	do {
		writel(t | GLOB_SFT_RST, reg);
		t = readl(reg);
		udelay(1);
	} while (!(GLOB_SFT_RST & t) && (i-- > 0));

	if (!(GLOB_SFT_RST & t)) {
661 662
		printk(KERN_ERR DRV_NAME ": can't set global reset\n");
		rc = 1;
663 664 665
		goto done;
	}

666
	/* clear reset and *reenable the PCI master* (not mentioned in spec) */
667 668
	i = 5;
	do {
669
		writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
670 671 672 673 674
		t = readl(reg);
		udelay(1);
	} while ((GLOB_SFT_RST & t) && (i-- > 0));

	if (GLOB_SFT_RST & t) {
675 676
		printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
		rc = 1;
677
	}
678
done:
679 680 681
	return rc;
}

682 683 684 685 686 687 688 689 690 691
/**
 *      mv_host_stop - Host specific cleanup/stop routine.
 *      @host_set: host data structure
 *
 *      Disable ints, cleanup host memory, call general purpose
 *      host_stop.
 *
 *      LOCKING:
 *      Inherited from caller.
 */
692
static void mv_host_stop(struct ata_host_set *host_set)
693
{
694 695 696 697 698 699 700 701 702 703 704 705
	struct mv_host_priv *hpriv = host_set->private_data;
	struct pci_dev *pdev = to_pci_dev(host_set->dev);

	if (hpriv->hp_flags & MV_HP_FLAG_MSI) {
		pci_disable_msi(pdev);
	} else {
		pci_intx(pdev, 0);
	}
	kfree(hpriv);
	ata_host_stop(host_set);
}

706 707 708 709 710
static inline void mv_priv_free(struct mv_port_priv *pp, struct device *dev)
{
	dma_free_coherent(dev, MV_PORT_PRIV_DMA_SZ, pp->crpb, pp->crpb_dma);
}

711 712 713 714 715 716 717 718 719 720
/**
 *      mv_port_start - Port specific init/start routine.
 *      @ap: ATA channel to manipulate
 *
 *      Allocate and point to DMA memory, init port private memory,
 *      zero indices.
 *
 *      LOCKING:
 *      Inherited from caller.
 */
721 722 723
static int mv_port_start(struct ata_port *ap)
{
	struct device *dev = ap->host_set->dev;
724
	struct mv_host_priv *hpriv = ap->host_set->private_data;
725 726 727 728
	struct mv_port_priv *pp;
	void __iomem *port_mmio = mv_ap_base(ap);
	void *mem;
	dma_addr_t mem_dma;
729
	int rc = -ENOMEM;
730 731

	pp = kmalloc(sizeof(*pp), GFP_KERNEL);
732 733
	if (!pp)
		goto err_out;
734 735
	memset(pp, 0, sizeof(*pp));

736
	mem = dma_alloc_coherent(dev, MV_PORT_PRIV_DMA_SZ, &mem_dma,
737
				 GFP_KERNEL);
738 739
	if (!mem)
		goto err_out_pp;
740 741
	memset(mem, 0, MV_PORT_PRIV_DMA_SZ);

742 743 744 745
	rc = ata_pad_alloc(ap, dev);
	if (rc)
		goto err_out_priv;

746
	/* First item in chunk of DMA memory:
747 748 749 750 751 752 753
	 * 32-slot command request table (CRQB), 32 bytes each in size
	 */
	pp->crqb = mem;
	pp->crqb_dma = mem_dma;
	mem += MV_CRQB_Q_SZ;
	mem_dma += MV_CRQB_Q_SZ;

754
	/* Second item:
755 756 757 758 759 760 761 762 763 764 765 766 767
	 * 32-slot command response table (CRPB), 8 bytes each in size
	 */
	pp->crpb = mem;
	pp->crpb_dma = mem_dma;
	mem += MV_CRPB_Q_SZ;
	mem_dma += MV_CRPB_Q_SZ;

	/* Third item:
	 * Table of scatter-gather descriptors (ePRD), 16 bytes each
	 */
	pp->sg_tbl = mem;
	pp->sg_tbl_dma = mem_dma;

768
	writelfl(EDMA_CFG_Q_DEPTH | EDMA_CFG_RD_BRST_EXT |
769 770 771
		 EDMA_CFG_WR_BUFF_LEN, port_mmio + EDMA_CFG_OFS);

	writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI_OFS);
772
	writelfl(pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK,
773 774 775 776 777 778
		 port_mmio + EDMA_REQ_Q_IN_PTR_OFS);

	writelfl(0, port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
	writelfl(0, port_mmio + EDMA_RSP_Q_IN_PTR_OFS);

	writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI_OFS);
779
	writelfl(pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK,
780 781
		 port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);

782 783 784 785 786 787 788 789 790
	if (hpriv->hp_flags & MV_HP_ERRATA_60X1A1) {
		u32 new_tmp, tmp;

		new_tmp = tmp = readl(port_mmio + EDMA_ARB_CFG);
		new_tmp &= ~EDMA_NO_SNOOP;
		if (new_tmp != tmp)
			writel(new_tmp, port_mmio + EDMA_ARB_CFG);
	}

791 792 793 794 795 796 797 798
	pp->req_producer = pp->rsp_consumer = 0;

	/* Don't turn on EDMA here...do it before DMA commands only.  Else
	 * we'll be unable to send non-data, PIO, etc due to restricted access
	 * to shadow regs.
	 */
	ap->private_data = pp;
	return 0;
799 800 801 802 803 804 805

err_out_priv:
	mv_priv_free(pp, dev);
err_out_pp:
	kfree(pp);
err_out:
	return rc;
806 807
}

808 809 810 811 812 813 814 815 816
/**
 *      mv_port_stop - Port specific cleanup/stop routine.
 *      @ap: ATA channel to manipulate
 *
 *      Stop DMA, cleanup port memory.
 *
 *      LOCKING:
 *      This routine uses the host_set lock to protect the DMA stop.
 */
817 818 819 820
static void mv_port_stop(struct ata_port *ap)
{
	struct device *dev = ap->host_set->dev;
	struct mv_port_priv *pp = ap->private_data;
821
	unsigned long flags;
822

823
	spin_lock_irqsave(&ap->host_set->lock, flags);
824
	mv_stop_dma(ap);
825
	spin_unlock_irqrestore(&ap->host_set->lock, flags);
826 827

	ap->private_data = NULL;
828 829
	ata_pad_free(ap, dev);
	mv_priv_free(pp, dev);
830 831 832
	kfree(pp);
}

833 834 835 836 837 838 839 840 841
/**
 *      mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
 *      @qc: queued command whose SG list to source from
 *
 *      Populate the SG list and mark the last entry.
 *
 *      LOCKING:
 *      Inherited from caller.
 */
842 843 844
static void mv_fill_sg(struct ata_queued_cmd *qc)
{
	struct mv_port_priv *pp = qc->ap->private_data;
845 846
	unsigned int i = 0;
	struct scatterlist *sg;
847

848
	ata_for_each_sg(sg, qc) {
849 850 851
		u32 sg_len;
		dma_addr_t addr;

852 853
		addr = sg_dma_address(sg);
		sg_len = sg_dma_len(sg);
854 855 856 857 858

		pp->sg_tbl[i].addr = cpu_to_le32(addr & 0xffffffff);
		pp->sg_tbl[i].addr_hi = cpu_to_le32((addr >> 16) >> 16);
		assert(0 == (sg_len & ~MV_DMA_BOUNDARY));
		pp->sg_tbl[i].flags_size = cpu_to_le32(sg_len);
859 860 861 862
		if (ata_sg_is_last(sg, qc))
			pp->sg_tbl[i].flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);

		i++;
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
	}
}

static inline unsigned mv_inc_q_index(unsigned *index)
{
	*index = (*index + 1) & MV_MAX_Q_DEPTH_MASK;
	return *index;
}

static inline void mv_crqb_pack_cmd(u16 *cmdw, u8 data, u8 addr, unsigned last)
{
	*cmdw = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
		(last ? CRQB_CMD_LAST : 0);
}

878 879 880 881 882 883 884 885 886 887 888 889
/**
 *      mv_qc_prep - Host specific command preparation.
 *      @qc: queued command to prepare
 *
 *      This routine simply redirects to the general purpose routine
 *      if command is not DMA.  Else, it handles prep of the CRQB
 *      (command request block), does some sanity checking, and calls
 *      the SG load routine.
 *
 *      LOCKING:
 *      Inherited from caller.
 */
890 891 892 893 894 895 896 897 898 899 900
static void mv_qc_prep(struct ata_queued_cmd *qc)
{
	struct ata_port *ap = qc->ap;
	struct mv_port_priv *pp = ap->private_data;
	u16 *cw;
	struct ata_taskfile *tf;
	u16 flags = 0;

 	if (ATA_PROT_DMA != qc->tf.protocol) {
		return;
	}
901

902
	/* the req producer index should be the same as we remember it */
903
	assert(((readl(mv_ap_base(qc->ap) + EDMA_REQ_Q_IN_PTR_OFS) >>
904 905 906 907 908 909 910 911 912 913 914
		 EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) ==
	       pp->req_producer);

	/* Fill in command request block
	 */
	if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
		flags |= CRQB_FLAG_READ;
	}
	assert(MV_MAX_Q_DEPTH > qc->tag);
	flags |= qc->tag << CRQB_TAG_SHIFT;

915
	pp->crqb[pp->req_producer].sg_addr =
916
		cpu_to_le32(pp->sg_tbl_dma & 0xffffffff);
917
	pp->crqb[pp->req_producer].sg_addr_hi =
918 919 920 921 922 923 924 925 926 927 928
		cpu_to_le32((pp->sg_tbl_dma >> 16) >> 16);
	pp->crqb[pp->req_producer].ctrl_flags = cpu_to_le16(flags);

	cw = &pp->crqb[pp->req_producer].ata_cmd[0];
	tf = &qc->tf;

	/* Sadly, the CRQB cannot accomodate all registers--there are
	 * only 11 bytes...so we must pick and choose required
	 * registers based on the command.  So, we drop feature and
	 * hob_feature for [RW] DMA commands, but they are needed for
	 * NCQ.  NCQ will drop hob_nsect.
929
	 */
930 931 932 933 934 935 936 937 938 939
	switch (tf->command) {
	case ATA_CMD_READ:
	case ATA_CMD_READ_EXT:
	case ATA_CMD_WRITE:
	case ATA_CMD_WRITE_EXT:
		mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
		break;
#ifdef LIBATA_NCQ		/* FIXME: remove this line when NCQ added */
	case ATA_CMD_FPDMA_READ:
	case ATA_CMD_FPDMA_WRITE:
940
		mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
		mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
		break;
#endif				/* FIXME: remove this line when NCQ added */
	default:
		/* The only other commands EDMA supports in non-queued and
		 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
		 * of which are defined/used by Linux.  If we get here, this
		 * driver needs work.
		 *
		 * FIXME: modify libata to give qc_prep a return value and
		 * return error here.
		 */
		BUG_ON(tf->command);
		break;
	}
	mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
	mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
	mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
	mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
	mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
	mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
	mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
	mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
	mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1);	/* last */

	if (!(qc->flags & ATA_QCFLAG_DMAMAP)) {
		return;
	}
	mv_fill_sg(qc);
}

972 973 974 975 976 977 978 979 980 981 982 983
/**
 *      mv_qc_issue - Initiate a command to the host
 *      @qc: queued command to start
 *
 *      This routine simply redirects to the general purpose routine
 *      if command is not DMA.  Else, it sanity checks our local
 *      caches of the request producer/consumer indices then enables
 *      DMA and bumps the request producer index.
 *
 *      LOCKING:
 *      Inherited from caller.
 */
984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
static int mv_qc_issue(struct ata_queued_cmd *qc)
{
	void __iomem *port_mmio = mv_ap_base(qc->ap);
	struct mv_port_priv *pp = qc->ap->private_data;
	u32 in_ptr;

	if (ATA_PROT_DMA != qc->tf.protocol) {
		/* We're about to send a non-EDMA capable command to the
		 * port.  Turn off EDMA so there won't be problems accessing
		 * shadow block, etc registers.
		 */
		mv_stop_dma(qc->ap);
		return ata_qc_issue_prot(qc);
	}

	in_ptr = readl(port_mmio + EDMA_REQ_Q_IN_PTR_OFS);

	/* the req producer index should be the same as we remember it */
	assert(((in_ptr >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) ==
	       pp->req_producer);
	/* until we do queuing, the queue should be empty at this point */
	assert(((in_ptr >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) ==
1006
	       ((readl(port_mmio + EDMA_REQ_Q_OUT_PTR_OFS) >>
1007 1008 1009 1010
		 EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK));

	mv_inc_q_index(&pp->req_producer);	/* now incr producer index */

1011
	mv_start_dma(port_mmio, pp);
1012 1013 1014 1015 1016 1017 1018 1019 1020

	/* and write the request in pointer to kick the EDMA to life */
	in_ptr &= EDMA_REQ_Q_BASE_LO_MASK;
	in_ptr |= pp->req_producer << EDMA_REQ_Q_PTR_SHIFT;
	writelfl(in_ptr, port_mmio + EDMA_REQ_Q_IN_PTR_OFS);

	return 0;
}

1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
/**
 *      mv_get_crpb_status - get status from most recently completed cmd
 *      @ap: ATA channel to manipulate
 *
 *      This routine is for use when the port is in DMA mode, when it
 *      will be using the CRPB (command response block) method of
 *      returning command completion information.  We assert indices
 *      are good, grab status, and bump the response consumer index to
 *      prove that we're up to date.
 *
 *      LOCKING:
 *      Inherited from caller.
 */
1034 1035 1036 1037 1038 1039 1040 1041 1042
static u8 mv_get_crpb_status(struct ata_port *ap)
{
	void __iomem *port_mmio = mv_ap_base(ap);
	struct mv_port_priv *pp = ap->private_data;
	u32 out_ptr;

	out_ptr = readl(port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);

	/* the response consumer index should be the same as we remember it */
1043
	assert(((out_ptr >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) ==
1044 1045 1046 1047
	       pp->rsp_consumer);

	/* increment our consumer index... */
	pp->rsp_consumer = mv_inc_q_index(&pp->rsp_consumer);
1048

1049
	/* and, until we do NCQ, there should only be 1 CRPB waiting */
1050 1051
	assert(((readl(port_mmio + EDMA_RSP_Q_IN_PTR_OFS) >>
		 EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) ==
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
	       pp->rsp_consumer);

	/* write out our inc'd consumer index so EDMA knows we're caught up */
	out_ptr &= EDMA_RSP_Q_BASE_LO_MASK;
	out_ptr |= pp->rsp_consumer << EDMA_RSP_Q_PTR_SHIFT;
	writelfl(out_ptr, port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);

	/* Return ATA status register for completed CRPB */
	return (pp->crpb[pp->rsp_consumer].flags >> CRPB_FLAG_STATUS_SHIFT);
}

1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
/**
 *      mv_err_intr - Handle error interrupts on the port
 *      @ap: ATA channel to manipulate
 *
 *      In most cases, just clear the interrupt and move on.  However,
 *      some cases require an eDMA reset, which is done right before
 *      the COMRESET in mv_phy_reset().  The SERR case requires a
 *      clear of pending errors in the SATA SERROR register.  Finally,
 *      if the port disabled DMA, update our cached copy to match.
 *
 *      LOCKING:
 *      Inherited from caller.
 */
1076 1077 1078 1079
static void mv_err_intr(struct ata_port *ap)
{
	void __iomem *port_mmio = mv_ap_base(ap);
	u32 edma_err_cause, serr = 0;
1080 1081 1082 1083 1084 1085 1086

	edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);

	if (EDMA_ERR_SERR & edma_err_cause) {
		serr = scr_read(ap, SCR_ERROR);
		scr_write_flush(ap, SCR_ERROR, serr);
	}
1087 1088 1089 1090 1091 1092
	if (EDMA_ERR_SELF_DIS & edma_err_cause) {
		struct mv_port_priv *pp	= ap->private_data;
		pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
	}
	DPRINTK(KERN_ERR "ata%u: port error; EDMA err cause: 0x%08x "
		"SERR: 0x%08x\n", ap->id, edma_err_cause, serr);
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102

	/* Clear EDMA now that SERR cleanup done */
	writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);

	/* check for fatal here and recover if needed */
	if (EDMA_ERR_FATAL & edma_err_cause) {
		mv_phy_reset(ap);
	}
}

1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
/**
 *      mv_host_intr - Handle all interrupts on the given host controller
 *      @host_set: host specific structure
 *      @relevant: port error bits relevant to this host controller
 *      @hc: which host controller we're to look at
 *
 *      Read then write clear the HC interrupt status then walk each
 *      port connected to the HC and see if it needs servicing.  Port
 *      success ints are reported in the HC interrupt status reg, the
 *      port error ints are reported in the higher level main
 *      interrupt status register and thus are passed in via the
 *      'relevant' argument.
 *
 *      LOCKING:
 *      Inherited from caller.
 */
1119 1120 1121 1122 1123 1124 1125 1126
static void mv_host_intr(struct ata_host_set *host_set, u32 relevant,
			 unsigned int hc)
{
	void __iomem *mmio = host_set->mmio_base;
	void __iomem *hc_mmio = mv_hc_base(mmio, hc);
	struct ata_port *ap;
	struct ata_queued_cmd *qc;
	u32 hc_irq_cause;
1127
	int shift, port, port0, hard_port, handled;
1128
	unsigned int err_mask;
1129
	u8 ata_status = 0;
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139

	if (hc == 0) {
		port0 = 0;
	} else {
		port0 = MV_PORTS_PER_HC;
	}

	/* we'll need the HC success int register in most cases */
	hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS);
	if (hc_irq_cause) {
1140
		writelfl(~hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS);
1141 1142 1143 1144 1145 1146 1147 1148
	}

	VPRINTK("ENTER, hc%u relevant=0x%08x HC IRQ cause=0x%08x\n",
		hc,relevant,hc_irq_cause);

	for (port = port0; port < port0 + MV_PORTS_PER_HC; port++) {
		ap = host_set->ports[port];
		hard_port = port & MV_PORT_MASK;	/* range 0-3 */
1149
		handled = 0;	/* ensure ata_status is set if handled++ */
1150

1151 1152 1153 1154 1155 1156 1157
		if ((CRPB_DMA_DONE << hard_port) & hc_irq_cause) {
			/* new CRPB on the queue; just one at a time until NCQ
			 */
			ata_status = mv_get_crpb_status(ap);
			handled++;
		} else if ((DEV_IRQ << hard_port) & hc_irq_cause) {
			/* received ATA IRQ; read the status reg to clear INTRQ
1158 1159 1160
			 */
			ata_status = readb((void __iomem *)
					   ap->ioaddr.status_addr);
1161
			handled++;
1162 1163
		}

1164 1165
		err_mask = ac_err_mask(ata_status);

1166
		shift = port << 1;		/* (port * 2) */
1167 1168 1169 1170 1171
		if (port >= MV_PORTS_PER_HC) {
			shift++;	/* skip bit 8 in the HC Main IRQ reg */
		}
		if ((PORT0_ERR << shift) & relevant) {
			mv_err_intr(ap);
1172
			err_mask |= AC_ERR_OTHER;
1173
			handled++;
1174
		}
1175

1176
		if (handled && ap) {
1177 1178 1179 1180 1181
			qc = ata_qc_from_tag(ap, ap->active_tag);
			if (NULL != qc) {
				VPRINTK("port %u IRQ found for qc, "
					"ata_status 0x%x\n", port,ata_status);
				/* mark qc status appropriately */
1182
				ata_qc_complete(qc, err_mask);
1183 1184 1185 1186 1187 1188
			}
		}
	}
	VPRINTK("EXIT\n");
}

1189
/**
1190
 *      mv_interrupt -
1191 1192 1193 1194 1195 1196 1197 1198 1199
 *      @irq: unused
 *      @dev_instance: private data; in this case the host structure
 *      @regs: unused
 *
 *      Read the read only register to determine if any host
 *      controllers have pending interrupts.  If so, call lower level
 *      routine to handle.  Also check for PCI errors which are only
 *      reported here.
 *
1200
 *      LOCKING:
1201 1202 1203
 *      This routine holds the host_set lock while processing pending
 *      interrupts.
 */
1204 1205 1206 1207 1208
static irqreturn_t mv_interrupt(int irq, void *dev_instance,
				struct pt_regs *regs)
{
	struct ata_host_set *host_set = dev_instance;
	unsigned int hc, handled = 0, n_hcs;
1209
	void __iomem *mmio = host_set->mmio_base;
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
	u32 irq_stat;

	irq_stat = readl(mmio + HC_MAIN_IRQ_CAUSE_OFS);

	/* check the cases where we either have nothing pending or have read
	 * a bogus register value which can indicate HW removal or PCI fault
	 */
	if (!irq_stat || (0xffffffffU == irq_stat)) {
		return IRQ_NONE;
	}

1221
	n_hcs = mv_get_hc_count(host_set->ports[0]->flags);
1222 1223 1224 1225 1226 1227
	spin_lock(&host_set->lock);

	for (hc = 0; hc < n_hcs; hc++) {
		u32 relevant = irq_stat & (HC0_IRQ_PEND << (hc * HC_SHIFT));
		if (relevant) {
			mv_host_intr(host_set, relevant, hc);
1228
			handled++;
1229 1230 1231
		}
	}
	if (PCI_ERR & irq_stat) {
1232 1233 1234
		printk(KERN_ERR DRV_NAME ": PCI ERROR; PCI IRQ cause=0x%08x\n",
		       readl(mmio + PCI_IRQ_CAUSE_OFS));

1235
		DPRINTK("All regs @ PCI error\n");
1236
		mv_dump_all_regs(mmio, -1, to_pci_dev(host_set->dev));
1237

1238 1239 1240
		writelfl(0, mmio + PCI_IRQ_CAUSE_OFS);
		handled++;
	}
1241 1242 1243 1244 1245
	spin_unlock(&host_set->lock);

	return IRQ_RETVAL(handled);
}

1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
static void mv_phy_errata5(struct ata_port *ap)
{
	/* FIXME */
}

static void mv_phy_errata6(struct ata_port *ap)
{
	struct mv_host_priv *hpriv = ap->host_set->private_data;
	u32 hp_flags = hpriv->hp_flags;
	void __iomem *port_mmio = mv_ap_base(ap);
	int fix_phy_mode4 =
		hp_flags & (MV_HP_ERRATA_60X1A1 | MV_HP_ERRATA_60X1B0);
	u32 m2;

	if (fix_phy_mode4) {
		u32 tmp, m4;

		m4 = readl(port_mmio + PHY_MODE4);
		tmp = readl(port_mmio + 0x310);

		m4 = (m4 & ~(1 << 1)) | (1 << 0);

		writel(m4, port_mmio + PHY_MODE4);
		writel(tmp, port_mmio + 0x310);
	}

	/* Revert values of pre-emphasis and signal amps to the saved ones */
	m2 = readl(port_mmio + PHY_MODE2);

	m2 &= ~MV_M2_PREAMP_MASK;
	m2 |= hpriv->signal[ap->port_no].amps;
	m2 |= hpriv->signal[ap->port_no].pre;

	writel(m2, port_mmio + PHY_MODE2);
}

static void mv_phy_errata(struct ata_port *ap)
{
	struct mv_host_priv *hpriv = ap->host_set->private_data;

	if (IS_50XX(hpriv))
		mv_phy_errata5(ap);
	else
		mv_phy_errata6(ap);
}

1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
/**
 *      mv_phy_reset - Perform eDMA reset followed by COMRESET
 *      @ap: ATA channel to manipulate
 *
 *      Part of this is taken from __sata_phy_reset and modified to
 *      not sleep since this routine gets called from interrupt level.
 *
 *      LOCKING:
 *      Inherited from caller.  This is coded to safe to call at
 *      interrupt level, i.e. it does not sleep.
1302
 */
1303 1304
static void mv_phy_reset(struct ata_port *ap)
{
J
Jeff Garzik 已提交
1305
	struct mv_port_priv *pp	= ap->private_data;
1306
	struct mv_host_priv *hpriv = ap->host_set->private_data;
1307 1308 1309
	void __iomem *port_mmio = mv_ap_base(ap);
	struct ata_taskfile tf;
	struct ata_device *dev = &ap->device[0];
1310
	unsigned long timeout;
1311 1312 1313

	VPRINTK("ENTER, port %u, mmio 0x%p\n", ap->port_no, port_mmio);

1314
	mv_stop_dma(ap);
1315

1316
	writelfl(ATA_RST, port_mmio + EDMA_CMD_OFS);
1317 1318 1319 1320 1321 1322 1323

	if (IS_60XX(hpriv)) {
		u32 ifctl = readl(port_mmio + SATA_INTERFACE_CTL);
		ifctl |= (1 << 12) | (1 << 7);
		writelfl(ifctl, port_mmio + SATA_INTERFACE_CTL);
	}

1324 1325 1326 1327 1328
	udelay(25);		/* allow reset propagation */

	/* Spec never mentions clearing the bit.  Marvell's driver does
	 * clear the bit, however.
	 */
1329
	writelfl(0, port_mmio + EDMA_CMD_OFS);
1330

1331 1332
	mv_phy_errata(ap);

J
Jeff Garzik 已提交
1333
	DPRINTK("S-regs after ATA_RST: SStat 0x%08x SErr 0x%08x "
1334 1335
		"SCtrl 0x%08x\n", mv_scr_read(ap, SCR_STATUS),
		mv_scr_read(ap, SCR_ERROR), mv_scr_read(ap, SCR_CONTROL));
1336 1337

	/* proceed to init communications via the scr_control reg */
1338 1339 1340 1341 1342 1343 1344 1345 1346
	scr_write_flush(ap, SCR_CONTROL, 0x301);
	mdelay(1);
	scr_write_flush(ap, SCR_CONTROL, 0x300);
	timeout = jiffies + (HZ * 1);
	do {
		mdelay(10);
		if ((scr_read(ap, SCR_STATUS) & 0xf) != 1)
			break;
	} while (time_before(jiffies, timeout));
1347

J
Jeff Garzik 已提交
1348 1349 1350
	mv_scr_write(ap, SCR_ERROR, mv_scr_read(ap, SCR_ERROR));

	DPRINTK("S-regs after PHY wake: SStat 0x%08x SErr 0x%08x "
1351 1352 1353 1354 1355 1356 1357 1358 1359
		"SCtrl 0x%08x\n", mv_scr_read(ap, SCR_STATUS),
		mv_scr_read(ap, SCR_ERROR), mv_scr_read(ap, SCR_CONTROL));

	if (sata_dev_present(ap)) {
		ata_port_probe(ap);
	} else {
		printk(KERN_INFO "ata%u: no device found (phy stat %08x)\n",
		       ap->id, scr_read(ap, SCR_STATUS));
		ata_port_disable(ap);
1360 1361
		return;
	}
1362
	ap->cbl = ATA_CBL_SATA;
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373

	tf.lbah = readb((void __iomem *) ap->ioaddr.lbah_addr);
	tf.lbam = readb((void __iomem *) ap->ioaddr.lbam_addr);
	tf.lbal = readb((void __iomem *) ap->ioaddr.lbal_addr);
	tf.nsect = readb((void __iomem *) ap->ioaddr.nsect_addr);

	dev->class = ata_dev_classify(&tf);
	if (!ata_dev_present(dev)) {
		VPRINTK("Port disabled post-sig: No device present.\n");
		ata_port_disable(ap);
	}
J
Jeff Garzik 已提交
1374 1375 1376 1377 1378

	writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);

	pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;

1379
	VPRINTK("EXIT\n");
1380 1381
}

1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
/**
 *      mv_eng_timeout - Routine called by libata when SCSI times out I/O
 *      @ap: ATA channel to manipulate
 *
 *      Intent is to clear all pending error conditions, reset the
 *      chip/bus, fail the command, and move on.
 *
 *      LOCKING:
 *      This routine holds the host_set lock while failing the command.
 */
1392 1393 1394 1395 1396 1397 1398
static void mv_eng_timeout(struct ata_port *ap)
{
	struct ata_queued_cmd *qc;
	unsigned long flags;

	printk(KERN_ERR "ata%u: Entering mv_eng_timeout\n",ap->id);
	DPRINTK("All regs @ start of eng_timeout\n");
1399
	mv_dump_all_regs(ap->host_set->mmio_base, ap->port_no,
1400 1401 1402 1403
			 to_pci_dev(ap->host_set->dev));

	qc = ata_qc_from_tag(ap, ap->active_tag);
        printk(KERN_ERR "mmio_base %p ap %p qc %p scsi_cmnd %p &cmnd %p\n",
1404
	       ap->host_set->mmio_base, ap, qc, qc->scsicmd,
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
	       &qc->scsicmd->cmnd);

	mv_err_intr(ap);
	mv_phy_reset(ap);

	if (!qc) {
		printk(KERN_ERR "ata%u: BUG: timeout without command\n",
		       ap->id);
	} else {
		/* hack alert!  We cannot use the supplied completion
	 	 * function from inside the ->eh_strategy_handler() thread.
	 	 * libata is the only user of ->eh_strategy_handler() in
	 	 * any kernel, so the default scsi_done() assumes it is
	 	 * not being called from the SCSI EH.
	 	 */
		spin_lock_irqsave(&ap->host_set->lock, flags);
		qc->scsidone = scsi_finish_command;
1422
		ata_qc_complete(qc, AC_ERR_OTHER);
1423 1424 1425 1426
		spin_unlock_irqrestore(&ap->host_set->lock, flags);
	}
}

1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
/**
 *      mv_port_init - Perform some early initialization on a single port.
 *      @port: libata data structure storing shadow register addresses
 *      @port_mmio: base address of the port
 *
 *      Initialize shadow register mmio addresses, clear outstanding
 *      interrupts on the port, and unmask interrupts for the future
 *      start of the port.
 *
 *      LOCKING:
 *      Inherited from caller.
 */
1439
static void mv_port_init(struct ata_ioports *port,  void __iomem *port_mmio)
1440
{
1441 1442 1443
	unsigned long shd_base = (unsigned long) port_mmio + SHD_BLK_OFS;
	unsigned serr_ofs;

1444
	/* PIO related setup
1445 1446
	 */
	port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
1447
	port->error_addr =
1448 1449 1450 1451 1452 1453
		port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
	port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
	port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
	port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
	port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
	port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
1454
	port->status_addr =
1455 1456 1457 1458 1459
		port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
	/* special case: control/altstatus doesn't have ATA_REG_ address */
	port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST_OFS;

	/* unused: */
1460 1461
	port->cmd_addr = port->bmdma_addr = port->scr_addr = 0;

1462 1463 1464 1465 1466
	/* Clear any currently outstanding port interrupt conditions */
	serr_ofs = mv_scr_offset(SCR_ERROR);
	writelfl(readl(port_mmio + serr_ofs), port_mmio + serr_ofs);
	writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);

1467
	/* unmask all EDMA error interrupts */
1468
	writelfl(~0, port_mmio + EDMA_ERR_IRQ_MASK_OFS);
1469

1470
	VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
1471 1472 1473
		readl(port_mmio + EDMA_CFG_OFS),
		readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS),
		readl(port_mmio + EDMA_ERR_IRQ_MASK_OFS));
1474 1475
}

1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
static void mv_enable_leds5(struct mv_host_priv *hpriv, void __iomem *mmio)
{
	/* FIXME */
}

static void mv_enable_leds6(struct mv_host_priv *hpriv, void __iomem *mmio)
{
	if (hpriv->hp_flags & MV_HP_ERRATA_60X1A1)
		writel(0x00020060, mmio + MV_GPIO_PORT_CTL);

	else if (hpriv->hp_flags & MV_HP_ERRATA_60X1B0)
		writel(0x00000060, mmio + MV_GPIO_PORT_CTL);
}

static void mv_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
{
	if (IS_50XX(hpriv))
		mv_enable_leds5(hpriv, mmio);
	else
		mv_enable_leds6(hpriv, mmio);
}

static void mv_cfg_signal5(struct mv_host_priv *hpriv, int idx,
			   void __iomem *mmio)
{
	/* FIXME */
}

static void mv_cfg_signal6(struct mv_host_priv *hpriv, int idx,
			   void __iomem *mmio)
{
	void __iomem *port_mmio;
	u32 tmp;

	if (hpriv->hp_flags & MV_HP_ERRATA_60X1A1) {
		hpriv->signal[idx].amps = 0x5 << 8;
		hpriv->signal[idx].pre = 0x3 << 5;
		return;
	}

	assert (hpriv->hp_flags & MV_HP_ERRATA_60X1B0);

	tmp = readl(mmio + MV_RESET_CFG);
	if ((tmp & (1 << 0)) == 0) {
		hpriv->signal[idx].amps = 0x4 << 8;
		hpriv->signal[idx].pre = 0x1 << 5;
		return;
	}

	port_mmio = mv_port_base(mmio, idx);
	tmp = readl(port_mmio + PHY_MODE2);

	hpriv->signal[idx].amps = tmp & 0x700;	/* bits 10:8 */
	hpriv->signal[idx].pre = tmp & 0xe0;	/* bits 7:5 */
}

static int mv_cfg_errata(struct pci_dev *pdev, struct mv_host_priv *hpriv,
			 unsigned int board_idx)
{
	u8 rev_id;
	u32 hp_flags = hpriv->hp_flags;

	pci_read_config_byte(pdev, PCI_REVISION_ID, &rev_id);

	switch(board_idx) {
	case chip_504x:
	case chip_508x:
		hp_flags |= MV_HP_50XX;

		if (pdev->device == 0x5080) {
			switch (rev_id) {
			case 0x0:
				dev_printk(KERN_WARNING, &pdev->dev,
					   "Applying B0 workarounds to unknown rev 0\n");
				/* fall through */
			case 0x1:
				hp_flags |= MV_HP_ERRATA_50XXB0;
				break;
			case 0x2:
				hp_flags |= MV_HP_ERRATA_50XXB1;
				break;
			case 0x3:
				hp_flags |= MV_HP_ERRATA_50XXB2;
				break;
			default:
				dev_printk(KERN_WARNING, &pdev->dev,
					   "Applying B2 workarounds to future rev\n");
				hp_flags |= MV_HP_ERRATA_50XXB2;
				break;
			}
		} else {
			switch (rev_id) {
			case 0x0:
				hp_flags |= MV_HP_ERRATA_50XXB0;
				break;
			case 0x1:
				dev_printk(KERN_WARNING, &pdev->dev,
			          "Applying B1 workarounds to unknown rev 1\n");
				/* fall through */
			case 0x2:
				hp_flags |= MV_HP_ERRATA_50XXB1;
				break;
			default:
				dev_printk(KERN_WARNING, &pdev->dev,
				   "Applying B2 workarounds to future rev\n");
				/* fall through */
			case 0x3:
				hp_flags |= MV_HP_ERRATA_50XXB2;
				break;
			}
		}
		break;

	case chip_604x:
	case chip_608x:
		switch (rev_id) {
		case 0x0:
			dev_printk(KERN_WARNING, &pdev->dev,
			          "Applying A1 workarounds to unknown rev 0\n");
			/* fall through */
		case 0x1:
			hp_flags |= MV_HP_ERRATA_60X1A1;
			break;
		default:
			dev_printk(KERN_WARNING, &pdev->dev,
				   "Applying B0 workarounds to future rev\n");
			/* fall through */
		case 0x2:
			hp_flags |= MV_HP_ERRATA_60X1B0;
			break;
		}
		break;

	default:
		printk(KERN_ERR DRV_NAME ": BUG: invalid board index %u\n", board_idx);
		return 1;
	}

	hpriv->hp_flags = hp_flags;

	return 0;
}

1619 1620
/**
 *      mv_host_init - Perform some early initialization of the host.
1621
 *	@pdev: host PCI device
1622 1623 1624 1625 1626 1627 1628 1629
 *      @probe_ent: early data struct representing the host
 *
 *      If possible, do an early global reset of the host.  Then do
 *      our port init and clear/unmask all/relevant host interrupts.
 *
 *      LOCKING:
 *      Inherited from caller.
 */
1630 1631
static int mv_host_init(struct pci_dev *pdev, struct ata_probe_ent *probe_ent,
			unsigned int board_idx)
1632 1633 1634 1635
{
	int rc = 0, n_hc, port, hc;
	void __iomem *mmio = probe_ent->mmio_base;
	void __iomem *port_mmio;
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
	struct mv_host_priv *hpriv = probe_ent->private_data;

	rc = mv_cfg_errata(pdev, hpriv, board_idx);
	if (rc)
		goto done;

	n_hc = mv_get_hc_count(probe_ent->host_flags);
	probe_ent->n_ports = MV_PORTS_PER_HC * n_hc;

	if (IS_50XX(hpriv)) {
		for (port = 0; port < probe_ent->n_ports; port++)
			mv_cfg_signal5(hpriv, port, mmio);
	} else {
		for (port = 0; port < probe_ent->n_ports; port++)
			mv_cfg_signal6(hpriv, port, mmio);
	}
1652

1653
	if ((MV_FLAG_GLBL_SFT_RST & probe_ent->host_flags) &&
1654
	    mv_global_soft_reset(probe_ent->mmio_base)) {
1655 1656 1657 1658
		rc = 1;
		goto done;
	}

1659
	mv_enable_leds(hpriv, mmio);
1660 1661 1662

	for (port = 0; port < probe_ent->n_ports; port++) {
		port_mmio = mv_port_base(mmio, port);
1663
		mv_port_init(&probe_ent->port[port], port_mmio);
1664 1665 1666
	}

	for (hc = 0; hc < n_hc; hc++) {
1667 1668 1669 1670 1671 1672 1673 1674 1675
		void __iomem *hc_mmio = mv_hc_base(mmio, hc);

		VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
			"(before clear)=0x%08x\n", hc,
			readl(hc_mmio + HC_CFG_OFS),
			readl(hc_mmio + HC_IRQ_CAUSE_OFS));

		/* Clear any currently outstanding hc interrupt conditions */
		writelfl(0, hc_mmio + HC_IRQ_CAUSE_OFS);
1676 1677
	}

1678 1679 1680 1681 1682 1683
	/* Clear any currently outstanding host interrupt conditions */
	writelfl(0, mmio + PCI_IRQ_CAUSE_OFS);

	/* and unmask interrupt generation for host regs */
	writelfl(PCI_UNMASK_ALL_IRQS, mmio + PCI_IRQ_MASK_OFS);
	writelfl(~HC_MAIN_MASKED_IRQS, mmio + HC_MAIN_IRQ_MASK_OFS);
1684 1685

	VPRINTK("HC MAIN IRQ cause/mask=0x%08x/0x%08x "
1686
		"PCI int cause/mask=0x%08x/0x%08x\n",
1687 1688 1689 1690
		readl(mmio + HC_MAIN_IRQ_CAUSE_OFS),
		readl(mmio + HC_MAIN_IRQ_MASK_OFS),
		readl(mmio + PCI_IRQ_CAUSE_OFS),
		readl(mmio + PCI_IRQ_MASK_OFS));
1691

1692
done:
1693 1694 1695
	return rc;
}

1696 1697 1698 1699 1700 1701 1702 1703 1704
/**
 *      mv_print_info - Dump key info to kernel log for perusal.
 *      @probe_ent: early data struct representing the host
 *
 *      FIXME: complete this.
 *
 *      LOCKING:
 *      Inherited from caller.
 */
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
static void mv_print_info(struct ata_probe_ent *probe_ent)
{
	struct pci_dev *pdev = to_pci_dev(probe_ent->dev);
	struct mv_host_priv *hpriv = probe_ent->private_data;
	u8 rev_id, scc;
	const char *scc_s;

	/* Use this to determine the HW stepping of the chip so we know
	 * what errata to workaround
	 */
	pci_read_config_byte(pdev, PCI_REVISION_ID, &rev_id);

	pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
	if (scc == 0)
		scc_s = "SCSI";
	else if (scc == 0x01)
		scc_s = "RAID";
	else
		scc_s = "unknown";

1725 1726
	dev_printk(KERN_INFO, &pdev->dev,
	       "%u slots %u ports %s mode IRQ via %s\n",
1727
	       (unsigned)MV_MAX_Q_DEPTH, probe_ent->n_ports,
1728 1729 1730
	       scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
}

1731 1732 1733 1734 1735 1736 1737 1738
/**
 *      mv_init_one - handle a positive probe of a Marvell host
 *      @pdev: PCI device found
 *      @ent: PCI device ID entry for the matched host
 *
 *      LOCKING:
 *      Inherited from caller.
 */
1739 1740 1741 1742 1743 1744 1745
static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
{
	static int printed_version = 0;
	struct ata_probe_ent *probe_ent = NULL;
	struct mv_host_priv *hpriv;
	unsigned int board_idx = (unsigned int)ent->driver_data;
	void __iomem *mmio_base;
1746
	int pci_dev_busy = 0, rc;
1747

1748 1749
	if (!printed_version++)
		dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771

	rc = pci_enable_device(pdev);
	if (rc) {
		return rc;
	}

	rc = pci_request_regions(pdev, DRV_NAME);
	if (rc) {
		pci_dev_busy = 1;
		goto err_out;
	}

	probe_ent = kmalloc(sizeof(*probe_ent), GFP_KERNEL);
	if (probe_ent == NULL) {
		rc = -ENOMEM;
		goto err_out_regions;
	}

	memset(probe_ent, 0, sizeof(*probe_ent));
	probe_ent->dev = pci_dev_to_dev(pdev);
	INIT_LIST_HEAD(&probe_ent->node);

1772
	mmio_base = pci_iomap(pdev, MV_PRIMARY_BAR, 0);
1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
	if (mmio_base == NULL) {
		rc = -ENOMEM;
		goto err_out_free_ent;
	}

	hpriv = kmalloc(sizeof(*hpriv), GFP_KERNEL);
	if (!hpriv) {
		rc = -ENOMEM;
		goto err_out_iounmap;
	}
	memset(hpriv, 0, sizeof(*hpriv));

	probe_ent->sht = mv_port_info[board_idx].sht;
	probe_ent->host_flags = mv_port_info[board_idx].host_flags;
	probe_ent->pio_mask = mv_port_info[board_idx].pio_mask;
	probe_ent->udma_mask = mv_port_info[board_idx].udma_mask;
	probe_ent->port_ops = mv_port_info[board_idx].port_ops;

	probe_ent->irq = pdev->irq;
	probe_ent->irq_flags = SA_SHIRQ;
	probe_ent->mmio_base = mmio_base;
	probe_ent->private_data = hpriv;

	/* initialize adapter */
1797
	rc = mv_host_init(pdev, probe_ent, board_idx);
1798 1799 1800 1801
	if (rc) {
		goto err_out_hpriv;
	}

1802 1803 1804 1805 1806
	/* Enable interrupts */
	if (pci_enable_msi(pdev) == 0) {
		hpriv->hp_flags |= MV_HP_FLAG_MSI;
	} else {
		pci_intx(pdev, 1);
1807 1808
	}

1809 1810 1811 1812 1813 1814 1815
	mv_dump_pci_cfg(pdev, 0x68);
	mv_print_info(probe_ent);

	if (ata_device_add(probe_ent) == 0) {
		rc = -ENODEV;		/* No devices discovered */
		goto err_out_dev_add;
	}
1816

1817
	kfree(probe_ent);
1818 1819
	return 0;

1820 1821 1822 1823 1824 1825 1826
err_out_dev_add:
	if (MV_HP_FLAG_MSI & hpriv->hp_flags) {
		pci_disable_msi(pdev);
	} else {
		pci_intx(pdev, 0);
	}
err_out_hpriv:
1827
	kfree(hpriv);
1828 1829 1830
err_out_iounmap:
	pci_iounmap(pdev, mmio_base);
err_out_free_ent:
1831
	kfree(probe_ent);
1832
err_out_regions:
1833
	pci_release_regions(pdev);
1834
err_out:
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
	if (!pci_dev_busy) {
		pci_disable_device(pdev);
	}

	return rc;
}

static int __init mv_init(void)
{
	return pci_module_init(&mv_pci_driver);
}

static void __exit mv_exit(void)
{
	pci_unregister_driver(&mv_pci_driver);
}

MODULE_AUTHOR("Brett Russ");
MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
MODULE_VERSION(DRV_VERSION);

module_init(mv_init);
module_exit(mv_exit);