crtc.c 36.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright 1993-2003 NVIDIA, Corporation
 * Copyright 2006 Dave Airlie
 * Copyright 2007 Maarten Maathuis
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 */
25
#include <linux/pm_runtime.h>
26

27 28
#include <drm/drmP.h>
#include <drm/drm_crtc_helper.h>
29

30 31 32 33
#include "nouveau_drm.h"
#include "nouveau_reg.h"
#include "nouveau_bo.h"
#include "nouveau_gem.h"
34 35 36
#include "nouveau_encoder.h"
#include "nouveau_connector.h"
#include "nouveau_crtc.h"
37
#include "hw.h"
38
#include "nvreg.h"
39
#include "nouveau_fbcon.h"
40
#include "disp.h"
41 42 43

#include <subdev/bios/pll.h>
#include <subdev/clock.h>
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

static int
nv04_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y,
			struct drm_framebuffer *old_fb);

static void
crtc_wr_cio_state(struct drm_crtc *crtc, struct nv04_crtc_reg *crtcstate, int index)
{
	NVWriteVgaCrtc(crtc->dev, nouveau_crtc(crtc)->index, index,
		       crtcstate->CRTC[index]);
}

static void nv_crtc_set_digital_vibrance(struct drm_crtc *crtc, int level)
{
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
59 60
	struct drm_device *dev = crtc->dev;
	struct nv04_crtc_reg *regp = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index];
61 62 63 64 65 66 67 68 69 70 71 72 73

	regp->CRTC[NV_CIO_CRE_CSB] = nv_crtc->saturation = level;
	if (nv_crtc->saturation && nv_gf4_disp_arch(crtc->dev)) {
		regp->CRTC[NV_CIO_CRE_CSB] = 0x80;
		regp->CRTC[NV_CIO_CRE_5B] = nv_crtc->saturation << 2;
		crtc_wr_cio_state(crtc, regp, NV_CIO_CRE_5B);
	}
	crtc_wr_cio_state(crtc, regp, NV_CIO_CRE_CSB);
}

static void nv_crtc_set_image_sharpening(struct drm_crtc *crtc, int level)
{
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
74 75
	struct drm_device *dev = crtc->dev;
	struct nv04_crtc_reg *regp = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index];
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112

	nv_crtc->sharpness = level;
	if (level < 0)	/* blur is in hw range 0x3f -> 0x20 */
		level += 0x40;
	regp->ramdac_634 = level;
	NVWriteRAMDAC(crtc->dev, nv_crtc->index, NV_PRAMDAC_634, regp->ramdac_634);
}

#define PLLSEL_VPLL1_MASK				\
	(NV_PRAMDAC_PLL_COEFF_SELECT_SOURCE_PROG_VPLL	\
	 | NV_PRAMDAC_PLL_COEFF_SELECT_VCLK_RATIO_DB2)
#define PLLSEL_VPLL2_MASK				\
	(NV_PRAMDAC_PLL_COEFF_SELECT_PLL_SOURCE_VPLL2		\
	 | NV_PRAMDAC_PLL_COEFF_SELECT_VCLK2_RATIO_DB2)
#define PLLSEL_TV_MASK					\
	(NV_PRAMDAC_PLL_COEFF_SELECT_TV_VSCLK1		\
	 | NV_PRAMDAC_PLL_COEFF_SELECT_TV_PCLK1		\
	 | NV_PRAMDAC_PLL_COEFF_SELECT_TV_VSCLK2	\
	 | NV_PRAMDAC_PLL_COEFF_SELECT_TV_PCLK2)

/* NV4x 0x40.. pll notes:
 * gpu pll: 0x4000 + 0x4004
 * ?gpu? pll: 0x4008 + 0x400c
 * vpll1: 0x4010 + 0x4014
 * vpll2: 0x4018 + 0x401c
 * mpll: 0x4020 + 0x4024
 * mpll: 0x4038 + 0x403c
 *
 * the first register of each pair has some unknown details:
 * bits 0-7: redirected values from elsewhere? (similar to PLL_SETUP_CONTROL?)
 * bits 20-23: (mpll) something to do with post divider?
 * bits 28-31: related to single stage mode? (bit 8/12)
 */

static void nv_crtc_calc_state_ext(struct drm_crtc *crtc, struct drm_display_mode * mode, int dot_clock)
{
	struct drm_device *dev = crtc->dev;
113
	struct nouveau_drm *drm = nouveau_drm(dev);
114 115
	struct nouveau_bios *bios = nvkm_bios(&drm->device);
	struct nouveau_clock *clk = nvkm_clock(&drm->device);
116
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
117
	struct nv04_mode_state *state = &nv04_display(dev)->mode_reg;
118 119
	struct nv04_crtc_reg *regp = &state->crtc_reg[nv_crtc->index];
	struct nouveau_pll_vals *pv = &regp->pllvals;
120
	struct nvbios_pll pll_lim;
121

122 123
	if (nvbios_pll_parse(bios, nv_crtc->index ? PLL_VPLL1 : PLL_VPLL0,
			    &pll_lim))
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
		return;

	/* NM2 == 0 is used to determine single stage mode on two stage plls */
	pv->NM2 = 0;

	/* for newer nv4x the blob uses only the first stage of the vpll below a
	 * certain clock.  for a certain nv4b this is 150MHz.  since the max
	 * output frequency of the first stage for this card is 300MHz, it is
	 * assumed the threshold is given by vco1 maxfreq/2
	 */
	/* for early nv4x, specifically nv40 and *some* nv43 (devids 0 and 6,
	 * not 8, others unknown), the blob always uses both plls.  no problem
	 * has yet been observed in allowing the use a single stage pll on all
	 * nv43 however.  the behaviour of single stage use is untested on nv40
	 */
139
	if (drm->device.info.chipset > 0x40 && dot_clock <= (pll_lim.vco1.max_freq / 2))
140 141
		memset(&pll_lim.vco2, 0, sizeof(pll_lim.vco2));

142 143

	if (!clk->pll_calc(clk, &pll_lim, dot_clock, pv))
144 145 146 147 148
		return;

	state->pllsel &= PLLSEL_VPLL1_MASK | PLLSEL_VPLL2_MASK | PLLSEL_TV_MASK;

	/* The blob uses this always, so let's do the same */
149
	if (drm->device.info.family == NV_DEVICE_INFO_V0_CURIE)
150 151
		state->pllsel |= NV_PRAMDAC_PLL_COEFF_SELECT_USE_VPLL2_TRUE;
	/* again nv40 and some nv43 act more like nv3x as described above */
152
	if (drm->device.info.chipset < 0x41)
153 154 155 156 157
		state->pllsel |= NV_PRAMDAC_PLL_COEFF_SELECT_SOURCE_PROG_MPLL |
				 NV_PRAMDAC_PLL_COEFF_SELECT_SOURCE_PROG_NVPLL;
	state->pllsel |= nv_crtc->index ? PLLSEL_VPLL2_MASK : PLLSEL_VPLL1_MASK;

	if (pv->NM2)
158
		NV_DEBUG(drm, "vpll: n1 %d n2 %d m1 %d m2 %d log2p %d\n",
159 160
			 pv->N1, pv->N2, pv->M1, pv->M2, pv->log2P);
	else
161
		NV_DEBUG(drm, "vpll: n %d m %d log2p %d\n",
162 163 164 165 166 167 168 169 170 171
			 pv->N1, pv->M1, pv->log2P);

	nv_crtc->cursor.set_offset(nv_crtc, nv_crtc->cursor.offset);
}

static void
nv_crtc_dpms(struct drm_crtc *crtc, int mode)
{
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
	struct drm_device *dev = crtc->dev;
172
	struct nouveau_drm *drm = nouveau_drm(dev);
173 174 175
	unsigned char seq1 = 0, crtc17 = 0;
	unsigned char crtc1A;

176
	NV_DEBUG(drm, "Setting dpms mode %d on CRTC %d\n", mode,
177 178
							nv_crtc->index);

L
Lucas De Marchi 已提交
179
	if (nv_crtc->last_dpms == mode) /* Don't do unnecessary mode changes. */
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
		return;

	nv_crtc->last_dpms = mode;

	if (nv_two_heads(dev))
		NVSetOwner(dev, nv_crtc->index);

	/* nv4ref indicates these two RPC1 bits inhibit h/v sync */
	crtc1A = NVReadVgaCrtc(dev, nv_crtc->index,
					NV_CIO_CRE_RPC1_INDEX) & ~0xC0;
	switch (mode) {
	case DRM_MODE_DPMS_STANDBY:
		/* Screen: Off; HSync: Off, VSync: On -- Not Supported */
		seq1 = 0x20;
		crtc17 = 0x80;
		crtc1A |= 0x80;
		break;
	case DRM_MODE_DPMS_SUSPEND:
		/* Screen: Off; HSync: On, VSync: Off -- Not Supported */
		seq1 = 0x20;
		crtc17 = 0x80;
		crtc1A |= 0x40;
		break;
	case DRM_MODE_DPMS_OFF:
		/* Screen: Off; HSync: Off, VSync: Off */
		seq1 = 0x20;
		crtc17 = 0x00;
		crtc1A |= 0xC0;
		break;
	case DRM_MODE_DPMS_ON:
	default:
		/* Screen: On; HSync: On, VSync: On */
		seq1 = 0x00;
		crtc17 = 0x80;
		break;
	}

	NVVgaSeqReset(dev, nv_crtc->index, true);
	/* Each head has it's own sequencer, so we can turn it off when we want */
	seq1 |= (NVReadVgaSeq(dev, nv_crtc->index, NV_VIO_SR_CLOCK_INDEX) & ~0x20);
	NVWriteVgaSeq(dev, nv_crtc->index, NV_VIO_SR_CLOCK_INDEX, seq1);
	crtc17 |= (NVReadVgaCrtc(dev, nv_crtc->index, NV_CIO_CR_MODE_INDEX) & ~0x80);
	mdelay(10);
	NVWriteVgaCrtc(dev, nv_crtc->index, NV_CIO_CR_MODE_INDEX, crtc17);
	NVVgaSeqReset(dev, nv_crtc->index, false);

	NVWriteVgaCrtc(dev, nv_crtc->index, NV_CIO_CRE_RPC1_INDEX, crtc1A);
}

static bool
230
nv_crtc_mode_fixup(struct drm_crtc *crtc, const struct drm_display_mode *mode,
231 232 233 234 235 236 237 238 239 240
		   struct drm_display_mode *adjusted_mode)
{
	return true;
}

static void
nv_crtc_mode_set_vga(struct drm_crtc *crtc, struct drm_display_mode *mode)
{
	struct drm_device *dev = crtc->dev;
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
241
	struct nv04_crtc_reg *regp = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index];
242
	struct drm_framebuffer *fb = crtc->primary->fb;
243 244

	/* Calculate our timings */
245 246 247
	int horizDisplay	= (mode->crtc_hdisplay >> 3)		- 1;
	int horizStart		= (mode->crtc_hsync_start >> 3) 	+ 1;
	int horizEnd		= (mode->crtc_hsync_end >> 3)		+ 1;
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
	int horizTotal		= (mode->crtc_htotal >> 3)		- 5;
	int horizBlankStart	= (mode->crtc_hdisplay >> 3)		- 1;
	int horizBlankEnd	= (mode->crtc_htotal >> 3)		- 1;
	int vertDisplay		= mode->crtc_vdisplay			- 1;
	int vertStart		= mode->crtc_vsync_start 		- 1;
	int vertEnd		= mode->crtc_vsync_end			- 1;
	int vertTotal		= mode->crtc_vtotal 			- 2;
	int vertBlankStart	= mode->crtc_vdisplay 			- 1;
	int vertBlankEnd	= mode->crtc_vtotal			- 1;

	struct drm_encoder *encoder;
	bool fp_output = false;

	list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
		struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);

		if (encoder->crtc == crtc &&
265 266
		    (nv_encoder->dcb->type == DCB_OUTPUT_LVDS ||
		     nv_encoder->dcb->type == DCB_OUTPUT_TMDS))
267 268 269 270 271 272 273 274 275 276 277
			fp_output = true;
	}

	if (fp_output) {
		vertStart = vertTotal - 3;
		vertEnd = vertTotal - 2;
		vertBlankStart = vertStart;
		horizStart = horizTotal - 5;
		horizEnd = horizTotal - 2;
		horizBlankEnd = horizTotal + 4;
#if 0
278
		if (dev->overlayAdaptor && drm->device.info.family >= NV_DEVICE_INFO_V0_CELSIUS)
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
			/* This reportedly works around some video overlay bandwidth problems */
			horizTotal += 2;
#endif
	}

	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
		vertTotal |= 1;

#if 0
	ErrorF("horizDisplay: 0x%X \n", horizDisplay);
	ErrorF("horizStart: 0x%X \n", horizStart);
	ErrorF("horizEnd: 0x%X \n", horizEnd);
	ErrorF("horizTotal: 0x%X \n", horizTotal);
	ErrorF("horizBlankStart: 0x%X \n", horizBlankStart);
	ErrorF("horizBlankEnd: 0x%X \n", horizBlankEnd);
	ErrorF("vertDisplay: 0x%X \n", vertDisplay);
	ErrorF("vertStart: 0x%X \n", vertStart);
	ErrorF("vertEnd: 0x%X \n", vertEnd);
	ErrorF("vertTotal: 0x%X \n", vertTotal);
	ErrorF("vertBlankStart: 0x%X \n", vertBlankStart);
	ErrorF("vertBlankEnd: 0x%X \n", vertBlankEnd);
#endif

	/*
	* compute correct Hsync & Vsync polarity
	*/
	if ((mode->flags & (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC))
		&& (mode->flags & (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC))) {

		regp->MiscOutReg = 0x23;
		if (mode->flags & DRM_MODE_FLAG_NHSYNC)
			regp->MiscOutReg |= 0x40;
		if (mode->flags & DRM_MODE_FLAG_NVSYNC)
			regp->MiscOutReg |= 0x80;
	} else {
		int vdisplay = mode->vdisplay;
		if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
			vdisplay *= 2;
		if (mode->vscan > 1)
			vdisplay *= mode->vscan;
		if (vdisplay < 400)
			regp->MiscOutReg = 0xA3;	/* +hsync -vsync */
		else if (vdisplay < 480)
			regp->MiscOutReg = 0x63;	/* -hsync +vsync */
		else if (vdisplay < 768)
			regp->MiscOutReg = 0xE3;	/* -hsync -vsync */
		else
			regp->MiscOutReg = 0x23;	/* +hsync +vsync */
	}

	/*
	 * Time Sequencer
	 */
	regp->Sequencer[NV_VIO_SR_RESET_INDEX] = 0x00;
	/* 0x20 disables the sequencer */
	if (mode->flags & DRM_MODE_FLAG_CLKDIV2)
		regp->Sequencer[NV_VIO_SR_CLOCK_INDEX] = 0x29;
	else
		regp->Sequencer[NV_VIO_SR_CLOCK_INDEX] = 0x21;
	regp->Sequencer[NV_VIO_SR_PLANE_MASK_INDEX] = 0x0F;
	regp->Sequencer[NV_VIO_SR_CHAR_MAP_INDEX] = 0x00;
	regp->Sequencer[NV_VIO_SR_MEM_MODE_INDEX] = 0x0E;

	/*
	 * CRTC
	 */
	regp->CRTC[NV_CIO_CR_HDT_INDEX] = horizTotal;
	regp->CRTC[NV_CIO_CR_HDE_INDEX] = horizDisplay;
	regp->CRTC[NV_CIO_CR_HBS_INDEX] = horizBlankStart;
	regp->CRTC[NV_CIO_CR_HBE_INDEX] = (1 << 7) |
					  XLATE(horizBlankEnd, 0, NV_CIO_CR_HBE_4_0);
	regp->CRTC[NV_CIO_CR_HRS_INDEX] = horizStart;
	regp->CRTC[NV_CIO_CR_HRE_INDEX] = XLATE(horizBlankEnd, 5, NV_CIO_CR_HRE_HBE_5) |
					  XLATE(horizEnd, 0, NV_CIO_CR_HRE_4_0);
	regp->CRTC[NV_CIO_CR_VDT_INDEX] = vertTotal;
	regp->CRTC[NV_CIO_CR_OVL_INDEX] = XLATE(vertStart, 9, NV_CIO_CR_OVL_VRS_9) |
					  XLATE(vertDisplay, 9, NV_CIO_CR_OVL_VDE_9) |
					  XLATE(vertTotal, 9, NV_CIO_CR_OVL_VDT_9) |
					  (1 << 4) |
					  XLATE(vertBlankStart, 8, NV_CIO_CR_OVL_VBS_8) |
					  XLATE(vertStart, 8, NV_CIO_CR_OVL_VRS_8) |
					  XLATE(vertDisplay, 8, NV_CIO_CR_OVL_VDE_8) |
					  XLATE(vertTotal, 8, NV_CIO_CR_OVL_VDT_8);
	regp->CRTC[NV_CIO_CR_RSAL_INDEX] = 0x00;
	regp->CRTC[NV_CIO_CR_CELL_HT_INDEX] = ((mode->flags & DRM_MODE_FLAG_DBLSCAN) ? MASK(NV_CIO_CR_CELL_HT_SCANDBL) : 0) |
					      1 << 6 |
					      XLATE(vertBlankStart, 9, NV_CIO_CR_CELL_HT_VBS_9);
	regp->CRTC[NV_CIO_CR_CURS_ST_INDEX] = 0x00;
	regp->CRTC[NV_CIO_CR_CURS_END_INDEX] = 0x00;
	regp->CRTC[NV_CIO_CR_SA_HI_INDEX] = 0x00;
	regp->CRTC[NV_CIO_CR_SA_LO_INDEX] = 0x00;
	regp->CRTC[NV_CIO_CR_TCOFF_HI_INDEX] = 0x00;
	regp->CRTC[NV_CIO_CR_TCOFF_LO_INDEX] = 0x00;
	regp->CRTC[NV_CIO_CR_VRS_INDEX] = vertStart;
	regp->CRTC[NV_CIO_CR_VRE_INDEX] = 1 << 5 | XLATE(vertEnd, 0, NV_CIO_CR_VRE_3_0);
	regp->CRTC[NV_CIO_CR_VDE_INDEX] = vertDisplay;
	/* framebuffer can be larger than crtc scanout area. */
376
	regp->CRTC[NV_CIO_CR_OFFSET_INDEX] = fb->pitches[0] / 8;
377 378 379 380 381 382 383 384 385 386 387
	regp->CRTC[NV_CIO_CR_ULINE_INDEX] = 0x00;
	regp->CRTC[NV_CIO_CR_VBS_INDEX] = vertBlankStart;
	regp->CRTC[NV_CIO_CR_VBE_INDEX] = vertBlankEnd;
	regp->CRTC[NV_CIO_CR_MODE_INDEX] = 0x43;
	regp->CRTC[NV_CIO_CR_LCOMP_INDEX] = 0xff;

	/*
	 * Some extended CRTC registers (they are not saved with the rest of the vga regs).
	 */

	/* framebuffer can be larger than crtc scanout area. */
388
	regp->CRTC[NV_CIO_CRE_RPC0_INDEX] =
389
		XLATE(fb->pitches[0] / 8, 8, NV_CIO_CRE_RPC0_OFFSET_10_8);
390
	regp->CRTC[NV_CIO_CRE_42] =
391
		XLATE(fb->pitches[0] / 8, 11, NV_CIO_CRE_42_OFFSET_11);
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
	regp->CRTC[NV_CIO_CRE_RPC1_INDEX] = mode->crtc_hdisplay < 1280 ?
					    MASK(NV_CIO_CRE_RPC1_LARGE) : 0x00;
	regp->CRTC[NV_CIO_CRE_LSR_INDEX] = XLATE(horizBlankEnd, 6, NV_CIO_CRE_LSR_HBE_6) |
					   XLATE(vertBlankStart, 10, NV_CIO_CRE_LSR_VBS_10) |
					   XLATE(vertStart, 10, NV_CIO_CRE_LSR_VRS_10) |
					   XLATE(vertDisplay, 10, NV_CIO_CRE_LSR_VDE_10) |
					   XLATE(vertTotal, 10, NV_CIO_CRE_LSR_VDT_10);
	regp->CRTC[NV_CIO_CRE_HEB__INDEX] = XLATE(horizStart, 8, NV_CIO_CRE_HEB_HRS_8) |
					    XLATE(horizBlankStart, 8, NV_CIO_CRE_HEB_HBS_8) |
					    XLATE(horizDisplay, 8, NV_CIO_CRE_HEB_HDE_8) |
					    XLATE(horizTotal, 8, NV_CIO_CRE_HEB_HDT_8);
	regp->CRTC[NV_CIO_CRE_EBR_INDEX] = XLATE(vertBlankStart, 11, NV_CIO_CRE_EBR_VBS_11) |
					   XLATE(vertStart, 11, NV_CIO_CRE_EBR_VRS_11) |
					   XLATE(vertDisplay, 11, NV_CIO_CRE_EBR_VDE_11) |
					   XLATE(vertTotal, 11, NV_CIO_CRE_EBR_VDT_11);

	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
		horizTotal = (horizTotal >> 1) & ~1;
		regp->CRTC[NV_CIO_CRE_ILACE__INDEX] = horizTotal;
		regp->CRTC[NV_CIO_CRE_HEB__INDEX] |= XLATE(horizTotal, 8, NV_CIO_CRE_HEB_ILC_8);
	} else
		regp->CRTC[NV_CIO_CRE_ILACE__INDEX] = 0xff;  /* interlace off */

	/*
	* Graphics Display Controller
	*/
	regp->Graphics[NV_VIO_GX_SR_INDEX] = 0x00;
	regp->Graphics[NV_VIO_GX_SREN_INDEX] = 0x00;
	regp->Graphics[NV_VIO_GX_CCOMP_INDEX] = 0x00;
	regp->Graphics[NV_VIO_GX_ROP_INDEX] = 0x00;
	regp->Graphics[NV_VIO_GX_READ_MAP_INDEX] = 0x00;
	regp->Graphics[NV_VIO_GX_MODE_INDEX] = 0x40; /* 256 color mode */
	regp->Graphics[NV_VIO_GX_MISC_INDEX] = 0x05; /* map 64k mem + graphic mode */
	regp->Graphics[NV_VIO_GX_DONT_CARE_INDEX] = 0x0F;
	regp->Graphics[NV_VIO_GX_BIT_MASK_INDEX] = 0xFF;

	regp->Attribute[0]  = 0x00; /* standard colormap translation */
	regp->Attribute[1]  = 0x01;
	regp->Attribute[2]  = 0x02;
	regp->Attribute[3]  = 0x03;
	regp->Attribute[4]  = 0x04;
	regp->Attribute[5]  = 0x05;
	regp->Attribute[6]  = 0x06;
	regp->Attribute[7]  = 0x07;
	regp->Attribute[8]  = 0x08;
	regp->Attribute[9]  = 0x09;
	regp->Attribute[10] = 0x0A;
	regp->Attribute[11] = 0x0B;
	regp->Attribute[12] = 0x0C;
	regp->Attribute[13] = 0x0D;
	regp->Attribute[14] = 0x0E;
	regp->Attribute[15] = 0x0F;
	regp->Attribute[NV_CIO_AR_MODE_INDEX] = 0x01; /* Enable graphic mode */
	/* Non-vga */
	regp->Attribute[NV_CIO_AR_OSCAN_INDEX] = 0x00;
	regp->Attribute[NV_CIO_AR_PLANE_INDEX] = 0x0F; /* enable all color planes */
	regp->Attribute[NV_CIO_AR_HPP_INDEX] = 0x00;
	regp->Attribute[NV_CIO_AR_CSEL_INDEX] = 0x00;
}

/**
 * Sets up registers for the given mode/adjusted_mode pair.
 *
 * The clocks, CRTCs and outputs attached to this CRTC must be off.
 *
 * This shouldn't enable any clocks, CRTCs, or outputs, but they should
 * be easily turned on/off after this.
 */
static void
nv_crtc_mode_set_regs(struct drm_crtc *crtc, struct drm_display_mode * mode)
{
	struct drm_device *dev = crtc->dev;
464
	struct nouveau_drm *drm = nouveau_drm(dev);
465
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
466 467
	struct nv04_crtc_reg *regp = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index];
	struct nv04_crtc_reg *savep = &nv04_display(dev)->saved_reg.crtc_reg[nv_crtc->index];
468 469 470 471 472 473 474 475 476 477 478
	struct drm_encoder *encoder;
	bool lvds_output = false, tmds_output = false, tv_output = false,
		off_chip_digital = false;

	list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
		struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
		bool digital = false;

		if (encoder->crtc != crtc)
			continue;

479
		if (nv_encoder->dcb->type == DCB_OUTPUT_LVDS)
480
			digital = lvds_output = true;
481
		if (nv_encoder->dcb->type == DCB_OUTPUT_TV)
482
			tv_output = true;
483
		if (nv_encoder->dcb->type == DCB_OUTPUT_TMDS)
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
			digital = tmds_output = true;
		if (nv_encoder->dcb->location != DCB_LOC_ON_CHIP && digital)
			off_chip_digital = true;
	}

	/* Registers not directly related to the (s)vga mode */

	/* What is the meaning of this register? */
	/* A few popular values are 0x18, 0x1c, 0x38, 0x3c */
	regp->CRTC[NV_CIO_CRE_ENH_INDEX] = savep->CRTC[NV_CIO_CRE_ENH_INDEX] & ~(1<<5);

	regp->crtc_eng_ctrl = 0;
	/* Except for rare conditions I2C is enabled on the primary crtc */
	if (nv_crtc->index == 0)
		regp->crtc_eng_ctrl |= NV_CRTC_FSEL_I2C;
#if 0
	/* Set overlay to desired crtc. */
	if (dev->overlayAdaptor) {
		NVPortPrivPtr pPriv = GET_OVERLAY_PRIVATE(dev);
		if (pPriv->overlayCRTC == nv_crtc->index)
			regp->crtc_eng_ctrl |= NV_CRTC_FSEL_OVERLAY;
	}
#endif

	/* ADDRESS_SPACE_PNVM is the same as setting HCUR_ASI */
	regp->cursor_cfg = NV_PCRTC_CURSOR_CONFIG_CUR_LINES_64 |
			     NV_PCRTC_CURSOR_CONFIG_CUR_PIXELS_64 |
			     NV_PCRTC_CURSOR_CONFIG_ADDRESS_SPACE_PNVM;
512
	if (drm->device.info.chipset >= 0x11)
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
		regp->cursor_cfg |= NV_PCRTC_CURSOR_CONFIG_CUR_BPP_32;
	if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
		regp->cursor_cfg |= NV_PCRTC_CURSOR_CONFIG_DOUBLE_SCAN_ENABLE;

	/* Unblock some timings */
	regp->CRTC[NV_CIO_CRE_53] = 0;
	regp->CRTC[NV_CIO_CRE_54] = 0;

	/* 0x00 is disabled, 0x11 is lvds, 0x22 crt and 0x88 tmds */
	if (lvds_output)
		regp->CRTC[NV_CIO_CRE_SCRATCH3__INDEX] = 0x11;
	else if (tmds_output)
		regp->CRTC[NV_CIO_CRE_SCRATCH3__INDEX] = 0x88;
	else
		regp->CRTC[NV_CIO_CRE_SCRATCH3__INDEX] = 0x22;

	/* These values seem to vary */
	/* This register seems to be used by the bios to make certain decisions on some G70 cards? */
	regp->CRTC[NV_CIO_CRE_SCRATCH4__INDEX] = savep->CRTC[NV_CIO_CRE_SCRATCH4__INDEX];

	nv_crtc_set_digital_vibrance(crtc, nv_crtc->saturation);

	/* probably a scratch reg, but kept for cargo-cult purposes:
	 * bit0: crtc0?, head A
	 * bit6: lvds, head A
	 * bit7: (only in X), head A
	 */
	if (nv_crtc->index == 0)
		regp->CRTC[NV_CIO_CRE_4B] = savep->CRTC[NV_CIO_CRE_4B] | 0x80;

	/* The blob seems to take the current value from crtc 0, add 4 to that
	 * and reuse the old value for crtc 1 */
545
	regp->CRTC[NV_CIO_CRE_TVOUT_LATENCY] = nv04_display(dev)->saved_reg.crtc_reg[0].CRTC[NV_CIO_CRE_TVOUT_LATENCY];
546 547 548 549 550 551 552
	if (!nv_crtc->index)
		regp->CRTC[NV_CIO_CRE_TVOUT_LATENCY] += 4;

	/* the blob sometimes sets |= 0x10 (which is the same as setting |=
	 * 1 << 30 on 0x60.830), for no apparent reason */
	regp->CRTC[NV_CIO_CRE_59] = off_chip_digital;

553
	if (drm->device.info.family >= NV_DEVICE_INFO_V0_RANKINE)
554 555
		regp->CRTC[0x9f] = off_chip_digital ? 0x11 : 0x1;

556 557 558
	regp->crtc_830 = mode->crtc_vdisplay - 3;
	regp->crtc_834 = mode->crtc_vdisplay - 1;

559
	if (drm->device.info.family == NV_DEVICE_INFO_V0_CURIE)
560 561 562
		/* This is what the blob does */
		regp->crtc_850 = NVReadCRTC(dev, 0, NV_PCRTC_850);

563
	if (drm->device.info.family >= NV_DEVICE_INFO_V0_RANKINE)
564 565
		regp->gpio_ext = NVReadCRTC(dev, 0, NV_PCRTC_GPIO_EXT);

566
	if (drm->device.info.family >= NV_DEVICE_INFO_V0_CELSIUS)
567 568 569
		regp->crtc_cfg = NV10_PCRTC_CONFIG_START_ADDRESS_HSYNC;
	else
		regp->crtc_cfg = NV04_PCRTC_CONFIG_START_ADDRESS_HSYNC;
570 571

	/* Some misc regs */
572
	if (drm->device.info.family == NV_DEVICE_INFO_V0_CURIE) {
573 574 575 576
		regp->CRTC[NV_CIO_CRE_85] = 0xFF;
		regp->CRTC[NV_CIO_CRE_86] = 0x1;
	}

577
	regp->CRTC[NV_CIO_CRE_PIXEL_INDEX] = (crtc->primary->fb->depth + 1) / 8;
578 579 580 581 582 583
	/* Enable slaved mode (called MODE_TV in nv4ref.h) */
	if (lvds_output || tmds_output || tv_output)
		regp->CRTC[NV_CIO_CRE_PIXEL_INDEX] |= (1 << 7);

	/* Generic PRAMDAC regs */

584
	if (drm->device.info.family >= NV_DEVICE_INFO_V0_CELSIUS)
585 586 587 588 589 590
		/* Only bit that bios and blob set. */
		regp->nv10_cursync = (1 << 25);

	regp->ramdac_gen_ctrl = NV_PRAMDAC_GENERAL_CONTROL_BPC_8BITS |
				NV_PRAMDAC_GENERAL_CONTROL_VGA_STATE_SEL |
				NV_PRAMDAC_GENERAL_CONTROL_PIXMIX_ON;
591
	if (crtc->primary->fb->depth == 16)
592
		regp->ramdac_gen_ctrl |= NV_PRAMDAC_GENERAL_CONTROL_ALT_MODE_SEL;
593
	if (drm->device.info.chipset >= 0x11)
594 595 596 597 598 599 600 601 602 603 604 605 606 607
		regp->ramdac_gen_ctrl |= NV_PRAMDAC_GENERAL_CONTROL_PIPE_LONG;

	regp->ramdac_630 = 0; /* turn off green mode (tv test pattern?) */
	regp->tv_setup = 0;

	nv_crtc_set_image_sharpening(crtc, nv_crtc->sharpness);

	/* Some values the blob sets */
	regp->ramdac_8c0 = 0x100;
	regp->ramdac_a20 = 0x0;
	regp->ramdac_a24 = 0xfffff;
	regp->ramdac_a34 = 0x1;
}

608 609 610 611
static int
nv_crtc_swap_fbs(struct drm_crtc *crtc, struct drm_framebuffer *old_fb)
{
	struct nv04_display *disp = nv04_display(crtc->dev);
612
	struct nouveau_framebuffer *nvfb = nouveau_framebuffer(crtc->primary->fb);
613 614 615 616 617 618 619 620 621 622 623 624 625
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
	int ret;

	ret = nouveau_bo_pin(nvfb->nvbo, TTM_PL_FLAG_VRAM);
	if (ret == 0) {
		if (disp->image[nv_crtc->index])
			nouveau_bo_unpin(disp->image[nv_crtc->index]);
		nouveau_bo_ref(nvfb->nvbo, &disp->image[nv_crtc->index]);
	}

	return ret;
}

626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
/**
 * Sets up registers for the given mode/adjusted_mode pair.
 *
 * The clocks, CRTCs and outputs attached to this CRTC must be off.
 *
 * This shouldn't enable any clocks, CRTCs, or outputs, but they should
 * be easily turned on/off after this.
 */
static int
nv_crtc_mode_set(struct drm_crtc *crtc, struct drm_display_mode *mode,
		 struct drm_display_mode *adjusted_mode,
		 int x, int y, struct drm_framebuffer *old_fb)
{
	struct drm_device *dev = crtc->dev;
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
641
	struct nouveau_drm *drm = nouveau_drm(dev);
642
	int ret;
643

644
	NV_DEBUG(drm, "CTRC mode on CRTC %d:\n", nv_crtc->index);
645 646
	drm_mode_debug_printmodeline(adjusted_mode);

647 648 649 650
	ret = nv_crtc_swap_fbs(crtc, old_fb);
	if (ret)
		return ret;

651 652 653 654 655
	/* unlock must come after turning off FP_TG_CONTROL in output_prepare */
	nv_lock_vga_crtc_shadow(dev, nv_crtc->index, -1);

	nv_crtc_mode_set_vga(crtc, adjusted_mode);
	/* calculated in nv04_dfp_prepare, nv40 needs it written before calculating PLLs */
656
	if (drm->device.info.family == NV_DEVICE_INFO_V0_CURIE)
657
		NVWriteRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK, nv04_display(dev)->mode_reg.sel_clk);
658 659 660 661 662 663 664 665
	nv_crtc_mode_set_regs(crtc, adjusted_mode);
	nv_crtc_calc_state_ext(crtc, mode, adjusted_mode->clock);
	return 0;
}

static void nv_crtc_save(struct drm_crtc *crtc)
{
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
666 667
	struct drm_device *dev = crtc->dev;
	struct nv04_mode_state *state = &nv04_display(dev)->mode_reg;
668
	struct nv04_crtc_reg *crtc_state = &state->crtc_reg[nv_crtc->index];
669
	struct nv04_mode_state *saved = &nv04_display(dev)->saved_reg;
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
	struct nv04_crtc_reg *crtc_saved = &saved->crtc_reg[nv_crtc->index];

	if (nv_two_heads(crtc->dev))
		NVSetOwner(crtc->dev, nv_crtc->index);

	nouveau_hw_save_state(crtc->dev, nv_crtc->index, saved);

	/* init some state to saved value */
	state->sel_clk = saved->sel_clk & ~(0x5 << 16);
	crtc_state->CRTC[NV_CIO_CRE_LCD__INDEX] = crtc_saved->CRTC[NV_CIO_CRE_LCD__INDEX];
	state->pllsel = saved->pllsel & ~(PLLSEL_VPLL1_MASK | PLLSEL_VPLL2_MASK | PLLSEL_TV_MASK);
	crtc_state->gpio_ext = crtc_saved->gpio_ext;
}

static void nv_crtc_restore(struct drm_crtc *crtc)
{
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
687
	struct drm_device *dev = crtc->dev;
688
	int head = nv_crtc->index;
689
	uint8_t saved_cr21 = nv04_display(dev)->saved_reg.crtc_reg[head].CRTC[NV_CIO_CRE_21];
690 691 692 693

	if (nv_two_heads(crtc->dev))
		NVSetOwner(crtc->dev, head);

694
	nouveau_hw_load_state(crtc->dev, head, &nv04_display(dev)->saved_reg);
695 696 697 698 699 700 701 702
	nv_lock_vga_crtc_shadow(crtc->dev, head, saved_cr21);

	nv_crtc->last_dpms = NV_DPMS_CLEARED;
}

static void nv_crtc_prepare(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
703
	struct nouveau_drm *drm = nouveau_drm(dev);
704 705 706 707 708 709
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
	struct drm_crtc_helper_funcs *funcs = crtc->helper_private;

	if (nv_two_heads(dev))
		NVSetOwner(dev, nv_crtc->index);

710
	drm_vblank_pre_modeset(dev, nv_crtc->index);
711 712 713 714
	funcs->dpms(crtc, DRM_MODE_DPMS_OFF);

	NVBlankScreen(dev, nv_crtc->index, true);

L
Lucas De Marchi 已提交
715
	/* Some more preparation. */
716
	NVWriteCRTC(dev, nv_crtc->index, NV_PCRTC_CONFIG, NV_PCRTC_CONFIG_START_ADDRESS_NON_VGA);
717
	if (drm->device.info.family == NV_DEVICE_INFO_V0_CURIE) {
718 719 720 721 722 723 724 725 726 727 728
		uint32_t reg900 = NVReadRAMDAC(dev, nv_crtc->index, NV_PRAMDAC_900);
		NVWriteRAMDAC(dev, nv_crtc->index, NV_PRAMDAC_900, reg900 & ~0x10000);
	}
}

static void nv_crtc_commit(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_crtc_helper_funcs *funcs = crtc->helper_private;
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);

729
	nouveau_hw_load_state(dev, nv_crtc->index, &nv04_display(dev)->mode_reg);
730 731 732 733 734 735 736 737 738 739 740 741
	nv04_crtc_mode_set_base(crtc, crtc->x, crtc->y, NULL);

#ifdef __BIG_ENDIAN
	/* turn on LFB swapping */
	{
		uint8_t tmp = NVReadVgaCrtc(dev, nv_crtc->index, NV_CIO_CRE_RCR);
		tmp |= MASK(NV_CIO_CRE_RCR_ENDIAN_BIG);
		NVWriteVgaCrtc(dev, nv_crtc->index, NV_CIO_CRE_RCR, tmp);
	}
#endif

	funcs->dpms(crtc, DRM_MODE_DPMS_ON);
742
	drm_vblank_post_modeset(dev, nv_crtc->index);
743 744 745 746
}

static void nv_crtc_destroy(struct drm_crtc *crtc)
{
747
	struct nv04_display *disp = nv04_display(crtc->dev);
748 749 750 751 752 753 754
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);

	if (!nv_crtc)
		return;

	drm_crtc_cleanup(crtc);

755 756 757 758
	if (disp->image[nv_crtc->index])
		nouveau_bo_unpin(disp->image[nv_crtc->index]);
	nouveau_bo_ref(NULL, &disp->image[nv_crtc->index]);

759
	nouveau_bo_unmap(nv_crtc->cursor.nvbo);
760
	nouveau_bo_unpin(nv_crtc->cursor.nvbo);
761 762 763 764 765 766 767 768 769 770 771 772
	nouveau_bo_ref(NULL, &nv_crtc->cursor.nvbo);
	kfree(nv_crtc);
}

static void
nv_crtc_gamma_load(struct drm_crtc *crtc)
{
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
	struct drm_device *dev = nv_crtc->base.dev;
	struct rgb { uint8_t r, g, b; } __attribute__((packed)) *rgbs;
	int i;

773
	rgbs = (struct rgb *)nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index].DAC;
774 775 776 777 778 779
	for (i = 0; i < 256; i++) {
		rgbs[i].r = nv_crtc->lut.r[i] >> 8;
		rgbs[i].g = nv_crtc->lut.g[i] >> 8;
		rgbs[i].b = nv_crtc->lut.b[i] >> 8;
	}

780
	nouveau_hw_load_state_palette(dev, nv_crtc->index, &nv04_display(dev)->mode_reg);
781 782
}

783 784 785 786 787 788 789 790 791 792
static void
nv_crtc_disable(struct drm_crtc *crtc)
{
	struct nv04_display *disp = nv04_display(crtc->dev);
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
	if (disp->image[nv_crtc->index])
		nouveau_bo_unpin(disp->image[nv_crtc->index]);
	nouveau_bo_ref(NULL, &disp->image[nv_crtc->index]);
}

793
static void
J
James Simmons 已提交
794 795
nv_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b, uint32_t start,
		  uint32_t size)
796
{
J
James Simmons 已提交
797
	int end = (start + size > 256) ? 256 : start + size, i;
798 799
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);

J
James Simmons 已提交
800
	for (i = start; i < end; i++) {
801 802 803 804 805 806 807 808 809 810
		nv_crtc->lut.r[i] = r[i];
		nv_crtc->lut.g[i] = g[i];
		nv_crtc->lut.b[i] = b[i];
	}

	/* We need to know the depth before we upload, but it's possible to
	 * get called before a framebuffer is bound.  If this is the case,
	 * mark the lut values as dirty by setting depth==0, and it'll be
	 * uploaded on the first mode_set_base()
	 */
811
	if (!nv_crtc->base.primary->fb) {
812 813 814 815 816 817 818 819
		nv_crtc->lut.depth = 0;
		return;
	}

	nv_crtc_gamma_load(crtc);
}

static int
820 821 822
nv04_crtc_do_mode_set_base(struct drm_crtc *crtc,
			   struct drm_framebuffer *passed_fb,
			   int x, int y, bool atomic)
823 824 825
{
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
	struct drm_device *dev = crtc->dev;
826
	struct nouveau_drm *drm = nouveau_drm(dev);
827
	struct nv04_crtc_reg *regp = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index];
828 829
	struct drm_framebuffer *drm_fb;
	struct nouveau_framebuffer *fb;
830 831
	int arb_burst, arb_lwm;

832
	NV_DEBUG(drm, "index %d\n", nv_crtc->index);
833 834

	/* no fb bound */
835
	if (!atomic && !crtc->primary->fb) {
836
		NV_DEBUG(drm, "No FB bound\n");
837 838 839
		return 0;
	}

840
	/* If atomic, we want to switch to the fb we were passed, so
841
	 * now we update pointers to do that.
842 843 844 845
	 */
	if (atomic) {
		drm_fb = passed_fb;
		fb = nouveau_framebuffer(passed_fb);
846
	} else {
847 848
		drm_fb = crtc->primary->fb;
		fb = nouveau_framebuffer(crtc->primary->fb);
849 850 851 852 853 854 855 856 857 858 859
	}

	nv_crtc->fb.offset = fb->nvbo->bo.offset;

	if (nv_crtc->lut.depth != drm_fb->depth) {
		nv_crtc->lut.depth = drm_fb->depth;
		nv_crtc_gamma_load(crtc);
	}

	/* Update the framebuffer format. */
	regp->CRTC[NV_CIO_CRE_PIXEL_INDEX] &= ~3;
860
	regp->CRTC[NV_CIO_CRE_PIXEL_INDEX] |= (crtc->primary->fb->depth + 1) / 8;
861
	regp->ramdac_gen_ctrl &= ~NV_PRAMDAC_GENERAL_CONTROL_ALT_MODE_SEL;
862
	if (crtc->primary->fb->depth == 16)
863 864 865 866 867
		regp->ramdac_gen_ctrl |= NV_PRAMDAC_GENERAL_CONTROL_ALT_MODE_SEL;
	crtc_wr_cio_state(crtc, regp, NV_CIO_CRE_PIXEL_INDEX);
	NVWriteRAMDAC(dev, nv_crtc->index, NV_PRAMDAC_GENERAL_CONTROL,
		      regp->ramdac_gen_ctrl);

868
	regp->CRTC[NV_CIO_CR_OFFSET_INDEX] = drm_fb->pitches[0] >> 3;
869
	regp->CRTC[NV_CIO_CRE_RPC0_INDEX] =
870
		XLATE(drm_fb->pitches[0] >> 3, 8, NV_CIO_CRE_RPC0_OFFSET_10_8);
871
	regp->CRTC[NV_CIO_CRE_42] =
872
		XLATE(drm_fb->pitches[0] / 8, 11, NV_CIO_CRE_42_OFFSET_11);
873 874
	crtc_wr_cio_state(crtc, regp, NV_CIO_CRE_RPC0_INDEX);
	crtc_wr_cio_state(crtc, regp, NV_CIO_CR_OFFSET_INDEX);
875
	crtc_wr_cio_state(crtc, regp, NV_CIO_CRE_42);
876 877 878

	/* Update the framebuffer location. */
	regp->fb_start = nv_crtc->fb.offset & ~3;
879
	regp->fb_start += (y * drm_fb->pitches[0]) + (x * drm_fb->bits_per_pixel / 8);
880
	nv_set_crtc_base(dev, nv_crtc->index, regp->fb_start);
881 882 883 884 885 886 887 888 889 890

	/* Update the arbitration parameters. */
	nouveau_calc_arb(dev, crtc->mode.clock, drm_fb->bits_per_pixel,
			 &arb_burst, &arb_lwm);

	regp->CRTC[NV_CIO_CRE_FF_INDEX] = arb_burst;
	regp->CRTC[NV_CIO_CRE_FFLWM__INDEX] = arb_lwm & 0xff;
	crtc_wr_cio_state(crtc, regp, NV_CIO_CRE_FF_INDEX);
	crtc_wr_cio_state(crtc, regp, NV_CIO_CRE_FFLWM__INDEX);

891
	if (drm->device.info.family >= NV_DEVICE_INFO_V0_KELVIN) {
892 893 894 895 896 897 898
		regp->CRTC[NV_CIO_CRE_47] = arb_lwm >> 8;
		crtc_wr_cio_state(crtc, regp, NV_CIO_CRE_47);
	}

	return 0;
}

899 900 901 902
static int
nv04_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y,
			struct drm_framebuffer *old_fb)
{
903 904 905
	int ret = nv_crtc_swap_fbs(crtc, old_fb);
	if (ret)
		return ret;
906 907 908 909 910 911
	return nv04_crtc_do_mode_set_base(crtc, old_fb, x, y, false);
}

static int
nv04_crtc_mode_set_base_atomic(struct drm_crtc *crtc,
			       struct drm_framebuffer *fb,
912
			       int x, int y, enum mode_set_atomic state)
913
{
914 915
	struct nouveau_drm *drm = nouveau_drm(crtc->dev);
	struct drm_device *dev = drm->dev;
916

917
	if (state == ENTER_ATOMIC_MODE_SET)
918
		nouveau_fbcon_accel_save_disable(dev);
919
	else
920
		nouveau_fbcon_accel_restore(dev);
921

922 923 924
	return nv04_crtc_do_mode_set_base(crtc, fb, x, y, true);
}

925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
static void nv04_cursor_upload(struct drm_device *dev, struct nouveau_bo *src,
			       struct nouveau_bo *dst)
{
	int width = nv_cursor_width(dev);
	uint32_t pixel;
	int i, j;

	for (i = 0; i < width; i++) {
		for (j = 0; j < width; j++) {
			pixel = nouveau_bo_rd32(src, i*64 + j);

			nouveau_bo_wr16(dst, i*width + j, (pixel & 0x80000000) >> 16
				     | (pixel & 0xf80000) >> 9
				     | (pixel & 0xf800) >> 6
				     | (pixel & 0xf8) >> 3);
		}
	}
}

static void nv11_cursor_upload(struct drm_device *dev, struct nouveau_bo *src,
			       struct nouveau_bo *dst)
{
	uint32_t pixel;
	int alpha, i;

	/* nv11+ supports premultiplied (PM), or non-premultiplied (NPM) alpha
	 * cursors (though NPM in combination with fp dithering may not work on
	 * nv11, from "nv" driver history)
	 * NPM mode needs NV_PCRTC_CURSOR_CONFIG_ALPHA_BLEND set and is what the
	 * blob uses, however we get given PM cursors so we use PM mode
	 */
	for (i = 0; i < 64 * 64; i++) {
		pixel = nouveau_bo_rd32(src, i);

		/* hw gets unhappy if alpha <= rgb values.  for a PM image "less
		 * than" shouldn't happen; fix "equal to" case by adding one to
		 * alpha channel (slightly inaccurate, but so is attempting to
		 * get back to NPM images, due to limits of integer precision)
		 */
		alpha = pixel >> 24;
		if (alpha > 0 && alpha < 255)
			pixel = (pixel & 0x00ffffff) | ((alpha + 1) << 24);

#ifdef __BIG_ENDIAN
		{
970
			struct nouveau_drm *drm = nouveau_drm(dev);
971

972
			if (drm->device.info.chipset == 0x11) {
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
				pixel = ((pixel & 0x000000ff) << 24) |
					((pixel & 0x0000ff00) << 8) |
					((pixel & 0x00ff0000) >> 8) |
					((pixel & 0xff000000) >> 24);
			}
		}
#endif

		nouveau_bo_wr32(dst, i, pixel);
	}
}

static int
nv04_crtc_cursor_set(struct drm_crtc *crtc, struct drm_file *file_priv,
		     uint32_t buffer_handle, uint32_t width, uint32_t height)
{
989 990
	struct nouveau_drm *drm = nouveau_drm(crtc->dev);
	struct drm_device *dev = drm->dev;
991 992 993 994 995 996 997 998 999 1000
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
	struct nouveau_bo *cursor = NULL;
	struct drm_gem_object *gem;
	int ret = 0;

	if (!buffer_handle) {
		nv_crtc->cursor.hide(nv_crtc, true);
		return 0;
	}

1001 1002 1003
	if (width != 64 || height != 64)
		return -EINVAL;

1004 1005
	gem = drm_gem_object_lookup(dev, file_priv, buffer_handle);
	if (!gem)
1006
		return -ENOENT;
1007 1008 1009 1010 1011 1012
	cursor = nouveau_gem_object(gem);

	ret = nouveau_bo_map(cursor);
	if (ret)
		goto out;

1013
	if (drm->device.info.chipset >= 0x11)
1014 1015 1016 1017 1018 1019 1020 1021 1022
		nv11_cursor_upload(dev, cursor, nv_crtc->cursor.nvbo);
	else
		nv04_cursor_upload(dev, cursor, nv_crtc->cursor.nvbo);

	nouveau_bo_unmap(cursor);
	nv_crtc->cursor.offset = nv_crtc->cursor.nvbo->bo.offset;
	nv_crtc->cursor.set_offset(nv_crtc, nv_crtc->cursor.offset);
	nv_crtc->cursor.show(nv_crtc, true);
out:
1023
	drm_gem_object_unreference_unlocked(gem);
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
	return ret;
}

static int
nv04_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
{
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);

	nv_crtc->cursor.set_pos(nv_crtc, x, y);
	return 0;
}

1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
int
nouveau_crtc_set_config(struct drm_mode_set *set)
{
	struct drm_device *dev;
	struct nouveau_drm *drm;
	int ret;
	struct drm_crtc *crtc;
	bool active = false;
	if (!set || !set->crtc)
		return -EINVAL;

	dev = set->crtc->dev;

	/* get a pm reference here */
	ret = pm_runtime_get_sync(dev->dev);
1051
	if (ret < 0 && ret != -EACCES)
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
		return ret;

	ret = drm_crtc_helper_set_config(set);

	drm = nouveau_drm(dev);

	/* if we get here with no crtcs active then we can drop a reference */
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
		if (crtc->enabled)
			active = true;
	}

	pm_runtime_mark_last_busy(dev->dev);
	/* if we have active crtcs and we don't have a power ref,
	   take the current one */
	if (active && !drm->have_disp_power_ref) {
		drm->have_disp_power_ref = true;
		return ret;
	}
	/* if we have no active crtcs, then drop the power ref
	   we got before */
	if (!active && drm->have_disp_power_ref) {
		pm_runtime_put_autosuspend(dev->dev);
		drm->have_disp_power_ref = false;
	}
	/* drop the power reference we got coming in here */
	pm_runtime_put_autosuspend(dev->dev);
	return ret;
}

1082 1083 1084 1085 1086 1087
static const struct drm_crtc_funcs nv04_crtc_funcs = {
	.save = nv_crtc_save,
	.restore = nv_crtc_restore,
	.cursor_set = nv04_crtc_cursor_set,
	.cursor_move = nv04_crtc_cursor_move,
	.gamma_set = nv_crtc_gamma_set,
1088
	.set_config = nouveau_crtc_set_config,
1089
	.page_flip = nouveau_crtc_page_flip,
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
	.destroy = nv_crtc_destroy,
};

static const struct drm_crtc_helper_funcs nv04_crtc_helper_funcs = {
	.dpms = nv_crtc_dpms,
	.prepare = nv_crtc_prepare,
	.commit = nv_crtc_commit,
	.mode_fixup = nv_crtc_mode_fixup,
	.mode_set = nv_crtc_mode_set,
	.mode_set_base = nv04_crtc_mode_set_base,
1100
	.mode_set_base_atomic = nv04_crtc_mode_set_base_atomic,
1101
	.load_lut = nv_crtc_gamma_load,
1102
	.disable = nv_crtc_disable,
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
};

int
nv04_crtc_create(struct drm_device *dev, int crtc_num)
{
	struct nouveau_crtc *nv_crtc;
	int ret, i;

	nv_crtc = kzalloc(sizeof(*nv_crtc), GFP_KERNEL);
	if (!nv_crtc)
		return -ENOMEM;

	for (i = 0; i < 256; i++) {
		nv_crtc->lut.r[i] = i << 8;
		nv_crtc->lut.g[i] = i << 8;
		nv_crtc->lut.b[i] = i << 8;
	}
	nv_crtc->lut.depth = 0;

	nv_crtc->index = crtc_num;
	nv_crtc->last_dpms = NV_DPMS_CLEARED;

	drm_crtc_init(dev, &nv_crtc->base, &nv04_crtc_funcs);
	drm_crtc_helper_add(&nv_crtc->base, &nv04_crtc_helper_funcs);
	drm_mode_crtc_set_gamma_size(&nv_crtc->base, 256);

1129
	ret = nouveau_bo_new(dev, 64*64*4, 0x100, TTM_PL_FLAG_VRAM,
1130
			     0, 0x0000, NULL, NULL, &nv_crtc->cursor.nvbo);
1131 1132
	if (!ret) {
		ret = nouveau_bo_pin(nv_crtc->cursor.nvbo, TTM_PL_FLAG_VRAM);
1133
		if (!ret) {
1134
			ret = nouveau_bo_map(nv_crtc->cursor.nvbo);
1135 1136 1137
			if (ret)
				nouveau_bo_unpin(nv_crtc->cursor.nvbo);
		}
1138 1139 1140 1141 1142 1143 1144 1145
		if (ret)
			nouveau_bo_ref(NULL, &nv_crtc->cursor.nvbo);
	}

	nv04_cursor_init(nv_crtc);

	return 0;
}