edac_core.h 27.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
/*
 * Defines, structures, APIs for edac_core module
 *
 * (C) 2007 Linux Networx (http://lnxi.com)
 * This file may be distributed under the terms of the
 * GNU General Public License.
 *
 * Written by Thayne Harbaugh
 * Based on work by Dan Hollis <goemon at anime dot net> and others.
 *	http://www.anime.net/~goemon/linux-ecc/
 *
 * NMI handling support added by
 *     Dave Peterson <dsp@llnl.gov> <dave_peterson@pobox.com>
 *
 * Refactored for multi-source files:
 *	Doug Thompson <norsk5@xmission.com>
 *
 */

#ifndef _EDAC_CORE_H_
#define _EDAC_CORE_H_

#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/pci.h>
#include <linux/time.h>
#include <linux/nmi.h>
#include <linux/rcupdate.h>
#include <linux/completion.h>
#include <linux/kobject.h>
#include <linux/platform_device.h>
35 36
#include <linux/sysdev.h>
#include <linux/workqueue.h>
37 38

#define EDAC_MC_LABEL_LEN	31
39 40 41
#define EDAC_DEVICE_NAME_LEN	31
#define EDAC_ATTRIB_VALUE_LEN	15
#define MC_PROC_NAME_MAX_LEN	7
42 43 44

#if PAGE_SHIFT < 20
#define PAGES_TO_MiB( pages )	( ( pages ) >> ( 20 - PAGE_SHIFT ) )
45
#define MiB_TO_PAGES(mb)	((mb) >> (20 - PAGE_SHIFT))
46 47
#else				/* PAGE_SHIFT > 20 */
#define PAGES_TO_MiB( pages )	( ( pages ) << ( PAGE_SHIFT - 20 ) )
48
#define MiB_TO_PAGES(mb)	((mb) >> (PAGE_SHIFT - 20))
49 50 51 52 53 54 55 56 57 58 59
#endif

#define edac_printk(level, prefix, fmt, arg...) \
	printk(level "EDAC " prefix ": " fmt, ##arg)

#define edac_mc_printk(mci, level, fmt, arg...) \
	printk(level "EDAC MC%d: " fmt, mci->mc_idx, ##arg)

#define edac_mc_chipset_printk(mci, level, prefix, fmt, arg...) \
	printk(level "EDAC " prefix " MC%d: " fmt, mci->mc_idx, ##arg)

60 61 62
#define edac_device_printk(ctl, level, fmt, arg...) \
	printk(level "EDAC DEVICE%d: " fmt, ctl->dev_idx, ##arg)

63 64 65
#define edac_pci_printk(ctl, level, fmt, arg...) \
	printk(level "EDAC PCI%d: " fmt, ctl->pci_idx, ##arg)

66 67 68 69 70 71 72
/* prefixes for edac_printk() and edac_mc_printk() */
#define EDAC_MC "MC"
#define EDAC_PCI "PCI"
#define EDAC_DEBUG "DEBUG"

#ifdef CONFIG_EDAC_DEBUG
extern int edac_debug_level;
73
extern const char *edac_mem_types[];
74

75 76 77 78 79
#define edac_debug_printk(level, fmt, arg...)                           \
	do {                                                            \
		if (level <= edac_debug_level)                          \
			edac_printk(KERN_DEBUG, EDAC_DEBUG,		\
				    "%s: " fmt, __func__, ##arg);	\
80
	} while (0)
81 82 83 84 85 86 87

#define debugf0( ... ) edac_debug_printk(0, __VA_ARGS__ )
#define debugf1( ... ) edac_debug_printk(1, __VA_ARGS__ )
#define debugf2( ... ) edac_debug_printk(2, __VA_ARGS__ )
#define debugf3( ... ) edac_debug_printk(3, __VA_ARGS__ )
#define debugf4( ... ) edac_debug_printk(4, __VA_ARGS__ )

88
#else				/* !CONFIG_EDAC_DEBUG */
89 90 91 92 93 94 95

#define debugf0( ... )
#define debugf1( ... )
#define debugf2( ... )
#define debugf3( ... )
#define debugf4( ... )

96
#endif				/* !CONFIG_EDAC_DEBUG */
97 98 99 100

#define PCI_VEND_DEV(vend, dev) PCI_VENDOR_ID_ ## vend, \
	PCI_DEVICE_ID_ ## vend ## _ ## dev

101
#define edac_dev_name(dev) (dev)->dev_name
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136

/* memory devices */
enum dev_type {
	DEV_UNKNOWN = 0,
	DEV_X1,
	DEV_X2,
	DEV_X4,
	DEV_X8,
	DEV_X16,
	DEV_X32,		/* Do these parts exist? */
	DEV_X64			/* Do these parts exist? */
};

#define DEV_FLAG_UNKNOWN	BIT(DEV_UNKNOWN)
#define DEV_FLAG_X1		BIT(DEV_X1)
#define DEV_FLAG_X2		BIT(DEV_X2)
#define DEV_FLAG_X4		BIT(DEV_X4)
#define DEV_FLAG_X8		BIT(DEV_X8)
#define DEV_FLAG_X16		BIT(DEV_X16)
#define DEV_FLAG_X32		BIT(DEV_X32)
#define DEV_FLAG_X64		BIT(DEV_X64)

/* memory types */
enum mem_type {
	MEM_EMPTY = 0,		/* Empty csrow */
	MEM_RESERVED,		/* Reserved csrow type */
	MEM_UNKNOWN,		/* Unknown csrow type */
	MEM_FPM,		/* Fast page mode */
	MEM_EDO,		/* Extended data out */
	MEM_BEDO,		/* Burst Extended data out */
	MEM_SDR,		/* Single data rate SDRAM */
	MEM_RDR,		/* Registered single data rate SDRAM */
	MEM_DDR,		/* Double data rate SDRAM */
	MEM_RDDR,		/* Registered Double data rate SDRAM */
	MEM_RMBS,		/* Rambus DRAM */
137 138 139
	MEM_DDR2,		/* DDR2 RAM */
	MEM_FB_DDR2,		/* fully buffered DDR2 */
	MEM_RDDR2,		/* Registered DDR2 RAM */
140
	MEM_XDR,		/* Rambus XDR */
141 142
	MEM_DDR3,		/* DDR3 RAM */
	MEM_RDDR3,		/* Registered DDR3 RAM */
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
};

#define MEM_FLAG_EMPTY		BIT(MEM_EMPTY)
#define MEM_FLAG_RESERVED	BIT(MEM_RESERVED)
#define MEM_FLAG_UNKNOWN	BIT(MEM_UNKNOWN)
#define MEM_FLAG_FPM		BIT(MEM_FPM)
#define MEM_FLAG_EDO		BIT(MEM_EDO)
#define MEM_FLAG_BEDO		BIT(MEM_BEDO)
#define MEM_FLAG_SDR		BIT(MEM_SDR)
#define MEM_FLAG_RDR		BIT(MEM_RDR)
#define MEM_FLAG_DDR		BIT(MEM_DDR)
#define MEM_FLAG_RDDR		BIT(MEM_RDDR)
#define MEM_FLAG_RMBS		BIT(MEM_RMBS)
#define MEM_FLAG_DDR2           BIT(MEM_DDR2)
#define MEM_FLAG_FB_DDR2        BIT(MEM_FB_DDR2)
#define MEM_FLAG_RDDR2          BIT(MEM_RDDR2)
159
#define MEM_FLAG_XDR            BIT(MEM_XDR)
160 161
#define MEM_FLAG_DDR3		 BIT(MEM_DDR3)
#define MEM_FLAG_RDDR3		 BIT(MEM_RDDR3)
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201

/* chipset Error Detection and Correction capabilities and mode */
enum edac_type {
	EDAC_UNKNOWN = 0,	/* Unknown if ECC is available */
	EDAC_NONE,		/* Doesnt support ECC */
	EDAC_RESERVED,		/* Reserved ECC type */
	EDAC_PARITY,		/* Detects parity errors */
	EDAC_EC,		/* Error Checking - no correction */
	EDAC_SECDED,		/* Single bit error correction, Double detection */
	EDAC_S2ECD2ED,		/* Chipkill x2 devices - do these exist? */
	EDAC_S4ECD4ED,		/* Chipkill x4 devices */
	EDAC_S8ECD8ED,		/* Chipkill x8 devices */
	EDAC_S16ECD16ED,	/* Chipkill x16 devices */
};

#define EDAC_FLAG_UNKNOWN	BIT(EDAC_UNKNOWN)
#define EDAC_FLAG_NONE		BIT(EDAC_NONE)
#define EDAC_FLAG_PARITY	BIT(EDAC_PARITY)
#define EDAC_FLAG_EC		BIT(EDAC_EC)
#define EDAC_FLAG_SECDED	BIT(EDAC_SECDED)
#define EDAC_FLAG_S2ECD2ED	BIT(EDAC_S2ECD2ED)
#define EDAC_FLAG_S4ECD4ED	BIT(EDAC_S4ECD4ED)
#define EDAC_FLAG_S8ECD8ED	BIT(EDAC_S8ECD8ED)
#define EDAC_FLAG_S16ECD16ED	BIT(EDAC_S16ECD16ED)

/* scrubbing capabilities */
enum scrub_type {
	SCRUB_UNKNOWN = 0,	/* Unknown if scrubber is available */
	SCRUB_NONE,		/* No scrubber */
	SCRUB_SW_PROG,		/* SW progressive (sequential) scrubbing */
	SCRUB_SW_SRC,		/* Software scrub only errors */
	SCRUB_SW_PROG_SRC,	/* Progressive software scrub from an error */
	SCRUB_SW_TUNABLE,	/* Software scrub frequency is tunable */
	SCRUB_HW_PROG,		/* HW progressive (sequential) scrubbing */
	SCRUB_HW_SRC,		/* Hardware scrub only errors */
	SCRUB_HW_PROG_SRC,	/* Progressive hardware scrub from an error */
	SCRUB_HW_TUNABLE	/* Hardware scrub frequency is tunable */
};

#define SCRUB_FLAG_SW_PROG	BIT(SCRUB_SW_PROG)
202 203
#define SCRUB_FLAG_SW_SRC	BIT(SCRUB_SW_SRC)
#define SCRUB_FLAG_SW_PROG_SRC	BIT(SCRUB_SW_PROG_SRC)
204 205
#define SCRUB_FLAG_SW_TUN	BIT(SCRUB_SW_SCRUB_TUNABLE)
#define SCRUB_FLAG_HW_PROG	BIT(SCRUB_HW_PROG)
206 207
#define SCRUB_FLAG_HW_SRC	BIT(SCRUB_HW_SRC)
#define SCRUB_FLAG_HW_PROG_SRC	BIT(SCRUB_HW_PROG_SRC)
208 209 210 211
#define SCRUB_FLAG_HW_TUN	BIT(SCRUB_HW_TUNABLE)

/* FIXME - should have notify capabilities: NMI, LOG, PROC, etc */

212 213 214 215 216 217 218
/* EDAC internal operation states */
#define	OP_ALLOC		0x100
#define OP_RUNNING_POLL		0x201
#define OP_RUNNING_INTERRUPT	0x202
#define OP_RUNNING_POLL_INTR	0x203
#define OP_OFFLINE		0x300

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
/*
 * There are several things to be aware of that aren't at all obvious:
 *
 *
 * SOCKETS, SOCKET SETS, BANKS, ROWS, CHIP-SELECT ROWS, CHANNELS, etc..
 *
 * These are some of the many terms that are thrown about that don't always
 * mean what people think they mean (Inconceivable!).  In the interest of
 * creating a common ground for discussion, terms and their definitions
 * will be established.
 *
 * Memory devices:	The individual chip on a memory stick.  These devices
 *			commonly output 4 and 8 bits each.  Grouping several
 *			of these in parallel provides 64 bits which is common
 *			for a memory stick.
 *
 * Memory Stick:	A printed circuit board that agregates multiple
 *			memory devices in parallel.  This is the atomic
 *			memory component that is purchaseable by Joe consumer
 *			and loaded into a memory socket.
 *
 * Socket:		A physical connector on the motherboard that accepts
 *			a single memory stick.
 *
 * Channel:		Set of memory devices on a memory stick that must be
 *			grouped in parallel with one or more additional
 *			channels from other memory sticks.  This parallel
 *			grouping of the output from multiple channels are
 *			necessary for the smallest granularity of memory access.
 *			Some memory controllers are capable of single channel -
 *			which means that memory sticks can be loaded
 *			individually.  Other memory controllers are only
 *			capable of dual channel - which means that memory
 *			sticks must be loaded as pairs (see "socket set").
 *
 * Chip-select row:	All of the memory devices that are selected together.
 *			for a single, minimum grain of memory access.
 *			This selects all of the parallel memory devices across
 *			all of the parallel channels.  Common chip-select rows
 *			for single channel are 64 bits, for dual channel 128
 *			bits.
 *
 * Single-Ranked stick:	A Single-ranked stick has 1 chip-select row of memmory.
 *			Motherboards commonly drive two chip-select pins to
 *			a memory stick. A single-ranked stick, will occupy
 *			only one of those rows. The other will be unused.
 *
 * Double-Ranked stick:	A double-ranked stick has two chip-select rows which
 *			access different sets of memory devices.  The two
 *			rows cannot be accessed concurrently.
 *
 * Double-sided stick:	DEPRECATED TERM, see Double-Ranked stick.
 *			A double-sided stick has two chip-select rows which
 *			access different sets of memory devices.  The two
 *			rows cannot be accessed concurrently.  "Double-sided"
 *			is irrespective of the memory devices being mounted
 *			on both sides of the memory stick.
 *
277
 * Socket set:		All of the memory sticks that are required for
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
 *			a single memory access or all of the memory sticks
 *			spanned by a chip-select row.  A single socket set
 *			has two chip-select rows and if double-sided sticks
 *			are used these will occupy those chip-select rows.
 *
 * Bank:		This term is avoided because it is unclear when
 *			needing to distinguish between chip-select rows and
 *			socket sets.
 *
 * Controller pages:
 *
 * Physical pages:
 *
 * Virtual pages:
 *
 *
 * STRUCTURE ORGANIZATION AND CHOICES
 *
 *
 *
 * PS - I enjoyed writing all that about as much as you enjoyed reading it.
 */

struct channel_info {
	int chan_idx;		/* channel index */
	u32 ce_count;		/* Correctable Errors for this CHANNEL */
304
	char label[EDAC_MC_LABEL_LEN + 1];	/* DIMM label on motherboard */
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
	struct csrow_info *csrow;	/* the parent */
};

struct csrow_info {
	unsigned long first_page;	/* first page number in dimm */
	unsigned long last_page;	/* last page number in dimm */
	unsigned long page_mask;	/* used for interleaving -
					 * 0UL for non intlv
					 */
	u32 nr_pages;		/* number of pages in csrow */
	u32 grain;		/* granularity of reported error in bytes */
	int csrow_idx;		/* the chip-select row */
	enum dev_type dtype;	/* memory device type */
	u32 ue_count;		/* Uncorrectable Errors for this csrow */
	u32 ce_count;		/* Correctable Errors for this csrow */
	enum mem_type mtype;	/* memory csrow type */
	enum edac_type edac_mode;	/* EDAC mode for this csrow */
	struct mem_ctl_info *mci;	/* the parent */

	struct kobject kobj;	/* sysfs kobject for this csrow */

326
	/* channel information for this csrow */
327 328 329 330
	u32 nr_channels;
	struct channel_info *channels;
};

331
struct mcidev_sysfs_group {
332
	const char *name;				/* group name */
333
	const struct mcidev_sysfs_attribute *mcidev_attr; /* group attributes */
334 335 336 337 338 339
};

struct mcidev_sysfs_group_kobj {
	struct list_head list;		/* list for all instances within a mc */

	struct kobject kobj;		/* kobj for the group */
340

341
	const struct mcidev_sysfs_group *grp;	/* group description table */
342
	struct mem_ctl_info *mci;	/* the parent */
343 344
};

345 346 347 348 349
/* mcidev_sysfs_attribute structure
 *	used for driver sysfs attributes and in mem_ctl_info
 * 	sysfs top level entries
 */
struct mcidev_sysfs_attribute {
350
	/* It should use either attr or grp */
351
	struct attribute attr;
352
	const struct mcidev_sysfs_group *grp;	/* Points to a group of attributes */
353

354
	/* Ops for show/store values at the attribute - not used on group */
355 356 357 358 359 360
        ssize_t (*show)(struct mem_ctl_info *,char *);
        ssize_t (*store)(struct mem_ctl_info *, const char *,size_t);
};

/* MEMORY controller information structure
 */
361
struct mem_ctl_info {
362
	struct list_head link;	/* for global list of mem_ctl_info structs */
363 364 365

	struct module *owner;	/* Module owner of this control struct */

366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
	unsigned long mtype_cap;	/* memory types supported by mc */
	unsigned long edac_ctl_cap;	/* Mem controller EDAC capabilities */
	unsigned long edac_cap;	/* configuration capabilities - this is
				 * closely related to edac_ctl_cap.  The
				 * difference is that the controller may be
				 * capable of s4ecd4ed which would be listed
				 * in edac_ctl_cap, but if channels aren't
				 * capable of s4ecd4ed then the edac_cap would
				 * not have that capability.
				 */
	unsigned long scrub_cap;	/* chipset scrub capabilities */
	enum scrub_type scrub_mode;	/* current scrub mode */

	/* Translates sdram memory scrub rate given in bytes/sec to the
	   internal representation and configures whatever else needs
	   to be configured.
382
	 */
383
	int (*set_sdram_scrub_rate) (struct mem_ctl_info * mci, u32 bw);
384 385 386 387

	/* Get the current sdram memory scrub rate from the internal
	   representation and converts it to the closest matching
	   bandwith in bytes/sec.
388 389
	 */
	int (*get_sdram_scrub_rate) (struct mem_ctl_info * mci, u32 * bw);
390

391

392 393 394 395 396 397 398 399 400
	/* pointer to edac checking routine */
	void (*edac_check) (struct mem_ctl_info * mci);

	/*
	 * Remaps memory pages: controller pages to physical pages.
	 * For most MC's, this will be NULL.
	 */
	/* FIXME - why not send the phys page to begin with? */
	unsigned long (*ctl_page_to_phys) (struct mem_ctl_info * mci,
401
					   unsigned long page);
402 403 404 405 406 407 408 409 410 411 412 413
	int mc_idx;
	int nr_csrows;
	struct csrow_info *csrows;
	/*
	 * FIXME - what about controllers on other busses? - IDs must be
	 * unique.  dev pointer should be sufficiently unique, but
	 * BUS:SLOT.FUNC numbers may not be unique.
	 */
	struct device *dev;
	const char *mod_name;
	const char *mod_ver;
	const char *ctl_name;
414
	const char *dev_name;
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
	char proc_name[MC_PROC_NAME_MAX_LEN + 1];
	void *pvt_info;
	u32 ue_noinfo_count;	/* Uncorrectable Errors w/o info */
	u32 ce_noinfo_count;	/* Correctable Errors w/o info */
	u32 ue_count;		/* Total Uncorrectable Errors for this MC */
	u32 ce_count;		/* Total Correctable Errors for this MC */
	unsigned long start_time;	/* mci load start time (in jiffies) */

	/* this stuff is for safe removal of mc devices from global list while
	 * NMI handlers may be traversing list
	 */
	struct rcu_head rcu;
	struct completion complete;

	/* edac sysfs device control */
	struct kobject edac_mci_kobj;
431

432 433 434
	/* list for all grp instances within a mc */
	struct list_head grp_kobj_list;

435 436 437 438 439 440 441 442 443 444
	/* Additional top controller level attributes, but specified
	 * by the low level driver.
	 *
	 * Set by the low level driver to provide attributes at the
	 * controller level, same level as 'ue_count' and 'ce_count' above.
	 * An array of structures, NULL terminated
	 *
	 * If attributes are desired, then set to array of attributes
	 * If no attributes are desired, leave NULL
	 */
445
	const struct mcidev_sysfs_attribute *mc_driver_sysfs_attributes;
446

447 448
	/* work struct for this MC */
	struct delayed_work work;
449

450 451
	/* the internal state of this controller instance */
	int op_state;
452 453
};

454
/*
455
 * The following are the structures to provide for a generic
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
 * or abstract 'edac_device'. This set of structures and the
 * code that implements the APIs for the same, provide for
 * registering EDAC type devices which are NOT standard memory.
 *
 * CPU caches (L1 and L2)
 * DMA engines
 * Core CPU swithces
 * Fabric switch units
 * PCIe interface controllers
 * other EDAC/ECC type devices that can be monitored for
 * errors, etc.
 *
 * It allows for a 2 level set of hiearchry. For example:
 *
 * cache could be composed of L1, L2 and L3 levels of cache.
 * Each CPU core would have its own L1 cache, while sharing
 * L2 and maybe L3 caches.
 *
 * View them arranged, via the sysfs presentation:
 * /sys/devices/system/edac/..
 *
 *	mc/		<existing memory device directory>
 *	cpu/cpu0/..	<L1 and L2 block directory>
 *		/L1-cache/ce_count
 *			 /ue_count
 *		/L2-cache/ce_count
 *			 /ue_count
 *	cpu/cpu1/..	<L1 and L2 block directory>
 *		/L1-cache/ce_count
 *			 /ue_count
 *		/L2-cache/ce_count
 *			 /ue_count
 *	...
 *
 *	the L1 and L2 directories would be "edac_device_block's"
 */

struct edac_device_counter {
494 495
	u32 ue_count;
	u32 ce_count;
496 497
};

498 499 500
/* forward reference */
struct edac_device_ctl_info;
struct edac_device_block;
501

502 503 504 505 506 507 508 509 510
/* edac_dev_sysfs_attribute structure
 *	used for driver sysfs attributes in mem_ctl_info
 *	for extra controls and attributes:
 *		like high level error Injection controls
 */
struct edac_dev_sysfs_attribute {
	struct attribute attr;
	ssize_t (*show)(struct edac_device_ctl_info *, char *);
	ssize_t (*store)(struct edac_device_ctl_info *, const char *, size_t);
511 512
};

513
/* edac_dev_sysfs_block_attribute structure
514
 *
515
 *	used in leaf 'block' nodes for adding controls/attributes
516 517 518 519 520 521 522 523
 *
 *	each block in each instance of the containing control structure
 *	can have an array of the following. The show and store functions
 *	will be filled in with the show/store function in the
 *	low level driver.
 *
 *	The 'value' field will be the actual value field used for
 *	counting
524
 */
525 526 527 528 529 530 531 532
struct edac_dev_sysfs_block_attribute {
	struct attribute attr;
	ssize_t (*show)(struct kobject *, struct attribute *, char *);
	ssize_t (*store)(struct kobject *, struct attribute *,
			const char *, size_t);
	struct edac_device_block *block;

	unsigned int value;
533 534 535 536 537
};

/* device block control structure */
struct edac_device_block {
	struct edac_device_instance *instance;	/* Up Pointer */
538
	char name[EDAC_DEVICE_NAME_LEN + 1];
539 540 541

	struct edac_device_counter counters;	/* basic UE and CE counters */

542
	int nr_attribs;		/* how many attributes */
543 544 545

	/* this block's attributes, could be NULL */
	struct edac_dev_sysfs_block_attribute *block_attributes;
546 547 548 549 550 551 552 553 554 555 556 557

	/* edac sysfs device control */
	struct kobject kobj;
};

/* device instance control structure */
struct edac_device_instance {
	struct edac_device_ctl_info *ctl;	/* Up pointer */
	char name[EDAC_DEVICE_NAME_LEN + 4];

	struct edac_device_counter counters;	/* instance counters */

558
	u32 nr_blocks;		/* how many blocks */
559 560 561 562 563 564
	struct edac_device_block *blocks;	/* block array */

	/* edac sysfs device control */
	struct kobject kobj;
};

565

566 567 568 569 570 571 572 573
/*
 * Abstract edac_device control info structure
 *
 */
struct edac_device_ctl_info {
	/* for global list of edac_device_ctl_info structs */
	struct list_head link;

574 575
	struct module *owner;	/* Module owner of this control struct */

576 577 578 579 580 581 582 583 584
	int dev_idx;

	/* Per instance controls for this edac_device */
	int log_ue;		/* boolean for logging UEs */
	int log_ce;		/* boolean for logging CEs */
	int panic_on_ue;	/* boolean for panic'ing on an UE */
	unsigned poll_msec;	/* number of milliseconds to poll interval */
	unsigned long delay;	/* number of jiffies for poll_msec */

585 586 587 588 589 590 591 592 593 594 595 596 597 598
	/* Additional top controller level attributes, but specified
	 * by the low level driver.
	 *
	 * Set by the low level driver to provide attributes at the
	 * controller level, same level as 'ue_count' and 'ce_count' above.
	 * An array of structures, NULL terminated
	 *
	 * If attributes are desired, then set to array of attributes
	 * If no attributes are desired, leave NULL
	 */
	struct edac_dev_sysfs_attribute *sysfs_attributes;

	/* pointer to main 'edac' class in sysfs */
	struct sysdev_class *edac_class;
599 600 601 602 603 604 605

	/* the internal state of this controller instance */
	int op_state;
	/* work struct for this instance */
	struct delayed_work work;

	/* pointer to edac polling checking routine:
606 607 608
	 *      If NOT NULL: points to polling check routine
	 *      If NULL: Then assumes INTERRUPT operation, where
	 *              MC driver will receive events
609 610 611 612 613 614 615
	 */
	void (*edac_check) (struct edac_device_ctl_info * edac_dev);

	struct device *dev;	/* pointer to device structure */

	const char *mod_name;	/* module name */
	const char *ctl_name;	/* edac controller  name */
616
	const char *dev_name;	/* pci/platform/etc... name */
617 618 619

	void *pvt_info;		/* pointer to 'private driver' info */

620
	unsigned long start_time;	/* edac_device load start time (jiffies) */
621 622 623 624 625

	/* these are for safe removal of mc devices from global list while
	 * NMI handlers may be traversing list
	 */
	struct rcu_head rcu;
626
	struct completion removal_complete;
627 628 629

	/* sysfs top name under 'edac' directory
	 * and instance name:
630 631 632 633
	 *      cpu/cpu0/...
	 *      cpu/cpu1/...
	 *      cpu/cpu2/...
	 *      ...
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
	 */
	char name[EDAC_DEVICE_NAME_LEN + 1];

	/* Number of instances supported on this control structure
	 * and the array of those instances
	 */
	u32 nr_instances;
	struct edac_device_instance *instances;

	/* Event counters for the this whole EDAC Device */
	struct edac_device_counter counters;

	/* edac sysfs device control for the 'name'
	 * device this structure controls
	 */
	struct kobject kobj;
};

/* To get from the instance's wq to the beginning of the ctl structure */
653 654 655
#define to_edac_mem_ctl_work(w) \
		container_of(w, struct mem_ctl_info, work)

656 657 658 659 660 661 662 663 664
#define to_edac_device_ctl_work(w) \
		container_of(w,struct edac_device_ctl_info,work)

/*
 * The alloc() and free() functions for the 'edac_device' control info
 * structure. A MC driver will allocate one of these for each edac_device
 * it is going to control/register with the EDAC CORE.
 */
extern struct edac_device_ctl_info *edac_device_alloc_ctl_info(
665
		unsigned sizeof_private,
666 667
		char *edac_device_name, unsigned nr_instances,
		char *edac_block_name, unsigned nr_blocks,
668
		unsigned offset_value,
669
		struct edac_dev_sysfs_block_attribute *block_attributes,
670 671
		unsigned nr_attribs,
		int device_index);
672 673 674 675 676 677 678 679 680

/* The offset value can be:
 *	-1 indicating no offset value
 *	0 for zero-based block numbers
 *	1 for 1-based block number
 *	other for other-based block number
 */
#define	BLOCK_OFFSET_VALUE_OFF	((unsigned) -1)

681
extern void edac_device_free_ctl_info(struct edac_device_ctl_info *ctl_info);
682

683 684
#ifdef CONFIG_PCI

685
struct edac_pci_counter {
686 687
	atomic_t pe_count;
	atomic_t npe_count;
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
};

/*
 * Abstract edac_pci control info structure
 *
 */
struct edac_pci_ctl_info {
	/* for global list of edac_pci_ctl_info structs */
	struct list_head link;

	int pci_idx;

	struct sysdev_class *edac_class;	/* pointer to class */

	/* the internal state of this controller instance */
	int op_state;
	/* work struct for this instance */
	struct delayed_work work;

	/* pointer to edac polling checking routine:
708 709 710
	 *      If NOT NULL: points to polling check routine
	 *      If NULL: Then assumes INTERRUPT operation, where
	 *              MC driver will receive events
711 712 713 714 715 716 717 718 719 720 721
	 */
	void (*edac_check) (struct edac_pci_ctl_info * edac_dev);

	struct device *dev;	/* pointer to device structure */

	const char *mod_name;	/* module name */
	const char *ctl_name;	/* edac controller  name */
	const char *dev_name;	/* pci/platform/etc... name */

	void *pvt_info;		/* pointer to 'private driver' info */

722
	unsigned long start_time;	/* edac_pci load start time (jiffies) */
723 724 725 726 727 728 729 730 731

	/* these are for safe removal of devices from global list while
	 * NMI handlers may be traversing list
	 */
	struct rcu_head rcu;
	struct completion complete;

	/* sysfs top name under 'edac' directory
	 * and instance name:
732 733 734 735
	 *      cpu/cpu0/...
	 *      cpu/cpu1/...
	 *      cpu/cpu2/...
	 *      ...
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
	 */
	char name[EDAC_DEVICE_NAME_LEN + 1];

	/* Event counters for the this whole EDAC Device */
	struct edac_pci_counter counters;

	/* edac sysfs device control for the 'name'
	 * device this structure controls
	 */
	struct kobject kobj;
	struct completion kobj_complete;
};

#define to_edac_pci_ctl_work(w) \
		container_of(w, struct edac_pci_ctl_info,work)

752 753
/* write all or some bits in a byte-register*/
static inline void pci_write_bits8(struct pci_dev *pdev, int offset, u8 value,
754
				   u8 mask)
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
{
	if (mask != 0xff) {
		u8 buf;

		pci_read_config_byte(pdev, offset, &buf);
		value &= mask;
		buf &= ~mask;
		value |= buf;
	}

	pci_write_config_byte(pdev, offset, value);
}

/* write all or some bits in a word-register*/
static inline void pci_write_bits16(struct pci_dev *pdev, int offset,
770
				    u16 value, u16 mask)
771 772 773 774 775 776 777 778 779 780 781 782 783
{
	if (mask != 0xffff) {
		u16 buf;

		pci_read_config_word(pdev, offset, &buf);
		value &= mask;
		buf &= ~mask;
		value |= buf;
	}

	pci_write_config_word(pdev, offset, value);
}

J
Jeff Haran 已提交
784 785 786 787 788 789 790 791 792
/*
 * pci_write_bits32
 *
 * edac local routine to do pci_write_config_dword, but adds
 * a mask parameter. If mask is all ones, ignore the mask.
 * Otherwise utilize the mask to isolate specified bits
 *
 * write all or some bits in a dword-register
 */
793
static inline void pci_write_bits32(struct pci_dev *pdev, int offset,
794
				    u32 value, u32 mask)
795
{
J
Jeff Haran 已提交
796
	if (mask != 0xffffffff) {
797 798 799 800 801 802 803 804 805 806 807
		u32 buf;

		pci_read_config_dword(pdev, offset, &buf);
		value &= mask;
		buf &= ~mask;
		value |= buf;
	}

	pci_write_config_dword(pdev, offset, value);
}

808
#endif				/* CONFIG_PCI */
809

810 811 812 813
extern struct mem_ctl_info *edac_mc_alloc(unsigned sz_pvt, unsigned nr_csrows,
					  unsigned nr_chans, int edac_index);
extern int edac_mc_add_mc(struct mem_ctl_info *mci);
extern void edac_mc_free(struct mem_ctl_info *mci);
814
extern struct mem_ctl_info *edac_mc_find(int idx);
815
extern struct mem_ctl_info *find_mci_by_dev(struct device *dev);
816
extern struct mem_ctl_info *edac_mc_del_mc(struct device *dev);
817
extern int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci,
818
				      unsigned long page);
819 820 821 822 823 824 825 826 827 828 829 830

/*
 * The no info errors are used when error overflows are reported.
 * There are a limited number of error logging registers that can
 * be exausted.  When all registers are exhausted and an additional
 * error occurs then an error overflow register records that an
 * error occured and the type of error, but doesn't have any
 * further information.  The ce/ue versions make for cleaner
 * reporting logic and function interface - reduces conditional
 * statement clutter and extra function arguments.
 */
extern void edac_mc_handle_ce(struct mem_ctl_info *mci,
831 832 833 834
			      unsigned long page_frame_number,
			      unsigned long offset_in_page,
			      unsigned long syndrome, int row, int channel,
			      const char *msg);
835
extern void edac_mc_handle_ce_no_info(struct mem_ctl_info *mci,
836
				      const char *msg);
837
extern void edac_mc_handle_ue(struct mem_ctl_info *mci,
838 839 840
			      unsigned long page_frame_number,
			      unsigned long offset_in_page, int row,
			      const char *msg);
841
extern void edac_mc_handle_ue_no_info(struct mem_ctl_info *mci,
842 843 844 845 846 847
				      const char *msg);
extern void edac_mc_handle_fbd_ue(struct mem_ctl_info *mci, unsigned int csrow,
				  unsigned int channel0, unsigned int channel1,
				  char *msg);
extern void edac_mc_handle_fbd_ce(struct mem_ctl_info *mci, unsigned int csrow,
				  unsigned int channel, char *msg);
848 849

/*
850
 * edac_device APIs
851
 */
852
extern int edac_device_add_device(struct edac_device_ctl_info *edac_dev);
853
extern struct edac_device_ctl_info *edac_device_del_device(struct device *dev);
854
extern void edac_device_handle_ue(struct edac_device_ctl_info *edac_dev,
855
				int inst_nr, int block_nr, const char *msg);
856
extern void edac_device_handle_ce(struct edac_device_ctl_info *edac_dev,
857
				int inst_nr, int block_nr, const char *msg);
H
Harry Ciao 已提交
858
extern int edac_device_alloc_index(void);
859

860 861 862
/*
 * edac_pci APIs
 */
863 864
extern struct edac_pci_ctl_info *edac_pci_alloc_ctl_info(unsigned int sz_pvt,
				const char *edac_pci_name);
865 866 867

extern void edac_pci_free_ctl_info(struct edac_pci_ctl_info *pci);

868 869
extern void edac_pci_reset_delay_period(struct edac_pci_ctl_info *pci,
				unsigned long value);
870

H
Harry Ciao 已提交
871
extern int edac_pci_alloc_index(void);
872
extern int edac_pci_add_device(struct edac_pci_ctl_info *pci, int edac_idx);
873
extern struct edac_pci_ctl_info *edac_pci_del_device(struct device *dev);
874

875 876 877
extern struct edac_pci_ctl_info *edac_pci_create_generic_ctl(
				struct device *dev,
				const char *mod_name);
878 879 880 881 882 883 884 885

extern void edac_pci_release_generic_ctl(struct edac_pci_ctl_info *pci);
extern int edac_pci_create_sysfs(struct edac_pci_ctl_info *pci);
extern void edac_pci_remove_sysfs(struct edac_pci_ctl_info *pci);

/*
 * edac misc APIs
 */
886
extern char *edac_op_state_to_string(int op_state);
887 888

#endif				/* _EDAC_CORE_H_ */