deadline.c 72.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * Deadline Scheduling Class (SCHED_DEADLINE)
 *
 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
 *
 * Tasks that periodically executes their instances for less than their
 * runtime won't miss any of their deadlines.
 * Tasks that are not periodic or sporadic or that tries to execute more
 * than their reserved bandwidth will be slowed down (and may potentially
 * miss some of their deadlines), and won't affect any other task.
 *
 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
13
 *                    Juri Lelli <juri.lelli@gmail.com>,
14 15 16 17 18
 *                    Michael Trimarchi <michael@amarulasolutions.com>,
 *                    Fabio Checconi <fchecconi@gmail.com>
 */
#include "sched.h"

19
#include <linux/slab.h>
20
#include <uapi/linux/sched/types.h>
21

22 23
struct dl_bandwidth def_dl_bandwidth;

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
{
	return container_of(dl_se, struct task_struct, dl);
}

static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
{
	return container_of(dl_rq, struct rq, dl);
}

static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
{
	struct task_struct *p = dl_task_of(dl_se);
	struct rq *rq = task_rq(p);

	return &rq->dl;
}

static inline int on_dl_rq(struct sched_dl_entity *dl_se)
{
	return !RB_EMPTY_NODE(&dl_se->rb_node);
}

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
#ifdef CONFIG_SMP
static inline struct dl_bw *dl_bw_of(int i)
{
	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
			 "sched RCU must be held");
	return &cpu_rq(i)->rd->dl_bw;
}

static inline int dl_bw_cpus(int i)
{
	struct root_domain *rd = cpu_rq(i)->rd;
	int cpus = 0;

	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
			 "sched RCU must be held");
	for_each_cpu_and(i, rd->span, cpu_active_mask)
		cpus++;

	return cpus;
}
#else
static inline struct dl_bw *dl_bw_of(int i)
{
	return &cpu_rq(i)->dl.dl_bw;
}

static inline int dl_bw_cpus(int i)
{
	return 1;
}
#endif

79 80 81 82 83 84 85 86
static inline
void add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
{
	u64 old = dl_rq->running_bw;

	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
	dl_rq->running_bw += dl_bw;
	SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */
87
	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
88 89 90 91 92 93 94 95 96 97 98 99 100 101
}

static inline
void sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
{
	u64 old = dl_rq->running_bw;

	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
	dl_rq->running_bw -= dl_bw;
	SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */
	if (dl_rq->running_bw > old)
		dl_rq->running_bw = 0;
}

102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
static inline
void add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
{
	u64 old = dl_rq->this_bw;

	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
	dl_rq->this_bw += dl_bw;
	SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */
}

static inline
void sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
{
	u64 old = dl_rq->this_bw;

	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
	dl_rq->this_bw -= dl_bw;
	SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */
	if (dl_rq->this_bw > old)
		dl_rq->this_bw = 0;
	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
}

125 126
void dl_change_utilization(struct task_struct *p, u64 new_bw)
{
127
	struct rq *rq;
128

129
	if (task_on_rq_queued(p))
130 131
		return;

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
	rq = task_rq(p);
	if (p->dl.dl_non_contending) {
		sub_running_bw(p->dl.dl_bw, &rq->dl);
		p->dl.dl_non_contending = 0;
		/*
		 * If the timer handler is currently running and the
		 * timer cannot be cancelled, inactive_task_timer()
		 * will see that dl_not_contending is not set, and
		 * will not touch the rq's active utilization,
		 * so we are still safe.
		 */
		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
			put_task_struct(p);
	}
	sub_rq_bw(p->dl.dl_bw, &rq->dl);
	add_rq_bw(new_bw, &rq->dl);
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
}

/*
 * The utilization of a task cannot be immediately removed from
 * the rq active utilization (running_bw) when the task blocks.
 * Instead, we have to wait for the so called "0-lag time".
 *
 * If a task blocks before the "0-lag time", a timer (the inactive
 * timer) is armed, and running_bw is decreased when the timer
 * fires.
 *
 * If the task wakes up again before the inactive timer fires,
 * the timer is cancelled, whereas if the task wakes up after the
 * inactive timer fired (and running_bw has been decreased) the
 * task's utilization has to be added to running_bw again.
 * A flag in the deadline scheduling entity (dl_non_contending)
 * is used to avoid race conditions between the inactive timer handler
 * and task wakeups.
 *
 * The following diagram shows how running_bw is updated. A task is
 * "ACTIVE" when its utilization contributes to running_bw; an
 * "ACTIVE contending" task is in the TASK_RUNNING state, while an
 * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
 * time already passed, which does not contribute to running_bw anymore.
 *                              +------------------+
 *             wakeup           |    ACTIVE        |
 *          +------------------>+   contending     |
 *          | add_running_bw    |                  |
 *          |                   +----+------+------+
 *          |                        |      ^
 *          |                dequeue |      |
 * +--------+-------+                |      |
 * |                |   t >= 0-lag   |      | wakeup
 * |    INACTIVE    |<---------------+      |
 * |                | sub_running_bw |      |
 * +--------+-------+                |      |
 *          ^                        |      |
 *          |              t < 0-lag |      |
 *          |                        |      |
 *          |                        V      |
 *          |                   +----+------+------+
 *          | sub_running_bw    |    ACTIVE        |
 *          +-------------------+                  |
 *            inactive timer    |  non contending  |
 *            fired             +------------------+
 *
 * The task_non_contending() function is invoked when a task
 * blocks, and checks if the 0-lag time already passed or
 * not (in the first case, it directly updates running_bw;
 * in the second case, it arms the inactive timer).
 *
 * The task_contending() function is invoked when a task wakes
 * up, and checks if the task is still in the "ACTIVE non contending"
 * state or not (in the second case, it updates running_bw).
 */
static void task_non_contending(struct task_struct *p)
{
	struct sched_dl_entity *dl_se = &p->dl;
	struct hrtimer *timer = &dl_se->inactive_timer;
	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
	struct rq *rq = rq_of_dl_rq(dl_rq);
	s64 zerolag_time;

	/*
	 * If this is a non-deadline task that has been boosted,
	 * do nothing
	 */
	if (dl_se->dl_runtime == 0)
		return;

	WARN_ON(hrtimer_active(&dl_se->inactive_timer));
	WARN_ON(dl_se->dl_non_contending);

	zerolag_time = dl_se->deadline -
		 div64_long((dl_se->runtime * dl_se->dl_period),
			dl_se->dl_runtime);

	/*
	 * Using relative times instead of the absolute "0-lag time"
	 * allows to simplify the code
	 */
	zerolag_time -= rq_clock(rq);

	/*
	 * If the "0-lag time" already passed, decrease the active
	 * utilization now, instead of starting a timer
	 */
	if (zerolag_time < 0) {
		if (dl_task(p))
			sub_running_bw(dl_se->dl_bw, dl_rq);
239 240 241
		if (!dl_task(p) || p->state == TASK_DEAD) {
			struct dl_bw *dl_b = dl_bw_of(task_cpu(p));

242 243
			if (p->state == TASK_DEAD)
				sub_rq_bw(p->dl.dl_bw, &rq->dl);
244
			raw_spin_lock(&dl_b->lock);
245
			__dl_clear(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
246
			__dl_clear_params(p);
247 248
			raw_spin_unlock(&dl_b->lock);
		}
249 250 251 252 253 254 255 256 257

		return;
	}

	dl_se->dl_non_contending = 1;
	get_task_struct(p);
	hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL);
}

258
static void task_contending(struct sched_dl_entity *dl_se, int flags)
259 260 261 262 263 264 265 266 267 268
{
	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);

	/*
	 * If this is a non-deadline task that has been boosted,
	 * do nothing
	 */
	if (dl_se->dl_runtime == 0)
		return;

269 270 271
	if (flags & ENQUEUE_MIGRATED)
		add_rq_bw(dl_se->dl_bw, dl_rq);

272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
	if (dl_se->dl_non_contending) {
		dl_se->dl_non_contending = 0;
		/*
		 * If the timer handler is currently running and the
		 * timer cannot be cancelled, inactive_task_timer()
		 * will see that dl_not_contending is not set, and
		 * will not touch the rq's active utilization,
		 * so we are still safe.
		 */
		if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1)
			put_task_struct(dl_task_of(dl_se));
	} else {
		/*
		 * Since "dl_non_contending" is not set, the
		 * task's utilization has already been removed from
		 * active utilization (either when the task blocked,
		 * when the "inactive timer" fired).
		 * So, add it back.
		 */
		add_running_bw(dl_se->dl_bw, dl_rq);
	}
}

295 296 297 298
static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
{
	struct sched_dl_entity *dl_se = &p->dl;

299
	return dl_rq->root.rb_leftmost == &dl_se->rb_node;
300 301
}

302 303 304 305 306 307 308 309 310 311 312
void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
{
	raw_spin_lock_init(&dl_b->dl_runtime_lock);
	dl_b->dl_period = period;
	dl_b->dl_runtime = runtime;
}

void init_dl_bw(struct dl_bw *dl_b)
{
	raw_spin_lock_init(&dl_b->lock);
	raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
313
	if (global_rt_runtime() == RUNTIME_INF)
314 315
		dl_b->bw = -1;
	else
316
		dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
317 318 319 320
	raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
	dl_b->total_bw = 0;
}

321
void init_dl_rq(struct dl_rq *dl_rq)
322
{
323
	dl_rq->root = RB_ROOT_CACHED;
324 325 326 327 328 329 330

#ifdef CONFIG_SMP
	/* zero means no -deadline tasks */
	dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;

	dl_rq->dl_nr_migratory = 0;
	dl_rq->overloaded = 0;
331
	dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
332 333
#else
	init_dl_bw(&dl_rq->dl_bw);
334
#endif
335 336

	dl_rq->running_bw = 0;
337
	dl_rq->this_bw = 0;
338
	init_dl_rq_bw_ratio(dl_rq);
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
}

#ifdef CONFIG_SMP

static inline int dl_overloaded(struct rq *rq)
{
	return atomic_read(&rq->rd->dlo_count);
}

static inline void dl_set_overload(struct rq *rq)
{
	if (!rq->online)
		return;

	cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
	/*
	 * Must be visible before the overload count is
	 * set (as in sched_rt.c).
	 *
	 * Matched by the barrier in pull_dl_task().
	 */
	smp_wmb();
	atomic_inc(&rq->rd->dlo_count);
}

static inline void dl_clear_overload(struct rq *rq)
{
	if (!rq->online)
		return;

	atomic_dec(&rq->rd->dlo_count);
	cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
}

static void update_dl_migration(struct dl_rq *dl_rq)
{
375
	if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
376 377 378 379 380 381 382 383 384 385 386 387 388 389
		if (!dl_rq->overloaded) {
			dl_set_overload(rq_of_dl_rq(dl_rq));
			dl_rq->overloaded = 1;
		}
	} else if (dl_rq->overloaded) {
		dl_clear_overload(rq_of_dl_rq(dl_rq));
		dl_rq->overloaded = 0;
	}
}

static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
{
	struct task_struct *p = dl_task_of(dl_se);

390
	if (p->nr_cpus_allowed > 1)
391 392 393 394 395 396 397 398 399
		dl_rq->dl_nr_migratory++;

	update_dl_migration(dl_rq);
}

static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
{
	struct task_struct *p = dl_task_of(dl_se);

400
	if (p->nr_cpus_allowed > 1)
401 402 403 404 405 406 407 408 409 410 411 412
		dl_rq->dl_nr_migratory--;

	update_dl_migration(dl_rq);
}

/*
 * The list of pushable -deadline task is not a plist, like in
 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
 */
static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
{
	struct dl_rq *dl_rq = &rq->dl;
413
	struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_root.rb_node;
414 415
	struct rb_node *parent = NULL;
	struct task_struct *entry;
416
	bool leftmost = true;
417 418 419 420 421 422 423 424 425 426 427

	BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));

	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct task_struct,
				 pushable_dl_tasks);
		if (dl_entity_preempt(&p->dl, &entry->dl))
			link = &parent->rb_left;
		else {
			link = &parent->rb_right;
428
			leftmost = false;
429 430 431
		}
	}

432
	if (leftmost)
433
		dl_rq->earliest_dl.next = p->dl.deadline;
434 435

	rb_link_node(&p->pushable_dl_tasks, parent, link);
436 437
	rb_insert_color_cached(&p->pushable_dl_tasks,
			       &dl_rq->pushable_dl_tasks_root, leftmost);
438 439
}

440 441 442 443 444 445 446
static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
{
	struct dl_rq *dl_rq = &rq->dl;

	if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
		return;

447
	if (dl_rq->pushable_dl_tasks_root.rb_leftmost == &p->pushable_dl_tasks) {
448 449 450
		struct rb_node *next_node;

		next_node = rb_next(&p->pushable_dl_tasks);
451 452 453 454
		if (next_node) {
			dl_rq->earliest_dl.next = rb_entry(next_node,
				struct task_struct, pushable_dl_tasks)->dl.deadline;
		}
455 456
	}

457
	rb_erase_cached(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
458 459 460 461 462
	RB_CLEAR_NODE(&p->pushable_dl_tasks);
}

static inline int has_pushable_dl_tasks(struct rq *rq)
{
463
	return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
464 465 466 467
}

static int push_dl_task(struct rq *rq);

P
Peter Zijlstra 已提交
468 469 470 471 472
static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
{
	return dl_task(prev);
}

473 474
static DEFINE_PER_CPU(struct callback_head, dl_push_head);
static DEFINE_PER_CPU(struct callback_head, dl_pull_head);
475 476

static void push_dl_tasks(struct rq *);
477
static void pull_dl_task(struct rq *);
478 479

static inline void queue_push_tasks(struct rq *rq)
P
Peter Zijlstra 已提交
480
{
481 482 483
	if (!has_pushable_dl_tasks(rq))
		return;

484 485 486 487 488 489
	queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
}

static inline void queue_pull_task(struct rq *rq)
{
	queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
P
Peter Zijlstra 已提交
490 491
}

492 493
static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);

494
static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
495 496 497 498 499 500 501 502 503 504 505
{
	struct rq *later_rq = NULL;

	later_rq = find_lock_later_rq(p, rq);
	if (!later_rq) {
		int cpu;

		/*
		 * If we cannot preempt any rq, fall back to pick any
		 * online cpu.
		 */
506
		cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
		if (cpu >= nr_cpu_ids) {
			/*
			 * Fail to find any suitable cpu.
			 * The task will never come back!
			 */
			BUG_ON(dl_bandwidth_enabled());

			/*
			 * If admission control is disabled we
			 * try a little harder to let the task
			 * run.
			 */
			cpu = cpumask_any(cpu_active_mask);
		}
		later_rq = cpu_rq(cpu);
		double_lock_balance(rq, later_rq);
	}

	set_task_cpu(p, later_rq->cpu);
526 527 528
	double_unlock_balance(later_rq, rq);

	return later_rq;
529 530
}

531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
#else

static inline
void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
{
}

static inline
void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
{
}

static inline
void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
{
}

static inline
void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
{
}

P
Peter Zijlstra 已提交
553 554 555 556 557
static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
{
	return false;
}

558
static inline void pull_dl_task(struct rq *rq)
P
Peter Zijlstra 已提交
559 560 561
{
}

562
static inline void queue_push_tasks(struct rq *rq)
P
Peter Zijlstra 已提交
563 564 565
{
}

566
static inline void queue_pull_task(struct rq *rq)
P
Peter Zijlstra 已提交
567 568
{
}
569 570
#endif /* CONFIG_SMP */

571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
				  int flags);

/*
 * We are being explicitly informed that a new instance is starting,
 * and this means that:
 *  - the absolute deadline of the entity has to be placed at
 *    current time + relative deadline;
 *  - the runtime of the entity has to be set to the maximum value.
 *
 * The capability of specifying such event is useful whenever a -deadline
 * entity wants to (try to!) synchronize its behaviour with the scheduler's
 * one, and to (try to!) reconcile itself with its own scheduling
 * parameters.
 */
588
static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
589 590 591 592
{
	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
	struct rq *rq = rq_of_dl_rq(dl_rq);

593
	WARN_ON(dl_se->dl_boosted);
594 595 596 597 598 599 600 601 602
	WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));

	/*
	 * We are racing with the deadline timer. So, do nothing because
	 * the deadline timer handler will take care of properly recharging
	 * the runtime and postponing the deadline
	 */
	if (dl_se->dl_throttled)
		return;
603 604 605 606 607 608

	/*
	 * We use the regular wall clock time to set deadlines in the
	 * future; in fact, we must consider execution overheads (time
	 * spent on hardirq context, etc.).
	 */
609 610
	dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline;
	dl_se->runtime = dl_se->dl_runtime;
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
}

/*
 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
 * possibility of a entity lasting more than what it declared, and thus
 * exhausting its runtime.
 *
 * Here we are interested in making runtime overrun possible, but we do
 * not want a entity which is misbehaving to affect the scheduling of all
 * other entities.
 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
 * is used, in order to confine each entity within its own bandwidth.
 *
 * This function deals exactly with that, and ensures that when the runtime
 * of a entity is replenished, its deadline is also postponed. That ensures
 * the overrunning entity can't interfere with other entity in the system and
 * can't make them miss their deadlines. Reasons why this kind of overruns
 * could happen are, typically, a entity voluntarily trying to overcome its
629
 * runtime, or it just underestimated it during sched_setattr().
630
 */
631 632
static void replenish_dl_entity(struct sched_dl_entity *dl_se,
				struct sched_dl_entity *pi_se)
633 634 635 636
{
	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
	struct rq *rq = rq_of_dl_rq(dl_rq);

637 638 639 640 641 642 643 644 645 646 647
	BUG_ON(pi_se->dl_runtime <= 0);

	/*
	 * This could be the case for a !-dl task that is boosted.
	 * Just go with full inherited parameters.
	 */
	if (dl_se->dl_deadline == 0) {
		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
		dl_se->runtime = pi_se->dl_runtime;
	}

648 649 650
	if (dl_se->dl_yielded && dl_se->runtime > 0)
		dl_se->runtime = 0;

651 652 653 654 655 656 657
	/*
	 * We keep moving the deadline away until we get some
	 * available runtime for the entity. This ensures correct
	 * handling of situations where the runtime overrun is
	 * arbitrary large.
	 */
	while (dl_se->runtime <= 0) {
658 659
		dl_se->deadline += pi_se->dl_period;
		dl_se->runtime += pi_se->dl_runtime;
660 661 662 663 664 665 666 667 668 669 670 671
	}

	/*
	 * At this point, the deadline really should be "in
	 * the future" with respect to rq->clock. If it's
	 * not, we are, for some reason, lagging too much!
	 * Anyway, after having warn userspace abut that,
	 * we still try to keep the things running by
	 * resetting the deadline and the budget of the
	 * entity.
	 */
	if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
672
		printk_deferred_once("sched: DL replenish lagged too much\n");
673 674
		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
		dl_se->runtime = pi_se->dl_runtime;
675
	}
676 677 678 679 680

	if (dl_se->dl_yielded)
		dl_se->dl_yielded = 0;
	if (dl_se->dl_throttled)
		dl_se->dl_throttled = 0;
681 682 683 684 685 686 687 688 689 690 691 692 693
}

/*
 * Here we check if --at time t-- an entity (which is probably being
 * [re]activated or, in general, enqueued) can use its remaining runtime
 * and its current deadline _without_ exceeding the bandwidth it is
 * assigned (function returns true if it can't). We are in fact applying
 * one of the CBS rules: when a task wakes up, if the residual runtime
 * over residual deadline fits within the allocated bandwidth, then we
 * can keep the current (absolute) deadline and residual budget without
 * disrupting the schedulability of the system. Otherwise, we should
 * refill the runtime and set the deadline a period in the future,
 * because keeping the current (absolute) deadline of the task would
694 695
 * result in breaking guarantees promised to other tasks (refer to
 * Documentation/scheduler/sched-deadline.txt for more informations).
696 697 698
 *
 * This function returns true if:
 *
699
 *   runtime / (deadline - t) > dl_runtime / dl_deadline ,
700 701
 *
 * IOW we can't recycle current parameters.
702
 *
703
 * Notice that the bandwidth check is done against the deadline. For
704
 * task with deadline equal to period this is the same of using
705
 * dl_period instead of dl_deadline in the equation above.
706
 */
707 708
static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
			       struct sched_dl_entity *pi_se, u64 t)
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
{
	u64 left, right;

	/*
	 * left and right are the two sides of the equation above,
	 * after a bit of shuffling to use multiplications instead
	 * of divisions.
	 *
	 * Note that none of the time values involved in the two
	 * multiplications are absolute: dl_deadline and dl_runtime
	 * are the relative deadline and the maximum runtime of each
	 * instance, runtime is the runtime left for the last instance
	 * and (deadline - t), since t is rq->clock, is the time left
	 * to the (absolute) deadline. Even if overflowing the u64 type
	 * is very unlikely to occur in both cases, here we scale down
	 * as we want to avoid that risk at all. Scaling down by 10
	 * means that we reduce granularity to 1us. We are fine with it,
	 * since this is only a true/false check and, anyway, thinking
	 * of anything below microseconds resolution is actually fiction
	 * (but still we want to give the user that illusion >;).
	 */
730
	left = (pi_se->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
731 732
	right = ((dl_se->deadline - t) >> DL_SCALE) *
		(pi_se->dl_runtime >> DL_SCALE);
733 734 735 736 737

	return dl_time_before(right, left);
}

/*
738 739 740 741
 * Revised wakeup rule [1]: For self-suspending tasks, rather then
 * re-initializing task's runtime and deadline, the revised wakeup
 * rule adjusts the task's runtime to avoid the task to overrun its
 * density.
742
 *
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
 * Reasoning: a task may overrun the density if:
 *    runtime / (deadline - t) > dl_runtime / dl_deadline
 *
 * Therefore, runtime can be adjusted to:
 *     runtime = (dl_runtime / dl_deadline) * (deadline - t)
 *
 * In such way that runtime will be equal to the maximum density
 * the task can use without breaking any rule.
 *
 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
 */
static void
update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
{
	u64 laxity = dl_se->deadline - rq_clock(rq);

	/*
	 * If the task has deadline < period, and the deadline is in the past,
	 * it should already be throttled before this check.
	 *
	 * See update_dl_entity() comments for further details.
	 */
	WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));

	dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
}

/*
 * Regarding the deadline, a task with implicit deadline has a relative
 * deadline == relative period. A task with constrained deadline has a
 * relative deadline <= relative period.
 *
 * We support constrained deadline tasks. However, there are some restrictions
 * applied only for tasks which do not have an implicit deadline. See
 * update_dl_entity() to know more about such restrictions.
 *
 * The dl_is_implicit() returns true if the task has an implicit deadline.
 */
static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
{
	return dl_se->dl_deadline == dl_se->dl_period;
}

/*
 * When a deadline entity is placed in the runqueue, its runtime and deadline
 * might need to be updated. This is done by a CBS wake up rule. There are two
 * different rules: 1) the original CBS; and 2) the Revisited CBS.
 *
 * When the task is starting a new period, the Original CBS is used. In this
 * case, the runtime is replenished and a new absolute deadline is set.
 *
 * When a task is queued before the begin of the next period, using the
 * remaining runtime and deadline could make the entity to overflow, see
 * dl_entity_overflow() to find more about runtime overflow. When such case
 * is detected, the runtime and deadline need to be updated.
 *
 * If the task has an implicit deadline, i.e., deadline == period, the Original
 * CBS is applied. the runtime is replenished and a new absolute deadline is
 * set, as in the previous cases.
 *
 * However, the Original CBS does not work properly for tasks with
 * deadline < period, which are said to have a constrained deadline. By
 * applying the Original CBS, a constrained deadline task would be able to run
 * runtime/deadline in a period. With deadline < period, the task would
 * overrun the runtime/period allowed bandwidth, breaking the admission test.
 *
 * In order to prevent this misbehave, the Revisited CBS is used for
 * constrained deadline tasks when a runtime overflow is detected. In the
 * Revisited CBS, rather than replenishing & setting a new absolute deadline,
 * the remaining runtime of the task is reduced to avoid runtime overflow.
 * Please refer to the comments update_dl_revised_wakeup() function to find
 * more about the Revised CBS rule.
816
 */
817 818
static void update_dl_entity(struct sched_dl_entity *dl_se,
			     struct sched_dl_entity *pi_se)
819 820 821 822 823
{
	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
	struct rq *rq = rq_of_dl_rq(dl_rq);

	if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
824
	    dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
825 826 827 828 829 830 831 832

		if (unlikely(!dl_is_implicit(dl_se) &&
			     !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
			     !dl_se->dl_boosted)){
			update_dl_revised_wakeup(dl_se, rq);
			return;
		}

833 834
		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
		dl_se->runtime = pi_se->dl_runtime;
835 836 837
	}
}

838 839 840 841 842
static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
{
	return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
}

843 844 845
/*
 * If the entity depleted all its runtime, and if we want it to sleep
 * while waiting for some new execution time to become available, we
846
 * set the bandwidth replenishment timer to the replenishment instant
847 848 849 850 851 852
 * and try to activate it.
 *
 * Notice that it is important for the caller to know if the timer
 * actually started or not (i.e., the replenishment instant is in
 * the future or in the past).
 */
853
static int start_dl_timer(struct task_struct *p)
854
{
855 856 857
	struct sched_dl_entity *dl_se = &p->dl;
	struct hrtimer *timer = &dl_se->dl_timer;
	struct rq *rq = task_rq(p);
858 859 860
	ktime_t now, act;
	s64 delta;

861 862
	lockdep_assert_held(&rq->lock);

863 864 865 866 867
	/*
	 * We want the timer to fire at the deadline, but considering
	 * that it is actually coming from rq->clock and not from
	 * hrtimer's time base reading.
	 */
868
	act = ns_to_ktime(dl_next_period(dl_se));
869
	now = hrtimer_cb_get_time(timer);
870 871 872 873 874 875 876 877 878 879 880
	delta = ktime_to_ns(now) - rq_clock(rq);
	act = ktime_add_ns(act, delta);

	/*
	 * If the expiry time already passed, e.g., because the value
	 * chosen as the deadline is too small, don't even try to
	 * start the timer in the past!
	 */
	if (ktime_us_delta(act, now) < 0)
		return 0;

881 882 883 884 885 886 887 888 889 890 891 892 893
	/*
	 * !enqueued will guarantee another callback; even if one is already in
	 * progress. This ensures a balanced {get,put}_task_struct().
	 *
	 * The race against __run_timer() clearing the enqueued state is
	 * harmless because we're holding task_rq()->lock, therefore the timer
	 * expiring after we've done the check will wait on its task_rq_lock()
	 * and observe our state.
	 */
	if (!hrtimer_is_queued(timer)) {
		get_task_struct(p);
		hrtimer_start(timer, act, HRTIMER_MODE_ABS);
	}
894

895
	return 1;
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
}

/*
 * This is the bandwidth enforcement timer callback. If here, we know
 * a task is not on its dl_rq, since the fact that the timer was running
 * means the task is throttled and needs a runtime replenishment.
 *
 * However, what we actually do depends on the fact the task is active,
 * (it is on its rq) or has been removed from there by a call to
 * dequeue_task_dl(). In the former case we must issue the runtime
 * replenishment and add the task back to the dl_rq; in the latter, we just
 * do nothing but clearing dl_throttled, so that runtime and deadline
 * updating (and the queueing back to dl_rq) will be done by the
 * next call to enqueue_task_dl().
 */
static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
{
	struct sched_dl_entity *dl_se = container_of(timer,
						     struct sched_dl_entity,
						     dl_timer);
	struct task_struct *p = dl_task_of(dl_se);
917
	struct rq_flags rf;
918
	struct rq *rq;
919

920
	rq = task_rq_lock(p, &rf);
921

922
	/*
923
	 * The task might have changed its scheduling policy to something
924
	 * different than SCHED_DEADLINE (through switched_from_dl()).
925
	 */
926
	if (!dl_task(p))
927 928 929 930 931 932 933 934
		goto unlock;

	/*
	 * The task might have been boosted by someone else and might be in the
	 * boosting/deboosting path, its not throttled.
	 */
	if (dl_se->dl_boosted)
		goto unlock;
935

936
	/*
937 938
	 * Spurious timer due to start_dl_timer() race; or we already received
	 * a replenishment from rt_mutex_setprio().
939
	 */
940
	if (!dl_se->dl_throttled)
941
		goto unlock;
942 943 944

	sched_clock_tick();
	update_rq_clock(rq);
945

946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
	/*
	 * If the throttle happened during sched-out; like:
	 *
	 *   schedule()
	 *     deactivate_task()
	 *       dequeue_task_dl()
	 *         update_curr_dl()
	 *           start_dl_timer()
	 *         __dequeue_task_dl()
	 *     prev->on_rq = 0;
	 *
	 * We can be both throttled and !queued. Replenish the counter
	 * but do not enqueue -- wait for our wakeup to do that.
	 */
	if (!task_on_rq_queued(p)) {
		replenish_dl_entity(dl_se, dl_se);
		goto unlock;
	}

965
#ifdef CONFIG_SMP
966
	if (unlikely(!rq->online)) {
967 968 969 970
		/*
		 * If the runqueue is no longer available, migrate the
		 * task elsewhere. This necessarily changes rq.
		 */
971
		lockdep_unpin_lock(&rq->lock, rf.cookie);
972
		rq = dl_task_offline_migration(rq, p);
973
		rf.cookie = lockdep_pin_lock(&rq->lock);
974
		update_rq_clock(rq);
975 976 977 978 979 980

		/*
		 * Now that the task has been migrated to the new RQ and we
		 * have that locked, proceed as normal and enqueue the task
		 * there.
		 */
981
	}
982
#endif
983

984 985 986 987 988
	enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
	if (dl_task(rq->curr))
		check_preempt_curr_dl(rq, p, 0);
	else
		resched_curr(rq);
989

990
#ifdef CONFIG_SMP
991 992 993
	/*
	 * Queueing this task back might have overloaded rq, check if we need
	 * to kick someone away.
994
	 */
995 996 997 998 999
	if (has_pushable_dl_tasks(rq)) {
		/*
		 * Nothing relies on rq->lock after this, so its safe to drop
		 * rq->lock.
		 */
1000
		rq_unpin_lock(rq, &rf);
1001
		push_dl_task(rq);
1002
		rq_repin_lock(rq, &rf);
1003
	}
1004
#endif
1005

1006
unlock:
1007
	task_rq_unlock(rq, p, &rf);
1008

1009 1010 1011 1012 1013 1014
	/*
	 * This can free the task_struct, including this hrtimer, do not touch
	 * anything related to that after this.
	 */
	put_task_struct(p);

1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
	return HRTIMER_NORESTART;
}

void init_dl_task_timer(struct sched_dl_entity *dl_se)
{
	struct hrtimer *timer = &dl_se->dl_timer;

	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	timer->function = dl_task_timer;
}

1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
/*
 * During the activation, CBS checks if it can reuse the current task's
 * runtime and period. If the deadline of the task is in the past, CBS
 * cannot use the runtime, and so it replenishes the task. This rule
 * works fine for implicit deadline tasks (deadline == period), and the
 * CBS was designed for implicit deadline tasks. However, a task with
 * constrained deadline (deadine < period) might be awakened after the
 * deadline, but before the next period. In this case, replenishing the
 * task would allow it to run for runtime / deadline. As in this case
 * deadline < period, CBS enables a task to run for more than the
 * runtime / period. In a very loaded system, this can cause a domino
 * effect, making other tasks miss their deadlines.
 *
 * To avoid this problem, in the activation of a constrained deadline
 * task after the deadline but before the next period, throttle the
 * task and set the replenishing timer to the begin of the next period,
 * unless it is boosted.
 */
static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
{
	struct task_struct *p = dl_task_of(dl_se);
	struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se));

	if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
	    dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
		if (unlikely(dl_se->dl_boosted || !start_dl_timer(p)))
			return;
		dl_se->dl_throttled = 1;
1054 1055
		if (dl_se->runtime > 0)
			dl_se->runtime = 0;
1056 1057 1058
	}
}

1059
static
1060
int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
1061
{
1062
	return (dl_se->runtime <= 0);
1063 1064
}

1065 1066
extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);

1067 1068 1069
/*
 * This function implements the GRUB accounting rule:
 * according to the GRUB reclaiming algorithm, the runtime is
1070 1071 1072 1073 1074 1075 1076
 * not decreased as "dq = -dt", but as
 * "dq = -max{u / Umax, (1 - Uinact - Uextra)} dt",
 * where u is the utilization of the task, Umax is the maximum reclaimable
 * utilization, Uinact is the (per-runqueue) inactive utilization, computed
 * as the difference between the "total runqueue utilization" and the
 * runqueue active utilization, and Uextra is the (per runqueue) extra
 * reclaimable utilization.
1077
 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations
1078 1079 1080 1081 1082 1083 1084
 * multiplied by 2^BW_SHIFT, the result has to be shifted right by
 * BW_SHIFT.
 * Since rq->dl.bw_ratio contains 1 / Umax multipled by 2^RATIO_SHIFT,
 * dl_bw is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
 * Since delta is a 64 bit variable, to have an overflow its value
 * should be larger than 2^(64 - 20 - 8), which is more than 64 seconds.
 * So, overflow is not an issue here.
1085
 */
1086
u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
1087
{
1088 1089
	u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
	u64 u_act;
1090
	u64 u_act_min = (dl_se->dl_bw * rq->dl.bw_ratio) >> RATIO_SHIFT;
1091

1092
	/*
1093 1094 1095 1096 1097 1098
	 * Instead of computing max{u * bw_ratio, (1 - u_inact - u_extra)},
	 * we compare u_inact + rq->dl.extra_bw with
	 * 1 - (u * rq->dl.bw_ratio >> RATIO_SHIFT), because
	 * u_inact + rq->dl.extra_bw can be larger than
	 * 1 * (so, 1 - u_inact - rq->dl.extra_bw would be negative
	 * leading to wrong results)
1099
	 */
1100 1101
	if (u_inact + rq->dl.extra_bw > BW_UNIT - u_act_min)
		u_act = u_act_min;
1102
	else
1103
		u_act = BW_UNIT - u_inact - rq->dl.extra_bw;
1104 1105

	return (delta * u_act) >> BW_SHIFT;
1106 1107
}

1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
/*
 * Update the current task's runtime statistics (provided it is still
 * a -deadline task and has not been removed from the dl_rq).
 */
static void update_curr_dl(struct rq *rq)
{
	struct task_struct *curr = rq->curr;
	struct sched_dl_entity *dl_se = &curr->dl;
	u64 delta_exec;

	if (!dl_task(curr) || !on_dl_rq(dl_se))
		return;

	/*
	 * Consumed budget is computed considering the time as
	 * observed by schedulable tasks (excluding time spent
	 * in hardirq context, etc.). Deadlines are instead
	 * computed using hard walltime. This seems to be the more
	 * natural solution, but the full ramifications of this
	 * approach need further study.
	 */
	delta_exec = rq_clock_task(rq) - curr->se.exec_start;
1130 1131 1132
	if (unlikely((s64)delta_exec <= 0)) {
		if (unlikely(dl_se->dl_yielded))
			goto throttle;
1133
		return;
1134
	}
1135

1136
	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
1137
	cpufreq_update_util(rq, SCHED_CPUFREQ_DL);
1138

1139 1140 1141 1142 1143 1144 1145 1146 1147
	schedstat_set(curr->se.statistics.exec_max,
		      max(curr->se.statistics.exec_max, delta_exec));

	curr->se.sum_exec_runtime += delta_exec;
	account_group_exec_runtime(curr, delta_exec);

	curr->se.exec_start = rq_clock_task(rq);
	cpuacct_charge(curr, delta_exec);

1148 1149
	sched_rt_avg_update(rq, delta_exec);

1150
	if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM))
1151
		delta_exec = grub_reclaim(delta_exec, rq, &curr->dl);
1152 1153 1154 1155
	dl_se->runtime -= delta_exec;

throttle:
	if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1156
		dl_se->dl_throttled = 1;
1157
		__dequeue_task_dl(rq, curr, 0);
1158
		if (unlikely(dl_se->dl_boosted || !start_dl_timer(curr)))
1159 1160 1161
			enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);

		if (!is_leftmost(curr, &rq->dl))
1162
			resched_curr(rq);
1163
	}
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181

	/*
	 * Because -- for now -- we share the rt bandwidth, we need to
	 * account our runtime there too, otherwise actual rt tasks
	 * would be able to exceed the shared quota.
	 *
	 * Account to the root rt group for now.
	 *
	 * The solution we're working towards is having the RT groups scheduled
	 * using deadline servers -- however there's a few nasties to figure
	 * out before that can happen.
	 */
	if (rt_bandwidth_enabled()) {
		struct rt_rq *rt_rq = &rq->rt;

		raw_spin_lock(&rt_rq->rt_runtime_lock);
		/*
		 * We'll let actual RT tasks worry about the overflow here, we
1182 1183
		 * have our own CBS to keep us inline; only account when RT
		 * bandwidth is relevant.
1184
		 */
1185 1186
		if (sched_rt_bandwidth_account(rt_rq))
			rt_rq->rt_time += delta_exec;
1187 1188
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
	}
1189 1190
}

1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
{
	struct sched_dl_entity *dl_se = container_of(timer,
						     struct sched_dl_entity,
						     inactive_timer);
	struct task_struct *p = dl_task_of(dl_se);
	struct rq_flags rf;
	struct rq *rq;

	rq = task_rq_lock(p, &rf);

	if (!dl_task(p) || p->state == TASK_DEAD) {
1203 1204
		struct dl_bw *dl_b = dl_bw_of(task_cpu(p));

1205 1206
		if (p->state == TASK_DEAD && dl_se->dl_non_contending) {
			sub_running_bw(p->dl.dl_bw, dl_rq_of_se(&p->dl));
1207
			sub_rq_bw(p->dl.dl_bw, dl_rq_of_se(&p->dl));
1208 1209
			dl_se->dl_non_contending = 0;
		}
1210 1211

		raw_spin_lock(&dl_b->lock);
1212
		__dl_clear(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
1213
		raw_spin_unlock(&dl_b->lock);
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
		__dl_clear_params(p);

		goto unlock;
	}
	if (dl_se->dl_non_contending == 0)
		goto unlock;

	sched_clock_tick();
	update_rq_clock(rq);

	sub_running_bw(dl_se->dl_bw, &rq->dl);
	dl_se->dl_non_contending = 0;
unlock:
	task_rq_unlock(rq, p, &rf);
	put_task_struct(p);

	return HRTIMER_NORESTART;
}

void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
{
	struct hrtimer *timer = &dl_se->inactive_timer;

	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	timer->function = inactive_task_timer;
}

1241 1242 1243 1244 1245 1246 1247 1248 1249
#ifdef CONFIG_SMP

static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
{
	struct rq *rq = rq_of_dl_rq(dl_rq);

	if (dl_rq->earliest_dl.curr == 0 ||
	    dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
		dl_rq->earliest_dl.curr = deadline;
1250
		cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
	}
}

static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
{
	struct rq *rq = rq_of_dl_rq(dl_rq);

	/*
	 * Since we may have removed our earliest (and/or next earliest)
	 * task we must recompute them.
	 */
	if (!dl_rq->dl_nr_running) {
		dl_rq->earliest_dl.curr = 0;
		dl_rq->earliest_dl.next = 0;
1265
		cpudl_clear(&rq->rd->cpudl, rq->cpu);
1266
	} else {
1267
		struct rb_node *leftmost = dl_rq->root.rb_leftmost;
1268 1269 1270 1271
		struct sched_dl_entity *entry;

		entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
		dl_rq->earliest_dl.curr = entry->deadline;
1272
		cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
	}
}

#else

static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}

#endif /* CONFIG_SMP */

static inline
void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
{
	int prio = dl_task_of(dl_se)->prio;
	u64 deadline = dl_se->deadline;

	WARN_ON(!dl_prio(prio));
	dl_rq->dl_nr_running++;
1291
	add_nr_running(rq_of_dl_rq(dl_rq), 1);
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304

	inc_dl_deadline(dl_rq, deadline);
	inc_dl_migration(dl_se, dl_rq);
}

static inline
void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
{
	int prio = dl_task_of(dl_se)->prio;

	WARN_ON(!dl_prio(prio));
	WARN_ON(!dl_rq->dl_nr_running);
	dl_rq->dl_nr_running--;
1305
	sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1306 1307 1308 1309 1310

	dec_dl_deadline(dl_rq, dl_se->deadline);
	dec_dl_migration(dl_se, dl_rq);
}

1311 1312 1313
static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
{
	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1314
	struct rb_node **link = &dl_rq->root.rb_root.rb_node;
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
	struct rb_node *parent = NULL;
	struct sched_dl_entity *entry;
	int leftmost = 1;

	BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));

	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_dl_entity, rb_node);
		if (dl_time_before(dl_se->deadline, entry->deadline))
			link = &parent->rb_left;
		else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	rb_link_node(&dl_se->rb_node, parent, link);
1333
	rb_insert_color_cached(&dl_se->rb_node, &dl_rq->root, leftmost);
1334

1335
	inc_dl_tasks(dl_se, dl_rq);
1336 1337 1338 1339 1340 1341 1342 1343 1344
}

static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
{
	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);

	if (RB_EMPTY_NODE(&dl_se->rb_node))
		return;

1345
	rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
1346 1347
	RB_CLEAR_NODE(&dl_se->rb_node);

1348
	dec_dl_tasks(dl_se, dl_rq);
1349 1350 1351
}

static void
1352 1353
enqueue_dl_entity(struct sched_dl_entity *dl_se,
		  struct sched_dl_entity *pi_se, int flags)
1354 1355 1356 1357 1358 1359 1360 1361
{
	BUG_ON(on_dl_rq(dl_se));

	/*
	 * If this is a wakeup or a new instance, the scheduling
	 * parameters of the task might need updating. Otherwise,
	 * we want a replenishment of its runtime.
	 */
1362
	if (flags & ENQUEUE_WAKEUP) {
1363
		task_contending(dl_se, flags);
1364
		update_dl_entity(dl_se, pi_se);
1365
	} else if (flags & ENQUEUE_REPLENISH) {
1366
		replenish_dl_entity(dl_se, pi_se);
1367
	}
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378

	__enqueue_dl_entity(dl_se);
}

static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
{
	__dequeue_dl_entity(dl_se);
}

static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
{
1379 1380 1381 1382
	struct task_struct *pi_task = rt_mutex_get_top_task(p);
	struct sched_dl_entity *pi_se = &p->dl;

	/*
1383 1384 1385 1386 1387 1388
	 * Use the scheduling parameters of the top pi-waiter task if:
	 * - we have a top pi-waiter which is a SCHED_DEADLINE task AND
	 * - our dl_boosted is set (i.e. the pi-waiter's (absolute) deadline is
	 *   smaller than our deadline OR we are a !SCHED_DEADLINE task getting
	 *   boosted due to a SCHED_DEADLINE pi-waiter).
	 * Otherwise we keep our runtime and deadline.
1389
	 */
1390
	if (pi_task && dl_prio(pi_task->normal_prio) && p->dl.dl_boosted) {
1391
		pi_se = &pi_task->dl;
1392 1393 1394
	} else if (!dl_prio(p->normal_prio)) {
		/*
		 * Special case in which we have a !SCHED_DEADLINE task
1395
		 * that is going to be deboosted, but exceeds its
1396 1397 1398 1399 1400 1401 1402
		 * runtime while doing so. No point in replenishing
		 * it, as it's going to return back to its original
		 * scheduling class after this.
		 */
		BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH);
		return;
	}
1403

1404 1405 1406 1407 1408 1409
	/*
	 * Check if a constrained deadline task was activated
	 * after the deadline but before the next period.
	 * If that is the case, the task will be throttled and
	 * the replenishment timer will be set to the next period.
	 */
1410
	if (!p->dl.dl_throttled && !dl_is_implicit(&p->dl))
1411 1412
		dl_check_constrained_dl(&p->dl);

1413 1414
	if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE) {
		add_rq_bw(p->dl.dl_bw, &rq->dl);
1415
		add_running_bw(p->dl.dl_bw, &rq->dl);
1416
	}
1417

1418
	/*
1419
	 * If p is throttled, we do not enqueue it. In fact, if it exhausted
1420 1421 1422
	 * its budget it needs a replenishment and, since it now is on
	 * its rq, the bandwidth timer callback (which clearly has not
	 * run yet) will take care of this.
1423 1424 1425 1426 1427 1428
	 * However, the active utilization does not depend on the fact
	 * that the task is on the runqueue or not (but depends on the
	 * task's state - in GRUB parlance, "inactive" vs "active contending").
	 * In other words, even if a task is throttled its utilization must
	 * be counted in the active utilization; hence, we need to call
	 * add_running_bw().
1429
	 */
1430
	if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
1431
		if (flags & ENQUEUE_WAKEUP)
1432
			task_contending(&p->dl, flags);
1433

1434
		return;
1435
	}
1436

1437
	enqueue_dl_entity(&p->dl, pi_se, flags);
1438

1439
	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1440
		enqueue_pushable_dl_task(rq, p);
1441 1442 1443 1444 1445
}

static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
{
	dequeue_dl_entity(&p->dl);
1446
	dequeue_pushable_dl_task(rq, p);
1447 1448 1449 1450 1451 1452
}

static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
{
	update_curr_dl(rq);
	__dequeue_task_dl(rq, p, flags);
1453

1454
	if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE) {
1455
		sub_running_bw(p->dl.dl_bw, &rq->dl);
1456 1457
		sub_rq_bw(p->dl.dl_bw, &rq->dl);
	}
1458 1459

	/*
1460 1461
	 * This check allows to start the inactive timer (or to immediately
	 * decrease the active utilization, if needed) in two cases:
1462 1463 1464 1465 1466 1467 1468
	 * when the task blocks and when it is terminating
	 * (p->state == TASK_DEAD). We can handle the two cases in the same
	 * way, because from GRUB's point of view the same thing is happening
	 * (the task moves from "active contending" to "active non contending"
	 * or "inactive")
	 */
	if (flags & DEQUEUE_SLEEP)
1469
		task_non_contending(p);
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
}

/*
 * Yield task semantic for -deadline tasks is:
 *
 *   get off from the CPU until our next instance, with
 *   a new runtime. This is of little use now, since we
 *   don't have a bandwidth reclaiming mechanism. Anyway,
 *   bandwidth reclaiming is planned for the future, and
 *   yield_task_dl will indicate that some spare budget
 *   is available for other task instances to use it.
 */
static void yield_task_dl(struct rq *rq)
{
	/*
	 * We make the task go to sleep until its current deadline by
	 * forcing its runtime to zero. This way, update_curr_dl() stops
	 * it and the bandwidth timer will wake it up and will give it
1488
	 * new scheduling parameters (thanks to dl_yielded=1).
1489
	 */
1490 1491
	rq->curr->dl.dl_yielded = 1;

1492
	update_rq_clock(rq);
1493
	update_curr_dl(rq);
1494 1495 1496 1497 1498 1499
	/*
	 * Tell update_rq_clock() that we've just updated,
	 * so we don't do microscopic update in schedule()
	 * and double the fastpath cost.
	 */
	rq_clock_skip_update(rq, true);
1500 1501
}

1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
#ifdef CONFIG_SMP

static int find_later_rq(struct task_struct *task);

static int
select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
{
	struct task_struct *curr;
	struct rq *rq;

1512
	if (sd_flag != SD_BALANCE_WAKE)
1513 1514 1515 1516 1517
		goto out;

	rq = cpu_rq(cpu);

	rcu_read_lock();
1518
	curr = READ_ONCE(rq->curr); /* unlocked access */
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529

	/*
	 * If we are dealing with a -deadline task, we must
	 * decide where to wake it up.
	 * If it has a later deadline and the current task
	 * on this rq can't move (provided the waking task
	 * can!) we prefer to send it somewhere else. On the
	 * other hand, if it has a shorter deadline, we
	 * try to make it stay here, it might be important.
	 */
	if (unlikely(dl_task(curr)) &&
1530
	    (curr->nr_cpus_allowed < 2 ||
1531
	     !dl_entity_preempt(&p->dl, &curr->dl)) &&
1532
	    (p->nr_cpus_allowed > 1)) {
1533 1534
		int target = find_later_rq(p);

1535
		if (target != -1 &&
1536 1537 1538
				(dl_time_before(p->dl.deadline,
					cpu_rq(target)->dl.earliest_dl.curr) ||
				(cpu_rq(target)->dl.dl_nr_running == 0)))
1539 1540 1541 1542 1543 1544 1545 1546
			cpu = target;
	}
	rcu_read_unlock();

out:
	return cpu;
}

1547 1548 1549 1550
static void migrate_task_rq_dl(struct task_struct *p)
{
	struct rq *rq;

1551
	if (p->state != TASK_WAKING)
1552 1553 1554 1555 1556 1557 1558 1559 1560
		return;

	rq = task_rq(p);
	/*
	 * Since p->state == TASK_WAKING, set_task_cpu() has been called
	 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
	 * rq->lock is not... So, lock it
	 */
	raw_spin_lock(&rq->lock);
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
	if (p->dl.dl_non_contending) {
		sub_running_bw(p->dl.dl_bw, &rq->dl);
		p->dl.dl_non_contending = 0;
		/*
		 * If the timer handler is currently running and the
		 * timer cannot be cancelled, inactive_task_timer()
		 * will see that dl_not_contending is not set, and
		 * will not touch the rq's active utilization,
		 * so we are still safe.
		 */
		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
			put_task_struct(p);
	}
	sub_rq_bw(p->dl.dl_bw, &rq->dl);
1575 1576 1577
	raw_spin_unlock(&rq->lock);
}

1578 1579 1580 1581 1582 1583
static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
{
	/*
	 * Current can't be migrated, useless to reschedule,
	 * let's hope p can move out.
	 */
1584
	if (rq->curr->nr_cpus_allowed == 1 ||
1585
	    !cpudl_find(&rq->rd->cpudl, rq->curr, NULL))
1586 1587 1588 1589 1590 1591
		return;

	/*
	 * p is migratable, so let's not schedule it and
	 * see if it is pushed or pulled somewhere else.
	 */
1592
	if (p->nr_cpus_allowed != 1 &&
1593
	    cpudl_find(&rq->rd->cpudl, p, NULL))
1594 1595
		return;

1596
	resched_curr(rq);
1597 1598 1599 1600
}

#endif /* CONFIG_SMP */

1601 1602 1603 1604 1605 1606 1607
/*
 * Only called when both the current and waking task are -deadline
 * tasks.
 */
static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
				  int flags)
{
1608
	if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
1609
		resched_curr(rq);
1610 1611 1612 1613 1614 1615 1616 1617
		return;
	}

#ifdef CONFIG_SMP
	/*
	 * In the unlikely case current and p have the same deadline
	 * let us try to decide what's the best thing to do...
	 */
1618 1619
	if ((p->dl.deadline == rq->curr->dl.deadline) &&
	    !test_tsk_need_resched(rq->curr))
1620 1621
		check_preempt_equal_dl(rq, p);
#endif /* CONFIG_SMP */
1622 1623 1624 1625 1626
}

#ifdef CONFIG_SCHED_HRTICK
static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
{
1627
	hrtick_start(rq, p->dl.runtime);
1628
}
1629 1630 1631 1632
#else /* !CONFIG_SCHED_HRTICK */
static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
{
}
1633 1634 1635 1636 1637
#endif

static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
						   struct dl_rq *dl_rq)
{
1638
	struct rb_node *left = rb_first_cached(&dl_rq->root);
1639 1640 1641 1642 1643 1644 1645

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_dl_entity, rb_node);
}

1646
static struct task_struct *
1647
pick_next_task_dl(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
1648 1649 1650 1651 1652 1653 1654
{
	struct sched_dl_entity *dl_se;
	struct task_struct *p;
	struct dl_rq *dl_rq;

	dl_rq = &rq->dl;

1655
	if (need_pull_dl_task(rq, prev)) {
1656 1657 1658 1659 1660 1661
		/*
		 * This is OK, because current is on_cpu, which avoids it being
		 * picked for load-balance and preemption/IRQs are still
		 * disabled avoiding further scheduler activity on it and we're
		 * being very careful to re-start the picking loop.
		 */
1662
		rq_unpin_lock(rq, rf);
1663
		pull_dl_task(rq);
1664
		rq_repin_lock(rq, rf);
1665
		/*
1666
		 * pull_dl_task() can drop (and re-acquire) rq->lock; this
1667 1668 1669
		 * means a stop task can slip in, in which case we need to
		 * re-start task selection.
		 */
1670
		if (rq->stop && task_on_rq_queued(rq->stop))
1671 1672 1673
			return RETRY_TASK;
	}

1674 1675 1676 1677 1678 1679
	/*
	 * When prev is DL, we may throttle it in put_prev_task().
	 * So, we update time before we check for dl_nr_running.
	 */
	if (prev->sched_class == &dl_sched_class)
		update_curr_dl(rq);
1680

1681 1682 1683
	if (unlikely(!dl_rq->dl_nr_running))
		return NULL;

1684
	put_prev_task(rq, prev);
1685

1686 1687 1688 1689 1690
	dl_se = pick_next_dl_entity(rq, dl_rq);
	BUG_ON(!dl_se);

	p = dl_task_of(dl_se);
	p->se.exec_start = rq_clock_task(rq);
1691 1692

	/* Running task will never be pushed. */
1693
       dequeue_pushable_dl_task(rq, p);
1694

1695 1696
	if (hrtick_enabled(rq))
		start_hrtick_dl(rq, p);
1697

1698
	queue_push_tasks(rq);
1699

1700 1701 1702 1703 1704 1705
	return p;
}

static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
{
	update_curr_dl(rq);
1706

1707
	if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
1708
		enqueue_pushable_dl_task(rq, p);
1709 1710 1711 1712 1713 1714
}

static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
{
	update_curr_dl(rq);

1715 1716 1717 1718 1719 1720 1721
	/*
	 * Even when we have runtime, update_curr_dl() might have resulted in us
	 * not being the leftmost task anymore. In that case NEED_RESCHED will
	 * be set and schedule() will start a new hrtick for the next task.
	 */
	if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 &&
	    is_leftmost(p, &rq->dl))
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
		start_hrtick_dl(rq, p);
}

static void task_fork_dl(struct task_struct *p)
{
	/*
	 * SCHED_DEADLINE tasks cannot fork and this is achieved through
	 * sched_fork()
	 */
}

static void set_curr_task_dl(struct rq *rq)
{
	struct task_struct *p = rq->curr;

	p->se.exec_start = rq_clock_task(rq);
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750

	/* You can't push away the running task */
	dequeue_pushable_dl_task(rq, p);
}

#ifdef CONFIG_SMP

/* Only try algorithms three times */
#define DL_MAX_TRIES 3

static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
{
	if (!task_running(rq, p) &&
1751
	    cpumask_test_cpu(cpu, &p->cpus_allowed))
1752 1753 1754 1755
		return 1;
	return 0;
}

1756 1757 1758 1759 1760 1761
/*
 * Return the earliest pushable rq's task, which is suitable to be executed
 * on the CPU, NULL otherwise:
 */
static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
{
1762
	struct rb_node *next_node = rq->dl.pushable_dl_tasks_root.rb_leftmost;
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
	struct task_struct *p = NULL;

	if (!has_pushable_dl_tasks(rq))
		return NULL;

next_node:
	if (next_node) {
		p = rb_entry(next_node, struct task_struct, pushable_dl_tasks);

		if (pick_dl_task(rq, p, cpu))
			return p;

		next_node = rb_next(next_node);
		goto next_node;
	}

	return NULL;
}

1782 1783 1784 1785 1786
static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);

static int find_later_rq(struct task_struct *task)
{
	struct sched_domain *sd;
1787
	struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
1788
	int this_cpu = smp_processor_id();
1789
	int cpu = task_cpu(task);
1790 1791 1792 1793 1794

	/* Make sure the mask is initialized first */
	if (unlikely(!later_mask))
		return -1;

1795
	if (task->nr_cpus_allowed == 1)
1796 1797
		return -1;

1798 1799 1800 1801
	/*
	 * We have to consider system topology and task affinity
	 * first, then we can look for a suitable cpu.
	 */
1802
	if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
1803 1804 1805
		return -1;

	/*
1806 1807 1808 1809
	 * If we are here, some targets have been found, including
	 * the most suitable which is, among the runqueues where the
	 * current tasks have later deadlines than the task's one, the
	 * rq with the latest possible one.
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
	 *
	 * Now we check how well this matches with task's
	 * affinity and system topology.
	 *
	 * The last cpu where the task run is our first
	 * guess, since it is most likely cache-hot there.
	 */
	if (cpumask_test_cpu(cpu, later_mask))
		return cpu;
	/*
	 * Check if this_cpu is to be skipped (i.e., it is
	 * not in the mask) or not.
	 */
	if (!cpumask_test_cpu(this_cpu, later_mask))
		this_cpu = -1;

	rcu_read_lock();
	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_AFFINE) {
1829
			int best_cpu;
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840

			/*
			 * If possible, preempting this_cpu is
			 * cheaper than migrating.
			 */
			if (this_cpu != -1 &&
			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
				rcu_read_unlock();
				return this_cpu;
			}

1841 1842
			best_cpu = cpumask_first_and(later_mask,
							sched_domain_span(sd));
1843
			/*
1844 1845 1846 1847
			 * Last chance: if a cpu being in both later_mask
			 * and current sd span is valid, that becomes our
			 * choice. Of course, the latest possible cpu is
			 * already under consideration through later_mask.
1848
			 */
1849
			if (best_cpu < nr_cpu_ids) {
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
				rcu_read_unlock();
				return best_cpu;
			}
		}
	}
	rcu_read_unlock();

	/*
	 * At this point, all our guesses failed, we just return
	 * 'something', and let the caller sort the things out.
	 */
	if (this_cpu != -1)
		return this_cpu;

	cpu = cpumask_any(later_mask);
	if (cpu < nr_cpu_ids)
		return cpu;

	return -1;
}

/* Locks the rq it finds */
static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
{
	struct rq *later_rq = NULL;
	int tries;
	int cpu;

	for (tries = 0; tries < DL_MAX_TRIES; tries++) {
		cpu = find_later_rq(task);

		if ((cpu == -1) || (cpu == rq->cpu))
			break;

		later_rq = cpu_rq(cpu);

1886 1887
		if (later_rq->dl.dl_nr_running &&
		    !dl_time_before(task->dl.deadline,
1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
					later_rq->dl.earliest_dl.curr)) {
			/*
			 * Target rq has tasks of equal or earlier deadline,
			 * retrying does not release any lock and is unlikely
			 * to yield a different result.
			 */
			later_rq = NULL;
			break;
		}

1898 1899 1900
		/* Retry if something changed. */
		if (double_lock_balance(rq, later_rq)) {
			if (unlikely(task_rq(task) != rq ||
1901
				     !cpumask_test_cpu(later_rq->cpu, &task->cpus_allowed) ||
1902
				     task_running(rq, task) ||
1903
				     !dl_task(task) ||
1904
				     !task_on_rq_queued(task))) {
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
				double_unlock_balance(rq, later_rq);
				later_rq = NULL;
				break;
			}
		}

		/*
		 * If the rq we found has no -deadline task, or
		 * its earliest one has a later deadline than our
		 * task, the rq is a good one.
		 */
		if (!later_rq->dl.dl_nr_running ||
		    dl_time_before(task->dl.deadline,
				   later_rq->dl.earliest_dl.curr))
			break;

		/* Otherwise we try again. */
		double_unlock_balance(rq, later_rq);
		later_rq = NULL;
	}

	return later_rq;
}

static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
{
	struct task_struct *p;

	if (!has_pushable_dl_tasks(rq))
		return NULL;

1936
	p = rb_entry(rq->dl.pushable_dl_tasks_root.rb_leftmost,
1937 1938 1939 1940
		     struct task_struct, pushable_dl_tasks);

	BUG_ON(rq->cpu != task_cpu(p));
	BUG_ON(task_current(rq, p));
1941
	BUG_ON(p->nr_cpus_allowed <= 1);
1942

1943
	BUG_ON(!task_on_rq_queued(p));
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
	BUG_ON(!dl_task(p));

	return p;
}

/*
 * See if the non running -deadline tasks on this rq
 * can be sent to some other CPU where they can preempt
 * and start executing.
 */
static int push_dl_task(struct rq *rq)
{
	struct task_struct *next_task;
	struct rq *later_rq;
1958
	int ret = 0;
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979

	if (!rq->dl.overloaded)
		return 0;

	next_task = pick_next_pushable_dl_task(rq);
	if (!next_task)
		return 0;

retry:
	if (unlikely(next_task == rq->curr)) {
		WARN_ON(1);
		return 0;
	}

	/*
	 * If next_task preempts rq->curr, and rq->curr
	 * can move away, it makes sense to just reschedule
	 * without going further in pushing next_task.
	 */
	if (dl_task(rq->curr) &&
	    dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
1980
	    rq->curr->nr_cpus_allowed > 1) {
1981
		resched_curr(rq);
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
		return 0;
	}

	/* We might release rq lock */
	get_task_struct(next_task);

	/* Will lock the rq it'll find */
	later_rq = find_lock_later_rq(next_task, rq);
	if (!later_rq) {
		struct task_struct *task;

		/*
		 * We must check all this again, since
		 * find_lock_later_rq releases rq->lock and it is
		 * then possible that next_task has migrated.
		 */
		task = pick_next_pushable_dl_task(rq);
1999
		if (task == next_task) {
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
			/*
			 * The task is still there. We don't try
			 * again, some other cpu will pull it when ready.
			 */
			goto out;
		}

		if (!task)
			/* No more tasks */
			goto out;

		put_task_struct(next_task);
		next_task = task;
		goto retry;
	}

	deactivate_task(rq, next_task, 0);
2017
	sub_running_bw(next_task->dl.dl_bw, &rq->dl);
2018
	sub_rq_bw(next_task->dl.dl_bw, &rq->dl);
2019
	set_task_cpu(next_task, later_rq->cpu);
2020
	add_rq_bw(next_task->dl.dl_bw, &later_rq->dl);
2021
	add_running_bw(next_task->dl.dl_bw, &later_rq->dl);
2022
	activate_task(later_rq, next_task, 0);
2023
	ret = 1;
2024

2025
	resched_curr(later_rq);
2026 2027 2028 2029 2030 2031

	double_unlock_balance(rq, later_rq);

out:
	put_task_struct(next_task);

2032
	return ret;
2033 2034 2035 2036
}

static void push_dl_tasks(struct rq *rq)
{
2037
	/* push_dl_task() will return true if it moved a -deadline task */
2038 2039
	while (push_dl_task(rq))
		;
2040 2041
}

2042
static void pull_dl_task(struct rq *this_rq)
2043
{
2044
	int this_cpu = this_rq->cpu, cpu;
2045
	struct task_struct *p;
2046
	bool resched = false;
2047 2048 2049 2050
	struct rq *src_rq;
	u64 dmin = LONG_MAX;

	if (likely(!dl_overloaded(this_rq)))
2051
		return;
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083

	/*
	 * Match the barrier from dl_set_overloaded; this guarantees that if we
	 * see overloaded we must also see the dlo_mask bit.
	 */
	smp_rmb();

	for_each_cpu(cpu, this_rq->rd->dlo_mask) {
		if (this_cpu == cpu)
			continue;

		src_rq = cpu_rq(cpu);

		/*
		 * It looks racy, abd it is! However, as in sched_rt.c,
		 * we are fine with this.
		 */
		if (this_rq->dl.dl_nr_running &&
		    dl_time_before(this_rq->dl.earliest_dl.curr,
				   src_rq->dl.earliest_dl.next))
			continue;

		/* Might drop this_rq->lock */
		double_lock_balance(this_rq, src_rq);

		/*
		 * If there are no more pullable tasks on the
		 * rq, we're done with it.
		 */
		if (src_rq->dl.dl_nr_running <= 1)
			goto skip;

2084
		p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095

		/*
		 * We found a task to be pulled if:
		 *  - it preempts our current (if there's one),
		 *  - it will preempt the last one we pulled (if any).
		 */
		if (p && dl_time_before(p->dl.deadline, dmin) &&
		    (!this_rq->dl.dl_nr_running ||
		     dl_time_before(p->dl.deadline,
				    this_rq->dl.earliest_dl.curr))) {
			WARN_ON(p == src_rq->curr);
2096
			WARN_ON(!task_on_rq_queued(p));
2097 2098 2099 2100 2101 2102 2103 2104 2105

			/*
			 * Then we pull iff p has actually an earlier
			 * deadline than the current task of its runqueue.
			 */
			if (dl_time_before(p->dl.deadline,
					   src_rq->curr->dl.deadline))
				goto skip;

2106
			resched = true;
2107 2108

			deactivate_task(src_rq, p, 0);
2109
			sub_running_bw(p->dl.dl_bw, &src_rq->dl);
2110
			sub_rq_bw(p->dl.dl_bw, &src_rq->dl);
2111
			set_task_cpu(p, this_cpu);
2112
			add_rq_bw(p->dl.dl_bw, &this_rq->dl);
2113
			add_running_bw(p->dl.dl_bw, &this_rq->dl);
2114 2115 2116 2117 2118 2119 2120 2121 2122
			activate_task(this_rq, p, 0);
			dmin = p->dl.deadline;

			/* Is there any other task even earlier? */
		}
skip:
		double_unlock_balance(this_rq, src_rq);
	}

2123 2124
	if (resched)
		resched_curr(this_rq);
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
}

/*
 * Since the task is not running and a reschedule is not going to happen
 * anytime soon on its runqueue, we try pushing it away now.
 */
static void task_woken_dl(struct rq *rq, struct task_struct *p)
{
	if (!task_running(rq, p) &&
	    !test_tsk_need_resched(rq->curr) &&
2135
	    p->nr_cpus_allowed > 1 &&
2136
	    dl_task(rq->curr) &&
2137
	    (rq->curr->nr_cpus_allowed < 2 ||
2138
	     !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
2139 2140 2141 2142 2143 2144 2145
		push_dl_tasks(rq);
	}
}

static void set_cpus_allowed_dl(struct task_struct *p,
				const struct cpumask *new_mask)
{
2146
	struct root_domain *src_rd;
2147
	struct rq *rq;
2148 2149 2150

	BUG_ON(!dl_task(p));

2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
	rq = task_rq(p);
	src_rd = rq->rd;
	/*
	 * Migrating a SCHED_DEADLINE task between exclusive
	 * cpusets (different root_domains) entails a bandwidth
	 * update. We already made space for us in the destination
	 * domain (see cpuset_can_attach()).
	 */
	if (!cpumask_intersects(src_rd->span, new_mask)) {
		struct dl_bw *src_dl_b;

		src_dl_b = dl_bw_of(cpu_of(rq));
		/*
		 * We now free resources of the root_domain we are migrating
		 * off. In the worst case, sched_setattr() may temporary fail
		 * until we complete the update.
		 */
		raw_spin_lock(&src_dl_b->lock);
2169
		__dl_clear(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
2170 2171 2172
		raw_spin_unlock(&src_dl_b->lock);
	}

2173
	set_cpus_allowed_common(p, new_mask);
2174 2175 2176 2177 2178 2179 2180
}

/* Assumes rq->lock is held */
static void rq_online_dl(struct rq *rq)
{
	if (rq->dl.overloaded)
		dl_set_overload(rq);
2181

2182
	cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
2183
	if (rq->dl.dl_nr_running > 0)
2184
		cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
2185 2186 2187 2188 2189 2190 2191
}

/* Assumes rq->lock is held */
static void rq_offline_dl(struct rq *rq)
{
	if (rq->dl.overloaded)
		dl_clear_overload(rq);
2192

2193
	cpudl_clear(&rq->rd->cpudl, rq->cpu);
2194
	cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
2195 2196
}

2197
void __init init_sched_dl_class(void)
2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
{
	unsigned int i;

	for_each_possible_cpu(i)
		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
					GFP_KERNEL, cpu_to_node(i));
}

#endif /* CONFIG_SMP */

2208 2209
static void switched_from_dl(struct rq *rq, struct task_struct *p)
{
2210
	/*
2211 2212 2213 2214 2215 2216
	 * task_non_contending() can start the "inactive timer" (if the 0-lag
	 * time is in the future). If the task switches back to dl before
	 * the "inactive timer" fires, it can continue to consume its current
	 * runtime using its current deadline. If it stays outside of
	 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
	 * will reset the task parameters.
2217
	 */
2218 2219 2220
	if (task_on_rq_queued(p) && p->dl.dl_runtime)
		task_non_contending(p);

2221 2222 2223
	if (!task_on_rq_queued(p))
		sub_rq_bw(p->dl.dl_bw, &rq->dl);

2224 2225 2226 2227 2228 2229 2230
	/*
	 * We cannot use inactive_task_timer() to invoke sub_running_bw()
	 * at the 0-lag time, because the task could have been migrated
	 * while SCHED_OTHER in the meanwhile.
	 */
	if (p->dl.dl_non_contending)
		p->dl.dl_non_contending = 0;
2231

2232 2233 2234 2235 2236
	/*
	 * Since this might be the only -deadline task on the rq,
	 * this is the right place to try to pull some other one
	 * from an overloaded cpu, if any.
	 */
2237 2238 2239
	if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
		return;

2240
	queue_pull_task(rq);
2241 2242
}

2243 2244 2245 2246
/*
 * When switching to -deadline, we may overload the rq, then
 * we try to push someone off, if possible.
 */
2247 2248
static void switched_to_dl(struct rq *rq, struct task_struct *p)
{
2249 2250
	if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
		put_task_struct(p);
2251 2252

	/* If p is not queued we will update its parameters at next wakeup. */
2253 2254
	if (!task_on_rq_queued(p)) {
		add_rq_bw(p->dl.dl_bw, &rq->dl);
2255

2256 2257
		return;
	}
2258 2259 2260 2261 2262
	/*
	 * If p is boosted we already updated its params in
	 * rt_mutex_setprio()->enqueue_task(..., ENQUEUE_REPLENISH),
	 * p's deadline being now already after rq_clock(rq).
	 */
2263
	if (dl_time_before(p->dl.deadline, rq_clock(rq)))
2264
		setup_new_dl_entity(&p->dl);
2265

2266
	if (rq->curr != p) {
2267
#ifdef CONFIG_SMP
2268
		if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
2269
			queue_push_tasks(rq);
2270
#endif
2271 2272 2273 2274
		if (dl_task(rq->curr))
			check_preempt_curr_dl(rq, p, 0);
		else
			resched_curr(rq);
2275 2276 2277
	}
}

2278 2279 2280 2281
/*
 * If the scheduling parameters of a -deadline task changed,
 * a push or pull operation might be needed.
 */
2282 2283 2284
static void prio_changed_dl(struct rq *rq, struct task_struct *p,
			    int oldprio)
{
2285
	if (task_on_rq_queued(p) || rq->curr == p) {
2286
#ifdef CONFIG_SMP
2287 2288 2289 2290 2291 2292 2293
		/*
		 * This might be too much, but unfortunately
		 * we don't have the old deadline value, and
		 * we can't argue if the task is increasing
		 * or lowering its prio, so...
		 */
		if (!rq->dl.overloaded)
2294
			queue_pull_task(rq);
2295 2296 2297 2298 2299 2300

		/*
		 * If we now have a earlier deadline task than p,
		 * then reschedule, provided p is still on this
		 * runqueue.
		 */
2301
		if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
2302
			resched_curr(rq);
2303 2304 2305 2306 2307 2308
#else
		/*
		 * Again, we don't know if p has a earlier
		 * or later deadline, so let's blindly set a
		 * (maybe not needed) rescheduling point.
		 */
2309
		resched_curr(rq);
2310
#endif /* CONFIG_SMP */
2311
	}
2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
}

const struct sched_class dl_sched_class = {
	.next			= &rt_sched_class,
	.enqueue_task		= enqueue_task_dl,
	.dequeue_task		= dequeue_task_dl,
	.yield_task		= yield_task_dl,

	.check_preempt_curr	= check_preempt_curr_dl,

	.pick_next_task		= pick_next_task_dl,
	.put_prev_task		= put_prev_task_dl,

#ifdef CONFIG_SMP
	.select_task_rq		= select_task_rq_dl,
2327
	.migrate_task_rq	= migrate_task_rq_dl,
2328 2329 2330 2331
	.set_cpus_allowed       = set_cpus_allowed_dl,
	.rq_online              = rq_online_dl,
	.rq_offline             = rq_offline_dl,
	.task_woken		= task_woken_dl,
2332 2333 2334 2335 2336 2337 2338 2339 2340
#endif

	.set_curr_task		= set_curr_task_dl,
	.task_tick		= task_tick_dl,
	.task_fork              = task_fork_dl,

	.prio_changed           = prio_changed_dl,
	.switched_from		= switched_from_dl,
	.switched_to		= switched_to_dl,
2341 2342

	.update_curr		= update_curr_dl,
2343
};
2344

2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
int sched_dl_global_validate(void)
{
	u64 runtime = global_rt_runtime();
	u64 period = global_rt_period();
	u64 new_bw = to_ratio(period, runtime);
	struct dl_bw *dl_b;
	int cpu, ret = 0;
	unsigned long flags;

	/*
	 * Here we want to check the bandwidth not being set to some
	 * value smaller than the currently allocated bandwidth in
	 * any of the root_domains.
	 *
	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
	 * cycling on root_domains... Discussion on different/better
	 * solutions is welcome!
	 */
	for_each_possible_cpu(cpu) {
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);

		raw_spin_lock_irqsave(&dl_b->lock, flags);
		if (new_bw < dl_b->total_bw)
			ret = -EBUSY;
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);

		rcu_read_unlock_sched();

		if (ret)
			break;
	}

	return ret;
}

void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
{
	if (global_rt_runtime() == RUNTIME_INF) {
		dl_rq->bw_ratio = 1 << RATIO_SHIFT;
		dl_rq->extra_bw = 1 << BW_SHIFT;
	} else {
		dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
			  global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
		dl_rq->extra_bw = to_ratio(global_rt_period(),
						    global_rt_runtime());
	}
}

void sched_dl_do_global(void)
{
	u64 new_bw = -1;
	struct dl_bw *dl_b;
	int cpu;
	unsigned long flags;

	def_dl_bandwidth.dl_period = global_rt_period();
	def_dl_bandwidth.dl_runtime = global_rt_runtime();

	if (global_rt_runtime() != RUNTIME_INF)
		new_bw = to_ratio(global_rt_period(), global_rt_runtime());

	/*
	 * FIXME: As above...
	 */
	for_each_possible_cpu(cpu) {
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);

		raw_spin_lock_irqsave(&dl_b->lock, flags);
		dl_b->bw = new_bw;
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);

		rcu_read_unlock_sched();
		init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
	}
}

/*
 * We must be sure that accepting a new task (or allowing changing the
 * parameters of an existing one) is consistent with the bandwidth
 * constraints. If yes, this function also accordingly updates the currently
 * allocated bandwidth to reflect the new situation.
 *
 * This function is called while holding p's rq->lock.
 */
int sched_dl_overflow(struct task_struct *p, int policy,
		      const struct sched_attr *attr)
{
	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
	u64 period = attr->sched_period ?: attr->sched_deadline;
	u64 runtime = attr->sched_runtime;
	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
	int cpus, err = -1;

	/* !deadline task may carry old deadline bandwidth */
	if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
		return 0;

	/*
	 * Either if a task, enters, leave, or stays -deadline but changes
	 * its parameters, we may need to update accordingly the total
	 * allocated bandwidth of the container.
	 */
	raw_spin_lock(&dl_b->lock);
	cpus = dl_bw_cpus(task_cpu(p));
	if (dl_policy(policy) && !task_has_dl_policy(p) &&
	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
		if (hrtimer_active(&p->dl.inactive_timer))
			__dl_clear(dl_b, p->dl.dl_bw, cpus);
		__dl_add(dl_b, new_bw, cpus);
		err = 0;
	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
		/*
		 * XXX this is slightly incorrect: when the task
		 * utilization decreases, we should delay the total
		 * utilization change until the task's 0-lag point.
		 * But this would require to set the task's "inactive
		 * timer" when the task is not inactive.
		 */
		__dl_clear(dl_b, p->dl.dl_bw, cpus);
		__dl_add(dl_b, new_bw, cpus);
		dl_change_utilization(p, new_bw);
		err = 0;
	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
		/*
		 * Do not decrease the total deadline utilization here,
		 * switched_from_dl() will take care to do it at the correct
		 * (0-lag) time.
		 */
		err = 0;
	}
	raw_spin_unlock(&dl_b->lock);

	return err;
}

/*
 * This function initializes the sched_dl_entity of a newly becoming
 * SCHED_DEADLINE task.
 *
 * Only the static values are considered here, the actual runtime and the
 * absolute deadline will be properly calculated when the task is enqueued
 * for the first time with its new policy.
 */
void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	dl_se->dl_runtime = attr->sched_runtime;
	dl_se->dl_deadline = attr->sched_deadline;
	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
	dl_se->flags = attr->sched_flags;
	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
	dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
}

void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	attr->sched_priority = p->rt_priority;
	attr->sched_runtime = dl_se->dl_runtime;
	attr->sched_deadline = dl_se->dl_deadline;
	attr->sched_period = dl_se->dl_period;
	attr->sched_flags = dl_se->flags;
}

/*
 * This function validates the new parameters of a -deadline task.
 * We ask for the deadline not being zero, and greater or equal
 * than the runtime, as well as the period of being zero or
 * greater than deadline. Furthermore, we have to be sure that
 * user parameters are above the internal resolution of 1us (we
 * check sched_runtime only since it is always the smaller one) and
 * below 2^63 ns (we have to check both sched_deadline and
 * sched_period, as the latter can be zero).
 */
bool __checkparam_dl(const struct sched_attr *attr)
{
	/* deadline != 0 */
	if (attr->sched_deadline == 0)
		return false;

	/*
	 * Since we truncate DL_SCALE bits, make sure we're at least
	 * that big.
	 */
	if (attr->sched_runtime < (1ULL << DL_SCALE))
		return false;

	/*
	 * Since we use the MSB for wrap-around and sign issues, make
	 * sure it's not set (mind that period can be equal to zero).
	 */
	if (attr->sched_deadline & (1ULL << 63) ||
	    attr->sched_period & (1ULL << 63))
		return false;

	/* runtime <= deadline <= period (if period != 0) */
	if ((attr->sched_period != 0 &&
	     attr->sched_period < attr->sched_deadline) ||
	    attr->sched_deadline < attr->sched_runtime)
		return false;

	return true;
}

/*
 * This function clears the sched_dl_entity static params.
 */
void __dl_clear_params(struct task_struct *p)
{
	struct sched_dl_entity *dl_se = &p->dl;

	dl_se->dl_runtime = 0;
	dl_se->dl_deadline = 0;
	dl_se->dl_period = 0;
	dl_se->flags = 0;
	dl_se->dl_bw = 0;
	dl_se->dl_density = 0;

	dl_se->dl_throttled = 0;
	dl_se->dl_yielded = 0;
	dl_se->dl_non_contending = 0;
}

bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	if (dl_se->dl_runtime != attr->sched_runtime ||
	    dl_se->dl_deadline != attr->sched_deadline ||
	    dl_se->dl_period != attr->sched_period ||
	    dl_se->flags != attr->sched_flags)
		return true;

	return false;
}

#ifdef CONFIG_SMP
int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed)
{
	unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
							cs_cpus_allowed);
	struct dl_bw *dl_b;
	bool overflow;
	int cpus, ret;
	unsigned long flags;

	rcu_read_lock_sched();
	dl_b = dl_bw_of(dest_cpu);
	raw_spin_lock_irqsave(&dl_b->lock, flags);
	cpus = dl_bw_cpus(dest_cpu);
	overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
	if (overflow)
		ret = -EBUSY;
	else {
		/*
		 * We reserve space for this task in the destination
		 * root_domain, as we can't fail after this point.
		 * We will free resources in the source root_domain
		 * later on (see set_cpus_allowed_dl()).
		 */
		__dl_add(dl_b, p->dl.dl_bw, cpus);
		ret = 0;
	}
	raw_spin_unlock_irqrestore(&dl_b->lock, flags);
	rcu_read_unlock_sched();
	return ret;
}

int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
				 const struct cpumask *trial)
{
	int ret = 1, trial_cpus;
	struct dl_bw *cur_dl_b;
	unsigned long flags;

	rcu_read_lock_sched();
	cur_dl_b = dl_bw_of(cpumask_any(cur));
	trial_cpus = cpumask_weight(trial);

	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
	if (cur_dl_b->bw != -1 &&
	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
		ret = 0;
	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
	rcu_read_unlock_sched();
	return ret;
}

bool dl_cpu_busy(unsigned int cpu)
{
	unsigned long flags;
	struct dl_bw *dl_b;
	bool overflow;
	int cpus;

	rcu_read_lock_sched();
	dl_b = dl_bw_of(cpu);
	raw_spin_lock_irqsave(&dl_b->lock, flags);
	cpus = dl_bw_cpus(cpu);
	overflow = __dl_overflow(dl_b, cpus, 0, 0);
	raw_spin_unlock_irqrestore(&dl_b->lock, flags);
	rcu_read_unlock_sched();
	return overflow;
}
#endif

2656 2657 2658 2659 2660 2661 2662 2663
#ifdef CONFIG_SCHED_DEBUG
extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);

void print_dl_stats(struct seq_file *m, int cpu)
{
	print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
}
#endif /* CONFIG_SCHED_DEBUG */