radix.h 9.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#ifndef _ASM_POWERPC_PGTABLE_RADIX_H
#define _ASM_POWERPC_PGTABLE_RADIX_H

#ifndef __ASSEMBLY__
#include <asm/cmpxchg.h>
#endif

#ifdef CONFIG_PPC_64K_PAGES
#include <asm/book3s/64/radix-64k.h>
#else
#include <asm/book3s/64/radix-4k.h>
#endif

14 15 16
/*
 * For P9 DD1 only, we need to track whether the pte's huge.
 */
17
#define R_PAGE_LARGE	_RPAGE_RSV1
18 19


20 21 22 23 24
#ifndef __ASSEMBLY__
#include <asm/book3s/64/tlbflush-radix.h>
#include <asm/cpu_has_feature.h>
#endif

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
/* An empty PTE can still have a R or C writeback */
#define RADIX_PTE_NONE_MASK		(_PAGE_DIRTY | _PAGE_ACCESSED)

/* Bits to set in a RPMD/RPUD/RPGD */
#define RADIX_PMD_VAL_BITS		(0x8000000000000000UL | RADIX_PTE_INDEX_SIZE)
#define RADIX_PUD_VAL_BITS		(0x8000000000000000UL | RADIX_PMD_INDEX_SIZE)
#define RADIX_PGD_VAL_BITS		(0x8000000000000000UL | RADIX_PUD_INDEX_SIZE)

/* Don't have anything in the reserved bits and leaf bits */
#define RADIX_PMD_BAD_BITS		0x60000000000000e0UL
#define RADIX_PUD_BAD_BITS		0x60000000000000e0UL
#define RADIX_PGD_BAD_BITS		0x60000000000000e0UL

/*
 * Size of EA range mapped by our pagetables.
 */
#define RADIX_PGTABLE_EADDR_SIZE (RADIX_PTE_INDEX_SIZE + RADIX_PMD_INDEX_SIZE +	\
			      RADIX_PUD_INDEX_SIZE + RADIX_PGD_INDEX_SIZE + PAGE_SHIFT)
#define RADIX_PGTABLE_RANGE (ASM_CONST(1) << RADIX_PGTABLE_EADDR_SIZE)

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
/*
 * We support 52 bit address space, Use top bit for kernel
 * virtual mapping. Also make sure kernel fit in the top
 * quadrant.
 *
 *           +------------------+
 *           +------------------+  Kernel virtual map (0xc008000000000000)
 *           |                  |
 *           |                  |
 *           |                  |
 * 0b11......+------------------+  Kernel linear map (0xc....)
 *           |                  |
 *           |     2 quadrant   |
 *           |                  |
 * 0b10......+------------------+
 *           |                  |
 *           |    1 quadrant    |
 *           |                  |
 * 0b01......+------------------+
 *           |                  |
 *           |    0 quadrant    |
 *           |                  |
 * 0b00......+------------------+
 *
 *
 * 3rd quadrant expanded:
 * +------------------------------+
 * |                              |
 * |                              |
 * |                              |
 * +------------------------------+  Kernel IO map end (0xc010000000000000)
 * |                              |
 * |                              |
 * |      1/2 of virtual map      |
 * |                              |
 * |                              |
 * +------------------------------+  Kernel IO map start
 * |                              |
 * |      1/4 of virtual map      |
 * |                              |
 * +------------------------------+  Kernel vmemap start
 * |                              |
 * |     1/4 of virtual map       |
 * |                              |
 * +------------------------------+  Kernel virt start (0xc008000000000000)
 * |                              |
 * |                              |
 * |                              |
 * +------------------------------+  Kernel linear (0xc.....)
 */

#define RADIX_KERN_VIRT_START ASM_CONST(0xc008000000000000)
#define RADIX_KERN_VIRT_SIZE  ASM_CONST(0x0008000000000000)

/*
 * The vmalloc space starts at the beginning of that region, and
 * occupies a quarter of it on radix config.
 * (we keep a quarter for the virtual memmap)
 */
#define RADIX_VMALLOC_START	RADIX_KERN_VIRT_START
#define RADIX_VMALLOC_SIZE	(RADIX_KERN_VIRT_SIZE >> 2)
#define RADIX_VMALLOC_END	(RADIX_VMALLOC_START + RADIX_VMALLOC_SIZE)
/*
 * Defines the address of the vmemap area, in its own region on
 * hash table CPUs.
 */
#define RADIX_VMEMMAP_BASE		(RADIX_VMALLOC_END)

113 114
#define RADIX_KERN_IO_START	(RADIX_KERN_VIRT_START + (RADIX_KERN_VIRT_SIZE >> 1))

115 116 117 118 119 120
#ifndef __ASSEMBLY__
#define RADIX_PTE_TABLE_SIZE	(sizeof(pte_t) << RADIX_PTE_INDEX_SIZE)
#define RADIX_PMD_TABLE_SIZE	(sizeof(pmd_t) << RADIX_PMD_INDEX_SIZE)
#define RADIX_PUD_TABLE_SIZE	(sizeof(pud_t) << RADIX_PUD_INDEX_SIZE)
#define RADIX_PGD_TABLE_SIZE	(sizeof(pgd_t) << RADIX_PGD_INDEX_SIZE)

121 122
#ifdef CONFIG_STRICT_KERNEL_RWX
extern void radix__mark_rodata_ro(void);
123
extern void radix__mark_initmem_nx(void);
124 125
#endif

126 127
static inline unsigned long __radix_pte_update(pte_t *ptep, unsigned long clr,
					       unsigned long set)
128 129 130 131 132 133 134 135 136 137 138
{
	pte_t pte;
	unsigned long old_pte, new_pte;

	do {
		pte = READ_ONCE(*ptep);
		old_pte = pte_val(pte);
		new_pte = (old_pte | set) & ~clr;

	} while (!pte_xchg(ptep, __pte(old_pte), __pte(new_pte)));

139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
	return old_pte;
}


static inline unsigned long radix__pte_update(struct mm_struct *mm,
					unsigned long addr,
					pte_t *ptep, unsigned long clr,
					unsigned long set,
					int huge)
{
	unsigned long old_pte;

	if (cpu_has_feature(CPU_FTR_POWER9_DD1)) {

		unsigned long new_pte;

155
		old_pte = __radix_pte_update(ptep, ~0ul, 0);
156 157 158 159
		/*
		 * new value of pte
		 */
		new_pte = (old_pte | set) & ~clr;
160 161
		radix__flush_tlb_pte_p9_dd1(old_pte, mm, addr);
		if (new_pte)
162
			__radix_pte_update(ptep, 0, new_pte);
163 164
	} else
		old_pte = __radix_pte_update(ptep, clr, set);
165 166 167 168 169 170
	if (!huge)
		assert_pte_locked(mm, addr);

	return old_pte;
}

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
static inline pte_t radix__ptep_get_and_clear_full(struct mm_struct *mm,
						   unsigned long addr,
						   pte_t *ptep, int full)
{
	unsigned long old_pte;

	if (full) {
		/*
		 * If we are trying to clear the pte, we can skip
		 * the DD1 pte update sequence and batch the tlb flush. The
		 * tlb flush batching is done by mmu gather code. We
		 * still keep the cmp_xchg update to make sure we get
		 * correct R/C bit which might be updated via Nest MMU.
		 */
		old_pte = __radix_pte_update(ptep, ~0ul, 0);
	} else
		old_pte = radix__pte_update(mm, addr, ptep, ~0ul, 0, 0);

	return __pte(old_pte);
}

192 193 194 195
/*
 * Set the dirty and/or accessed bits atomically in a linux PTE, this
 * function doesn't need to invalidate tlb.
 */
196
static inline void radix__ptep_set_access_flags(struct mm_struct *mm,
197 198
						pte_t *ptep, pte_t entry,
						unsigned long address)
199
{
200

201 202
	unsigned long set = pte_val(entry) & (_PAGE_DIRTY | _PAGE_ACCESSED |
					      _PAGE_RW | _PAGE_EXEC);
203 204 205 206 207 208 209 210 211

	if (cpu_has_feature(CPU_FTR_POWER9_DD1)) {

		unsigned long old_pte, new_pte;

		old_pte = __radix_pte_update(ptep, ~0, 0);
		/*
		 * new value of pte
		 */
212
		new_pte = old_pte | set;
213
		radix__flush_tlb_pte_p9_dd1(old_pte, mm, address);
214 215 216
		__radix_pte_update(ptep, 0, new_pte);
	} else
		__radix_pte_update(ptep, 0, set);
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
	asm volatile("ptesync" : : : "memory");
}

static inline int radix__pte_same(pte_t pte_a, pte_t pte_b)
{
	return ((pte_raw(pte_a) ^ pte_raw(pte_b)) == 0);
}

static inline int radix__pte_none(pte_t pte)
{
	return (pte_val(pte) & ~RADIX_PTE_NONE_MASK) == 0;
}

static inline void radix__set_pte_at(struct mm_struct *mm, unsigned long addr,
				 pte_t *ptep, pte_t pte, int percpu)
{
	*ptep = pte;
	asm volatile("ptesync" : : : "memory");
}

static inline int radix__pmd_bad(pmd_t pmd)
{
	return !!(pmd_val(pmd) & RADIX_PMD_BAD_BITS);
}

static inline int radix__pmd_same(pmd_t pmd_a, pmd_t pmd_b)
{
	return ((pmd_raw(pmd_a) ^ pmd_raw(pmd_b)) == 0);
}

static inline int radix__pud_bad(pud_t pud)
{
	return !!(pud_val(pud) & RADIX_PUD_BAD_BITS);
}


static inline int radix__pgd_bad(pgd_t pgd)
{
	return !!(pgd_val(pgd) & RADIX_PGD_BAD_BITS);
}

258 259 260 261
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

static inline int radix__pmd_trans_huge(pmd_t pmd)
{
262
	return (pmd_val(pmd) & (_PAGE_PTE | _PAGE_DEVMAP)) == _PAGE_PTE;
263 264
}

265 266
static inline pmd_t radix__pmd_mkhuge(pmd_t pmd)
{
267
	if (cpu_has_feature(CPU_FTR_POWER9_DD1))
268
		return __pmd(pmd_val(pmd) | _PAGE_PTE | R_PAGE_LARGE);
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
	return __pmd(pmd_val(pmd) | _PAGE_PTE);
}
static inline void radix__pmdp_huge_split_prepare(struct vm_area_struct *vma,
					    unsigned long address, pmd_t *pmdp)
{
	/* Nothing to do for radix. */
	return;
}

extern unsigned long radix__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
					  pmd_t *pmdp, unsigned long clr,
					  unsigned long set);
extern pmd_t radix__pmdp_collapse_flush(struct vm_area_struct *vma,
				  unsigned long address, pmd_t *pmdp);
extern void radix__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
					pgtable_t pgtable);
extern pgtable_t radix__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
extern pmd_t radix__pmdp_huge_get_and_clear(struct mm_struct *mm,
				      unsigned long addr, pmd_t *pmdp);
extern int radix__has_transparent_hugepage(void);
289 290
#endif

291 292 293 294 295 296
extern int __meminit radix__vmemmap_create_mapping(unsigned long start,
					     unsigned long page_size,
					     unsigned long phys);
extern void radix__vmemmap_remove_mapping(unsigned long start,
				    unsigned long page_size);

297 298
extern int radix__map_kernel_page(unsigned long ea, unsigned long pa,
				 pgprot_t flags, unsigned int psz);
299 300 301 302 303

static inline unsigned long radix__get_tree_size(void)
{
	unsigned long rts_field;
	/*
304 305 306
	 * We support 52 bits, hence:
	 *  DD1    52-28 = 24, 0b11000
	 *  Others 52-31 = 21, 0b10101
307 308 309 310
	 * RTS encoding details
	 * bits 0 - 3 of rts -> bits 6 - 8 unsigned long
	 * bits 4 - 5 of rts -> bits 62 - 63 of unsigned long
	 */
311 312 313 314 315 316
	if (cpu_has_feature(CPU_FTR_POWER9_DD1))
		rts_field = (0x3UL << 61);
	else {
		rts_field = (0x5UL << 5); /* 6 - 8 bits */
		rts_field |= (0x2UL << 61);
	}
317 318
	return rts_field;
}
319 320 321

#ifdef CONFIG_MEMORY_HOTPLUG
int radix__create_section_mapping(unsigned long start, unsigned long end);
322
int radix__remove_section_mapping(unsigned long start, unsigned long end);
323
#endif /* CONFIG_MEMORY_HOTPLUG */
324 325
#endif /* __ASSEMBLY__ */
#endif