raid5.c 172.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4
/*
 * raid5.c : Multiple Devices driver for Linux
 *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
 *	   Copyright (C) 1999, 2000 Ingo Molnar
5
 *	   Copyright (C) 2002, 2003 H. Peter Anvin
L
Linus Torvalds 已提交
6
 *
7 8 9
 * RAID-4/5/6 management functions.
 * Thanks to Penguin Computing for making the RAID-6 development possible
 * by donating a test server!
L
Linus Torvalds 已提交
10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * You should have received a copy of the GNU General Public License
 * (for example /usr/src/linux/COPYING); if not, write to the Free
 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

21 22 23 24 25 26 27 28 29
/*
 * BITMAP UNPLUGGING:
 *
 * The sequencing for updating the bitmap reliably is a little
 * subtle (and I got it wrong the first time) so it deserves some
 * explanation.
 *
 * We group bitmap updates into batches.  Each batch has a number.
 * We may write out several batches at once, but that isn't very important.
30 31
 * conf->seq_write is the number of the last batch successfully written.
 * conf->seq_flush is the number of the last batch that was closed to
32 33 34
 *    new additions.
 * When we discover that we will need to write to any block in a stripe
 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35
 * the number of the batch it will be in. This is seq_flush+1.
36 37 38 39 40 41 42 43 44
 * When we are ready to do a write, if that batch hasn't been written yet,
 *   we plug the array and queue the stripe for later.
 * When an unplug happens, we increment bm_flush, thus closing the current
 *   batch.
 * When we notice that bm_flush > bm_write, we write out all pending updates
 * to the bitmap, and advance bm_write to where bm_flush was.
 * This may occasionally write a bit out twice, but is sure never to
 * miss any bits.
 */
L
Linus Torvalds 已提交
45

46
#include <linux/blkdev.h>
47
#include <linux/kthread.h>
48
#include <linux/raid/pq.h>
49
#include <linux/async_tx.h>
50
#include <linux/module.h>
51
#include <linux/async.h>
52
#include <linux/seq_file.h>
53
#include <linux/cpu.h>
54
#include <linux/slab.h>
55
#include <linux/ratelimit.h>
56
#include "md.h"
57
#include "raid5.h"
58
#include "raid0.h"
59
#include "bitmap.h"
60

L
Linus Torvalds 已提交
61 62 63 64 65 66 67 68 69
/*
 * Stripe cache
 */

#define NR_STRIPES		256
#define STRIPE_SIZE		PAGE_SIZE
#define STRIPE_SHIFT		(PAGE_SHIFT - 9)
#define STRIPE_SECTORS		(STRIPE_SIZE>>9)
#define	IO_THRESHOLD		1
70
#define BYPASS_THRESHOLD	1
71
#define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
L
Linus Torvalds 已提交
72 73
#define HASH_MASK		(NR_HASH - 1)

74
static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
75 76 77 78
{
	int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
	return &conf->stripe_hashtbl[hash];
}
L
Linus Torvalds 已提交
79 80 81 82 83 84 85

/* bio's attached to a stripe+device for I/O are linked together in bi_sector
 * order without overlap.  There may be several bio's per stripe+device, and
 * a bio could span several devices.
 * When walking this list for a particular stripe+device, we must never proceed
 * beyond a bio that extends past this device, as the next bio might no longer
 * be valid.
86
 * This function is used to determine the 'next' bio in the list, given the sector
L
Linus Torvalds 已提交
87 88
 * of the current stripe+device
 */
89 90 91 92 93 94 95 96
static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
{
	int sectors = bio->bi_size >> 9;
	if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
		return bio->bi_next;
	else
		return NULL;
}
L
Linus Torvalds 已提交
97

98
/*
99 100
 * We maintain a biased count of active stripes in the bottom 16 bits of
 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
101
 */
102
static inline int raid5_bi_processed_stripes(struct bio *bio)
103
{
104 105
	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
	return (atomic_read(segments) >> 16) & 0xffff;
106 107
}

108
static inline int raid5_dec_bi_active_stripes(struct bio *bio)
109
{
110 111
	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
	return atomic_sub_return(1, segments) & 0xffff;
112 113
}

114
static inline void raid5_inc_bi_active_stripes(struct bio *bio)
115
{
116 117
	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
	atomic_inc(segments);
118 119
}

120 121
static inline void raid5_set_bi_processed_stripes(struct bio *bio,
	unsigned int cnt)
122
{
123 124
	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
	int old, new;
125

126 127 128 129
	do {
		old = atomic_read(segments);
		new = (old & 0xffff) | (cnt << 16);
	} while (atomic_cmpxchg(segments, old, new) != old);
130 131
}

132
static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
133
{
134 135
	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
	atomic_set(segments, cnt);
136 137
}

138 139 140
/* Find first data disk in a raid6 stripe */
static inline int raid6_d0(struct stripe_head *sh)
{
141 142 143 144
	if (sh->ddf_layout)
		/* ddf always start from first device */
		return 0;
	/* md starts just after Q block */
145 146 147 148 149
	if (sh->qd_idx == sh->disks - 1)
		return 0;
	else
		return sh->qd_idx + 1;
}
150 151 152 153 154
static inline int raid6_next_disk(int disk, int raid_disks)
{
	disk++;
	return (disk < raid_disks) ? disk : 0;
}
155

156 157 158 159 160
/* When walking through the disks in a raid5, starting at raid6_d0,
 * We need to map each disk to a 'slot', where the data disks are slot
 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
 * is raid_disks-1.  This help does that mapping.
 */
161 162
static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
			     int *count, int syndrome_disks)
163
{
164
	int slot = *count;
165

166
	if (sh->ddf_layout)
167
		(*count)++;
168
	if (idx == sh->pd_idx)
169
		return syndrome_disks;
170
	if (idx == sh->qd_idx)
171
		return syndrome_disks + 1;
172
	if (!sh->ddf_layout)
173
		(*count)++;
174 175 176
	return slot;
}

177 178 179 180 181 182 183 184
static void return_io(struct bio *return_bi)
{
	struct bio *bi = return_bi;
	while (bi) {

		return_bi = bi->bi_next;
		bi->bi_next = NULL;
		bi->bi_size = 0;
185
		bio_endio(bi, 0);
186 187 188 189
		bi = return_bi;
	}
}

190
static void print_raid5_conf (struct r5conf *conf);
L
Linus Torvalds 已提交
191

192 193 194 195 196 197 198
static int stripe_operations_active(struct stripe_head *sh)
{
	return sh->check_state || sh->reconstruct_state ||
	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
}

199
static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
200
{
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
	BUG_ON(!list_empty(&sh->lru));
	BUG_ON(atomic_read(&conf->active_stripes)==0);
	if (test_bit(STRIPE_HANDLE, &sh->state)) {
		if (test_bit(STRIPE_DELAYED, &sh->state) &&
		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
			list_add_tail(&sh->lru, &conf->delayed_list);
		else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
			   sh->bm_seq - conf->seq_write > 0)
			list_add_tail(&sh->lru, &conf->bitmap_list);
		else {
			clear_bit(STRIPE_DELAYED, &sh->state);
			clear_bit(STRIPE_BIT_DELAY, &sh->state);
			list_add_tail(&sh->lru, &conf->handle_list);
		}
		md_wakeup_thread(conf->mddev->thread);
	} else {
		BUG_ON(stripe_operations_active(sh));
		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
			if (atomic_dec_return(&conf->preread_active_stripes)
			    < IO_THRESHOLD)
				md_wakeup_thread(conf->mddev->thread);
		atomic_dec(&conf->active_stripes);
		if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
			list_add_tail(&sh->lru, &conf->inactive_list);
			wake_up(&conf->wait_for_stripe);
			if (conf->retry_read_aligned)
				md_wakeup_thread(conf->mddev->thread);
L
Linus Torvalds 已提交
228 229 230
		}
	}
}
231

232 233 234 235 236 237
static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
{
	if (atomic_dec_and_test(&sh->count))
		do_release_stripe(conf, sh);
}

L
Linus Torvalds 已提交
238 239
static void release_stripe(struct stripe_head *sh)
{
240
	struct r5conf *conf = sh->raid_conf;
L
Linus Torvalds 已提交
241
	unsigned long flags;
242

243 244 245 246 247 248
	local_irq_save(flags);
	if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
		do_release_stripe(conf, sh);
		spin_unlock(&conf->device_lock);
	}
	local_irq_restore(flags);
L
Linus Torvalds 已提交
249 250
}

251
static inline void remove_hash(struct stripe_head *sh)
L
Linus Torvalds 已提交
252
{
253 254
	pr_debug("remove_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
255

256
	hlist_del_init(&sh->hash);
L
Linus Torvalds 已提交
257 258
}

259
static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
260
{
261
	struct hlist_head *hp = stripe_hash(conf, sh->sector);
L
Linus Torvalds 已提交
262

263 264
	pr_debug("insert_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
265

266
	hlist_add_head(&sh->hash, hp);
L
Linus Torvalds 已提交
267 268 269 270
}


/* find an idle stripe, make sure it is unhashed, and return it. */
271
static struct stripe_head *get_free_stripe(struct r5conf *conf)
L
Linus Torvalds 已提交
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
{
	struct stripe_head *sh = NULL;
	struct list_head *first;

	if (list_empty(&conf->inactive_list))
		goto out;
	first = conf->inactive_list.next;
	sh = list_entry(first, struct stripe_head, lru);
	list_del_init(first);
	remove_hash(sh);
	atomic_inc(&conf->active_stripes);
out:
	return sh;
}

287
static void shrink_buffers(struct stripe_head *sh)
L
Linus Torvalds 已提交
288 289 290
{
	struct page *p;
	int i;
291
	int num = sh->raid_conf->pool_size;
L
Linus Torvalds 已提交
292

293
	for (i = 0; i < num ; i++) {
L
Linus Torvalds 已提交
294 295 296 297
		p = sh->dev[i].page;
		if (!p)
			continue;
		sh->dev[i].page = NULL;
298
		put_page(p);
L
Linus Torvalds 已提交
299 300 301
	}
}

302
static int grow_buffers(struct stripe_head *sh)
L
Linus Torvalds 已提交
303 304
{
	int i;
305
	int num = sh->raid_conf->pool_size;
L
Linus Torvalds 已提交
306

307
	for (i = 0; i < num; i++) {
L
Linus Torvalds 已提交
308 309 310 311 312 313 314 315 316 317
		struct page *page;

		if (!(page = alloc_page(GFP_KERNEL))) {
			return 1;
		}
		sh->dev[i].page = page;
	}
	return 0;
}

318
static void raid5_build_block(struct stripe_head *sh, int i, int previous);
319
static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
320
			    struct stripe_head *sh);
L
Linus Torvalds 已提交
321

322
static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
L
Linus Torvalds 已提交
323
{
324
	struct r5conf *conf = sh->raid_conf;
325
	int i;
L
Linus Torvalds 已提交
326

327 328
	BUG_ON(atomic_read(&sh->count) != 0);
	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
329
	BUG_ON(stripe_operations_active(sh));
330

331
	pr_debug("init_stripe called, stripe %llu\n",
L
Linus Torvalds 已提交
332 333 334
		(unsigned long long)sh->sector);

	remove_hash(sh);
335

336
	sh->generation = conf->generation - previous;
337
	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
L
Linus Torvalds 已提交
338
	sh->sector = sector;
339
	stripe_set_idx(sector, conf, previous, sh);
L
Linus Torvalds 已提交
340 341
	sh->state = 0;

342 343

	for (i = sh->disks; i--; ) {
L
Linus Torvalds 已提交
344 345
		struct r5dev *dev = &sh->dev[i];

346
		if (dev->toread || dev->read || dev->towrite || dev->written ||
L
Linus Torvalds 已提交
347
		    test_bit(R5_LOCKED, &dev->flags)) {
348
			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
L
Linus Torvalds 已提交
349
			       (unsigned long long)sh->sector, i, dev->toread,
350
			       dev->read, dev->towrite, dev->written,
L
Linus Torvalds 已提交
351
			       test_bit(R5_LOCKED, &dev->flags));
352
			WARN_ON(1);
L
Linus Torvalds 已提交
353 354
		}
		dev->flags = 0;
355
		raid5_build_block(sh, i, previous);
L
Linus Torvalds 已提交
356 357 358 359
	}
	insert_hash(conf, sh);
}

360
static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
361
					 short generation)
L
Linus Torvalds 已提交
362 363
{
	struct stripe_head *sh;
364
	struct hlist_node *hn;
L
Linus Torvalds 已提交
365

366
	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
367
	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
368
		if (sh->sector == sector && sh->generation == generation)
L
Linus Torvalds 已提交
369
			return sh;
370
	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
371 372 373
	return NULL;
}

374 375 376 377 378 379 380 381 382 383 384 385 386
/*
 * Need to check if array has failed when deciding whether to:
 *  - start an array
 *  - remove non-faulty devices
 *  - add a spare
 *  - allow a reshape
 * This determination is simple when no reshape is happening.
 * However if there is a reshape, we need to carefully check
 * both the before and after sections.
 * This is because some failed devices may only affect one
 * of the two sections, and some non-in_sync devices may
 * be insync in the section most affected by failed devices.
 */
387
static int calc_degraded(struct r5conf *conf)
388
{
389
	int degraded, degraded2;
390 391 392 393 394
	int i;

	rcu_read_lock();
	degraded = 0;
	for (i = 0; i < conf->previous_raid_disks; i++) {
395
		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
		if (!rdev || test_bit(Faulty, &rdev->flags))
			degraded++;
		else if (test_bit(In_sync, &rdev->flags))
			;
		else
			/* not in-sync or faulty.
			 * If the reshape increases the number of devices,
			 * this is being recovered by the reshape, so
			 * this 'previous' section is not in_sync.
			 * If the number of devices is being reduced however,
			 * the device can only be part of the array if
			 * we are reverting a reshape, so this section will
			 * be in-sync.
			 */
			if (conf->raid_disks >= conf->previous_raid_disks)
				degraded++;
	}
	rcu_read_unlock();
414 415
	if (conf->raid_disks == conf->previous_raid_disks)
		return degraded;
416
	rcu_read_lock();
417
	degraded2 = 0;
418
	for (i = 0; i < conf->raid_disks; i++) {
419
		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
420
		if (!rdev || test_bit(Faulty, &rdev->flags))
421
			degraded2++;
422 423 424 425 426 427 428 429 430
		else if (test_bit(In_sync, &rdev->flags))
			;
		else
			/* not in-sync or faulty.
			 * If reshape increases the number of devices, this
			 * section has already been recovered, else it
			 * almost certainly hasn't.
			 */
			if (conf->raid_disks <= conf->previous_raid_disks)
431
				degraded2++;
432 433
	}
	rcu_read_unlock();
434 435 436 437 438 439 440 441 442 443 444 445 446
	if (degraded2 > degraded)
		return degraded2;
	return degraded;
}

static int has_failed(struct r5conf *conf)
{
	int degraded;

	if (conf->mddev->reshape_position == MaxSector)
		return conf->mddev->degraded > conf->max_degraded;

	degraded = calc_degraded(conf);
447 448 449 450 451
	if (degraded > conf->max_degraded)
		return 1;
	return 0;
}

452
static struct stripe_head *
453
get_active_stripe(struct r5conf *conf, sector_t sector,
454
		  int previous, int noblock, int noquiesce)
L
Linus Torvalds 已提交
455 456 457
{
	struct stripe_head *sh;

458
	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
459 460 461 462

	spin_lock_irq(&conf->device_lock);

	do {
463
		wait_event_lock_irq(conf->wait_for_stripe,
464
				    conf->quiesce == 0 || noquiesce,
465
				    conf->device_lock, /* nothing */);
466
		sh = __find_stripe(conf, sector, conf->generation - previous);
L
Linus Torvalds 已提交
467 468 469 470 471 472 473 474 475
		if (!sh) {
			if (!conf->inactive_blocked)
				sh = get_free_stripe(conf);
			if (noblock && sh == NULL)
				break;
			if (!sh) {
				conf->inactive_blocked = 1;
				wait_event_lock_irq(conf->wait_for_stripe,
						    !list_empty(&conf->inactive_list) &&
476 477
						    (atomic_read(&conf->active_stripes)
						     < (conf->max_nr_stripes *3/4)
L
Linus Torvalds 已提交
478 479
						     || !conf->inactive_blocked),
						    conf->device_lock,
480
						    );
L
Linus Torvalds 已提交
481 482
				conf->inactive_blocked = 0;
			} else
483
				init_stripe(sh, sector, previous);
L
Linus Torvalds 已提交
484 485
		} else {
			if (atomic_read(&sh->count)) {
486 487
				BUG_ON(!list_empty(&sh->lru)
				    && !test_bit(STRIPE_EXPANDING, &sh->state));
L
Linus Torvalds 已提交
488 489 490
			} else {
				if (!test_bit(STRIPE_HANDLE, &sh->state))
					atomic_inc(&conf->active_stripes);
491 492
				if (list_empty(&sh->lru) &&
				    !test_bit(STRIPE_EXPANDING, &sh->state))
493 494
					BUG();
				list_del_init(&sh->lru);
L
Linus Torvalds 已提交
495 496 497 498 499 500 501 502 503 504 505
			}
		}
	} while (sh == NULL);

	if (sh)
		atomic_inc(&sh->count);

	spin_unlock_irq(&conf->device_lock);
	return sh;
}

506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
/* Determine if 'data_offset' or 'new_data_offset' should be used
 * in this stripe_head.
 */
static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
{
	sector_t progress = conf->reshape_progress;
	/* Need a memory barrier to make sure we see the value
	 * of conf->generation, or ->data_offset that was set before
	 * reshape_progress was updated.
	 */
	smp_rmb();
	if (progress == MaxSector)
		return 0;
	if (sh->generation == conf->generation - 1)
		return 0;
	/* We are in a reshape, and this is a new-generation stripe,
	 * so use new_data_offset.
	 */
	return 1;
}

527 528 529 530
static void
raid5_end_read_request(struct bio *bi, int error);
static void
raid5_end_write_request(struct bio *bi, int error);
531

532
static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
533
{
534
	struct r5conf *conf = sh->raid_conf;
535 536 537 538 539 540
	int i, disks = sh->disks;

	might_sleep();

	for (i = disks; i--; ) {
		int rw;
541
		int replace_only = 0;
542 543
		struct bio *bi, *rbi;
		struct md_rdev *rdev, *rrdev = NULL;
T
Tejun Heo 已提交
544 545 546 547 548 549
		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
				rw = WRITE_FUA;
			else
				rw = WRITE;
		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
550
			rw = READ;
551 552 553 554 555
		else if (test_and_clear_bit(R5_WantReplace,
					    &sh->dev[i].flags)) {
			rw = WRITE;
			replace_only = 1;
		} else
556
			continue;
S
Shaohua Li 已提交
557 558
		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
			rw |= REQ_SYNC;
559 560

		bi = &sh->dev[i].req;
561
		rbi = &sh->dev[i].rreq; /* For writing to replacement */
562 563

		bi->bi_rw = rw;
564 565
		rbi->bi_rw = rw;
		if (rw & WRITE) {
566
			bi->bi_end_io = raid5_end_write_request;
567 568
			rbi->bi_end_io = raid5_end_write_request;
		} else
569 570 571
			bi->bi_end_io = raid5_end_read_request;

		rcu_read_lock();
572
		rrdev = rcu_dereference(conf->disks[i].replacement);
573 574 575 576 577 578
		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
		rdev = rcu_dereference(conf->disks[i].rdev);
		if (!rdev) {
			rdev = rrdev;
			rrdev = NULL;
		}
579 580 581
		if (rw & WRITE) {
			if (replace_only)
				rdev = NULL;
582 583 584
			if (rdev == rrdev)
				/* We raced and saw duplicates */
				rrdev = NULL;
585
		} else {
586
			if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
587 588 589
				rdev = rrdev;
			rrdev = NULL;
		}
590

591 592 593 594
		if (rdev && test_bit(Faulty, &rdev->flags))
			rdev = NULL;
		if (rdev)
			atomic_inc(&rdev->nr_pending);
595 596 597 598
		if (rrdev && test_bit(Faulty, &rrdev->flags))
			rrdev = NULL;
		if (rrdev)
			atomic_inc(&rrdev->nr_pending);
599 600
		rcu_read_unlock();

601
		/* We have already checked bad blocks for reads.  Now
602 603
		 * need to check for writes.  We never accept write errors
		 * on the replacement, so we don't to check rrdev.
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
		 */
		while ((rw & WRITE) && rdev &&
		       test_bit(WriteErrorSeen, &rdev->flags)) {
			sector_t first_bad;
			int bad_sectors;
			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
					      &first_bad, &bad_sectors);
			if (!bad)
				break;

			if (bad < 0) {
				set_bit(BlockedBadBlocks, &rdev->flags);
				if (!conf->mddev->external &&
				    conf->mddev->flags) {
					/* It is very unlikely, but we might
					 * still need to write out the
					 * bad block log - better give it
					 * a chance*/
					md_check_recovery(conf->mddev);
				}
624 625 626 627 628 629
				/*
				 * Because md_wait_for_blocked_rdev
				 * will dec nr_pending, we must
				 * increment it first.
				 */
				atomic_inc(&rdev->nr_pending);
630 631 632 633 634 635 636 637
				md_wait_for_blocked_rdev(rdev, conf->mddev);
			} else {
				/* Acknowledged bad block - skip the write */
				rdev_dec_pending(rdev, conf->mddev);
				rdev = NULL;
			}
		}

638
		if (rdev) {
639 640
			if (s->syncing || s->expanding || s->expanded
			    || s->replacing)
641 642
				md_sync_acct(rdev->bdev, STRIPE_SECTORS);

D
Dan Williams 已提交
643 644
			set_bit(STRIPE_IO_STARTED, &sh->state);

645 646
			bi->bi_bdev = rdev->bdev;
			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
647
				__func__, (unsigned long long)sh->sector,
648 649
				bi->bi_rw, i);
			atomic_inc(&sh->count);
650 651 652 653 654 655
			if (use_new_offset(conf, sh))
				bi->bi_sector = (sh->sector
						 + rdev->new_data_offset);
			else
				bi->bi_sector = (sh->sector
						 + rdev->data_offset);
656 657 658
			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
				bi->bi_rw |= REQ_FLUSH;

659 660 661 662 663 664
			bi->bi_flags = 1 << BIO_UPTODATE;
			bi->bi_idx = 0;
			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
			bi->bi_io_vec[0].bv_offset = 0;
			bi->bi_size = STRIPE_SIZE;
			bi->bi_next = NULL;
665 666
			if (rrdev)
				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
667
			generic_make_request(bi);
668 669
		}
		if (rrdev) {
670 671
			if (s->syncing || s->expanding || s->expanded
			    || s->replacing)
672 673 674 675 676 677 678 679 680 681
				md_sync_acct(rrdev->bdev, STRIPE_SECTORS);

			set_bit(STRIPE_IO_STARTED, &sh->state);

			rbi->bi_bdev = rrdev->bdev;
			pr_debug("%s: for %llu schedule op %ld on "
				 "replacement disc %d\n",
				__func__, (unsigned long long)sh->sector,
				rbi->bi_rw, i);
			atomic_inc(&sh->count);
682 683 684 685 686 687
			if (use_new_offset(conf, sh))
				rbi->bi_sector = (sh->sector
						  + rrdev->new_data_offset);
			else
				rbi->bi_sector = (sh->sector
						  + rrdev->data_offset);
688 689 690 691 692 693 694 695 696
			rbi->bi_flags = 1 << BIO_UPTODATE;
			rbi->bi_idx = 0;
			rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
			rbi->bi_io_vec[0].bv_offset = 0;
			rbi->bi_size = STRIPE_SIZE;
			rbi->bi_next = NULL;
			generic_make_request(rbi);
		}
		if (!rdev && !rrdev) {
697
			if (rw & WRITE)
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
				set_bit(STRIPE_DEGRADED, &sh->state);
			pr_debug("skip op %ld on disc %d for sector %llu\n",
				bi->bi_rw, i, (unsigned long long)sh->sector);
			clear_bit(R5_LOCKED, &sh->dev[i].flags);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
	}
}

static struct dma_async_tx_descriptor *
async_copy_data(int frombio, struct bio *bio, struct page *page,
	sector_t sector, struct dma_async_tx_descriptor *tx)
{
	struct bio_vec *bvl;
	struct page *bio_page;
	int i;
	int page_offset;
715
	struct async_submit_ctl submit;
D
Dan Williams 已提交
716
	enum async_tx_flags flags = 0;
717 718 719 720 721

	if (bio->bi_sector >= sector)
		page_offset = (signed)(bio->bi_sector - sector) * 512;
	else
		page_offset = (signed)(sector - bio->bi_sector) * -512;
722

D
Dan Williams 已提交
723 724 725 726
	if (frombio)
		flags |= ASYNC_TX_FENCE;
	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);

727
	bio_for_each_segment(bvl, bio, i) {
728
		int len = bvl->bv_len;
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
		int clen;
		int b_offset = 0;

		if (page_offset < 0) {
			b_offset = -page_offset;
			page_offset += b_offset;
			len -= b_offset;
		}

		if (len > 0 && page_offset + len > STRIPE_SIZE)
			clen = STRIPE_SIZE - page_offset;
		else
			clen = len;

		if (clen > 0) {
744 745
			b_offset += bvl->bv_offset;
			bio_page = bvl->bv_page;
746 747
			if (frombio)
				tx = async_memcpy(page, bio_page, page_offset,
748
						  b_offset, clen, &submit);
749 750
			else
				tx = async_memcpy(bio_page, page, b_offset,
751
						  page_offset, clen, &submit);
752
		}
753 754 755
		/* chain the operations */
		submit.depend_tx = tx;

756 757 758 759 760 761 762 763 764 765 766 767
		if (clen < len) /* hit end of page */
			break;
		page_offset +=  len;
	}

	return tx;
}

static void ops_complete_biofill(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;
	struct bio *return_bi = NULL;
768
	int i;
769

770
	pr_debug("%s: stripe %llu\n", __func__,
771 772 773 774 775 776 777
		(unsigned long long)sh->sector);

	/* clear completed biofills */
	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];

		/* acknowledge completion of a biofill operation */
778 779
		/* and check if we need to reply to a read request,
		 * new R5_Wantfill requests are held off until
780
		 * !STRIPE_BIOFILL_RUN
781 782
		 */
		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
783 784 785 786 787 788 789 790
			struct bio *rbi, *rbi2;

			BUG_ON(!dev->read);
			rbi = dev->read;
			dev->read = NULL;
			while (rbi && rbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				rbi2 = r5_next_bio(rbi, dev->sector);
791
				if (!raid5_dec_bi_active_stripes(rbi)) {
792 793 794 795 796 797 798
					rbi->bi_next = return_bi;
					return_bi = rbi;
				}
				rbi = rbi2;
			}
		}
	}
799
	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
800 801 802

	return_io(return_bi);

803
	set_bit(STRIPE_HANDLE, &sh->state);
804 805 806 807 808 809
	release_stripe(sh);
}

static void ops_run_biofill(struct stripe_head *sh)
{
	struct dma_async_tx_descriptor *tx = NULL;
810
	struct async_submit_ctl submit;
811 812
	int i;

813
	pr_debug("%s: stripe %llu\n", __func__,
814 815 816 817 818 819
		(unsigned long long)sh->sector);

	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		if (test_bit(R5_Wantfill, &dev->flags)) {
			struct bio *rbi;
S
Shaohua Li 已提交
820
			spin_lock_irq(&sh->stripe_lock);
821 822
			dev->read = rbi = dev->toread;
			dev->toread = NULL;
S
Shaohua Li 已提交
823
			spin_unlock_irq(&sh->stripe_lock);
824 825 826 827 828 829 830 831 832 833
			while (rbi && rbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				tx = async_copy_data(0, rbi, dev->page,
					dev->sector, tx);
				rbi = r5_next_bio(rbi, dev->sector);
			}
		}
	}

	atomic_inc(&sh->count);
834 835
	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
	async_trigger_callback(&submit);
836 837
}

838
static void mark_target_uptodate(struct stripe_head *sh, int target)
839
{
840
	struct r5dev *tgt;
841

842 843
	if (target < 0)
		return;
844

845
	tgt = &sh->dev[target];
846 847 848
	set_bit(R5_UPTODATE, &tgt->flags);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	clear_bit(R5_Wantcompute, &tgt->flags);
849 850
}

851
static void ops_complete_compute(void *stripe_head_ref)
852 853 854
{
	struct stripe_head *sh = stripe_head_ref;

855
	pr_debug("%s: stripe %llu\n", __func__,
856 857
		(unsigned long long)sh->sector);

858
	/* mark the computed target(s) as uptodate */
859
	mark_target_uptodate(sh, sh->ops.target);
860
	mark_target_uptodate(sh, sh->ops.target2);
861

862 863 864
	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
	if (sh->check_state == check_state_compute_run)
		sh->check_state = check_state_compute_result;
865 866 867 868
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

869 870 871 872 873 874 875 876 877
/* return a pointer to the address conversion region of the scribble buffer */
static addr_conv_t *to_addr_conv(struct stripe_head *sh,
				 struct raid5_percpu *percpu)
{
	return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
}

static struct dma_async_tx_descriptor *
ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
878 879
{
	int disks = sh->disks;
880
	struct page **xor_srcs = percpu->scribble;
881 882 883 884 885
	int target = sh->ops.target;
	struct r5dev *tgt = &sh->dev[target];
	struct page *xor_dest = tgt->page;
	int count = 0;
	struct dma_async_tx_descriptor *tx;
886
	struct async_submit_ctl submit;
887 888 889
	int i;

	pr_debug("%s: stripe %llu block: %d\n",
890
		__func__, (unsigned long long)sh->sector, target);
891 892 893 894 895 896 897 898
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));

	for (i = disks; i--; )
		if (i != target)
			xor_srcs[count++] = sh->dev[i].page;

	atomic_inc(&sh->count);

D
Dan Williams 已提交
899
	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
900
			  ops_complete_compute, sh, to_addr_conv(sh, percpu));
901
	if (unlikely(count == 1))
902
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
903
	else
904
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
905 906 907 908

	return tx;
}

909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
/* set_syndrome_sources - populate source buffers for gen_syndrome
 * @srcs - (struct page *) array of size sh->disks
 * @sh - stripe_head to parse
 *
 * Populates srcs in proper layout order for the stripe and returns the
 * 'count' of sources to be used in a call to async_gen_syndrome.  The P
 * destination buffer is recorded in srcs[count] and the Q destination
 * is recorded in srcs[count+1]].
 */
static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
{
	int disks = sh->disks;
	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
	int d0_idx = raid6_d0(sh);
	int count;
	int i;

	for (i = 0; i < disks; i++)
927
		srcs[i] = NULL;
928 929 930 931 932 933 934 935 936 937

	count = 0;
	i = d0_idx;
	do {
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

		srcs[slot] = sh->dev[i].page;
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);

938
	return syndrome_disks;
939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
}

static struct dma_async_tx_descriptor *
ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
{
	int disks = sh->disks;
	struct page **blocks = percpu->scribble;
	int target;
	int qd_idx = sh->qd_idx;
	struct dma_async_tx_descriptor *tx;
	struct async_submit_ctl submit;
	struct r5dev *tgt;
	struct page *dest;
	int i;
	int count;

	if (sh->ops.target < 0)
		target = sh->ops.target2;
	else if (sh->ops.target2 < 0)
		target = sh->ops.target;
959
	else
960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
		/* we should only have one valid target */
		BUG();
	BUG_ON(target < 0);
	pr_debug("%s: stripe %llu block: %d\n",
		__func__, (unsigned long long)sh->sector, target);

	tgt = &sh->dev[target];
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	dest = tgt->page;

	atomic_inc(&sh->count);

	if (target == qd_idx) {
		count = set_syndrome_sources(blocks, sh);
		blocks[count] = NULL; /* regenerating p is not necessary */
		BUG_ON(blocks[count+1] != dest); /* q should already be set */
D
Dan Williams 已提交
976 977
		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
				  ops_complete_compute, sh,
978 979 980 981 982 983 984 985 986 987 988
				  to_addr_conv(sh, percpu));
		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
	} else {
		/* Compute any data- or p-drive using XOR */
		count = 0;
		for (i = disks; i-- ; ) {
			if (i == target || i == qd_idx)
				continue;
			blocks[count++] = sh->dev[i].page;
		}

D
Dan Williams 已提交
989 990
		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
				  NULL, ops_complete_compute, sh,
991 992 993
				  to_addr_conv(sh, percpu));
		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
	}
994 995 996 997

	return tx;
}

998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
static struct dma_async_tx_descriptor *
ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
{
	int i, count, disks = sh->disks;
	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
	int d0_idx = raid6_d0(sh);
	int faila = -1, failb = -1;
	int target = sh->ops.target;
	int target2 = sh->ops.target2;
	struct r5dev *tgt = &sh->dev[target];
	struct r5dev *tgt2 = &sh->dev[target2];
	struct dma_async_tx_descriptor *tx;
	struct page **blocks = percpu->scribble;
	struct async_submit_ctl submit;

	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
		 __func__, (unsigned long long)sh->sector, target, target2);
	BUG_ON(target < 0 || target2 < 0);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));

1019
	/* we need to open-code set_syndrome_sources to handle the
1020 1021 1022
	 * slot number conversion for 'faila' and 'failb'
	 */
	for (i = 0; i < disks ; i++)
1023
		blocks[i] = NULL;
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
	count = 0;
	i = d0_idx;
	do {
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

		blocks[slot] = sh->dev[i].page;

		if (i == target)
			faila = slot;
		if (i == target2)
			failb = slot;
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);

	BUG_ON(faila == failb);
	if (failb < faila)
		swap(faila, failb);
	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
		 __func__, (unsigned long long)sh->sector, faila, failb);

	atomic_inc(&sh->count);

	if (failb == syndrome_disks+1) {
		/* Q disk is one of the missing disks */
		if (faila == syndrome_disks) {
			/* Missing P+Q, just recompute */
D
Dan Williams 已提交
1050 1051 1052
			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
					  ops_complete_compute, sh,
					  to_addr_conv(sh, percpu));
1053
			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
						  STRIPE_SIZE, &submit);
		} else {
			struct page *dest;
			int data_target;
			int qd_idx = sh->qd_idx;

			/* Missing D+Q: recompute D from P, then recompute Q */
			if (target == qd_idx)
				data_target = target2;
			else
				data_target = target;

			count = 0;
			for (i = disks; i-- ; ) {
				if (i == data_target || i == qd_idx)
					continue;
				blocks[count++] = sh->dev[i].page;
			}
			dest = sh->dev[data_target].page;
D
Dan Williams 已提交
1073 1074 1075 1076
			init_async_submit(&submit,
					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
					  NULL, NULL, NULL,
					  to_addr_conv(sh, percpu));
1077 1078 1079 1080
			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
				       &submit);

			count = set_syndrome_sources(blocks, sh);
D
Dan Williams 已提交
1081 1082 1083
			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
					  ops_complete_compute, sh,
					  to_addr_conv(sh, percpu));
1084 1085 1086 1087
			return async_gen_syndrome(blocks, 0, count+2,
						  STRIPE_SIZE, &submit);
		}
	} else {
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
				  ops_complete_compute, sh,
				  to_addr_conv(sh, percpu));
		if (failb == syndrome_disks) {
			/* We're missing D+P. */
			return async_raid6_datap_recov(syndrome_disks+2,
						       STRIPE_SIZE, faila,
						       blocks, &submit);
		} else {
			/* We're missing D+D. */
			return async_raid6_2data_recov(syndrome_disks+2,
						       STRIPE_SIZE, faila, failb,
						       blocks, &submit);
		}
1102 1103 1104 1105
	}
}


1106 1107 1108 1109
static void ops_complete_prexor(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

1110
	pr_debug("%s: stripe %llu\n", __func__,
1111 1112 1113 1114
		(unsigned long long)sh->sector);
}

static struct dma_async_tx_descriptor *
1115 1116
ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
	       struct dma_async_tx_descriptor *tx)
1117 1118
{
	int disks = sh->disks;
1119
	struct page **xor_srcs = percpu->scribble;
1120
	int count = 0, pd_idx = sh->pd_idx, i;
1121
	struct async_submit_ctl submit;
1122 1123 1124 1125

	/* existing parity data subtracted */
	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;

1126
	pr_debug("%s: stripe %llu\n", __func__,
1127 1128 1129 1130 1131
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		/* Only process blocks that are known to be uptodate */
1132
		if (test_bit(R5_Wantdrain, &dev->flags))
1133 1134 1135
			xor_srcs[count++] = dev->page;
	}

D
Dan Williams 已提交
1136
	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1137
			  ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1138
	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1139 1140 1141 1142 1143

	return tx;
}

static struct dma_async_tx_descriptor *
1144
ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1145 1146
{
	int disks = sh->disks;
1147
	int i;
1148

1149
	pr_debug("%s: stripe %llu\n", __func__,
1150 1151 1152 1153 1154 1155
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		struct bio *chosen;

1156
		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1157 1158
			struct bio *wbi;

S
Shaohua Li 已提交
1159
			spin_lock_irq(&sh->stripe_lock);
1160 1161 1162 1163
			chosen = dev->towrite;
			dev->towrite = NULL;
			BUG_ON(dev->written);
			wbi = dev->written = chosen;
S
Shaohua Li 已提交
1164
			spin_unlock_irq(&sh->stripe_lock);
1165 1166 1167

			while (wbi && wbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
T
Tejun Heo 已提交
1168 1169
				if (wbi->bi_rw & REQ_FUA)
					set_bit(R5_WantFUA, &dev->flags);
S
Shaohua Li 已提交
1170 1171
				if (wbi->bi_rw & REQ_SYNC)
					set_bit(R5_SyncIO, &dev->flags);
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
				tx = async_copy_data(1, wbi, dev->page,
					dev->sector, tx);
				wbi = r5_next_bio(wbi, dev->sector);
			}
		}
	}

	return tx;
}

1182
static void ops_complete_reconstruct(void *stripe_head_ref)
1183 1184
{
	struct stripe_head *sh = stripe_head_ref;
1185 1186 1187 1188
	int disks = sh->disks;
	int pd_idx = sh->pd_idx;
	int qd_idx = sh->qd_idx;
	int i;
S
Shaohua Li 已提交
1189
	bool fua = false, sync = false;
1190

1191
	pr_debug("%s: stripe %llu\n", __func__,
1192 1193
		(unsigned long long)sh->sector);

S
Shaohua Li 已提交
1194
	for (i = disks; i--; ) {
T
Tejun Heo 已提交
1195
		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
S
Shaohua Li 已提交
1196 1197
		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
	}
T
Tejun Heo 已提交
1198

1199 1200
	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
1201

T
Tejun Heo 已提交
1202
		if (dev->written || i == pd_idx || i == qd_idx) {
1203
			set_bit(R5_UPTODATE, &dev->flags);
T
Tejun Heo 已提交
1204 1205
			if (fua)
				set_bit(R5_WantFUA, &dev->flags);
S
Shaohua Li 已提交
1206 1207
			if (sync)
				set_bit(R5_SyncIO, &dev->flags);
T
Tejun Heo 已提交
1208
		}
1209 1210
	}

1211 1212 1213 1214 1215 1216 1217 1218
	if (sh->reconstruct_state == reconstruct_state_drain_run)
		sh->reconstruct_state = reconstruct_state_drain_result;
	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
	else {
		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
		sh->reconstruct_state = reconstruct_state_result;
	}
1219 1220 1221 1222 1223 1224

	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

static void
1225 1226
ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
		     struct dma_async_tx_descriptor *tx)
1227 1228
{
	int disks = sh->disks;
1229
	struct page **xor_srcs = percpu->scribble;
1230
	struct async_submit_ctl submit;
1231 1232
	int count = 0, pd_idx = sh->pd_idx, i;
	struct page *xor_dest;
1233
	int prexor = 0;
1234 1235
	unsigned long flags;

1236
	pr_debug("%s: stripe %llu\n", __func__,
1237 1238 1239 1240 1241
		(unsigned long long)sh->sector);

	/* check if prexor is active which means only process blocks
	 * that are part of a read-modify-write (written)
	 */
1242 1243
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
		prexor = 1;
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (dev->written)
				xor_srcs[count++] = dev->page;
		}
	} else {
		xor_dest = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i != pd_idx)
				xor_srcs[count++] = dev->page;
		}
	}

	/* 1/ if we prexor'd then the dest is reused as a source
	 * 2/ if we did not prexor then we are redoing the parity
	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
	 * for the synchronous xor case
	 */
1264
	flags = ASYNC_TX_ACK |
1265 1266 1267 1268
		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);

	atomic_inc(&sh->count);

1269
	init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1270
			  to_addr_conv(sh, percpu));
1271 1272 1273 1274
	if (unlikely(count == 1))
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
	else
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1275 1276
}

1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
static void
ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
		     struct dma_async_tx_descriptor *tx)
{
	struct async_submit_ctl submit;
	struct page **blocks = percpu->scribble;
	int count;

	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);

	count = set_syndrome_sources(blocks, sh);

	atomic_inc(&sh->count);

	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
			  sh, to_addr_conv(sh, percpu));
	async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1294 1295 1296 1297 1298 1299
}

static void ops_complete_check(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

1300
	pr_debug("%s: stripe %llu\n", __func__,
1301 1302
		(unsigned long long)sh->sector);

1303
	sh->check_state = check_state_check_result;
1304 1305 1306 1307
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1308
static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1309 1310
{
	int disks = sh->disks;
1311 1312 1313
	int pd_idx = sh->pd_idx;
	int qd_idx = sh->qd_idx;
	struct page *xor_dest;
1314
	struct page **xor_srcs = percpu->scribble;
1315
	struct dma_async_tx_descriptor *tx;
1316
	struct async_submit_ctl submit;
1317 1318
	int count;
	int i;
1319

1320
	pr_debug("%s: stripe %llu\n", __func__,
1321 1322
		(unsigned long long)sh->sector);

1323 1324 1325
	count = 0;
	xor_dest = sh->dev[pd_idx].page;
	xor_srcs[count++] = xor_dest;
1326
	for (i = disks; i--; ) {
1327 1328 1329
		if (i == pd_idx || i == qd_idx)
			continue;
		xor_srcs[count++] = sh->dev[i].page;
1330 1331
	}

1332 1333
	init_async_submit(&submit, 0, NULL, NULL, NULL,
			  to_addr_conv(sh, percpu));
D
Dan Williams 已提交
1334
	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1335
			   &sh->ops.zero_sum_result, &submit);
1336 1337

	atomic_inc(&sh->count);
1338 1339
	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
	tx = async_trigger_callback(&submit);
1340 1341
}

1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
{
	struct page **srcs = percpu->scribble;
	struct async_submit_ctl submit;
	int count;

	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
		(unsigned long long)sh->sector, checkp);

	count = set_syndrome_sources(srcs, sh);
	if (!checkp)
		srcs[count] = NULL;
1354 1355

	atomic_inc(&sh->count);
1356 1357 1358 1359
	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
			  sh, to_addr_conv(sh, percpu));
	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1360 1361
}

1362
static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1363 1364 1365
{
	int overlap_clear = 0, i, disks = sh->disks;
	struct dma_async_tx_descriptor *tx = NULL;
1366
	struct r5conf *conf = sh->raid_conf;
1367
	int level = conf->level;
1368 1369
	struct raid5_percpu *percpu;
	unsigned long cpu;
1370

1371 1372
	cpu = get_cpu();
	percpu = per_cpu_ptr(conf->percpu, cpu);
1373
	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1374 1375 1376 1377
		ops_run_biofill(sh);
		overlap_clear++;
	}

1378
	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
		if (level < 6)
			tx = ops_run_compute5(sh, percpu);
		else {
			if (sh->ops.target2 < 0 || sh->ops.target < 0)
				tx = ops_run_compute6_1(sh, percpu);
			else
				tx = ops_run_compute6_2(sh, percpu);
		}
		/* terminate the chain if reconstruct is not set to be run */
		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1389 1390
			async_tx_ack(tx);
	}
1391

1392
	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1393
		tx = ops_run_prexor(sh, percpu, tx);
1394

1395
	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1396
		tx = ops_run_biodrain(sh, tx);
1397 1398 1399
		overlap_clear++;
	}

1400 1401 1402 1403 1404 1405
	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
		if (level < 6)
			ops_run_reconstruct5(sh, percpu, tx);
		else
			ops_run_reconstruct6(sh, percpu, tx);
	}
1406

1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
		if (sh->check_state == check_state_run)
			ops_run_check_p(sh, percpu);
		else if (sh->check_state == check_state_run_q)
			ops_run_check_pq(sh, percpu, 0);
		else if (sh->check_state == check_state_run_pq)
			ops_run_check_pq(sh, percpu, 1);
		else
			BUG();
	}
1417 1418 1419 1420 1421 1422 1423

	if (overlap_clear)
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (test_and_clear_bit(R5_Overlap, &dev->flags))
				wake_up(&sh->raid_conf->wait_for_overlap);
		}
1424
	put_cpu();
1425 1426
}

1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
#ifdef CONFIG_MULTICORE_RAID456
static void async_run_ops(void *param, async_cookie_t cookie)
{
	struct stripe_head *sh = param;
	unsigned long ops_request = sh->ops.request;

	clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
	wake_up(&sh->ops.wait_for_ops);

	__raid_run_ops(sh, ops_request);
	release_stripe(sh);
}

static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
{
	/* since handle_stripe can be called outside of raid5d context
	 * we need to ensure sh->ops.request is de-staged before another
	 * request arrives
	 */
	wait_event(sh->ops.wait_for_ops,
		   !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
	sh->ops.request = ops_request;

	atomic_inc(&sh->count);
	async_schedule(async_run_ops, sh);
}
#else
#define raid_run_ops __raid_run_ops
#endif

1457
static int grow_one_stripe(struct r5conf *conf)
L
Linus Torvalds 已提交
1458 1459
{
	struct stripe_head *sh;
N
Namhyung Kim 已提交
1460
	sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1461 1462
	if (!sh)
		return 0;
N
Namhyung Kim 已提交
1463

1464
	sh->raid_conf = conf;
1465 1466 1467
	#ifdef CONFIG_MULTICORE_RAID456
	init_waitqueue_head(&sh->ops.wait_for_ops);
	#endif
1468

S
Shaohua Li 已提交
1469 1470
	spin_lock_init(&sh->stripe_lock);

1471 1472
	if (grow_buffers(sh)) {
		shrink_buffers(sh);
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
		kmem_cache_free(conf->slab_cache, sh);
		return 0;
	}
	/* we just created an active stripe so... */
	atomic_set(&sh->count, 1);
	atomic_inc(&conf->active_stripes);
	INIT_LIST_HEAD(&sh->lru);
	release_stripe(sh);
	return 1;
}

1484
static int grow_stripes(struct r5conf *conf, int num)
1485
{
1486
	struct kmem_cache *sc;
1487
	int devs = max(conf->raid_disks, conf->previous_raid_disks);
L
Linus Torvalds 已提交
1488

1489 1490 1491 1492 1493 1494 1495 1496
	if (conf->mddev->gendisk)
		sprintf(conf->cache_name[0],
			"raid%d-%s", conf->level, mdname(conf->mddev));
	else
		sprintf(conf->cache_name[0],
			"raid%d-%p", conf->level, conf->mddev);
	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);

1497 1498
	conf->active_name = 0;
	sc = kmem_cache_create(conf->cache_name[conf->active_name],
L
Linus Torvalds 已提交
1499
			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1500
			       0, 0, NULL);
L
Linus Torvalds 已提交
1501 1502 1503
	if (!sc)
		return 1;
	conf->slab_cache = sc;
1504
	conf->pool_size = devs;
1505
	while (num--)
1506
		if (!grow_one_stripe(conf))
L
Linus Torvalds 已提交
1507 1508 1509
			return 1;
	return 0;
}
1510

1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
/**
 * scribble_len - return the required size of the scribble region
 * @num - total number of disks in the array
 *
 * The size must be enough to contain:
 * 1/ a struct page pointer for each device in the array +2
 * 2/ room to convert each entry in (1) to its corresponding dma
 *    (dma_map_page()) or page (page_address()) address.
 *
 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
 * calculate over all devices (not just the data blocks), using zeros in place
 * of the P and Q blocks.
 */
static size_t scribble_len(int num)
{
	size_t len;

	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);

	return len;
}

1533
static int resize_stripes(struct r5conf *conf, int newsize)
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
{
	/* Make all the stripes able to hold 'newsize' devices.
	 * New slots in each stripe get 'page' set to a new page.
	 *
	 * This happens in stages:
	 * 1/ create a new kmem_cache and allocate the required number of
	 *    stripe_heads.
	 * 2/ gather all the old stripe_heads and tranfer the pages across
	 *    to the new stripe_heads.  This will have the side effect of
	 *    freezing the array as once all stripe_heads have been collected,
	 *    no IO will be possible.  Old stripe heads are freed once their
	 *    pages have been transferred over, and the old kmem_cache is
	 *    freed when all stripes are done.
	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
	 *    we simple return a failre status - no need to clean anything up.
	 * 4/ allocate new pages for the new slots in the new stripe_heads.
	 *    If this fails, we don't bother trying the shrink the
	 *    stripe_heads down again, we just leave them as they are.
	 *    As each stripe_head is processed the new one is released into
	 *    active service.
	 *
	 * Once step2 is started, we cannot afford to wait for a write,
	 * so we use GFP_NOIO allocations.
	 */
	struct stripe_head *osh, *nsh;
	LIST_HEAD(newstripes);
	struct disk_info *ndisks;
1561
	unsigned long cpu;
1562
	int err;
1563
	struct kmem_cache *sc;
1564 1565 1566 1567 1568
	int i;

	if (newsize <= conf->pool_size)
		return 0; /* never bother to shrink */

1569 1570 1571
	err = md_allow_write(conf->mddev);
	if (err)
		return err;
1572

1573 1574 1575
	/* Step 1 */
	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1576
			       0, 0, NULL);
1577 1578 1579 1580
	if (!sc)
		return -ENOMEM;

	for (i = conf->max_nr_stripes; i; i--) {
N
Namhyung Kim 已提交
1581
		nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1582 1583 1584 1585
		if (!nsh)
			break;

		nsh->raid_conf = conf;
1586 1587 1588
		#ifdef CONFIG_MULTICORE_RAID456
		init_waitqueue_head(&nsh->ops.wait_for_ops);
		#endif
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610

		list_add(&nsh->lru, &newstripes);
	}
	if (i) {
		/* didn't get enough, give up */
		while (!list_empty(&newstripes)) {
			nsh = list_entry(newstripes.next, struct stripe_head, lru);
			list_del(&nsh->lru);
			kmem_cache_free(sc, nsh);
		}
		kmem_cache_destroy(sc);
		return -ENOMEM;
	}
	/* Step 2 - Must use GFP_NOIO now.
	 * OK, we have enough stripes, start collecting inactive
	 * stripes and copying them over
	 */
	list_for_each_entry(nsh, &newstripes, lru) {
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    !list_empty(&conf->inactive_list),
				    conf->device_lock,
N
NeilBrown 已提交
1611
				    );
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
		osh = get_free_stripe(conf);
		spin_unlock_irq(&conf->device_lock);
		atomic_set(&nsh->count, 1);
		for(i=0; i<conf->pool_size; i++)
			nsh->dev[i].page = osh->dev[i].page;
		for( ; i<newsize; i++)
			nsh->dev[i].page = NULL;
		kmem_cache_free(conf->slab_cache, osh);
	}
	kmem_cache_destroy(conf->slab_cache);

	/* Step 3.
	 * At this point, we are holding all the stripes so the array
	 * is completely stalled, so now is a good time to resize
1626
	 * conf->disks and the scribble region
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
	 */
	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
	if (ndisks) {
		for (i=0; i<conf->raid_disks; i++)
			ndisks[i] = conf->disks[i];
		kfree(conf->disks);
		conf->disks = ndisks;
	} else
		err = -ENOMEM;

1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
	get_online_cpus();
	conf->scribble_len = scribble_len(newsize);
	for_each_present_cpu(cpu) {
		struct raid5_percpu *percpu;
		void *scribble;

		percpu = per_cpu_ptr(conf->percpu, cpu);
		scribble = kmalloc(conf->scribble_len, GFP_NOIO);

		if (scribble) {
			kfree(percpu->scribble);
			percpu->scribble = scribble;
		} else {
			err = -ENOMEM;
			break;
		}
	}
	put_online_cpus();

1656 1657 1658 1659
	/* Step 4, return new stripes to service */
	while(!list_empty(&newstripes)) {
		nsh = list_entry(newstripes.next, struct stripe_head, lru);
		list_del_init(&nsh->lru);
1660

1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
		for (i=conf->raid_disks; i < newsize; i++)
			if (nsh->dev[i].page == NULL) {
				struct page *p = alloc_page(GFP_NOIO);
				nsh->dev[i].page = p;
				if (!p)
					err = -ENOMEM;
			}
		release_stripe(nsh);
	}
	/* critical section pass, GFP_NOIO no longer needed */

	conf->slab_cache = sc;
	conf->active_name = 1-conf->active_name;
	conf->pool_size = newsize;
	return err;
}
L
Linus Torvalds 已提交
1677

1678
static int drop_one_stripe(struct r5conf *conf)
L
Linus Torvalds 已提交
1679 1680 1681
{
	struct stripe_head *sh;

1682 1683 1684 1685 1686
	spin_lock_irq(&conf->device_lock);
	sh = get_free_stripe(conf);
	spin_unlock_irq(&conf->device_lock);
	if (!sh)
		return 0;
1687
	BUG_ON(atomic_read(&sh->count));
1688
	shrink_buffers(sh);
1689 1690 1691 1692 1693
	kmem_cache_free(conf->slab_cache, sh);
	atomic_dec(&conf->active_stripes);
	return 1;
}

1694
static void shrink_stripes(struct r5conf *conf)
1695 1696 1697 1698
{
	while (drop_one_stripe(conf))
		;

N
NeilBrown 已提交
1699 1700
	if (conf->slab_cache)
		kmem_cache_destroy(conf->slab_cache);
L
Linus Torvalds 已提交
1701 1702 1703
	conf->slab_cache = NULL;
}

1704
static void raid5_end_read_request(struct bio * bi, int error)
L
Linus Torvalds 已提交
1705
{
1706
	struct stripe_head *sh = bi->bi_private;
1707
	struct r5conf *conf = sh->raid_conf;
1708
	int disks = sh->disks, i;
L
Linus Torvalds 已提交
1709
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1710
	char b[BDEVNAME_SIZE];
1711
	struct md_rdev *rdev = NULL;
1712
	sector_t s;
L
Linus Torvalds 已提交
1713 1714 1715 1716 1717

	for (i=0 ; i<disks; i++)
		if (bi == &sh->dev[i].req)
			break;

1718 1719
	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
L
Linus Torvalds 已提交
1720 1721 1722
		uptodate);
	if (i == disks) {
		BUG();
1723
		return;
L
Linus Torvalds 已提交
1724
	}
1725
	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1726 1727 1728 1729 1730
		/* If replacement finished while this request was outstanding,
		 * 'replacement' might be NULL already.
		 * In that case it moved down to 'rdev'.
		 * rdev is not removed until all requests are finished.
		 */
1731
		rdev = conf->disks[i].replacement;
1732
	if (!rdev)
1733
		rdev = conf->disks[i].rdev;
L
Linus Torvalds 已提交
1734

1735 1736 1737 1738
	if (use_new_offset(conf, sh))
		s = sh->sector + rdev->new_data_offset;
	else
		s = sh->sector + rdev->data_offset;
L
Linus Torvalds 已提交
1739 1740
	if (uptodate) {
		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1741
		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1742 1743 1744 1745
			/* Note that this cannot happen on a
			 * replacement device.  We just fail those on
			 * any error
			 */
1746 1747 1748 1749 1750
			printk_ratelimited(
				KERN_INFO
				"md/raid:%s: read error corrected"
				" (%lu sectors at %llu on %s)\n",
				mdname(conf->mddev), STRIPE_SECTORS,
1751
				(unsigned long long)s,
1752
				bdevname(rdev->bdev, b));
1753
			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1754 1755
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1756 1757 1758
		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);

1759 1760
		if (atomic_read(&rdev->read_errors))
			atomic_set(&rdev->read_errors, 0);
L
Linus Torvalds 已提交
1761
	} else {
1762
		const char *bdn = bdevname(rdev->bdev, b);
1763
		int retry = 0;
1764
		int set_bad = 0;
1765

L
Linus Torvalds 已提交
1766
		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1767
		atomic_inc(&rdev->read_errors);
1768 1769 1770 1771 1772 1773
		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
			printk_ratelimited(
				KERN_WARNING
				"md/raid:%s: read error on replacement device "
				"(sector %llu on %s).\n",
				mdname(conf->mddev),
1774
				(unsigned long long)s,
1775
				bdn);
1776 1777
		else if (conf->mddev->degraded >= conf->max_degraded) {
			set_bad = 1;
1778 1779 1780 1781 1782
			printk_ratelimited(
				KERN_WARNING
				"md/raid:%s: read error not correctable "
				"(sector %llu on %s).\n",
				mdname(conf->mddev),
1783
				(unsigned long long)s,
1784
				bdn);
1785
		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
1786
			/* Oh, no!!! */
1787
			set_bad = 1;
1788 1789 1790 1791 1792
			printk_ratelimited(
				KERN_WARNING
				"md/raid:%s: read error NOT corrected!! "
				"(sector %llu on %s).\n",
				mdname(conf->mddev),
1793
				(unsigned long long)s,
1794
				bdn);
1795
		} else if (atomic_read(&rdev->read_errors)
1796
			 > conf->max_nr_stripes)
N
NeilBrown 已提交
1797
			printk(KERN_WARNING
1798
			       "md/raid:%s: Too many read errors, failing device %s.\n",
1799
			       mdname(conf->mddev), bdn);
1800 1801 1802
		else
			retry = 1;
		if (retry)
1803 1804 1805 1806 1807
			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
				set_bit(R5_ReadError, &sh->dev[i].flags);
				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
			} else
				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1808
		else {
1809 1810
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1811 1812 1813 1814 1815
			if (!(set_bad
			      && test_bit(In_sync, &rdev->flags)
			      && rdev_set_badblocks(
				      rdev, sh->sector, STRIPE_SECTORS, 0)))
				md_error(conf->mddev, rdev);
1816
		}
L
Linus Torvalds 已提交
1817
	}
1818
	rdev_dec_pending(rdev, conf->mddev);
L
Linus Torvalds 已提交
1819 1820 1821 1822 1823
	clear_bit(R5_LOCKED, &sh->dev[i].flags);
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1824
static void raid5_end_write_request(struct bio *bi, int error)
L
Linus Torvalds 已提交
1825
{
1826
	struct stripe_head *sh = bi->bi_private;
1827
	struct r5conf *conf = sh->raid_conf;
1828
	int disks = sh->disks, i;
1829
	struct md_rdev *uninitialized_var(rdev);
L
Linus Torvalds 已提交
1830
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1831 1832
	sector_t first_bad;
	int bad_sectors;
1833
	int replacement = 0;
L
Linus Torvalds 已提交
1834

1835 1836 1837
	for (i = 0 ; i < disks; i++) {
		if (bi == &sh->dev[i].req) {
			rdev = conf->disks[i].rdev;
L
Linus Torvalds 已提交
1838
			break;
1839 1840 1841
		}
		if (bi == &sh->dev[i].rreq) {
			rdev = conf->disks[i].replacement;
1842 1843 1844 1845 1846 1847 1848 1849
			if (rdev)
				replacement = 1;
			else
				/* rdev was removed and 'replacement'
				 * replaced it.  rdev is not removed
				 * until all requests are finished.
				 */
				rdev = conf->disks[i].rdev;
1850 1851 1852
			break;
		}
	}
1853
	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
L
Linus Torvalds 已提交
1854 1855 1856 1857
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
		uptodate);
	if (i == disks) {
		BUG();
1858
		return;
L
Linus Torvalds 已提交
1859 1860
	}

1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
	if (replacement) {
		if (!uptodate)
			md_error(conf->mddev, rdev);
		else if (is_badblock(rdev, sh->sector,
				     STRIPE_SECTORS,
				     &first_bad, &bad_sectors))
			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
	} else {
		if (!uptodate) {
			set_bit(WriteErrorSeen, &rdev->flags);
			set_bit(R5_WriteError, &sh->dev[i].flags);
1872 1873 1874
			if (!test_and_set_bit(WantReplacement, &rdev->flags))
				set_bit(MD_RECOVERY_NEEDED,
					&rdev->mddev->recovery);
1875 1876 1877 1878 1879 1880
		} else if (is_badblock(rdev, sh->sector,
				       STRIPE_SECTORS,
				       &first_bad, &bad_sectors))
			set_bit(R5_MadeGood, &sh->dev[i].flags);
	}
	rdev_dec_pending(rdev, conf->mddev);
L
Linus Torvalds 已提交
1881

1882 1883
	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
		clear_bit(R5_LOCKED, &sh->dev[i].flags);
L
Linus Torvalds 已提交
1884
	set_bit(STRIPE_HANDLE, &sh->state);
1885
	release_stripe(sh);
L
Linus Torvalds 已提交
1886 1887
}

1888
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
L
Linus Torvalds 已提交
1889
	
1890
static void raid5_build_block(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
1891 1892 1893 1894 1895 1896 1897 1898
{
	struct r5dev *dev = &sh->dev[i];

	bio_init(&dev->req);
	dev->req.bi_io_vec = &dev->vec;
	dev->req.bi_vcnt++;
	dev->req.bi_max_vecs++;
	dev->req.bi_private = sh;
1899
	dev->vec.bv_page = dev->page;
L
Linus Torvalds 已提交
1900

1901 1902 1903 1904 1905 1906 1907
	bio_init(&dev->rreq);
	dev->rreq.bi_io_vec = &dev->rvec;
	dev->rreq.bi_vcnt++;
	dev->rreq.bi_max_vecs++;
	dev->rreq.bi_private = sh;
	dev->rvec.bv_page = dev->page;

L
Linus Torvalds 已提交
1908
	dev->flags = 0;
1909
	dev->sector = compute_blocknr(sh, i, previous);
L
Linus Torvalds 已提交
1910 1911
}

1912
static void error(struct mddev *mddev, struct md_rdev *rdev)
L
Linus Torvalds 已提交
1913 1914
{
	char b[BDEVNAME_SIZE];
1915
	struct r5conf *conf = mddev->private;
1916
	unsigned long flags;
1917
	pr_debug("raid456: error called\n");
L
Linus Torvalds 已提交
1918

1919 1920 1921 1922 1923 1924
	spin_lock_irqsave(&conf->device_lock, flags);
	clear_bit(In_sync, &rdev->flags);
	mddev->degraded = calc_degraded(conf);
	spin_unlock_irqrestore(&conf->device_lock, flags);
	set_bit(MD_RECOVERY_INTR, &mddev->recovery);

1925
	set_bit(Blocked, &rdev->flags);
1926 1927 1928 1929 1930 1931 1932 1933 1934
	set_bit(Faulty, &rdev->flags);
	set_bit(MD_CHANGE_DEVS, &mddev->flags);
	printk(KERN_ALERT
	       "md/raid:%s: Disk failure on %s, disabling device.\n"
	       "md/raid:%s: Operation continuing on %d devices.\n",
	       mdname(mddev),
	       bdevname(rdev->bdev, b),
	       mdname(mddev),
	       conf->raid_disks - mddev->degraded);
1935
}
L
Linus Torvalds 已提交
1936 1937 1938 1939 1940

/*
 * Input: a 'big' sector number,
 * Output: index of the data and parity disk, and the sector # in them.
 */
1941
static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
1942 1943
				     int previous, int *dd_idx,
				     struct stripe_head *sh)
L
Linus Torvalds 已提交
1944
{
N
NeilBrown 已提交
1945
	sector_t stripe, stripe2;
1946
	sector_t chunk_number;
L
Linus Torvalds 已提交
1947
	unsigned int chunk_offset;
1948
	int pd_idx, qd_idx;
1949
	int ddf_layout = 0;
L
Linus Torvalds 已提交
1950
	sector_t new_sector;
1951 1952
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
1953 1954
	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
					 : conf->chunk_sectors;
1955 1956 1957
	int raid_disks = previous ? conf->previous_raid_disks
				  : conf->raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969

	/* First compute the information on this sector */

	/*
	 * Compute the chunk number and the sector offset inside the chunk
	 */
	chunk_offset = sector_div(r_sector, sectors_per_chunk);
	chunk_number = r_sector;

	/*
	 * Compute the stripe number
	 */
1970 1971
	stripe = chunk_number;
	*dd_idx = sector_div(stripe, data_disks);
N
NeilBrown 已提交
1972
	stripe2 = stripe;
L
Linus Torvalds 已提交
1973 1974 1975
	/*
	 * Select the parity disk based on the user selected algorithm.
	 */
1976
	pd_idx = qd_idx = -1;
1977 1978
	switch(conf->level) {
	case 4:
1979
		pd_idx = data_disks;
1980 1981
		break;
	case 5:
1982
		switch (algorithm) {
L
Linus Torvalds 已提交
1983
		case ALGORITHM_LEFT_ASYMMETRIC:
N
NeilBrown 已提交
1984
			pd_idx = data_disks - sector_div(stripe2, raid_disks);
1985
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
1986 1987 1988
				(*dd_idx)++;
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
N
NeilBrown 已提交
1989
			pd_idx = sector_div(stripe2, raid_disks);
1990
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
1991 1992 1993
				(*dd_idx)++;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
N
NeilBrown 已提交
1994
			pd_idx = data_disks - sector_div(stripe2, raid_disks);
1995
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
1996 1997
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
N
NeilBrown 已提交
1998
			pd_idx = sector_div(stripe2, raid_disks);
1999
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
2000
			break;
2001 2002 2003 2004 2005 2006 2007
		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			(*dd_idx)++;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			break;
L
Linus Torvalds 已提交
2008
		default:
2009
			BUG();
2010 2011 2012 2013
		}
		break;
	case 6:

2014
		switch (algorithm) {
2015
		case ALGORITHM_LEFT_ASYMMETRIC:
N
NeilBrown 已提交
2016
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2017 2018
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
2019
				(*dd_idx)++;	/* Q D D D P */
2020 2021
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
2022 2023 2024
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
N
NeilBrown 已提交
2025
			pd_idx = sector_div(stripe2, raid_disks);
2026 2027
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
2028
				(*dd_idx)++;	/* Q D D D P */
2029 2030
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
2031 2032 2033
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
N
NeilBrown 已提交
2034
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2035 2036
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2037 2038
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
N
NeilBrown 已提交
2039
			pd_idx = sector_div(stripe2, raid_disks);
2040 2041
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2042
			break;
2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057

		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			qd_idx = 1;
			(*dd_idx) += 2;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			qd_idx = data_disks + 1;
			break;

		case ALGORITHM_ROTATING_ZERO_RESTART:
			/* Exactly the same as RIGHT_ASYMMETRIC, but or
			 * of blocks for computing Q is different.
			 */
N
NeilBrown 已提交
2058
			pd_idx = sector_div(stripe2, raid_disks);
2059 2060 2061 2062 2063 2064
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
2065
			ddf_layout = 1;
2066 2067 2068 2069 2070 2071 2072
			break;

		case ALGORITHM_ROTATING_N_RESTART:
			/* Same a left_asymmetric, by first stripe is
			 * D D D P Q  rather than
			 * Q D D D P
			 */
N
NeilBrown 已提交
2073 2074
			stripe2 += 1;
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2075 2076 2077 2078 2079 2080
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
2081
			ddf_layout = 1;
2082 2083 2084 2085
			break;

		case ALGORITHM_ROTATING_N_CONTINUE:
			/* Same as left_symmetric but Q is before P */
N
NeilBrown 已提交
2086
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2087 2088
			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2089
			ddf_layout = 1;
2090 2091 2092 2093
			break;

		case ALGORITHM_LEFT_ASYMMETRIC_6:
			/* RAID5 left_asymmetric, with Q on last device */
N
NeilBrown 已提交
2094
			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2095 2096 2097 2098 2099 2100
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_ASYMMETRIC_6:
N
NeilBrown 已提交
2101
			pd_idx = sector_div(stripe2, raid_disks-1);
2102 2103 2104 2105 2106 2107
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_LEFT_SYMMETRIC_6:
N
NeilBrown 已提交
2108
			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2109 2110 2111 2112 2113
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_SYMMETRIC_6:
N
NeilBrown 已提交
2114
			pd_idx = sector_div(stripe2, raid_disks-1);
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_PARITY_0_6:
			pd_idx = 0;
			(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

2125
		default:
2126
			BUG();
2127 2128
		}
		break;
L
Linus Torvalds 已提交
2129 2130
	}

2131 2132 2133
	if (sh) {
		sh->pd_idx = pd_idx;
		sh->qd_idx = qd_idx;
2134
		sh->ddf_layout = ddf_layout;
2135
	}
L
Linus Torvalds 已提交
2136 2137 2138 2139 2140 2141 2142 2143
	/*
	 * Finally, compute the new sector number
	 */
	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
	return new_sector;
}


2144
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
2145
{
2146
	struct r5conf *conf = sh->raid_conf;
2147 2148
	int raid_disks = sh->disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
2149
	sector_t new_sector = sh->sector, check;
2150 2151
	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
					 : conf->chunk_sectors;
2152 2153
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
L
Linus Torvalds 已提交
2154 2155
	sector_t stripe;
	int chunk_offset;
2156 2157
	sector_t chunk_number;
	int dummy1, dd_idx = i;
L
Linus Torvalds 已提交
2158
	sector_t r_sector;
2159
	struct stripe_head sh2;
L
Linus Torvalds 已提交
2160

2161

L
Linus Torvalds 已提交
2162 2163 2164
	chunk_offset = sector_div(new_sector, sectors_per_chunk);
	stripe = new_sector;

2165 2166 2167 2168 2169
	if (i == sh->pd_idx)
		return 0;
	switch(conf->level) {
	case 4: break;
	case 5:
2170
		switch (algorithm) {
L
Linus Torvalds 已提交
2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (i < sh->pd_idx)
				i += raid_disks;
			i -= (sh->pd_idx + 1);
			break;
2182 2183 2184 2185 2186
		case ALGORITHM_PARITY_0:
			i -= 1;
			break;
		case ALGORITHM_PARITY_N:
			break;
L
Linus Torvalds 已提交
2187
		default:
2188
			BUG();
2189 2190 2191
		}
		break;
	case 6:
2192
		if (i == sh->qd_idx)
2193
			return 0; /* It is the Q disk */
2194
		switch (algorithm) {
2195 2196
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
2197 2198 2199 2200
		case ALGORITHM_ROTATING_ZERO_RESTART:
		case ALGORITHM_ROTATING_N_RESTART:
			if (sh->pd_idx == raid_disks-1)
				i--;	/* Q D D D P */
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
			else if (i > sh->pd_idx)
				i -= 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (sh->pd_idx == raid_disks-1)
				i--; /* Q D D D P */
			else {
				/* D D P Q D */
				if (i < sh->pd_idx)
					i += raid_disks;
				i -= (sh->pd_idx + 2);
			}
			break;
2215 2216 2217 2218 2219 2220
		case ALGORITHM_PARITY_0:
			i -= 2;
			break;
		case ALGORITHM_PARITY_N:
			break;
		case ALGORITHM_ROTATING_N_CONTINUE:
2221
			/* Like left_symmetric, but P is before Q */
2222 2223
			if (sh->pd_idx == 0)
				i--;	/* P D D D Q */
2224 2225 2226 2227 2228 2229
			else {
				/* D D Q P D */
				if (i < sh->pd_idx)
					i += raid_disks;
				i -= (sh->pd_idx + 1);
			}
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
			break;
		case ALGORITHM_LEFT_ASYMMETRIC_6:
		case ALGORITHM_RIGHT_ASYMMETRIC_6:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC_6:
		case ALGORITHM_RIGHT_SYMMETRIC_6:
			if (i < sh->pd_idx)
				i += data_disks + 1;
			i -= (sh->pd_idx + 1);
			break;
		case ALGORITHM_PARITY_0_6:
			i -= 1;
			break;
2245
		default:
2246
			BUG();
2247 2248
		}
		break;
L
Linus Torvalds 已提交
2249 2250 2251
	}

	chunk_number = stripe * data_disks + i;
2252
	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
L
Linus Torvalds 已提交
2253

2254
	check = raid5_compute_sector(conf, r_sector,
2255
				     previous, &dummy1, &sh2);
2256 2257
	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
		|| sh2.qd_idx != sh->qd_idx) {
2258 2259
		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
		       mdname(conf->mddev));
L
Linus Torvalds 已提交
2260 2261 2262 2263 2264 2265
		return 0;
	}
	return r_sector;
}


2266
static void
2267
schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2268
			 int rcw, int expand)
2269 2270
{
	int i, pd_idx = sh->pd_idx, disks = sh->disks;
2271
	struct r5conf *conf = sh->raid_conf;
2272
	int level = conf->level;
2273 2274 2275 2276 2277 2278 2279

	if (rcw) {
		/* if we are not expanding this is a proper write request, and
		 * there will be bios with new data to be drained into the
		 * stripe cache
		 */
		if (!expand) {
2280 2281 2282 2283
			sh->reconstruct_state = reconstruct_state_drain_run;
			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
		} else
			sh->reconstruct_state = reconstruct_state_run;
2284

2285
		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2286 2287 2288 2289 2290 2291

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];

			if (dev->towrite) {
				set_bit(R5_LOCKED, &dev->flags);
2292
				set_bit(R5_Wantdrain, &dev->flags);
2293 2294
				if (!expand)
					clear_bit(R5_UPTODATE, &dev->flags);
2295
				s->locked++;
2296 2297
			}
		}
2298
		if (s->locked + conf->max_degraded == disks)
2299
			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2300
				atomic_inc(&conf->pending_full_writes);
2301
	} else {
2302
		BUG_ON(level == 6);
2303 2304 2305
		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));

2306
		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2307 2308
		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2309
		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2310 2311 2312 2313 2314 2315 2316 2317

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i == pd_idx)
				continue;

			if (dev->towrite &&
			    (test_bit(R5_UPTODATE, &dev->flags) ||
2318 2319
			     test_bit(R5_Wantcompute, &dev->flags))) {
				set_bit(R5_Wantdrain, &dev->flags);
2320 2321
				set_bit(R5_LOCKED, &dev->flags);
				clear_bit(R5_UPTODATE, &dev->flags);
2322
				s->locked++;
2323 2324 2325 2326
			}
		}
	}

2327
	/* keep the parity disk(s) locked while asynchronous operations
2328 2329 2330 2331
	 * are in flight
	 */
	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2332
	s->locked++;
2333

2334 2335 2336 2337 2338 2339 2340 2341 2342
	if (level == 6) {
		int qd_idx = sh->qd_idx;
		struct r5dev *dev = &sh->dev[qd_idx];

		set_bit(R5_LOCKED, &dev->flags);
		clear_bit(R5_UPTODATE, &dev->flags);
		s->locked++;
	}

2343
	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2344
		__func__, (unsigned long long)sh->sector,
2345
		s->locked, s->ops_request);
2346
}
2347

L
Linus Torvalds 已提交
2348 2349
/*
 * Each stripe/dev can have one or more bion attached.
2350
 * toread/towrite point to the first in a chain.
L
Linus Torvalds 已提交
2351 2352 2353 2354 2355
 * The bi_next chain must be in order.
 */
static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
{
	struct bio **bip;
2356
	struct r5conf *conf = sh->raid_conf;
2357
	int firstwrite=0;
L
Linus Torvalds 已提交
2358

2359
	pr_debug("adding bi b#%llu to stripe s#%llu\n",
L
Linus Torvalds 已提交
2360 2361 2362
		(unsigned long long)bi->bi_sector,
		(unsigned long long)sh->sector);

S
Shaohua Li 已提交
2363 2364 2365 2366 2367 2368 2369 2370 2371
	/*
	 * If several bio share a stripe. The bio bi_phys_segments acts as a
	 * reference count to avoid race. The reference count should already be
	 * increased before this function is called (for example, in
	 * make_request()), so other bio sharing this stripe will not free the
	 * stripe. If a stripe is owned by one stripe, the stripe lock will
	 * protect it.
	 */
	spin_lock_irq(&sh->stripe_lock);
2372
	if (forwrite) {
L
Linus Torvalds 已提交
2373
		bip = &sh->dev[dd_idx].towrite;
2374
		if (*bip == NULL)
2375 2376
			firstwrite = 1;
	} else
L
Linus Torvalds 已提交
2377 2378 2379 2380 2381 2382 2383 2384 2385
		bip = &sh->dev[dd_idx].toread;
	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
			goto overlap;
		bip = & (*bip)->bi_next;
	}
	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
		goto overlap;

2386
	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
L
Linus Torvalds 已提交
2387 2388 2389
	if (*bip)
		bi->bi_next = *bip;
	*bip = bi;
2390
	raid5_inc_bi_active_stripes(bi);
2391

L
Linus Torvalds 已提交
2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404
	if (forwrite) {
		/* check if page is covered */
		sector_t sector = sh->dev[dd_idx].sector;
		for (bi=sh->dev[dd_idx].towrite;
		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
			     bi && bi->bi_sector <= sector;
		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
				sector = bi->bi_sector + (bi->bi_size>>9);
		}
		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
	}
S
Shaohua Li 已提交
2405
	spin_unlock_irq(&sh->stripe_lock);
2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416

	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
		(unsigned long long)(*bip)->bi_sector,
		(unsigned long long)sh->sector, dd_idx);

	if (conf->mddev->bitmap && firstwrite) {
		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
				  STRIPE_SECTORS, 0);
		sh->bm_seq = conf->seq_flush+1;
		set_bit(STRIPE_BIT_DELAY, &sh->state);
	}
L
Linus Torvalds 已提交
2417 2418 2419 2420
	return 1;

 overlap:
	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
S
Shaohua Li 已提交
2421
	spin_unlock_irq(&sh->stripe_lock);
L
Linus Torvalds 已提交
2422 2423 2424
	return 0;
}

2425
static void end_reshape(struct r5conf *conf);
2426

2427
static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2428
			    struct stripe_head *sh)
2429
{
2430
	int sectors_per_chunk =
2431
		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2432
	int dd_idx;
2433
	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2434
	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2435

2436 2437
	raid5_compute_sector(conf,
			     stripe * (disks - conf->max_degraded)
2438
			     *sectors_per_chunk + chunk_offset,
2439
			     previous,
2440
			     &dd_idx, sh);
2441 2442
}

2443
static void
2444
handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2445 2446 2447 2448 2449 2450 2451 2452 2453
				struct stripe_head_state *s, int disks,
				struct bio **return_bi)
{
	int i;
	for (i = disks; i--; ) {
		struct bio *bi;
		int bitmap_end = 0;

		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2454
			struct md_rdev *rdev;
2455 2456 2457
			rcu_read_lock();
			rdev = rcu_dereference(conf->disks[i].rdev);
			if (rdev && test_bit(In_sync, &rdev->flags))
2458 2459 2460
				atomic_inc(&rdev->nr_pending);
			else
				rdev = NULL;
2461
			rcu_read_unlock();
2462 2463 2464 2465 2466 2467 2468 2469
			if (rdev) {
				if (!rdev_set_badblocks(
					    rdev,
					    sh->sector,
					    STRIPE_SECTORS, 0))
					md_error(conf->mddev, rdev);
				rdev_dec_pending(rdev, conf->mddev);
			}
2470
		}
S
Shaohua Li 已提交
2471
		spin_lock_irq(&sh->stripe_lock);
2472 2473 2474
		/* fail all writes first */
		bi = sh->dev[i].towrite;
		sh->dev[i].towrite = NULL;
S
Shaohua Li 已提交
2475
		spin_unlock_irq(&sh->stripe_lock);
2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
		if (bi) {
			s->to_write--;
			bitmap_end = 1;
		}

		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
			wake_up(&conf->wait_for_overlap);

		while (bi && bi->bi_sector <
			sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2488
			if (!raid5_dec_bi_active_stripes(bi)) {
2489 2490 2491 2492 2493 2494
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = nextbi;
		}
2495 2496 2497 2498
		if (bitmap_end)
			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
				STRIPE_SECTORS, 0, 0);
		bitmap_end = 0;
2499 2500 2501 2502 2503 2504 2505 2506
		/* and fail all 'written' */
		bi = sh->dev[i].written;
		sh->dev[i].written = NULL;
		if (bi) bitmap_end = 1;
		while (bi && bi->bi_sector <
		       sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2507
			if (!raid5_dec_bi_active_stripes(bi)) {
2508 2509 2510 2511 2512 2513 2514
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = bi2;
		}

2515 2516 2517 2518 2519 2520
		/* fail any reads if this device is non-operational and
		 * the data has not reached the cache yet.
		 */
		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2521 2522 2523 2524 2525 2526 2527 2528 2529 2530
			bi = sh->dev[i].toread;
			sh->dev[i].toread = NULL;
			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
				wake_up(&conf->wait_for_overlap);
			if (bi) s->to_read--;
			while (bi && bi->bi_sector <
			       sh->dev[i].sector + STRIPE_SECTORS) {
				struct bio *nextbi =
					r5_next_bio(bi, sh->dev[i].sector);
				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2531
				if (!raid5_dec_bi_active_stripes(bi)) {
2532 2533 2534 2535 2536 2537 2538 2539 2540
					bi->bi_next = *return_bi;
					*return_bi = bi;
				}
				bi = nextbi;
			}
		}
		if (bitmap_end)
			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
					STRIPE_SECTORS, 0, 0);
2541 2542 2543 2544
		/* If we were in the middle of a write the parity block might
		 * still be locked - so just clear all R5_LOCKED flags
		 */
		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2545 2546
	}

2547 2548 2549
	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
2550 2551
}

2552
static void
2553
handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2554 2555 2556 2557 2558 2559 2560
		   struct stripe_head_state *s)
{
	int abort = 0;
	int i;

	clear_bit(STRIPE_SYNCING, &sh->state);
	s->syncing = 0;
2561
	s->replacing = 0;
2562
	/* There is nothing more to do for sync/check/repair.
2563 2564 2565
	 * Don't even need to abort as that is handled elsewhere
	 * if needed, and not always wanted e.g. if there is a known
	 * bad block here.
2566
	 * For recover/replace we need to record a bad block on all
2567 2568
	 * non-sync devices, or abort the recovery
	 */
2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
		/* During recovery devices cannot be removed, so
		 * locking and refcounting of rdevs is not needed
		 */
		for (i = 0; i < conf->raid_disks; i++) {
			struct md_rdev *rdev = conf->disks[i].rdev;
			if (rdev
			    && !test_bit(Faulty, &rdev->flags)
			    && !test_bit(In_sync, &rdev->flags)
			    && !rdev_set_badblocks(rdev, sh->sector,
						   STRIPE_SECTORS, 0))
				abort = 1;
			rdev = conf->disks[i].replacement;
			if (rdev
			    && !test_bit(Faulty, &rdev->flags)
			    && !test_bit(In_sync, &rdev->flags)
			    && !rdev_set_badblocks(rdev, sh->sector,
						   STRIPE_SECTORS, 0))
				abort = 1;
		}
		if (abort)
			conf->recovery_disabled =
				conf->mddev->recovery_disabled;
2592
	}
2593
	md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2594 2595
}

2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611
static int want_replace(struct stripe_head *sh, int disk_idx)
{
	struct md_rdev *rdev;
	int rv = 0;
	/* Doing recovery so rcu locking not required */
	rdev = sh->raid_conf->disks[disk_idx].replacement;
	if (rdev
	    && !test_bit(Faulty, &rdev->flags)
	    && !test_bit(In_sync, &rdev->flags)
	    && (rdev->recovery_offset <= sh->sector
		|| rdev->mddev->recovery_cp <= sh->sector))
		rv = 1;

	return rv;
}

2612
/* fetch_block - checks the given member device to see if its data needs
2613 2614 2615
 * to be read or computed to satisfy a request.
 *
 * Returns 1 when no more member devices need to be checked, otherwise returns
2616
 * 0 to tell the loop in handle_stripe_fill to continue
2617
 */
2618 2619
static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
		       int disk_idx, int disks)
2620
{
2621
	struct r5dev *dev = &sh->dev[disk_idx];
2622 2623
	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
				  &sh->dev[s->failed_num[1]] };
2624

2625
	/* is the data in this block needed, and can we get it? */
2626 2627 2628 2629 2630
	if (!test_bit(R5_LOCKED, &dev->flags) &&
	    !test_bit(R5_UPTODATE, &dev->flags) &&
	    (dev->toread ||
	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
	     s->syncing || s->expanding ||
2631
	     (s->replacing && want_replace(sh, disk_idx)) ||
2632 2633
	     (s->failed >= 1 && fdev[0]->toread) ||
	     (s->failed >= 2 && fdev[1]->toread) ||
2634 2635 2636
	     (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
	      !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
	     (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2637 2638 2639 2640 2641 2642
		/* we would like to get this block, possibly by computing it,
		 * otherwise read it if the backing disk is insync
		 */
		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
		BUG_ON(test_bit(R5_Wantread, &dev->flags));
		if ((s->uptodate == disks - 1) &&
2643 2644
		    (s->failed && (disk_idx == s->failed_num[0] ||
				   disk_idx == s->failed_num[1]))) {
2645 2646
			/* have disk failed, and we're requested to fetch it;
			 * do compute it
2647
			 */
2648 2649 2650 2651 2652 2653 2654 2655
			pr_debug("Computing stripe %llu block %d\n",
			       (unsigned long long)sh->sector, disk_idx);
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
			set_bit(R5_Wantcompute, &dev->flags);
			sh->ops.target = disk_idx;
			sh->ops.target2 = -1; /* no 2nd target */
			s->req_compute = 1;
2656 2657 2658 2659 2660 2661
			/* Careful: from this point on 'uptodate' is in the eye
			 * of raid_run_ops which services 'compute' operations
			 * before writes. R5_Wantcompute flags a block that will
			 * be R5_UPTODATE by the time it is needed for a
			 * subsequent operation.
			 */
2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
			s->uptodate++;
			return 1;
		} else if (s->uptodate == disks-2 && s->failed >= 2) {
			/* Computing 2-failure is *very* expensive; only
			 * do it if failed >= 2
			 */
			int other;
			for (other = disks; other--; ) {
				if (other == disk_idx)
					continue;
				if (!test_bit(R5_UPTODATE,
				      &sh->dev[other].flags))
					break;
2675
			}
2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694
			BUG_ON(other < 0);
			pr_debug("Computing stripe %llu blocks %d,%d\n",
			       (unsigned long long)sh->sector,
			       disk_idx, other);
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
			set_bit(R5_Wantcompute, &sh->dev[other].flags);
			sh->ops.target = disk_idx;
			sh->ops.target2 = other;
			s->uptodate += 2;
			s->req_compute = 1;
			return 1;
		} else if (test_bit(R5_Insync, &dev->flags)) {
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantread, &dev->flags);
			s->locked++;
			pr_debug("Reading block %d (sync=%d)\n",
				disk_idx, s->syncing);
2695 2696
		}
	}
2697 2698 2699 2700 2701

	return 0;
}

/**
2702
 * handle_stripe_fill - read or compute data to satisfy pending requests.
2703
 */
2704 2705 2706
static void handle_stripe_fill(struct stripe_head *sh,
			       struct stripe_head_state *s,
			       int disks)
2707 2708 2709 2710 2711 2712 2713 2714 2715 2716
{
	int i;

	/* look for blocks to read/compute, skip this if a compute
	 * is already in flight, or if the stripe contents are in the
	 * midst of changing due to a write
	 */
	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
	    !sh->reconstruct_state)
		for (i = disks; i--; )
2717
			if (fetch_block(sh, s, i, disks))
2718
				break;
2719 2720 2721 2722
	set_bit(STRIPE_HANDLE, &sh->state);
}


2723
/* handle_stripe_clean_event
2724 2725 2726 2727
 * any written block on an uptodate or failed drive can be returned.
 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
 * never LOCKED, so we don't need to test 'failed' directly.
 */
2728
static void handle_stripe_clean_event(struct r5conf *conf,
2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740
	struct stripe_head *sh, int disks, struct bio **return_bi)
{
	int i;
	struct r5dev *dev;

	for (i = disks; i--; )
		if (sh->dev[i].written) {
			dev = &sh->dev[i];
			if (!test_bit(R5_LOCKED, &dev->flags) &&
				test_bit(R5_UPTODATE, &dev->flags)) {
				/* We can return any write requests */
				struct bio *wbi, *wbi2;
2741
				pr_debug("Return write for disc %d\n", i);
2742 2743 2744 2745 2746
				wbi = dev->written;
				dev->written = NULL;
				while (wbi && wbi->bi_sector <
					dev->sector + STRIPE_SECTORS) {
					wbi2 = r5_next_bio(wbi, dev->sector);
2747
					if (!raid5_dec_bi_active_stripes(wbi)) {
2748 2749 2750 2751 2752 2753
						md_write_end(conf->mddev);
						wbi->bi_next = *return_bi;
						*return_bi = wbi;
					}
					wbi = wbi2;
				}
2754 2755
				bitmap_endwrite(conf->mddev->bitmap, sh->sector,
						STRIPE_SECTORS,
2756
					 !test_bit(STRIPE_DEGRADED, &sh->state),
2757
						0);
2758 2759
			}
		}
2760 2761 2762 2763

	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
2764 2765
}

2766
static void handle_stripe_dirtying(struct r5conf *conf,
2767 2768 2769
				   struct stripe_head *sh,
				   struct stripe_head_state *s,
				   int disks)
2770 2771
{
	int rmw = 0, rcw = 0, i;
2772 2773 2774 2775 2776 2777 2778
	if (conf->max_degraded == 2) {
		/* RAID6 requires 'rcw' in current implementation
		 * Calculate the real rcw later - for now fake it
		 * look like rcw is cheaper
		 */
		rcw = 1; rmw = 2;
	} else for (i = disks; i--; ) {
2779 2780 2781 2782
		/* would I have to read this buffer for read_modify_write */
		struct r5dev *dev = &sh->dev[i];
		if ((dev->towrite || i == sh->pd_idx) &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
2783 2784
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		      test_bit(R5_Wantcompute, &dev->flags))) {
2785 2786 2787 2788 2789 2790 2791 2792
			if (test_bit(R5_Insync, &dev->flags))
				rmw++;
			else
				rmw += 2*disks;  /* cannot read it */
		}
		/* Would I have to read this buffer for reconstruct_write */
		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
2793 2794 2795
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		    test_bit(R5_Wantcompute, &dev->flags))) {
			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2796 2797 2798 2799
			else
				rcw += 2*disks;
		}
	}
2800
	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2801 2802 2803 2804 2805 2806 2807 2808
		(unsigned long long)sh->sector, rmw, rcw);
	set_bit(STRIPE_HANDLE, &sh->state);
	if (rmw < rcw && rmw > 0)
		/* prefer read-modify-write, but need to get some data */
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if ((dev->towrite || i == sh->pd_idx) &&
			    !test_bit(R5_LOCKED, &dev->flags) &&
2809 2810
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
			    test_bit(R5_Wantcompute, &dev->flags)) &&
2811 2812 2813
			    test_bit(R5_Insync, &dev->flags)) {
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2814
					pr_debug("Read_old block "
2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
						"%d for r-m-w\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
2825
	if (rcw <= rmw && rcw > 0) {
2826
		/* want reconstruct write, but need to get some data */
2827
		rcw = 0;
2828 2829 2830
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2831
			    i != sh->pd_idx && i != sh->qd_idx &&
2832
			    !test_bit(R5_LOCKED, &dev->flags) &&
2833
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2834 2835 2836 2837
			      test_bit(R5_Wantcompute, &dev->flags))) {
				rcw++;
				if (!test_bit(R5_Insync, &dev->flags))
					continue; /* it's a failed drive */
2838 2839
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2840
					pr_debug("Read_old block "
2841 2842 2843 2844 2845 2846 2847 2848 2849 2850
						"%d for Reconstruct\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
2851
	}
2852 2853 2854
	/* now if nothing is locked, and if we have enough data,
	 * we can start a write request
	 */
2855 2856
	/* since handle_stripe can be called at any time we need to handle the
	 * case where a compute block operation has been submitted and then a
2857 2858
	 * subsequent call wants to start a write request.  raid_run_ops only
	 * handles the case where compute block and reconstruct are requested
2859 2860 2861
	 * simultaneously.  If this is not the case then new writes need to be
	 * held off until the compute completes.
	 */
2862 2863 2864
	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2865
		schedule_reconstruction(sh, s, rcw == 0, 0);
2866 2867
}

2868
static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
2869 2870
				struct stripe_head_state *s, int disks)
{
2871
	struct r5dev *dev = NULL;
2872

2873
	set_bit(STRIPE_HANDLE, &sh->state);
2874

2875 2876 2877
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are no failures */
2878 2879
		if (s->failed == 0) {
			BUG_ON(s->uptodate != disks);
2880 2881
			sh->check_state = check_state_run;
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2882 2883
			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
			s->uptodate--;
2884
			break;
2885
		}
2886
		dev = &sh->dev[s->failed_num[0]];
2887 2888 2889 2890 2891 2892 2893 2894 2895
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
		if (!dev)
			dev = &sh->dev[sh->pd_idx];

		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
D
Dan Williams 已提交
2896

2897 2898 2899 2900 2901
		/* either failed parity check, or recovery is happening */
		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
		BUG_ON(s->uptodate != disks);

		set_bit(R5_LOCKED, &dev->flags);
2902
		s->locked++;
2903
		set_bit(R5_Wantwrite, &dev->flags);
2904

2905 2906
		clear_bit(STRIPE_DEGRADED, &sh->state);
		set_bit(STRIPE_INSYNC, &sh->state);
2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922
		break;
	case check_state_run:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* if a failure occurred during the check operation, leave
		 * STRIPE_INSYNC not set and let the stripe be handled again
		 */
		if (s->failed)
			break;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
D
Dan Williams 已提交
2923
		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934
			/* parity is correct (on disc,
			 * not in buffer any more)
			 */
			set_bit(STRIPE_INSYNC, &sh->state);
		else {
			conf->mddev->resync_mismatches += STRIPE_SECTORS;
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				sh->check_state = check_state_compute_run;
2935
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2936 2937 2938 2939
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				set_bit(R5_Wantcompute,
					&sh->dev[sh->pd_idx].flags);
				sh->ops.target = sh->pd_idx;
2940
				sh->ops.target2 = -1;
2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951
				s->uptodate++;
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
2952 2953 2954 2955
	}
}


2956
static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
2957
				  struct stripe_head_state *s,
2958
				  int disks)
2959 2960
{
	int pd_idx = sh->pd_idx;
N
NeilBrown 已提交
2961
	int qd_idx = sh->qd_idx;
2962
	struct r5dev *dev;
2963 2964 2965 2966

	set_bit(STRIPE_HANDLE, &sh->state);

	BUG_ON(s->failed > 2);
2967

2968 2969 2970 2971 2972 2973
	/* Want to check and possibly repair P and Q.
	 * However there could be one 'failed' device, in which
	 * case we can only check one of them, possibly using the
	 * other to generate missing data
	 */

2974 2975 2976
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are < 2 failures */
2977
		if (s->failed == s->q_failed) {
2978
			/* The only possible failed device holds Q, so it
2979 2980 2981
			 * makes sense to check P (If anything else were failed,
			 * we would have used P to recreate it).
			 */
2982
			sh->check_state = check_state_run;
2983
		}
2984
		if (!s->q_failed && s->failed < 2) {
2985
			/* Q is not failed, and we didn't use it to generate
2986 2987
			 * anything, so it makes sense to check it
			 */
2988 2989 2990 2991
			if (sh->check_state == check_state_run)
				sh->check_state = check_state_run_pq;
			else
				sh->check_state = check_state_run_q;
2992 2993
		}

2994 2995
		/* discard potentially stale zero_sum_result */
		sh->ops.zero_sum_result = 0;
2996

2997 2998 2999 3000
		if (sh->check_state == check_state_run) {
			/* async_xor_zero_sum destroys the contents of P */
			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
			s->uptodate--;
3001
		}
3002 3003 3004 3005 3006 3007 3008
		if (sh->check_state >= check_state_run &&
		    sh->check_state <= check_state_run_pq) {
			/* async_syndrome_zero_sum preserves P and Q, so
			 * no need to mark them !uptodate here
			 */
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
			break;
3009 3010
		}

3011 3012 3013 3014 3015
		/* we have 2-disk failure */
		BUG_ON(s->failed != 2);
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
3016

3017 3018 3019
		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
3020 3021

		/* now write out any block on a failed drive,
3022
		 * or P or Q if they were recomputed
3023
		 */
3024
		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3025
		if (s->failed == 2) {
3026
			dev = &sh->dev[s->failed_num[1]];
3027 3028 3029 3030 3031
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		if (s->failed >= 1) {
3032
			dev = &sh->dev[s->failed_num[0]];
3033 3034 3035 3036
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
3037
		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3038 3039 3040 3041 3042
			dev = &sh->dev[pd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
3043
		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3044 3045 3046 3047 3048 3049 3050 3051
			dev = &sh->dev[qd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		clear_bit(STRIPE_DEGRADED, &sh->state);

		set_bit(STRIPE_INSYNC, &sh->state);
3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115
		break;
	case check_state_run:
	case check_state_run_q:
	case check_state_run_pq:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
		if (sh->ops.zero_sum_result == 0) {
			/* both parities are correct */
			if (!s->failed)
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				/* in contrast to the raid5 case we can validate
				 * parity, but still have a failure to write
				 * back
				 */
				sh->check_state = check_state_compute_result;
				/* Returning at this point means that we may go
				 * off and bring p and/or q uptodate again so
				 * we make sure to check zero_sum_result again
				 * to verify if p or q need writeback
				 */
			}
		} else {
			conf->mddev->resync_mismatches += STRIPE_SECTORS;
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				int *target = &sh->ops.target;

				sh->ops.target = -1;
				sh->ops.target2 = -1;
				sh->check_state = check_state_compute_run;
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
					set_bit(R5_Wantcompute,
						&sh->dev[pd_idx].flags);
					*target = pd_idx;
					target = &sh->ops.target2;
					s->uptodate++;
				}
				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
					set_bit(R5_Wantcompute,
						&sh->dev[qd_idx].flags);
					*target = qd_idx;
					s->uptodate++;
				}
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
3116 3117 3118
	}
}

3119
static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3120 3121 3122 3123 3124 3125
{
	int i;

	/* We have read all the blocks in this stripe and now we need to
	 * copy some of them into a target stripe for expand.
	 */
3126
	struct dma_async_tx_descriptor *tx = NULL;
3127 3128
	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	for (i = 0; i < sh->disks; i++)
N
NeilBrown 已提交
3129
		if (i != sh->pd_idx && i != sh->qd_idx) {
3130
			int dd_idx, j;
3131
			struct stripe_head *sh2;
3132
			struct async_submit_ctl submit;
3133

3134
			sector_t bn = compute_blocknr(sh, i, 1);
3135 3136
			sector_t s = raid5_compute_sector(conf, bn, 0,
							  &dd_idx, NULL);
3137
			sh2 = get_active_stripe(conf, s, 0, 1, 1);
3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149
			if (sh2 == NULL)
				/* so far only the early blocks of this stripe
				 * have been requested.  When later blocks
				 * get requested, we will try again
				 */
				continue;
			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
				/* must have already done this block */
				release_stripe(sh2);
				continue;
			}
3150 3151

			/* place all the copies on one channel */
3152
			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3153
			tx = async_memcpy(sh2->dev[dd_idx].page,
3154
					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
3155
					  &submit);
3156

3157 3158 3159 3160
			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
			for (j = 0; j < conf->raid_disks; j++)
				if (j != sh2->pd_idx &&
3161
				    j != sh2->qd_idx &&
3162 3163 3164 3165 3166 3167 3168
				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
					break;
			if (j == conf->raid_disks) {
				set_bit(STRIPE_EXPAND_READY, &sh2->state);
				set_bit(STRIPE_HANDLE, &sh2->state);
			}
			release_stripe(sh2);
3169

3170
		}
3171 3172 3173 3174 3175
	/* done submitting copies, wait for them to complete */
	if (tx) {
		async_tx_ack(tx);
		dma_wait_for_async_tx(tx);
	}
3176
}
L
Linus Torvalds 已提交
3177 3178 3179 3180

/*
 * handle_stripe - do things to a stripe.
 *
3181 3182
 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
 * state of various bits to see what needs to be done.
L
Linus Torvalds 已提交
3183
 * Possible results:
3184 3185
 *    return some read requests which now have data
 *    return some write requests which are safely on storage
L
Linus Torvalds 已提交
3186 3187 3188 3189 3190
 *    schedule a read on some buffers
 *    schedule a write of some buffers
 *    return confirmation of parity correctness
 *
 */
3191

3192
static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
L
Linus Torvalds 已提交
3193
{
3194
	struct r5conf *conf = sh->raid_conf;
3195
	int disks = sh->disks;
3196 3197
	struct r5dev *dev;
	int i;
3198
	int do_recovery = 0;
L
Linus Torvalds 已提交
3199

3200 3201 3202 3203 3204 3205
	memset(s, 0, sizeof(*s));

	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
	s->failed_num[0] = -1;
	s->failed_num[1] = -1;
L
Linus Torvalds 已提交
3206

3207
	/* Now to look around and see what can be done */
L
Linus Torvalds 已提交
3208
	rcu_read_lock();
3209
	for (i=disks; i--; ) {
3210
		struct md_rdev *rdev;
3211 3212 3213
		sector_t first_bad;
		int bad_sectors;
		int is_bad = 0;
3214

3215
		dev = &sh->dev[i];
L
Linus Torvalds 已提交
3216

3217
		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3218 3219
			 i, dev->flags,
			 dev->toread, dev->towrite, dev->written);
3220 3221 3222 3223 3224 3225 3226 3227
		/* maybe we can reply to a read
		 *
		 * new wantfill requests are only permitted while
		 * ops_complete_biofill is guaranteed to be inactive
		 */
		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
			set_bit(R5_Wantfill, &dev->flags);
L
Linus Torvalds 已提交
3228

3229
		/* now count some things */
3230 3231 3232 3233
		if (test_bit(R5_LOCKED, &dev->flags))
			s->locked++;
		if (test_bit(R5_UPTODATE, &dev->flags))
			s->uptodate++;
3234
		if (test_bit(R5_Wantcompute, &dev->flags)) {
3235 3236
			s->compute++;
			BUG_ON(s->compute > 2);
3237
		}
L
Linus Torvalds 已提交
3238

3239
		if (test_bit(R5_Wantfill, &dev->flags))
3240
			s->to_fill++;
3241
		else if (dev->toread)
3242
			s->to_read++;
3243
		if (dev->towrite) {
3244
			s->to_write++;
3245
			if (!test_bit(R5_OVERWRITE, &dev->flags))
3246
				s->non_overwrite++;
3247
		}
3248
		if (dev->written)
3249
			s->written++;
3250 3251 3252 3253 3254 3255 3256 3257 3258 3259
		/* Prefer to use the replacement for reads, but only
		 * if it is recovered enough and has no bad blocks.
		 */
		rdev = rcu_dereference(conf->disks[i].replacement);
		if (rdev && !test_bit(Faulty, &rdev->flags) &&
		    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
		    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
				 &first_bad, &bad_sectors))
			set_bit(R5_ReadRepl, &dev->flags);
		else {
3260 3261
			if (rdev)
				set_bit(R5_NeedReplace, &dev->flags);
3262 3263 3264
			rdev = rcu_dereference(conf->disks[i].rdev);
			clear_bit(R5_ReadRepl, &dev->flags);
		}
3265 3266
		if (rdev && test_bit(Faulty, &rdev->flags))
			rdev = NULL;
3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278
		if (rdev) {
			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
					     &first_bad, &bad_sectors);
			if (s->blocked_rdev == NULL
			    && (test_bit(Blocked, &rdev->flags)
				|| is_bad < 0)) {
				if (is_bad < 0)
					set_bit(BlockedBadBlocks,
						&rdev->flags);
				s->blocked_rdev = rdev;
				atomic_inc(&rdev->nr_pending);
			}
3279
		}
3280 3281 3282
		clear_bit(R5_Insync, &dev->flags);
		if (!rdev)
			/* Not in-sync */;
3283 3284
		else if (is_bad) {
			/* also not in-sync */
3285 3286
			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
			    test_bit(R5_UPTODATE, &dev->flags)) {
3287 3288 3289 3290 3291 3292 3293
				/* treat as in-sync, but with a read error
				 * which we can now try to correct
				 */
				set_bit(R5_Insync, &dev->flags);
				set_bit(R5_ReadError, &dev->flags);
			}
		} else if (test_bit(In_sync, &rdev->flags))
3294
			set_bit(R5_Insync, &dev->flags);
3295
		else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3296
			/* in sync if before recovery_offset */
3297 3298 3299 3300 3301 3302 3303 3304 3305
			set_bit(R5_Insync, &dev->flags);
		else if (test_bit(R5_UPTODATE, &dev->flags) &&
			 test_bit(R5_Expanded, &dev->flags))
			/* If we've reshaped into here, we assume it is Insync.
			 * We will shortly update recovery_offset to make
			 * it official.
			 */
			set_bit(R5_Insync, &dev->flags);

A
Adam Kwolek 已提交
3306
		if (rdev && test_bit(R5_WriteError, &dev->flags)) {
3307 3308 3309 3310 3311 3312 3313
			/* This flag does not apply to '.replacement'
			 * only to .rdev, so make sure to check that*/
			struct md_rdev *rdev2 = rcu_dereference(
				conf->disks[i].rdev);
			if (rdev2 == rdev)
				clear_bit(R5_Insync, &dev->flags);
			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3314
				s->handle_bad_blocks = 1;
3315
				atomic_inc(&rdev2->nr_pending);
3316 3317 3318
			} else
				clear_bit(R5_WriteError, &dev->flags);
		}
A
Adam Kwolek 已提交
3319
		if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
3320 3321 3322 3323 3324
			/* This flag does not apply to '.replacement'
			 * only to .rdev, so make sure to check that*/
			struct md_rdev *rdev2 = rcu_dereference(
				conf->disks[i].rdev);
			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3325
				s->handle_bad_blocks = 1;
3326
				atomic_inc(&rdev2->nr_pending);
3327 3328 3329
			} else
				clear_bit(R5_MadeGood, &dev->flags);
		}
3330 3331 3332 3333 3334 3335 3336 3337 3338
		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
			struct md_rdev *rdev2 = rcu_dereference(
				conf->disks[i].replacement);
			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
				s->handle_bad_blocks = 1;
				atomic_inc(&rdev2->nr_pending);
			} else
				clear_bit(R5_MadeGoodRepl, &dev->flags);
		}
3339
		if (!test_bit(R5_Insync, &dev->flags)) {
3340 3341 3342
			/* The ReadError flag will just be confusing now */
			clear_bit(R5_ReadError, &dev->flags);
			clear_bit(R5_ReWrite, &dev->flags);
L
Linus Torvalds 已提交
3343
		}
3344 3345 3346
		if (test_bit(R5_ReadError, &dev->flags))
			clear_bit(R5_Insync, &dev->flags);
		if (!test_bit(R5_Insync, &dev->flags)) {
3347 3348 3349
			if (s->failed < 2)
				s->failed_num[s->failed] = i;
			s->failed++;
3350 3351
			if (rdev && !test_bit(Faulty, &rdev->flags))
				do_recovery = 1;
3352
		}
L
Linus Torvalds 已提交
3353
	}
3354 3355 3356 3357
	if (test_bit(STRIPE_SYNCING, &sh->state)) {
		/* If there is a failed device being replaced,
		 *     we must be recovering.
		 * else if we are after recovery_cp, we must be syncing
3358
		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3359 3360 3361 3362 3363
		 * else we can only be replacing
		 * sync and recovery both need to read all devices, and so
		 * use the same flag.
		 */
		if (do_recovery ||
3364 3365
		    sh->sector >= conf->mddev->recovery_cp ||
		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3366 3367 3368 3369
			s->syncing = 1;
		else
			s->replacing = 1;
	}
L
Linus Torvalds 已提交
3370
	rcu_read_unlock();
3371 3372 3373 3374 3375
}

static void handle_stripe(struct stripe_head *sh)
{
	struct stripe_head_state s;
3376
	struct r5conf *conf = sh->raid_conf;
3377
	int i;
3378 3379
	int prexor;
	int disks = sh->disks;
3380
	struct r5dev *pdev, *qdev;
3381 3382

	clear_bit(STRIPE_HANDLE, &sh->state);
3383
	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400
		/* already being handled, ensure it gets handled
		 * again when current action finishes */
		set_bit(STRIPE_HANDLE, &sh->state);
		return;
	}

	if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
		set_bit(STRIPE_SYNCING, &sh->state);
		clear_bit(STRIPE_INSYNC, &sh->state);
	}
	clear_bit(STRIPE_DELAYED, &sh->state);

	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
	       (unsigned long long)sh->sector, sh->state,
	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
	       sh->check_state, sh->reconstruct_state);
3401

3402
	analyse_stripe(sh, &s);
3403

3404 3405 3406 3407 3408
	if (s.handle_bad_blocks) {
		set_bit(STRIPE_HANDLE, &sh->state);
		goto finish;
	}

3409 3410
	if (unlikely(s.blocked_rdev)) {
		if (s.syncing || s.expanding || s.expanded ||
3411
		    s.replacing || s.to_write || s.written) {
3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431
			set_bit(STRIPE_HANDLE, &sh->state);
			goto finish;
		}
		/* There is nothing for the blocked_rdev to block */
		rdev_dec_pending(s.blocked_rdev, conf->mddev);
		s.blocked_rdev = NULL;
	}

	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
	}

	pr_debug("locked=%d uptodate=%d to_read=%d"
	       " to_write=%d failed=%d failed_num=%d,%d\n",
	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
	       s.failed_num[0], s.failed_num[1]);
	/* check if the array has lost more than max_degraded devices and,
	 * if so, some requests might need to be failed.
	 */
3432 3433 3434 3435 3436
	if (s.failed > conf->max_degraded) {
		sh->check_state = 0;
		sh->reconstruct_state = 0;
		if (s.to_read+s.to_write+s.written)
			handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3437
		if (s.syncing + s.replacing)
3438 3439
			handle_failed_sync(conf, sh, &s);
	}
3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467

	/*
	 * might be able to return some write requests if the parity blocks
	 * are safe, or on a failed drive
	 */
	pdev = &sh->dev[sh->pd_idx];
	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
	qdev = &sh->dev[sh->qd_idx];
	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
		|| conf->level < 6;

	if (s.written &&
	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
			     && !test_bit(R5_LOCKED, &pdev->flags)
			     && test_bit(R5_UPTODATE, &pdev->flags)))) &&
	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
			     && !test_bit(R5_LOCKED, &qdev->flags)
			     && test_bit(R5_UPTODATE, &qdev->flags)))))
		handle_stripe_clean_event(conf, sh, disks, &s.return_bi);

	/* Now we might consider reading some blocks, either to check/generate
	 * parity, or to satisfy requests
	 * or to load a block that is being partially written.
	 */
	if (s.to_read || s.non_overwrite
	    || (conf->level == 6 && s.to_write && s.failed)
3468 3469 3470
	    || (s.syncing && (s.uptodate + s.compute < disks))
	    || s.replacing
	    || s.expanding)
3471 3472
		handle_stripe_fill(sh, &s, disks);

3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530
	/* Now we check to see if any write operations have recently
	 * completed
	 */
	prexor = 0;
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
		prexor = 1;
	if (sh->reconstruct_state == reconstruct_state_drain_result ||
	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
		sh->reconstruct_state = reconstruct_state_idle;

		/* All the 'written' buffers and the parity block are ready to
		 * be written back to disk
		 */
		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
		BUG_ON(sh->qd_idx >= 0 &&
		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags));
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (test_bit(R5_LOCKED, &dev->flags) &&
				(i == sh->pd_idx || i == sh->qd_idx ||
				 dev->written)) {
				pr_debug("Writing block %d\n", i);
				set_bit(R5_Wantwrite, &dev->flags);
				if (prexor)
					continue;
				if (!test_bit(R5_Insync, &dev->flags) ||
				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
				     s.failed == 0))
					set_bit(STRIPE_INSYNC, &sh->state);
			}
		}
		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
			s.dec_preread_active = 1;
	}

	/* Now to consider new write requests and what else, if anything
	 * should be read.  We do not handle new writes when:
	 * 1/ A 'write' operation (copy+xor) is already in flight.
	 * 2/ A 'check' operation is in flight, as it may clobber the parity
	 *    block.
	 */
	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
		handle_stripe_dirtying(conf, sh, &s, disks);

	/* maybe we need to check and possibly fix the parity for this stripe
	 * Any reads will already have been scheduled, so we just see if enough
	 * data is available.  The parity check is held off while parity
	 * dependent operations are in flight.
	 */
	if (sh->check_state ||
	    (s.syncing && s.locked == 0 &&
	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
	     !test_bit(STRIPE_INSYNC, &sh->state))) {
		if (conf->level == 6)
			handle_parity_checks6(conf, sh, &s, disks);
		else
			handle_parity_checks5(conf, sh, &s, disks);
	}
3531

3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545
	if (s.replacing && s.locked == 0
	    && !test_bit(STRIPE_INSYNC, &sh->state)) {
		/* Write out to replacement devices where possible */
		for (i = 0; i < conf->raid_disks; i++)
			if (test_bit(R5_UPTODATE, &sh->dev[i].flags) &&
			    test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
				set_bit(R5_WantReplace, &sh->dev[i].flags);
				set_bit(R5_LOCKED, &sh->dev[i].flags);
				s.locked++;
			}
		set_bit(STRIPE_INSYNC, &sh->state);
	}
	if ((s.syncing || s.replacing) && s.locked == 0 &&
	    test_bit(STRIPE_INSYNC, &sh->state)) {
3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
		clear_bit(STRIPE_SYNCING, &sh->state);
	}

	/* If the failed drives are just a ReadError, then we might need
	 * to progress the repair/check process
	 */
	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
		for (i = 0; i < s.failed; i++) {
			struct r5dev *dev = &sh->dev[s.failed_num[i]];
			if (test_bit(R5_ReadError, &dev->flags)
			    && !test_bit(R5_LOCKED, &dev->flags)
			    && test_bit(R5_UPTODATE, &dev->flags)
				) {
				if (!test_bit(R5_ReWrite, &dev->flags)) {
					set_bit(R5_Wantwrite, &dev->flags);
					set_bit(R5_ReWrite, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
					s.locked++;
				} else {
					/* let's read it back */
					set_bit(R5_Wantread, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
					s.locked++;
				}
			}
		}


3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601
	/* Finish reconstruct operations initiated by the expansion process */
	if (sh->reconstruct_state == reconstruct_state_result) {
		struct stripe_head *sh_src
			= get_active_stripe(conf, sh->sector, 1, 1, 1);
		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
			/* sh cannot be written until sh_src has been read.
			 * so arrange for sh to be delayed a little
			 */
			set_bit(STRIPE_DELAYED, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
					      &sh_src->state))
				atomic_inc(&conf->preread_active_stripes);
			release_stripe(sh_src);
			goto finish;
		}
		if (sh_src)
			release_stripe(sh_src);

		sh->reconstruct_state = reconstruct_state_idle;
		clear_bit(STRIPE_EXPANDING, &sh->state);
		for (i = conf->raid_disks; i--; ) {
			set_bit(R5_Wantwrite, &sh->dev[i].flags);
			set_bit(R5_LOCKED, &sh->dev[i].flags);
			s.locked++;
		}
	}
3602

3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618
	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
	    !sh->reconstruct_state) {
		/* Need to write out all blocks after computing parity */
		sh->disks = conf->raid_disks;
		stripe_set_idx(sh->sector, conf, 0, sh);
		schedule_reconstruction(sh, &s, 1, 1);
	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
		clear_bit(STRIPE_EXPAND_READY, &sh->state);
		atomic_dec(&conf->reshape_stripes);
		wake_up(&conf->wait_for_overlap);
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
	}

	if (s.expanding && s.locked == 0 &&
	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
		handle_stripe_expansion(conf, sh);
3619

3620
finish:
3621
	/* wait for this device to become unblocked */
3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633
	if (unlikely(s.blocked_rdev)) {
		if (conf->mddev->external)
			md_wait_for_blocked_rdev(s.blocked_rdev,
						 conf->mddev);
		else
			/* Internal metadata will immediately
			 * be written by raid5d, so we don't
			 * need to wait here.
			 */
			rdev_dec_pending(s.blocked_rdev,
					 conf->mddev);
	}
3634

3635 3636
	if (s.handle_bad_blocks)
		for (i = disks; i--; ) {
3637
			struct md_rdev *rdev;
3638 3639 3640 3641 3642 3643 3644 3645 3646
			struct r5dev *dev = &sh->dev[i];
			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
				/* We own a safe reference to the rdev */
				rdev = conf->disks[i].rdev;
				if (!rdev_set_badblocks(rdev, sh->sector,
							STRIPE_SECTORS, 0))
					md_error(conf->mddev, rdev);
				rdev_dec_pending(rdev, conf->mddev);
			}
3647 3648 3649
			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
				rdev = conf->disks[i].rdev;
				rdev_clear_badblocks(rdev, sh->sector,
3650
						     STRIPE_SECTORS, 0);
3651 3652
				rdev_dec_pending(rdev, conf->mddev);
			}
3653 3654
			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
				rdev = conf->disks[i].replacement;
3655 3656 3657
				if (!rdev)
					/* rdev have been moved down */
					rdev = conf->disks[i].rdev;
3658
				rdev_clear_badblocks(rdev, sh->sector,
3659
						     STRIPE_SECTORS, 0);
3660 3661
				rdev_dec_pending(rdev, conf->mddev);
			}
3662 3663
		}

3664 3665 3666
	if (s.ops_request)
		raid_run_ops(sh, s.ops_request);

D
Dan Williams 已提交
3667
	ops_run_io(sh, &s);
3668

3669
	if (s.dec_preread_active) {
3670
		/* We delay this until after ops_run_io so that if make_request
T
Tejun Heo 已提交
3671
		 * is waiting on a flush, it won't continue until the writes
3672 3673 3674 3675 3676 3677 3678 3679
		 * have actually been submitted.
		 */
		atomic_dec(&conf->preread_active_stripes);
		if (atomic_read(&conf->preread_active_stripes) <
		    IO_THRESHOLD)
			md_wakeup_thread(conf->mddev->thread);
	}

3680
	return_io(s.return_bi);
3681

3682
	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
3683 3684
}

3685
static void raid5_activate_delayed(struct r5conf *conf)
3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
{
	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
		while (!list_empty(&conf->delayed_list)) {
			struct list_head *l = conf->delayed_list.next;
			struct stripe_head *sh;
			sh = list_entry(l, struct stripe_head, lru);
			list_del_init(l);
			clear_bit(STRIPE_DELAYED, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				atomic_inc(&conf->preread_active_stripes);
3696
			list_add_tail(&sh->lru, &conf->hold_list);
3697
		}
N
NeilBrown 已提交
3698
	}
3699 3700
}

3701
static void activate_bit_delay(struct r5conf *conf)
3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714
{
	/* device_lock is held */
	struct list_head head;
	list_add(&head, &conf->bitmap_list);
	list_del_init(&conf->bitmap_list);
	while (!list_empty(&head)) {
		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		atomic_inc(&sh->count);
		__release_stripe(conf, sh);
	}
}

3715
int md_raid5_congested(struct mddev *mddev, int bits)
3716
{
3717
	struct r5conf *conf = mddev->private;
3718 3719 3720 3721

	/* No difference between reads and writes.  Just check
	 * how busy the stripe_cache is
	 */
3722

3723 3724 3725 3726 3727 3728 3729 3730 3731
	if (conf->inactive_blocked)
		return 1;
	if (conf->quiesce)
		return 1;
	if (list_empty_careful(&conf->inactive_list))
		return 1;

	return 0;
}
N
NeilBrown 已提交
3732 3733 3734 3735
EXPORT_SYMBOL_GPL(md_raid5_congested);

static int raid5_congested(void *data, int bits)
{
3736
	struct mddev *mddev = data;
N
NeilBrown 已提交
3737 3738 3739 3740

	return mddev_congested(mddev, bits) ||
		md_raid5_congested(mddev, bits);
}
3741

3742 3743 3744
/* We want read requests to align with chunks where possible,
 * but write requests don't need to.
 */
3745 3746 3747
static int raid5_mergeable_bvec(struct request_queue *q,
				struct bvec_merge_data *bvm,
				struct bio_vec *biovec)
3748
{
3749
	struct mddev *mddev = q->queuedata;
3750
	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3751
	int max;
3752
	unsigned int chunk_sectors = mddev->chunk_sectors;
3753
	unsigned int bio_sectors = bvm->bi_size >> 9;
3754

3755
	if ((bvm->bi_rw & 1) == WRITE)
3756 3757
		return biovec->bv_len; /* always allow writes to be mergeable */

3758 3759
	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
		chunk_sectors = mddev->new_chunk_sectors;
3760 3761 3762 3763 3764 3765 3766 3767
	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
	if (max < 0) max = 0;
	if (max <= biovec->bv_len && bio_sectors == 0)
		return biovec->bv_len;
	else
		return max;
}

3768

3769
static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
3770 3771
{
	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3772
	unsigned int chunk_sectors = mddev->chunk_sectors;
3773 3774
	unsigned int bio_sectors = bio->bi_size >> 9;

3775 3776
	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
		chunk_sectors = mddev->new_chunk_sectors;
3777 3778 3779 3780
	return  chunk_sectors >=
		((sector & (chunk_sectors - 1)) + bio_sectors);
}

3781 3782 3783 3784
/*
 *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
 *  later sampled by raid5d.
 */
3785
static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798
{
	unsigned long flags;

	spin_lock_irqsave(&conf->device_lock, flags);

	bi->bi_next = conf->retry_read_aligned_list;
	conf->retry_read_aligned_list = bi;

	spin_unlock_irqrestore(&conf->device_lock, flags);
	md_wakeup_thread(conf->mddev->thread);
}


3799
static struct bio *remove_bio_from_retry(struct r5conf *conf)
3800 3801 3802 3803 3804 3805 3806 3807 3808 3809
{
	struct bio *bi;

	bi = conf->retry_read_aligned;
	if (bi) {
		conf->retry_read_aligned = NULL;
		return bi;
	}
	bi = conf->retry_read_aligned_list;
	if(bi) {
3810
		conf->retry_read_aligned_list = bi->bi_next;
3811
		bi->bi_next = NULL;
3812 3813 3814 3815
		/*
		 * this sets the active strip count to 1 and the processed
		 * strip count to zero (upper 8 bits)
		 */
3816
		raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
3817 3818 3819 3820 3821 3822
	}

	return bi;
}


3823 3824 3825 3826 3827 3828
/*
 *  The "raid5_align_endio" should check if the read succeeded and if it
 *  did, call bio_endio on the original bio (having bio_put the new bio
 *  first).
 *  If the read failed..
 */
3829
static void raid5_align_endio(struct bio *bi, int error)
3830 3831
{
	struct bio* raid_bi  = bi->bi_private;
3832
	struct mddev *mddev;
3833
	struct r5conf *conf;
3834
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3835
	struct md_rdev *rdev;
3836

3837
	bio_put(bi);
3838 3839 3840

	rdev = (void*)raid_bi->bi_next;
	raid_bi->bi_next = NULL;
3841 3842
	mddev = rdev->mddev;
	conf = mddev->private;
3843 3844 3845 3846

	rdev_dec_pending(rdev, conf->mddev);

	if (!error && uptodate) {
3847
		bio_endio(raid_bi, 0);
3848 3849
		if (atomic_dec_and_test(&conf->active_aligned_reads))
			wake_up(&conf->wait_for_stripe);
3850
		return;
3851 3852 3853
	}


3854
	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3855 3856

	add_bio_to_retry(raid_bi, conf);
3857 3858
}

3859 3860
static int bio_fits_rdev(struct bio *bi)
{
3861
	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3862

3863
	if ((bi->bi_size>>9) > queue_max_sectors(q))
3864 3865
		return 0;
	blk_recount_segments(q, bi);
3866
	if (bi->bi_phys_segments > queue_max_segments(q))
3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878
		return 0;

	if (q->merge_bvec_fn)
		/* it's too hard to apply the merge_bvec_fn at this stage,
		 * just just give up
		 */
		return 0;

	return 1;
}


3879
static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
3880
{
3881
	struct r5conf *conf = mddev->private;
N
NeilBrown 已提交
3882
	int dd_idx;
3883
	struct bio* align_bi;
3884
	struct md_rdev *rdev;
3885
	sector_t end_sector;
3886 3887

	if (!in_chunk_boundary(mddev, raid_bio)) {
3888
		pr_debug("chunk_aligned_read : non aligned\n");
3889 3890 3891
		return 0;
	}
	/*
3892
	 * use bio_clone_mddev to make a copy of the bio
3893
	 */
3894
	align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905
	if (!align_bi)
		return 0;
	/*
	 *   set bi_end_io to a new function, and set bi_private to the
	 *     original bio.
	 */
	align_bi->bi_end_io  = raid5_align_endio;
	align_bi->bi_private = raid_bio;
	/*
	 *	compute position
	 */
3906 3907
	align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
						    0,
3908
						    &dd_idx, NULL);
3909

3910
	end_sector = align_bi->bi_sector + (align_bi->bi_size >> 9);
3911
	rcu_read_lock();
3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922
	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
	if (!rdev || test_bit(Faulty, &rdev->flags) ||
	    rdev->recovery_offset < end_sector) {
		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
		if (rdev &&
		    (test_bit(Faulty, &rdev->flags) ||
		    !(test_bit(In_sync, &rdev->flags) ||
		      rdev->recovery_offset >= end_sector)))
			rdev = NULL;
	}
	if (rdev) {
3923 3924 3925
		sector_t first_bad;
		int bad_sectors;

3926 3927
		atomic_inc(&rdev->nr_pending);
		rcu_read_unlock();
3928 3929 3930 3931
		raid_bio->bi_next = (void*)rdev;
		align_bi->bi_bdev =  rdev->bdev;
		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);

3932 3933 3934 3935
		if (!bio_fits_rdev(align_bi) ||
		    is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
				&first_bad, &bad_sectors)) {
			/* too big in some way, or has a known bad block */
3936 3937 3938 3939 3940
			bio_put(align_bi);
			rdev_dec_pending(rdev, mddev);
			return 0;
		}

3941 3942 3943
		/* No reshape active, so we can trust rdev->data_offset */
		align_bi->bi_sector += rdev->data_offset;

3944 3945 3946 3947 3948 3949 3950
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    conf->quiesce == 0,
				    conf->device_lock, /* nothing */);
		atomic_inc(&conf->active_aligned_reads);
		spin_unlock_irq(&conf->device_lock);

3951 3952 3953 3954
		generic_make_request(align_bi);
		return 1;
	} else {
		rcu_read_unlock();
3955
		bio_put(align_bi);
3956 3957 3958 3959
		return 0;
	}
}

3960 3961 3962 3963 3964 3965 3966 3967 3968 3969
/* __get_priority_stripe - get the next stripe to process
 *
 * Full stripe writes are allowed to pass preread active stripes up until
 * the bypass_threshold is exceeded.  In general the bypass_count
 * increments when the handle_list is handled before the hold_list; however, it
 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
 * stripe with in flight i/o.  The bypass_count will be reset when the
 * head of the hold_list has changed, i.e. the head was promoted to the
 * handle_list.
 */
3970
static struct stripe_head *__get_priority_stripe(struct r5conf *conf)
3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011
{
	struct stripe_head *sh;

	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
		  __func__,
		  list_empty(&conf->handle_list) ? "empty" : "busy",
		  list_empty(&conf->hold_list) ? "empty" : "busy",
		  atomic_read(&conf->pending_full_writes), conf->bypass_count);

	if (!list_empty(&conf->handle_list)) {
		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);

		if (list_empty(&conf->hold_list))
			conf->bypass_count = 0;
		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
			if (conf->hold_list.next == conf->last_hold)
				conf->bypass_count++;
			else {
				conf->last_hold = conf->hold_list.next;
				conf->bypass_count -= conf->bypass_threshold;
				if (conf->bypass_count < 0)
					conf->bypass_count = 0;
			}
		}
	} else if (!list_empty(&conf->hold_list) &&
		   ((conf->bypass_threshold &&
		     conf->bypass_count > conf->bypass_threshold) ||
		    atomic_read(&conf->pending_full_writes) == 0)) {
		sh = list_entry(conf->hold_list.next,
				typeof(*sh), lru);
		conf->bypass_count -= conf->bypass_threshold;
		if (conf->bypass_count < 0)
			conf->bypass_count = 0;
	} else
		return NULL;

	list_del_init(&sh->lru);
	atomic_inc(&sh->count);
	BUG_ON(atomic_read(&sh->count) != 1);
	return sh;
}
4012

4013
static void make_request(struct mddev *mddev, struct bio * bi)
L
Linus Torvalds 已提交
4014
{
4015
	struct r5conf *conf = mddev->private;
4016
	int dd_idx;
L
Linus Torvalds 已提交
4017 4018 4019
	sector_t new_sector;
	sector_t logical_sector, last_sector;
	struct stripe_head *sh;
4020
	const int rw = bio_data_dir(bi);
4021
	int remaining;
L
Linus Torvalds 已提交
4022

T
Tejun Heo 已提交
4023 4024
	if (unlikely(bi->bi_rw & REQ_FLUSH)) {
		md_flush_request(mddev, bi);
4025
		return;
4026 4027
	}

4028
	md_write_start(mddev, bi);
4029

4030
	if (rw == READ &&
4031
	     mddev->reshape_position == MaxSector &&
4032
	     chunk_aligned_read(mddev,bi))
4033
		return;
4034

L
Linus Torvalds 已提交
4035 4036 4037 4038
	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
	last_sector = bi->bi_sector + (bi->bi_size>>9);
	bi->bi_next = NULL;
	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
4039

L
Linus Torvalds 已提交
4040 4041
	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
		DEFINE_WAIT(w);
4042
		int previous;
4043

4044
	retry:
4045
		previous = 0;
4046
		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4047
		if (unlikely(conf->reshape_progress != MaxSector)) {
4048
			/* spinlock is needed as reshape_progress may be
4049 4050
			 * 64bit on a 32bit platform, and so it might be
			 * possible to see a half-updated value
4051
			 * Of course reshape_progress could change after
4052 4053 4054 4055
			 * the lock is dropped, so once we get a reference
			 * to the stripe that we think it is, we will have
			 * to check again.
			 */
4056
			spin_lock_irq(&conf->device_lock);
4057
			if (mddev->reshape_backwards
4058 4059
			    ? logical_sector < conf->reshape_progress
			    : logical_sector >= conf->reshape_progress) {
4060 4061
				previous = 1;
			} else {
4062
				if (mddev->reshape_backwards
4063 4064
				    ? logical_sector < conf->reshape_safe
				    : logical_sector >= conf->reshape_safe) {
4065 4066 4067 4068 4069
					spin_unlock_irq(&conf->device_lock);
					schedule();
					goto retry;
				}
			}
4070 4071
			spin_unlock_irq(&conf->device_lock);
		}
4072

4073 4074
		new_sector = raid5_compute_sector(conf, logical_sector,
						  previous,
4075
						  &dd_idx, NULL);
4076
		pr_debug("raid456: make_request, sector %llu logical %llu\n",
L
Linus Torvalds 已提交
4077 4078 4079
			(unsigned long long)new_sector, 
			(unsigned long long)logical_sector);

4080
		sh = get_active_stripe(conf, new_sector, previous,
4081
				       (bi->bi_rw&RWA_MASK), 0);
L
Linus Torvalds 已提交
4082
		if (sh) {
4083
			if (unlikely(previous)) {
4084
				/* expansion might have moved on while waiting for a
4085 4086 4087 4088 4089 4090
				 * stripe, so we must do the range check again.
				 * Expansion could still move past after this
				 * test, but as we are holding a reference to
				 * 'sh', we know that if that happens,
				 *  STRIPE_EXPANDING will get set and the expansion
				 * won't proceed until we finish with the stripe.
4091 4092 4093
				 */
				int must_retry = 0;
				spin_lock_irq(&conf->device_lock);
4094
				if (mddev->reshape_backwards
4095 4096
				    ? logical_sector >= conf->reshape_progress
				    : logical_sector < conf->reshape_progress)
4097 4098 4099 4100 4101
					/* mismatch, need to try again */
					must_retry = 1;
				spin_unlock_irq(&conf->device_lock);
				if (must_retry) {
					release_stripe(sh);
4102
					schedule();
4103 4104 4105
					goto retry;
				}
			}
4106

4107
			if (rw == WRITE &&
4108
			    logical_sector >= mddev->suspend_lo &&
4109 4110
			    logical_sector < mddev->suspend_hi) {
				release_stripe(sh);
4111 4112 4113 4114 4115 4116 4117 4118 4119 4120
				/* As the suspend_* range is controlled by
				 * userspace, we want an interruptible
				 * wait.
				 */
				flush_signals(current);
				prepare_to_wait(&conf->wait_for_overlap,
						&w, TASK_INTERRUPTIBLE);
				if (logical_sector >= mddev->suspend_lo &&
				    logical_sector < mddev->suspend_hi)
					schedule();
4121 4122
				goto retry;
			}
4123 4124

			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4125
			    !add_stripe_bio(sh, bi, dd_idx, rw)) {
4126 4127
				/* Stripe is busy expanding or
				 * add failed due to overlap.  Flush everything
L
Linus Torvalds 已提交
4128 4129
				 * and wait a while
				 */
N
NeilBrown 已提交
4130
				md_wakeup_thread(mddev->thread);
L
Linus Torvalds 已提交
4131 4132 4133 4134 4135
				release_stripe(sh);
				schedule();
				goto retry;
			}
			finish_wait(&conf->wait_for_overlap, &w);
4136 4137
			set_bit(STRIPE_HANDLE, &sh->state);
			clear_bit(STRIPE_DELAYED, &sh->state);
T
Tejun Heo 已提交
4138
			if ((bi->bi_rw & REQ_SYNC) &&
4139 4140
			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				atomic_inc(&conf->preread_active_stripes);
N
NeilBrown 已提交
4141
			mddev_check_plugged(mddev);
L
Linus Torvalds 已提交
4142 4143 4144 4145 4146 4147 4148 4149
			release_stripe(sh);
		} else {
			/* cannot get stripe for read-ahead, just give-up */
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
			finish_wait(&conf->wait_for_overlap, &w);
			break;
		}
	}
4150

4151
	remaining = raid5_dec_bi_active_stripes(bi);
4152
	if (remaining == 0) {
L
Linus Torvalds 已提交
4153

4154
		if ( rw == WRITE )
L
Linus Torvalds 已提交
4155
			md_write_end(mddev);
4156

4157
		bio_endio(bi, 0);
L
Linus Torvalds 已提交
4158 4159 4160
	}
}

4161
static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
D
Dan Williams 已提交
4162

4163
static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
L
Linus Torvalds 已提交
4164
{
4165 4166 4167 4168 4169 4170 4171 4172 4173
	/* reshaping is quite different to recovery/resync so it is
	 * handled quite separately ... here.
	 *
	 * On each call to sync_request, we gather one chunk worth of
	 * destination stripes and flag them as expanding.
	 * Then we find all the source stripes and request reads.
	 * As the reads complete, handle_stripe will copy the data
	 * into the destination stripe and release that stripe.
	 */
4174
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
4175
	struct stripe_head *sh;
4176
	sector_t first_sector, last_sector;
4177 4178 4179
	int raid_disks = conf->previous_raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
	int new_data_disks = conf->raid_disks - conf->max_degraded;
4180 4181
	int i;
	int dd_idx;
4182
	sector_t writepos, readpos, safepos;
4183
	sector_t stripe_addr;
4184
	int reshape_sectors;
4185
	struct list_head stripes;
4186

4187 4188
	if (sector_nr == 0) {
		/* If restarting in the middle, skip the initial sectors */
4189
		if (mddev->reshape_backwards &&
4190 4191 4192
		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
			sector_nr = raid5_size(mddev, 0, 0)
				- conf->reshape_progress;
4193
		} else if (!mddev->reshape_backwards &&
4194 4195
			   conf->reshape_progress > 0)
			sector_nr = conf->reshape_progress;
4196
		sector_div(sector_nr, new_data_disks);
4197
		if (sector_nr) {
4198 4199
			mddev->curr_resync_completed = sector_nr;
			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4200 4201 4202
			*skipped = 1;
			return sector_nr;
		}
4203 4204
	}

4205 4206 4207 4208
	/* We need to process a full chunk at a time.
	 * If old and new chunk sizes differ, we need to process the
	 * largest of these
	 */
4209 4210
	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
		reshape_sectors = mddev->new_chunk_sectors;
4211
	else
4212
		reshape_sectors = mddev->chunk_sectors;
4213

4214 4215 4216 4217 4218
	/* We update the metadata at least every 10 seconds, or when
	 * the data about to be copied would over-write the source of
	 * the data at the front of the range.  i.e. one new_stripe
	 * along from reshape_progress new_maps to after where
	 * reshape_safe old_maps to
4219
	 */
4220
	writepos = conf->reshape_progress;
4221
	sector_div(writepos, new_data_disks);
4222 4223
	readpos = conf->reshape_progress;
	sector_div(readpos, data_disks);
4224
	safepos = conf->reshape_safe;
4225
	sector_div(safepos, data_disks);
4226
	if (mddev->reshape_backwards) {
4227
		writepos -= min_t(sector_t, reshape_sectors, writepos);
4228
		readpos += reshape_sectors;
4229
		safepos += reshape_sectors;
4230
	} else {
4231
		writepos += reshape_sectors;
4232 4233
		readpos -= min_t(sector_t, reshape_sectors, readpos);
		safepos -= min_t(sector_t, reshape_sectors, safepos);
4234
	}
4235

4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250
	/* Having calculated the 'writepos' possibly use it
	 * to set 'stripe_addr' which is where we will write to.
	 */
	if (mddev->reshape_backwards) {
		BUG_ON(conf->reshape_progress == 0);
		stripe_addr = writepos;
		BUG_ON((mddev->dev_sectors &
			~((sector_t)reshape_sectors - 1))
		       - reshape_sectors - stripe_addr
		       != sector_nr);
	} else {
		BUG_ON(writepos != sector_nr + reshape_sectors);
		stripe_addr = sector_nr;
	}

4251 4252 4253 4254
	/* 'writepos' is the most advanced device address we might write.
	 * 'readpos' is the least advanced device address we might read.
	 * 'safepos' is the least address recorded in the metadata as having
	 *     been reshaped.
4255 4256 4257 4258
	 * If there is a min_offset_diff, these are adjusted either by
	 * increasing the safepos/readpos if diff is negative, or
	 * increasing writepos if diff is positive.
	 * If 'readpos' is then behind 'writepos', there is no way that we can
4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270
	 * ensure safety in the face of a crash - that must be done by userspace
	 * making a backup of the data.  So in that case there is no particular
	 * rush to update metadata.
	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
	 * update the metadata to advance 'safepos' to match 'readpos' so that
	 * we can be safe in the event of a crash.
	 * So we insist on updating metadata if safepos is behind writepos and
	 * readpos is beyond writepos.
	 * In any case, update the metadata every 10 seconds.
	 * Maybe that number should be configurable, but I'm not sure it is
	 * worth it.... maybe it could be a multiple of safemode_delay???
	 */
4271 4272 4273 4274 4275 4276
	if (conf->min_offset_diff < 0) {
		safepos += -conf->min_offset_diff;
		readpos += -conf->min_offset_diff;
	} else
		writepos += conf->min_offset_diff;

4277
	if ((mddev->reshape_backwards
4278 4279 4280
	     ? (safepos > writepos && readpos < writepos)
	     : (safepos < writepos && readpos > writepos)) ||
	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4281 4282 4283
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
			   atomic_read(&conf->reshape_stripes)==0);
4284
		mddev->reshape_position = conf->reshape_progress;
4285
		mddev->curr_resync_completed = sector_nr;
4286
		conf->reshape_checkpoint = jiffies;
4287
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4288
		md_wakeup_thread(mddev->thread);
4289
		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4290 4291
			   kthread_should_stop());
		spin_lock_irq(&conf->device_lock);
4292
		conf->reshape_safe = mddev->reshape_position;
4293 4294
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
4295
		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4296 4297
	}

4298
	INIT_LIST_HEAD(&stripes);
4299
	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4300
		int j;
4301
		int skipped_disk = 0;
4302
		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4303 4304 4305 4306 4307 4308 4309 4310 4311
		set_bit(STRIPE_EXPANDING, &sh->state);
		atomic_inc(&conf->reshape_stripes);
		/* If any of this stripe is beyond the end of the old
		 * array, then we need to zero those blocks
		 */
		for (j=sh->disks; j--;) {
			sector_t s;
			if (j == sh->pd_idx)
				continue;
4312
			if (conf->level == 6 &&
4313
			    j == sh->qd_idx)
4314
				continue;
4315
			s = compute_blocknr(sh, j, 0);
D
Dan Williams 已提交
4316
			if (s < raid5_size(mddev, 0, 0)) {
4317
				skipped_disk = 1;
4318 4319 4320 4321 4322 4323
				continue;
			}
			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
			set_bit(R5_Expanded, &sh->dev[j].flags);
			set_bit(R5_UPTODATE, &sh->dev[j].flags);
		}
4324
		if (!skipped_disk) {
4325 4326 4327
			set_bit(STRIPE_EXPAND_READY, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
4328
		list_add(&sh->lru, &stripes);
4329 4330
	}
	spin_lock_irq(&conf->device_lock);
4331
	if (mddev->reshape_backwards)
4332
		conf->reshape_progress -= reshape_sectors * new_data_disks;
4333
	else
4334
		conf->reshape_progress += reshape_sectors * new_data_disks;
4335 4336 4337 4338 4339 4340 4341
	spin_unlock_irq(&conf->device_lock);
	/* Ok, those stripe are ready. We can start scheduling
	 * reads on the source stripes.
	 * The source stripes are determined by mapping the first and last
	 * block on the destination stripes.
	 */
	first_sector =
4342
		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4343
				     1, &dd_idx, NULL);
4344
	last_sector =
4345
		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4346
					    * new_data_disks - 1),
4347
				     1, &dd_idx, NULL);
A
Andre Noll 已提交
4348 4349
	if (last_sector >= mddev->dev_sectors)
		last_sector = mddev->dev_sectors - 1;
4350
	while (first_sector <= last_sector) {
4351
		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4352 4353 4354 4355 4356
		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
		set_bit(STRIPE_HANDLE, &sh->state);
		release_stripe(sh);
		first_sector += STRIPE_SECTORS;
	}
4357 4358 4359 4360 4361 4362 4363 4364
	/* Now that the sources are clearly marked, we can release
	 * the destination stripes
	 */
	while (!list_empty(&stripes)) {
		sh = list_entry(stripes.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		release_stripe(sh);
	}
4365 4366 4367
	/* If this takes us to the resync_max point where we have to pause,
	 * then we need to write out the superblock.
	 */
4368
	sector_nr += reshape_sectors;
4369 4370
	if ((sector_nr - mddev->curr_resync_completed) * 2
	    >= mddev->resync_max - mddev->curr_resync_completed) {
4371 4372 4373
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
			   atomic_read(&conf->reshape_stripes) == 0);
4374
		mddev->reshape_position = conf->reshape_progress;
4375
		mddev->curr_resync_completed = sector_nr;
4376
		conf->reshape_checkpoint = jiffies;
4377 4378 4379 4380 4381 4382
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
		wait_event(mddev->sb_wait,
			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
			   || kthread_should_stop());
		spin_lock_irq(&conf->device_lock);
4383
		conf->reshape_safe = mddev->reshape_position;
4384 4385
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
4386
		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4387
	}
4388
	return reshape_sectors;
4389 4390 4391
}

/* FIXME go_faster isn't used */
4392
static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4393
{
4394
	struct r5conf *conf = mddev->private;
4395
	struct stripe_head *sh;
A
Andre Noll 已提交
4396
	sector_t max_sector = mddev->dev_sectors;
N
NeilBrown 已提交
4397
	sector_t sync_blocks;
4398 4399
	int still_degraded = 0;
	int i;
L
Linus Torvalds 已提交
4400

4401
	if (sector_nr >= max_sector) {
L
Linus Torvalds 已提交
4402
		/* just being told to finish up .. nothing much to do */
4403

4404 4405 4406 4407
		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
			end_reshape(conf);
			return 0;
		}
4408 4409 4410 4411

		if (mddev->curr_resync < max_sector) /* aborted */
			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
					&sync_blocks, 1);
4412
		else /* completed sync */
4413 4414 4415
			conf->fullsync = 0;
		bitmap_close_sync(mddev->bitmap);

L
Linus Torvalds 已提交
4416 4417
		return 0;
	}
4418

4419 4420 4421
	/* Allow raid5_quiesce to complete */
	wait_event(conf->wait_for_overlap, conf->quiesce != 2);

4422 4423
	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
		return reshape_request(mddev, sector_nr, skipped);
4424

4425 4426 4427 4428 4429 4430
	/* No need to check resync_max as we never do more than one
	 * stripe, and as resync_max will always be on a chunk boundary,
	 * if the check in md_do_sync didn't fire, there is no chance
	 * of overstepping resync_max here
	 */

4431
	/* if there is too many failed drives and we are trying
L
Linus Torvalds 已提交
4432 4433 4434
	 * to resync, then assert that we are finished, because there is
	 * nothing we can do.
	 */
4435
	if (mddev->degraded >= conf->max_degraded &&
4436
	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
A
Andre Noll 已提交
4437
		sector_t rv = mddev->dev_sectors - sector_nr;
4438
		*skipped = 1;
L
Linus Torvalds 已提交
4439 4440
		return rv;
	}
4441
	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4442
	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4443 4444 4445 4446 4447 4448
	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
		/* we can skip this block, and probably more */
		sync_blocks /= STRIPE_SECTORS;
		*skipped = 1;
		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
	}
L
Linus Torvalds 已提交
4449

N
NeilBrown 已提交
4450 4451
	bitmap_cond_end_sync(mddev->bitmap, sector_nr);

4452
	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
L
Linus Torvalds 已提交
4453
	if (sh == NULL) {
4454
		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
L
Linus Torvalds 已提交
4455
		/* make sure we don't swamp the stripe cache if someone else
4456
		 * is trying to get access
L
Linus Torvalds 已提交
4457
		 */
4458
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
4459
	}
4460 4461 4462 4463
	/* Need to check if array will still be degraded after recovery/resync
	 * We don't need to check the 'failed' flag as when that gets set,
	 * recovery aborts.
	 */
4464
	for (i = 0; i < conf->raid_disks; i++)
4465 4466 4467 4468 4469
		if (conf->disks[i].rdev == NULL)
			still_degraded = 1;

	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);

4470
	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
L
Linus Torvalds 已提交
4471

4472
	handle_stripe(sh);
L
Linus Torvalds 已提交
4473 4474 4475 4476 4477
	release_stripe(sh);

	return STRIPE_SECTORS;
}

4478
static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490
{
	/* We may not be able to submit a whole bio at once as there
	 * may not be enough stripe_heads available.
	 * We cannot pre-allocate enough stripe_heads as we may need
	 * more than exist in the cache (if we allow ever large chunks).
	 * So we do one stripe head at a time and record in
	 * ->bi_hw_segments how many have been done.
	 *
	 * We *know* that this entire raid_bio is in one chunk, so
	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
	 */
	struct stripe_head *sh;
4491
	int dd_idx;
4492 4493 4494 4495 4496 4497
	sector_t sector, logical_sector, last_sector;
	int scnt = 0;
	int remaining;
	int handled = 0;

	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4498
	sector = raid5_compute_sector(conf, logical_sector,
4499
				      0, &dd_idx, NULL);
4500 4501 4502
	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);

	for (; logical_sector < last_sector;
4503 4504 4505
	     logical_sector += STRIPE_SECTORS,
		     sector += STRIPE_SECTORS,
		     scnt++) {
4506

4507
		if (scnt < raid5_bi_processed_stripes(raid_bio))
4508 4509 4510
			/* already done this stripe */
			continue;

4511
		sh = get_active_stripe(conf, sector, 0, 1, 0);
4512 4513 4514

		if (!sh) {
			/* failed to get a stripe - must wait */
4515
			raid5_set_bi_processed_stripes(raid_bio, scnt);
4516 4517 4518 4519
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

4520 4521
		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
			release_stripe(sh);
4522
			raid5_set_bi_processed_stripes(raid_bio, scnt);
4523 4524 4525 4526
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

4527
		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
4528
		handle_stripe(sh);
4529 4530 4531
		release_stripe(sh);
		handled++;
	}
4532
	remaining = raid5_dec_bi_active_stripes(raid_bio);
4533 4534
	if (remaining == 0)
		bio_endio(raid_bio, 0);
4535 4536 4537 4538 4539 4540
	if (atomic_dec_and_test(&conf->active_aligned_reads))
		wake_up(&conf->wait_for_stripe);
	return handled;
}


L
Linus Torvalds 已提交
4541 4542 4543 4544 4545 4546 4547
/*
 * This is our raid5 kernel thread.
 *
 * We scan the hash table for stripes which can be handled now.
 * During the scan, completed stripes are saved for us by the interrupt
 * handler, so that they will not have to wait for our next wakeup.
 */
4548
static void raid5d(struct mddev *mddev)
L
Linus Torvalds 已提交
4549 4550
{
	struct stripe_head *sh;
4551
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
4552
	int handled;
4553
	struct blk_plug plug;
L
Linus Torvalds 已提交
4554

4555
	pr_debug("+++ raid5d active\n");
L
Linus Torvalds 已提交
4556 4557 4558

	md_check_recovery(mddev);

4559
	blk_start_plug(&plug);
L
Linus Torvalds 已提交
4560 4561 4562
	handled = 0;
	spin_lock_irq(&conf->device_lock);
	while (1) {
4563
		struct bio *bio;
L
Linus Torvalds 已提交
4564

4565 4566 4567 4568
		if (atomic_read(&mddev->plug_cnt) == 0 &&
		    !list_empty(&conf->bitmap_list)) {
			/* Now is a good time to flush some bitmap updates */
			conf->seq_flush++;
4569
			spin_unlock_irq(&conf->device_lock);
4570
			bitmap_unplug(mddev->bitmap);
4571
			spin_lock_irq(&conf->device_lock);
4572
			conf->seq_write = conf->seq_flush;
4573 4574
			activate_bit_delay(conf);
		}
4575 4576
		if (atomic_read(&mddev->plug_cnt) == 0)
			raid5_activate_delayed(conf);
4577

4578 4579 4580 4581 4582 4583 4584 4585 4586 4587
		while ((bio = remove_bio_from_retry(conf))) {
			int ok;
			spin_unlock_irq(&conf->device_lock);
			ok = retry_aligned_read(conf, bio);
			spin_lock_irq(&conf->device_lock);
			if (!ok)
				break;
			handled++;
		}

4588 4589
		sh = __get_priority_stripe(conf);

4590
		if (!sh)
L
Linus Torvalds 已提交
4591 4592 4593 4594
			break;
		spin_unlock_irq(&conf->device_lock);
		
		handled++;
4595 4596 4597
		handle_stripe(sh);
		release_stripe(sh);
		cond_resched();
L
Linus Torvalds 已提交
4598

4599 4600 4601
		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
			md_check_recovery(mddev);

L
Linus Torvalds 已提交
4602 4603
		spin_lock_irq(&conf->device_lock);
	}
4604
	pr_debug("%d stripes handled\n", handled);
L
Linus Torvalds 已提交
4605 4606 4607

	spin_unlock_irq(&conf->device_lock);

4608
	async_tx_issue_pending_all();
4609
	blk_finish_plug(&plug);
L
Linus Torvalds 已提交
4610

4611
	pr_debug("--- raid5d inactive\n");
L
Linus Torvalds 已提交
4612 4613
}

4614
static ssize_t
4615
raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
4616
{
4617
	struct r5conf *conf = mddev->private;
4618 4619 4620 4621
	if (conf)
		return sprintf(page, "%d\n", conf->max_nr_stripes);
	else
		return 0;
4622 4623
}

4624
int
4625
raid5_set_cache_size(struct mddev *mddev, int size)
4626
{
4627
	struct r5conf *conf = mddev->private;
4628 4629
	int err;

4630
	if (size <= 16 || size > 32768)
4631
		return -EINVAL;
4632
	while (size < conf->max_nr_stripes) {
4633 4634 4635 4636 4637
		if (drop_one_stripe(conf))
			conf->max_nr_stripes--;
		else
			break;
	}
4638 4639 4640
	err = md_allow_write(mddev);
	if (err)
		return err;
4641
	while (size > conf->max_nr_stripes) {
4642 4643 4644 4645
		if (grow_one_stripe(conf))
			conf->max_nr_stripes++;
		else break;
	}
4646 4647 4648 4649 4650
	return 0;
}
EXPORT_SYMBOL(raid5_set_cache_size);

static ssize_t
4651
raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
4652
{
4653
	struct r5conf *conf = mddev->private;
4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666
	unsigned long new;
	int err;

	if (len >= PAGE_SIZE)
		return -EINVAL;
	if (!conf)
		return -ENODEV;

	if (strict_strtoul(page, 10, &new))
		return -EINVAL;
	err = raid5_set_cache_size(mddev, new);
	if (err)
		return err;
4667 4668
	return len;
}
4669

4670 4671 4672 4673
static struct md_sysfs_entry
raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
				raid5_show_stripe_cache_size,
				raid5_store_stripe_cache_size);
4674

4675
static ssize_t
4676
raid5_show_preread_threshold(struct mddev *mddev, char *page)
4677
{
4678
	struct r5conf *conf = mddev->private;
4679 4680 4681 4682 4683 4684 4685
	if (conf)
		return sprintf(page, "%d\n", conf->bypass_threshold);
	else
		return 0;
}

static ssize_t
4686
raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
4687
{
4688
	struct r5conf *conf = mddev->private;
4689
	unsigned long new;
4690 4691 4692 4693 4694
	if (len >= PAGE_SIZE)
		return -EINVAL;
	if (!conf)
		return -ENODEV;

4695
	if (strict_strtoul(page, 10, &new))
4696
		return -EINVAL;
4697
	if (new > conf->max_nr_stripes)
4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708
		return -EINVAL;
	conf->bypass_threshold = new;
	return len;
}

static struct md_sysfs_entry
raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
					S_IRUGO | S_IWUSR,
					raid5_show_preread_threshold,
					raid5_store_preread_threshold);

4709
static ssize_t
4710
stripe_cache_active_show(struct mddev *mddev, char *page)
4711
{
4712
	struct r5conf *conf = mddev->private;
4713 4714 4715 4716
	if (conf)
		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
	else
		return 0;
4717 4718
}

4719 4720
static struct md_sysfs_entry
raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4721

4722
static struct attribute *raid5_attrs[] =  {
4723 4724
	&raid5_stripecache_size.attr,
	&raid5_stripecache_active.attr,
4725
	&raid5_preread_bypass_threshold.attr,
4726 4727
	NULL,
};
4728 4729 4730
static struct attribute_group raid5_attrs_group = {
	.name = NULL,
	.attrs = raid5_attrs,
4731 4732
};

4733
static sector_t
4734
raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
4735
{
4736
	struct r5conf *conf = mddev->private;
4737 4738 4739

	if (!sectors)
		sectors = mddev->dev_sectors;
4740
	if (!raid_disks)
4741
		/* size is defined by the smallest of previous and new size */
4742
		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4743

4744
	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4745
	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4746 4747 4748
	return sectors * (raid_disks - conf->max_degraded);
}

4749
static void raid5_free_percpu(struct r5conf *conf)
4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760
{
	struct raid5_percpu *percpu;
	unsigned long cpu;

	if (!conf->percpu)
		return;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		percpu = per_cpu_ptr(conf->percpu, cpu);
		safe_put_page(percpu->spare_page);
4761
		kfree(percpu->scribble);
4762 4763 4764 4765 4766 4767 4768 4769 4770
	}
#ifdef CONFIG_HOTPLUG_CPU
	unregister_cpu_notifier(&conf->cpu_notify);
#endif
	put_online_cpus();

	free_percpu(conf->percpu);
}

4771
static void free_conf(struct r5conf *conf)
4772 4773
{
	shrink_stripes(conf);
4774
	raid5_free_percpu(conf);
4775 4776 4777 4778 4779
	kfree(conf->disks);
	kfree(conf->stripe_hashtbl);
	kfree(conf);
}

4780 4781 4782 4783
#ifdef CONFIG_HOTPLUG_CPU
static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
			      void *hcpu)
{
4784
	struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
4785 4786 4787 4788 4789 4790
	long cpu = (long)hcpu;
	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
4791
		if (conf->level == 6 && !percpu->spare_page)
4792
			percpu->spare_page = alloc_page(GFP_KERNEL);
4793 4794 4795 4796 4797 4798 4799
		if (!percpu->scribble)
			percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);

		if (!percpu->scribble ||
		    (conf->level == 6 && !percpu->spare_page)) {
			safe_put_page(percpu->spare_page);
			kfree(percpu->scribble);
4800 4801
			pr_err("%s: failed memory allocation for cpu%ld\n",
			       __func__, cpu);
4802
			return notifier_from_errno(-ENOMEM);
4803 4804 4805 4806 4807
		}
		break;
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
		safe_put_page(percpu->spare_page);
4808
		kfree(percpu->scribble);
4809
		percpu->spare_page = NULL;
4810
		percpu->scribble = NULL;
4811 4812 4813 4814 4815 4816 4817 4818
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}
#endif

4819
static int raid5_alloc_percpu(struct r5conf *conf)
4820 4821 4822
{
	unsigned long cpu;
	struct page *spare_page;
4823
	struct raid5_percpu __percpu *allcpus;
4824
	void *scribble;
4825 4826 4827 4828 4829 4830 4831 4832 4833 4834
	int err;

	allcpus = alloc_percpu(struct raid5_percpu);
	if (!allcpus)
		return -ENOMEM;
	conf->percpu = allcpus;

	get_online_cpus();
	err = 0;
	for_each_present_cpu(cpu) {
4835 4836 4837 4838 4839 4840 4841 4842
		if (conf->level == 6) {
			spare_page = alloc_page(GFP_KERNEL);
			if (!spare_page) {
				err = -ENOMEM;
				break;
			}
			per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
		}
4843
		scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4844
		if (!scribble) {
4845 4846 4847
			err = -ENOMEM;
			break;
		}
4848
		per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860
	}
#ifdef CONFIG_HOTPLUG_CPU
	conf->cpu_notify.notifier_call = raid456_cpu_notify;
	conf->cpu_notify.priority = 0;
	if (err == 0)
		err = register_cpu_notifier(&conf->cpu_notify);
#endif
	put_online_cpus();

	return err;
}

4861
static struct r5conf *setup_conf(struct mddev *mddev)
L
Linus Torvalds 已提交
4862
{
4863
	struct r5conf *conf;
4864
	int raid_disk, memory, max_disks;
4865
	struct md_rdev *rdev;
L
Linus Torvalds 已提交
4866
	struct disk_info *disk;
4867
	char pers_name[6];
L
Linus Torvalds 已提交
4868

N
NeilBrown 已提交
4869 4870 4871
	if (mddev->new_level != 5
	    && mddev->new_level != 4
	    && mddev->new_level != 6) {
4872
		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
N
NeilBrown 已提交
4873 4874
		       mdname(mddev), mddev->new_level);
		return ERR_PTR(-EIO);
L
Linus Torvalds 已提交
4875
	}
N
NeilBrown 已提交
4876 4877 4878 4879
	if ((mddev->new_level == 5
	     && !algorithm_valid_raid5(mddev->new_layout)) ||
	    (mddev->new_level == 6
	     && !algorithm_valid_raid6(mddev->new_layout))) {
4880
		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
N
NeilBrown 已提交
4881 4882
		       mdname(mddev), mddev->new_layout);
		return ERR_PTR(-EIO);
4883
	}
N
NeilBrown 已提交
4884
	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4885
		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
N
NeilBrown 已提交
4886 4887
		       mdname(mddev), mddev->raid_disks);
		return ERR_PTR(-EINVAL);
4888 4889
	}

4890 4891 4892
	if (!mddev->new_chunk_sectors ||
	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
	    !is_power_of_2(mddev->new_chunk_sectors)) {
4893 4894
		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
		       mdname(mddev), mddev->new_chunk_sectors << 9);
N
NeilBrown 已提交
4895
		return ERR_PTR(-EINVAL);
4896 4897
	}

4898
	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
N
NeilBrown 已提交
4899
	if (conf == NULL)
L
Linus Torvalds 已提交
4900
		goto abort;
4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912
	spin_lock_init(&conf->device_lock);
	init_waitqueue_head(&conf->wait_for_stripe);
	init_waitqueue_head(&conf->wait_for_overlap);
	INIT_LIST_HEAD(&conf->handle_list);
	INIT_LIST_HEAD(&conf->hold_list);
	INIT_LIST_HEAD(&conf->delayed_list);
	INIT_LIST_HEAD(&conf->bitmap_list);
	INIT_LIST_HEAD(&conf->inactive_list);
	atomic_set(&conf->active_stripes, 0);
	atomic_set(&conf->preread_active_stripes, 0);
	atomic_set(&conf->active_aligned_reads, 0);
	conf->bypass_threshold = BYPASS_THRESHOLD;
4913
	conf->recovery_disabled = mddev->recovery_disabled - 1;
N
NeilBrown 已提交
4914 4915 4916 4917 4918

	conf->raid_disks = mddev->raid_disks;
	if (mddev->reshape_position == MaxSector)
		conf->previous_raid_disks = mddev->raid_disks;
	else
4919
		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4920 4921
	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
	conf->scribble_len = scribble_len(max_disks);
4922

4923
	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4924 4925 4926
			      GFP_KERNEL);
	if (!conf->disks)
		goto abort;
4927

L
Linus Torvalds 已提交
4928 4929
	conf->mddev = mddev;

4930
	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
L
Linus Torvalds 已提交
4931 4932
		goto abort;

4933 4934 4935 4936
	conf->level = mddev->new_level;
	if (raid5_alloc_percpu(conf) != 0)
		goto abort;

4937
	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
L
Linus Torvalds 已提交
4938

N
NeilBrown 已提交
4939
	rdev_for_each(rdev, mddev) {
L
Linus Torvalds 已提交
4940
		raid_disk = rdev->raid_disk;
4941
		if (raid_disk >= max_disks
L
Linus Torvalds 已提交
4942 4943 4944 4945
		    || raid_disk < 0)
			continue;
		disk = conf->disks + raid_disk;

4946 4947 4948 4949 4950 4951 4952 4953 4954
		if (test_bit(Replacement, &rdev->flags)) {
			if (disk->replacement)
				goto abort;
			disk->replacement = rdev;
		} else {
			if (disk->rdev)
				goto abort;
			disk->rdev = rdev;
		}
L
Linus Torvalds 已提交
4955

4956
		if (test_bit(In_sync, &rdev->flags)) {
L
Linus Torvalds 已提交
4957
			char b[BDEVNAME_SIZE];
4958 4959 4960
			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
			       " disk %d\n",
			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
J
Jonathan Brassow 已提交
4961
		} else if (rdev->saved_raid_disk != raid_disk)
4962 4963
			/* Cannot rely on bitmap to complete recovery */
			conf->fullsync = 1;
L
Linus Torvalds 已提交
4964 4965
	}

4966
	conf->chunk_sectors = mddev->new_chunk_sectors;
N
NeilBrown 已提交
4967
	conf->level = mddev->new_level;
4968 4969 4970 4971
	if (conf->level == 6)
		conf->max_degraded = 2;
	else
		conf->max_degraded = 1;
N
NeilBrown 已提交
4972
	conf->algorithm = mddev->new_layout;
L
Linus Torvalds 已提交
4973
	conf->max_nr_stripes = NR_STRIPES;
4974
	conf->reshape_progress = mddev->reshape_position;
4975
	if (conf->reshape_progress != MaxSector) {
4976
		conf->prev_chunk_sectors = mddev->chunk_sectors;
4977 4978
		conf->prev_algo = mddev->layout;
	}
L
Linus Torvalds 已提交
4979

N
NeilBrown 已提交
4980
	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4981
		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
N
NeilBrown 已提交
4982 4983
	if (grow_stripes(conf, conf->max_nr_stripes)) {
		printk(KERN_ERR
4984 4985
		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
		       mdname(mddev), memory);
N
NeilBrown 已提交
4986 4987
		goto abort;
	} else
4988 4989
		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
		       mdname(mddev), memory);
L
Linus Torvalds 已提交
4990

4991 4992
	sprintf(pers_name, "raid%d", mddev->new_level);
	conf->thread = md_register_thread(raid5d, mddev, pers_name);
N
NeilBrown 已提交
4993 4994
	if (!conf->thread) {
		printk(KERN_ERR
4995
		       "md/raid:%s: couldn't allocate thread.\n",
N
NeilBrown 已提交
4996
		       mdname(mddev));
4997 4998
		goto abort;
	}
N
NeilBrown 已提交
4999 5000 5001 5002 5003

	return conf;

 abort:
	if (conf) {
5004
		free_conf(conf);
N
NeilBrown 已提交
5005 5006 5007 5008 5009
		return ERR_PTR(-EIO);
	} else
		return ERR_PTR(-ENOMEM);
}

5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036

static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
{
	switch (algo) {
	case ALGORITHM_PARITY_0:
		if (raid_disk < max_degraded)
			return 1;
		break;
	case ALGORITHM_PARITY_N:
		if (raid_disk >= raid_disks - max_degraded)
			return 1;
		break;
	case ALGORITHM_PARITY_0_6:
		if (raid_disk == 0 || 
		    raid_disk == raid_disks - 1)
			return 1;
		break;
	case ALGORITHM_LEFT_ASYMMETRIC_6:
	case ALGORITHM_RIGHT_ASYMMETRIC_6:
	case ALGORITHM_LEFT_SYMMETRIC_6:
	case ALGORITHM_RIGHT_SYMMETRIC_6:
		if (raid_disk == raid_disks - 1)
			return 1;
	}
	return 0;
}

5037
static int run(struct mddev *mddev)
N
NeilBrown 已提交
5038
{
5039
	struct r5conf *conf;
5040
	int working_disks = 0;
5041
	int dirty_parity_disks = 0;
5042
	struct md_rdev *rdev;
5043
	sector_t reshape_offset = 0;
5044
	int i;
5045 5046
	long long min_offset_diff = 0;
	int first = 1;
N
NeilBrown 已提交
5047

5048
	if (mddev->recovery_cp != MaxSector)
5049
		printk(KERN_NOTICE "md/raid:%s: not clean"
5050 5051
		       " -- starting background reconstruction\n",
		       mdname(mddev));
5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068

	rdev_for_each(rdev, mddev) {
		long long diff;
		if (rdev->raid_disk < 0)
			continue;
		diff = (rdev->new_data_offset - rdev->data_offset);
		if (first) {
			min_offset_diff = diff;
			first = 0;
		} else if (mddev->reshape_backwards &&
			 diff < min_offset_diff)
			min_offset_diff = diff;
		else if (!mddev->reshape_backwards &&
			 diff > min_offset_diff)
			min_offset_diff = diff;
	}

N
NeilBrown 已提交
5069 5070
	if (mddev->reshape_position != MaxSector) {
		/* Check that we can continue the reshape.
5071 5072 5073 5074 5075 5076 5077 5078 5079 5080
		 * Difficulties arise if the stripe we would write to
		 * next is at or after the stripe we would read from next.
		 * For a reshape that changes the number of devices, this
		 * is only possible for a very short time, and mdadm makes
		 * sure that time appears to have past before assembling
		 * the array.  So we fail if that time hasn't passed.
		 * For a reshape that keeps the number of devices the same
		 * mdadm must be monitoring the reshape can keeping the
		 * critical areas read-only and backed up.  It will start
		 * the array in read-only mode, so we check for that.
N
NeilBrown 已提交
5081 5082 5083
		 */
		sector_t here_new, here_old;
		int old_disks;
5084
		int max_degraded = (mddev->level == 6 ? 2 : 1);
N
NeilBrown 已提交
5085

5086
		if (mddev->new_level != mddev->level) {
5087
			printk(KERN_ERR "md/raid:%s: unsupported reshape "
N
NeilBrown 已提交
5088 5089 5090 5091 5092 5093 5094 5095 5096 5097
			       "required - aborting.\n",
			       mdname(mddev));
			return -EINVAL;
		}
		old_disks = mddev->raid_disks - mddev->delta_disks;
		/* reshape_position must be on a new-stripe boundary, and one
		 * further up in new geometry must map after here in old
		 * geometry.
		 */
		here_new = mddev->reshape_position;
5098
		if (sector_div(here_new, mddev->new_chunk_sectors *
N
NeilBrown 已提交
5099
			       (mddev->raid_disks - max_degraded))) {
5100 5101
			printk(KERN_ERR "md/raid:%s: reshape_position not "
			       "on a stripe boundary\n", mdname(mddev));
N
NeilBrown 已提交
5102 5103
			return -EINVAL;
		}
5104
		reshape_offset = here_new * mddev->new_chunk_sectors;
N
NeilBrown 已提交
5105 5106
		/* here_new is the stripe we will write to */
		here_old = mddev->reshape_position;
5107
		sector_div(here_old, mddev->chunk_sectors *
N
NeilBrown 已提交
5108 5109 5110
			   (old_disks-max_degraded));
		/* here_old is the first stripe that we might need to read
		 * from */
5111
		if (mddev->delta_disks == 0) {
5112 5113 5114 5115 5116 5117
			if ((here_new * mddev->new_chunk_sectors !=
			     here_old * mddev->chunk_sectors)) {
				printk(KERN_ERR "md/raid:%s: reshape position is"
				       " confused - aborting\n", mdname(mddev));
				return -EINVAL;
			}
5118
			/* We cannot be sure it is safe to start an in-place
5119
			 * reshape.  It is only safe if user-space is monitoring
5120 5121 5122 5123 5124
			 * and taking constant backups.
			 * mdadm always starts a situation like this in
			 * readonly mode so it can take control before
			 * allowing any writes.  So just check for that.
			 */
5125 5126 5127 5128 5129 5130 5131
			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
				/* not really in-place - so OK */;
			else if (mddev->ro == 0) {
				printk(KERN_ERR "md/raid:%s: in-place reshape "
				       "must be started in read-only mode "
				       "- aborting\n",
5132
				       mdname(mddev));
5133 5134
				return -EINVAL;
			}
5135
		} else if (mddev->reshape_backwards
5136
		    ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
5137 5138
		       here_old * mddev->chunk_sectors)
		    : (here_new * mddev->new_chunk_sectors >=
5139
		       here_old * mddev->chunk_sectors + (-min_offset_diff))) {
N
NeilBrown 已提交
5140
			/* Reading from the same stripe as writing to - bad */
5141 5142 5143
			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
			       "auto-recovery - aborting.\n",
			       mdname(mddev));
N
NeilBrown 已提交
5144 5145
			return -EINVAL;
		}
5146 5147
		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
		       mdname(mddev));
N
NeilBrown 已提交
5148 5149 5150 5151
		/* OK, we should be able to continue; */
	} else {
		BUG_ON(mddev->level != mddev->new_level);
		BUG_ON(mddev->layout != mddev->new_layout);
5152
		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
N
NeilBrown 已提交
5153
		BUG_ON(mddev->delta_disks != 0);
L
Linus Torvalds 已提交
5154
	}
N
NeilBrown 已提交
5155

5156 5157 5158 5159 5160
	if (mddev->private == NULL)
		conf = setup_conf(mddev);
	else
		conf = mddev->private;

N
NeilBrown 已提交
5161 5162 5163
	if (IS_ERR(conf))
		return PTR_ERR(conf);

5164
	conf->min_offset_diff = min_offset_diff;
N
NeilBrown 已提交
5165 5166 5167 5168
	mddev->thread = conf->thread;
	conf->thread = NULL;
	mddev->private = conf;

5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179
	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
	     i++) {
		rdev = conf->disks[i].rdev;
		if (!rdev && conf->disks[i].replacement) {
			/* The replacement is all we have yet */
			rdev = conf->disks[i].replacement;
			conf->disks[i].replacement = NULL;
			clear_bit(Replacement, &rdev->flags);
			conf->disks[i].rdev = rdev;
		}
		if (!rdev)
5180
			continue;
5181 5182 5183 5184 5185 5186 5187
		if (conf->disks[i].replacement &&
		    conf->reshape_progress != MaxSector) {
			/* replacements and reshape simply do not mix. */
			printk(KERN_ERR "md: cannot handle concurrent "
			       "replacement and reshape.\n");
			goto abort;
		}
5188
		if (test_bit(In_sync, &rdev->flags)) {
N
NeilBrown 已提交
5189
			working_disks++;
5190 5191
			continue;
		}
5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219
		/* This disc is not fully in-sync.  However if it
		 * just stored parity (beyond the recovery_offset),
		 * when we don't need to be concerned about the
		 * array being dirty.
		 * When reshape goes 'backwards', we never have
		 * partially completed devices, so we only need
		 * to worry about reshape going forwards.
		 */
		/* Hack because v0.91 doesn't store recovery_offset properly. */
		if (mddev->major_version == 0 &&
		    mddev->minor_version > 90)
			rdev->recovery_offset = reshape_offset;
			
		if (rdev->recovery_offset < reshape_offset) {
			/* We need to check old and new layout */
			if (!only_parity(rdev->raid_disk,
					 conf->algorithm,
					 conf->raid_disks,
					 conf->max_degraded))
				continue;
		}
		if (!only_parity(rdev->raid_disk,
				 conf->prev_algo,
				 conf->previous_raid_disks,
				 conf->max_degraded))
			continue;
		dirty_parity_disks++;
	}
N
NeilBrown 已提交
5220

5221 5222 5223
	/*
	 * 0 for a fully functional array, 1 or 2 for a degraded array.
	 */
5224
	mddev->degraded = calc_degraded(conf);
N
NeilBrown 已提交
5225

5226
	if (has_failed(conf)) {
5227
		printk(KERN_ERR "md/raid:%s: not enough operational devices"
L
Linus Torvalds 已提交
5228
			" (%d/%d failed)\n",
5229
			mdname(mddev), mddev->degraded, conf->raid_disks);
L
Linus Torvalds 已提交
5230 5231 5232
		goto abort;
	}

N
NeilBrown 已提交
5233
	/* device size must be a multiple of chunk size */
5234
	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
N
NeilBrown 已提交
5235 5236
	mddev->resync_max_sectors = mddev->dev_sectors;

5237
	if (mddev->degraded > dirty_parity_disks &&
L
Linus Torvalds 已提交
5238
	    mddev->recovery_cp != MaxSector) {
5239 5240
		if (mddev->ok_start_degraded)
			printk(KERN_WARNING
5241 5242
			       "md/raid:%s: starting dirty degraded array"
			       " - data corruption possible.\n",
5243 5244 5245
			       mdname(mddev));
		else {
			printk(KERN_ERR
5246
			       "md/raid:%s: cannot start dirty degraded array.\n",
5247 5248 5249
			       mdname(mddev));
			goto abort;
		}
L
Linus Torvalds 已提交
5250 5251 5252
	}

	if (mddev->degraded == 0)
5253 5254
		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
		       " devices, algorithm %d\n", mdname(mddev), conf->level,
5255 5256
		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
		       mddev->new_layout);
L
Linus Torvalds 已提交
5257
	else
5258 5259 5260 5261 5262
		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
		       " out of %d devices, algorithm %d\n",
		       mdname(mddev), conf->level,
		       mddev->raid_disks - mddev->degraded,
		       mddev->raid_disks, mddev->new_layout);
L
Linus Torvalds 已提交
5263 5264 5265

	print_raid5_conf(conf);

5266 5267
	if (conf->reshape_progress != MaxSector) {
		conf->reshape_safe = conf->reshape_progress;
5268 5269 5270 5271 5272 5273
		atomic_set(&conf->reshape_stripes, 0);
		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5274
							"reshape");
5275 5276
	}

L
Linus Torvalds 已提交
5277 5278

	/* Ok, everything is just fine now */
5279 5280
	if (mddev->to_remove == &raid5_attrs_group)
		mddev->to_remove = NULL;
N
NeilBrown 已提交
5281 5282
	else if (mddev->kobj.sd &&
	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5283
		printk(KERN_WARNING
5284
		       "raid5: failed to create sysfs attributes for %s\n",
5285
		       mdname(mddev));
5286
	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5287

5288
	if (mddev->queue) {
5289
		int chunk_size;
5290 5291 5292 5293 5294 5295 5296 5297 5298
		/* read-ahead size must cover two whole stripes, which
		 * is 2 * (datadisks) * chunksize where 'n' is the
		 * number of raid devices
		 */
		int data_disks = conf->previous_raid_disks - conf->max_degraded;
		int stripe = data_disks *
			((mddev->chunk_sectors << 9) / PAGE_SIZE);
		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
N
NeilBrown 已提交
5299

5300
		blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5301

N
NeilBrown 已提交
5302 5303
		mddev->queue->backing_dev_info.congested_data = mddev;
		mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5304

5305 5306 5307 5308
		chunk_size = mddev->chunk_sectors << 9;
		blk_queue_io_min(mddev->queue, chunk_size);
		blk_queue_io_opt(mddev->queue, chunk_size *
				 (conf->raid_disks - conf->max_degraded));
5309

5310
		rdev_for_each(rdev, mddev) {
5311 5312
			disk_stack_limits(mddev->gendisk, rdev->bdev,
					  rdev->data_offset << 9);
5313 5314 5315
			disk_stack_limits(mddev->gendisk, rdev->bdev,
					  rdev->new_data_offset << 9);
		}
5316
	}
5317

L
Linus Torvalds 已提交
5318 5319
	return 0;
abort:
5320
	md_unregister_thread(&mddev->thread);
N
NeilBrown 已提交
5321 5322
	print_raid5_conf(conf);
	free_conf(conf);
L
Linus Torvalds 已提交
5323
	mddev->private = NULL;
5324
	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
L
Linus Torvalds 已提交
5325 5326 5327
	return -EIO;
}

5328
static int stop(struct mddev *mddev)
L
Linus Torvalds 已提交
5329
{
5330
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
5331

5332
	md_unregister_thread(&mddev->thread);
N
NeilBrown 已提交
5333 5334
	if (mddev->queue)
		mddev->queue->backing_dev_info.congested_fn = NULL;
5335
	free_conf(conf);
5336 5337
	mddev->private = NULL;
	mddev->to_remove = &raid5_attrs_group;
L
Linus Torvalds 已提交
5338 5339 5340
	return 0;
}

5341
static void status(struct seq_file *seq, struct mddev *mddev)
L
Linus Torvalds 已提交
5342
{
5343
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
5344 5345
	int i;

5346 5347
	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
		mddev->chunk_sectors / 2, mddev->layout);
5348
	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
L
Linus Torvalds 已提交
5349 5350 5351
	for (i = 0; i < conf->raid_disks; i++)
		seq_printf (seq, "%s",
			       conf->disks[i].rdev &&
5352
			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
L
Linus Torvalds 已提交
5353 5354 5355
	seq_printf (seq, "]");
}

5356
static void print_raid5_conf (struct r5conf *conf)
L
Linus Torvalds 已提交
5357 5358 5359 5360
{
	int i;
	struct disk_info *tmp;

5361
	printk(KERN_DEBUG "RAID conf printout:\n");
L
Linus Torvalds 已提交
5362 5363 5364 5365
	if (!conf) {
		printk("(conf==NULL)\n");
		return;
	}
5366 5367 5368
	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
	       conf->raid_disks,
	       conf->raid_disks - conf->mddev->degraded);
L
Linus Torvalds 已提交
5369 5370 5371 5372 5373

	for (i = 0; i < conf->raid_disks; i++) {
		char b[BDEVNAME_SIZE];
		tmp = conf->disks + i;
		if (tmp->rdev)
5374 5375 5376
			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
			       i, !test_bit(Faulty, &tmp->rdev->flags),
			       bdevname(tmp->rdev->bdev, b));
L
Linus Torvalds 已提交
5377 5378 5379
	}
}

5380
static int raid5_spare_active(struct mddev *mddev)
L
Linus Torvalds 已提交
5381 5382
{
	int i;
5383
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
5384
	struct disk_info *tmp;
5385 5386
	int count = 0;
	unsigned long flags;
L
Linus Torvalds 已提交
5387 5388 5389

	for (i = 0; i < conf->raid_disks; i++) {
		tmp = conf->disks + i;
5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408
		if (tmp->replacement
		    && tmp->replacement->recovery_offset == MaxSector
		    && !test_bit(Faulty, &tmp->replacement->flags)
		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
			/* Replacement has just become active. */
			if (!tmp->rdev
			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
				count++;
			if (tmp->rdev) {
				/* Replaced device not technically faulty,
				 * but we need to be sure it gets removed
				 * and never re-added.
				 */
				set_bit(Faulty, &tmp->rdev->flags);
				sysfs_notify_dirent_safe(
					tmp->rdev->sysfs_state);
			}
			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
		} else if (tmp->rdev
5409
		    && tmp->rdev->recovery_offset == MaxSector
5410
		    && !test_bit(Faulty, &tmp->rdev->flags)
5411
		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5412
			count++;
5413
			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
L
Linus Torvalds 已提交
5414 5415
		}
	}
5416
	spin_lock_irqsave(&conf->device_lock, flags);
5417
	mddev->degraded = calc_degraded(conf);
5418
	spin_unlock_irqrestore(&conf->device_lock, flags);
L
Linus Torvalds 已提交
5419
	print_raid5_conf(conf);
5420
	return count;
L
Linus Torvalds 已提交
5421 5422
}

5423
static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
L
Linus Torvalds 已提交
5424
{
5425
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
5426
	int err = 0;
5427
	int number = rdev->raid_disk;
5428
	struct md_rdev **rdevp;
L
Linus Torvalds 已提交
5429 5430 5431
	struct disk_info *p = conf->disks + number;

	print_raid5_conf(conf);
5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453
	if (rdev == p->rdev)
		rdevp = &p->rdev;
	else if (rdev == p->replacement)
		rdevp = &p->replacement;
	else
		return 0;

	if (number >= conf->raid_disks &&
	    conf->reshape_progress == MaxSector)
		clear_bit(In_sync, &rdev->flags);

	if (test_bit(In_sync, &rdev->flags) ||
	    atomic_read(&rdev->nr_pending)) {
		err = -EBUSY;
		goto abort;
	}
	/* Only remove non-faulty devices if recovery
	 * isn't possible.
	 */
	if (!test_bit(Faulty, &rdev->flags) &&
	    mddev->recovery_disabled != conf->recovery_disabled &&
	    !has_failed(conf) &&
5454
	    (!p->replacement || p->replacement == rdev) &&
5455 5456 5457 5458 5459 5460 5461 5462 5463 5464
	    number < conf->raid_disks) {
		err = -EBUSY;
		goto abort;
	}
	*rdevp = NULL;
	synchronize_rcu();
	if (atomic_read(&rdev->nr_pending)) {
		/* lost the race, try later */
		err = -EBUSY;
		*rdevp = rdev;
5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478
	} else if (p->replacement) {
		/* We must have just cleared 'rdev' */
		p->rdev = p->replacement;
		clear_bit(Replacement, &p->replacement->flags);
		smp_mb(); /* Make sure other CPUs may see both as identical
			   * but will never see neither - if they are careful
			   */
		p->replacement = NULL;
		clear_bit(WantReplacement, &rdev->flags);
	} else
		/* We might have just removed the Replacement as faulty-
		 * clear the bit just in case
		 */
		clear_bit(WantReplacement, &rdev->flags);
L
Linus Torvalds 已提交
5479 5480 5481 5482 5483 5484
abort:

	print_raid5_conf(conf);
	return err;
}

5485
static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
L
Linus Torvalds 已提交
5486
{
5487
	struct r5conf *conf = mddev->private;
5488
	int err = -EEXIST;
L
Linus Torvalds 已提交
5489 5490
	int disk;
	struct disk_info *p;
5491 5492
	int first = 0;
	int last = conf->raid_disks - 1;
L
Linus Torvalds 已提交
5493

5494 5495 5496
	if (mddev->recovery_disabled == conf->recovery_disabled)
		return -EBUSY;

N
NeilBrown 已提交
5497
	if (rdev->saved_raid_disk < 0 && has_failed(conf))
L
Linus Torvalds 已提交
5498
		/* no point adding a device */
5499
		return -EINVAL;
L
Linus Torvalds 已提交
5500

5501 5502
	if (rdev->raid_disk >= 0)
		first = last = rdev->raid_disk;
L
Linus Torvalds 已提交
5503 5504

	/*
5505 5506
	 * find the disk ... but prefer rdev->saved_raid_disk
	 * if possible.
L
Linus Torvalds 已提交
5507
	 */
5508
	if (rdev->saved_raid_disk >= 0 &&
5509
	    rdev->saved_raid_disk >= first &&
5510
	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
5511 5512 5513
		first = rdev->saved_raid_disk;

	for (disk = first; disk <= last; disk++) {
5514 5515
		p = conf->disks + disk;
		if (p->rdev == NULL) {
5516
			clear_bit(In_sync, &rdev->flags);
L
Linus Torvalds 已提交
5517
			rdev->raid_disk = disk;
5518
			err = 0;
5519 5520
			if (rdev->saved_raid_disk != disk)
				conf->fullsync = 1;
5521
			rcu_assign_pointer(p->rdev, rdev);
5522
			goto out;
L
Linus Torvalds 已提交
5523
		}
5524 5525 5526
	}
	for (disk = first; disk <= last; disk++) {
		p = conf->disks + disk;
5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537
		if (test_bit(WantReplacement, &p->rdev->flags) &&
		    p->replacement == NULL) {
			clear_bit(In_sync, &rdev->flags);
			set_bit(Replacement, &rdev->flags);
			rdev->raid_disk = disk;
			err = 0;
			conf->fullsync = 1;
			rcu_assign_pointer(p->replacement, rdev);
			break;
		}
	}
5538
out:
L
Linus Torvalds 已提交
5539
	print_raid5_conf(conf);
5540
	return err;
L
Linus Torvalds 已提交
5541 5542
}

5543
static int raid5_resize(struct mddev *mddev, sector_t sectors)
L
Linus Torvalds 已提交
5544 5545 5546 5547 5548 5549 5550 5551
{
	/* no resync is happening, and there is enough space
	 * on all devices, so we can resize.
	 * We need to make sure resync covers any new space.
	 * If the array is shrinking we should possibly wait until
	 * any io in the removed space completes, but it hardly seems
	 * worth it.
	 */
5552
	sector_t newsize;
5553
	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5554 5555 5556
	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
	if (mddev->external_size &&
	    mddev->array_sectors > newsize)
D
Dan Williams 已提交
5557
		return -EINVAL;
5558 5559 5560 5561 5562 5563
	if (mddev->bitmap) {
		int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
		if (ret)
			return ret;
	}
	md_set_array_sectors(mddev, newsize);
5564
	set_capacity(mddev->gendisk, mddev->array_sectors);
5565
	revalidate_disk(mddev->gendisk);
5566 5567
	if (sectors > mddev->dev_sectors &&
	    mddev->recovery_cp > mddev->dev_sectors) {
A
Andre Noll 已提交
5568
		mddev->recovery_cp = mddev->dev_sectors;
L
Linus Torvalds 已提交
5569 5570
		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
	}
A
Andre Noll 已提交
5571
	mddev->dev_sectors = sectors;
5572
	mddev->resync_max_sectors = sectors;
L
Linus Torvalds 已提交
5573 5574 5575
	return 0;
}

5576
static int check_stripe_cache(struct mddev *mddev)
5577 5578 5579 5580 5581 5582 5583 5584 5585
{
	/* Can only proceed if there are plenty of stripe_heads.
	 * We need a minimum of one full stripe,, and for sensible progress
	 * it is best to have about 4 times that.
	 * If we require 4 times, then the default 256 4K stripe_heads will
	 * allow for chunk sizes up to 256K, which is probably OK.
	 * If the chunk size is greater, user-space should request more
	 * stripe_heads first.
	 */
5586
	struct r5conf *conf = mddev->private;
5587 5588 5589 5590
	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
	    > conf->max_nr_stripes ||
	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
	    > conf->max_nr_stripes) {
5591 5592
		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
		       mdname(mddev),
5593 5594 5595 5596 5597 5598 5599
		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
			/ STRIPE_SIZE)*4);
		return 0;
	}
	return 1;
}

5600
static int check_reshape(struct mddev *mddev)
5601
{
5602
	struct r5conf *conf = mddev->private;
5603

5604 5605
	if (mddev->delta_disks == 0 &&
	    mddev->new_layout == mddev->layout &&
5606
	    mddev->new_chunk_sectors == mddev->chunk_sectors)
5607
		return 0; /* nothing to do */
5608
	if (has_failed(conf))
5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621
		return -EINVAL;
	if (mddev->delta_disks < 0) {
		/* We might be able to shrink, but the devices must
		 * be made bigger first.
		 * For raid6, 4 is the minimum size.
		 * Otherwise 2 is the minimum
		 */
		int min = 2;
		if (mddev->level == 6)
			min = 4;
		if (mddev->raid_disks + mddev->delta_disks < min)
			return -EINVAL;
	}
5622

5623
	if (!check_stripe_cache(mddev))
5624 5625
		return -ENOSPC;

5626
	return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5627 5628
}

5629
static int raid5_start_reshape(struct mddev *mddev)
5630
{
5631
	struct r5conf *conf = mddev->private;
5632
	struct md_rdev *rdev;
5633
	int spares = 0;
5634
	unsigned long flags;
5635

5636
	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5637 5638
		return -EBUSY;

5639 5640 5641
	if (!check_stripe_cache(mddev))
		return -ENOSPC;

5642 5643 5644
	if (has_failed(conf))
		return -EINVAL;

5645
	rdev_for_each(rdev, mddev) {
5646 5647
		if (!test_bit(In_sync, &rdev->flags)
		    && !test_bit(Faulty, &rdev->flags))
5648
			spares++;
5649
	}
5650

5651
	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5652 5653 5654 5655 5656
		/* Not enough devices even to make a degraded array
		 * of that size
		 */
		return -EINVAL;

5657 5658 5659 5660 5661 5662
	/* Refuse to reduce size of the array.  Any reductions in
	 * array size must be through explicit setting of array_size
	 * attribute.
	 */
	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
	    < mddev->array_sectors) {
5663
		printk(KERN_ERR "md/raid:%s: array size must be reduced "
5664 5665 5666 5667
		       "before number of disks\n", mdname(mddev));
		return -EINVAL;
	}

5668
	atomic_set(&conf->reshape_stripes, 0);
5669 5670
	spin_lock_irq(&conf->device_lock);
	conf->previous_raid_disks = conf->raid_disks;
5671
	conf->raid_disks += mddev->delta_disks;
5672 5673
	conf->prev_chunk_sectors = conf->chunk_sectors;
	conf->chunk_sectors = mddev->new_chunk_sectors;
5674 5675
	conf->prev_algo = conf->algorithm;
	conf->algorithm = mddev->new_layout;
5676 5677 5678 5679 5680
	conf->generation++;
	/* Code that selects data_offset needs to see the generation update
	 * if reshape_progress has been set - so a memory barrier needed.
	 */
	smp_mb();
5681
	if (mddev->reshape_backwards)
5682 5683 5684 5685
		conf->reshape_progress = raid5_size(mddev, 0, 0);
	else
		conf->reshape_progress = 0;
	conf->reshape_safe = conf->reshape_progress;
5686 5687 5688 5689
	spin_unlock_irq(&conf->device_lock);

	/* Add some new drives, as many as will fit.
	 * We know there are enough to make the newly sized array work.
5690 5691 5692 5693
	 * Don't add devices if we are reducing the number of
	 * devices in the array.  This is because it is not possible
	 * to correctly record the "partially reconstructed" state of
	 * such devices during the reshape and confusion could result.
5694
	 */
5695
	if (mddev->delta_disks >= 0) {
N
NeilBrown 已提交
5696
		rdev_for_each(rdev, mddev)
5697 5698 5699 5700
			if (rdev->raid_disk < 0 &&
			    !test_bit(Faulty, &rdev->flags)) {
				if (raid5_add_disk(mddev, rdev) == 0) {
					if (rdev->raid_disk
5701
					    >= conf->previous_raid_disks)
5702
						set_bit(In_sync, &rdev->flags);
5703
					else
5704
						rdev->recovery_offset = 0;
5705 5706

					if (sysfs_link_rdev(mddev, rdev))
5707
						/* Failure here is OK */;
5708
				}
5709 5710 5711 5712 5713
			} else if (rdev->raid_disk >= conf->previous_raid_disks
				   && !test_bit(Faulty, &rdev->flags)) {
				/* This is a spare that was manually added */
				set_bit(In_sync, &rdev->flags);
			}
5714

5715 5716 5717 5718
		/* When a reshape changes the number of devices,
		 * ->degraded is measured against the larger of the
		 * pre and post number of devices.
		 */
5719
		spin_lock_irqsave(&conf->device_lock, flags);
5720
		mddev->degraded = calc_degraded(conf);
5721 5722
		spin_unlock_irqrestore(&conf->device_lock, flags);
	}
5723
	mddev->raid_disks = conf->raid_disks;
5724
	mddev->reshape_position = conf->reshape_progress;
5725
	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5726

5727 5728 5729 5730 5731
	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5732
						"reshape");
5733 5734 5735 5736
	if (!mddev->sync_thread) {
		mddev->recovery = 0;
		spin_lock_irq(&conf->device_lock);
		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5737 5738 5739
		rdev_for_each(rdev, mddev)
			rdev->new_data_offset = rdev->data_offset;
		smp_wmb();
5740
		conf->reshape_progress = MaxSector;
5741
		mddev->reshape_position = MaxSector;
5742 5743 5744
		spin_unlock_irq(&conf->device_lock);
		return -EAGAIN;
	}
5745
	conf->reshape_checkpoint = jiffies;
5746 5747 5748 5749 5750
	md_wakeup_thread(mddev->sync_thread);
	md_new_event(mddev);
	return 0;
}

5751 5752 5753
/* This is called from the reshape thread and should make any
 * changes needed in 'conf'
 */
5754
static void end_reshape(struct r5conf *conf)
5755 5756
{

5757
	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5758
		struct md_rdev *rdev;
5759 5760

		spin_lock_irq(&conf->device_lock);
5761
		conf->previous_raid_disks = conf->raid_disks;
5762 5763 5764
		rdev_for_each(rdev, conf->mddev)
			rdev->data_offset = rdev->new_data_offset;
		smp_wmb();
5765
		conf->reshape_progress = MaxSector;
5766
		spin_unlock_irq(&conf->device_lock);
5767
		wake_up(&conf->wait_for_overlap);
5768 5769 5770 5771

		/* read-ahead size must cover two whole stripes, which is
		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
		 */
5772
		if (conf->mddev->queue) {
5773
			int data_disks = conf->raid_disks - conf->max_degraded;
5774
			int stripe = data_disks * ((conf->chunk_sectors << 9)
5775
						   / PAGE_SIZE);
5776 5777 5778
			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
		}
5779 5780 5781
	}
}

5782 5783 5784
/* This is called from the raid5d thread with mddev_lock held.
 * It makes config changes to the device.
 */
5785
static void raid5_finish_reshape(struct mddev *mddev)
5786
{
5787
	struct r5conf *conf = mddev->private;
5788 5789 5790

	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {

5791 5792 5793
		if (mddev->delta_disks > 0) {
			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
			set_capacity(mddev->gendisk, mddev->array_sectors);
5794
			revalidate_disk(mddev->gendisk);
5795 5796
		} else {
			int d;
5797 5798 5799
			spin_lock_irq(&conf->device_lock);
			mddev->degraded = calc_degraded(conf);
			spin_unlock_irq(&conf->device_lock);
5800 5801
			for (d = conf->raid_disks ;
			     d < conf->raid_disks - mddev->delta_disks;
5802
			     d++) {
5803
				struct md_rdev *rdev = conf->disks[d].rdev;
5804 5805 5806 5807 5808
				if (rdev)
					clear_bit(In_sync, &rdev->flags);
				rdev = conf->disks[d].replacement;
				if (rdev)
					clear_bit(In_sync, &rdev->flags);
5809
			}
5810
		}
5811
		mddev->layout = conf->algorithm;
5812
		mddev->chunk_sectors = conf->chunk_sectors;
5813 5814
		mddev->reshape_position = MaxSector;
		mddev->delta_disks = 0;
5815
		mddev->reshape_backwards = 0;
5816 5817 5818
	}
}

5819
static void raid5_quiesce(struct mddev *mddev, int state)
5820
{
5821
	struct r5conf *conf = mddev->private;
5822 5823

	switch(state) {
5824 5825 5826 5827
	case 2: /* resume for a suspend */
		wake_up(&conf->wait_for_overlap);
		break;

5828 5829
	case 1: /* stop all writes */
		spin_lock_irq(&conf->device_lock);
5830 5831 5832 5833
		/* '2' tells resync/reshape to pause so that all
		 * active stripes can drain
		 */
		conf->quiesce = 2;
5834
		wait_event_lock_irq(conf->wait_for_stripe,
5835 5836
				    atomic_read(&conf->active_stripes) == 0 &&
				    atomic_read(&conf->active_aligned_reads) == 0,
5837
				    conf->device_lock, /* nothing */);
5838
		conf->quiesce = 1;
5839
		spin_unlock_irq(&conf->device_lock);
5840 5841
		/* allow reshape to continue */
		wake_up(&conf->wait_for_overlap);
5842 5843 5844 5845 5846 5847
		break;

	case 0: /* re-enable writes */
		spin_lock_irq(&conf->device_lock);
		conf->quiesce = 0;
		wake_up(&conf->wait_for_stripe);
5848
		wake_up(&conf->wait_for_overlap);
5849 5850 5851 5852
		spin_unlock_irq(&conf->device_lock);
		break;
	}
}
5853

5854

5855
static void *raid45_takeover_raid0(struct mddev *mddev, int level)
5856
{
5857
	struct r0conf *raid0_conf = mddev->private;
5858
	sector_t sectors;
5859

D
Dan Williams 已提交
5860
	/* for raid0 takeover only one zone is supported */
5861
	if (raid0_conf->nr_strip_zones > 1) {
5862 5863
		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
		       mdname(mddev));
D
Dan Williams 已提交
5864 5865 5866
		return ERR_PTR(-EINVAL);
	}

5867 5868
	sectors = raid0_conf->strip_zone[0].zone_end;
	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
5869
	mddev->dev_sectors = sectors;
D
Dan Williams 已提交
5870
	mddev->new_level = level;
5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881
	mddev->new_layout = ALGORITHM_PARITY_N;
	mddev->new_chunk_sectors = mddev->chunk_sectors;
	mddev->raid_disks += 1;
	mddev->delta_disks = 1;
	/* make sure it will be not marked as dirty */
	mddev->recovery_cp = MaxSector;

	return setup_conf(mddev);
}


5882
static void *raid5_takeover_raid1(struct mddev *mddev)
5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903
{
	int chunksect;

	if (mddev->raid_disks != 2 ||
	    mddev->degraded > 1)
		return ERR_PTR(-EINVAL);

	/* Should check if there are write-behind devices? */

	chunksect = 64*2; /* 64K by default */

	/* The array must be an exact multiple of chunksize */
	while (chunksect && (mddev->array_sectors & (chunksect-1)))
		chunksect >>= 1;

	if ((chunksect<<9) < STRIPE_SIZE)
		/* array size does not allow a suitable chunk size */
		return ERR_PTR(-EINVAL);

	mddev->new_level = 5;
	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5904
	mddev->new_chunk_sectors = chunksect;
5905 5906 5907 5908

	return setup_conf(mddev);
}

5909
static void *raid5_takeover_raid6(struct mddev *mddev)
5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941
{
	int new_layout;

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
		break;
	case ALGORITHM_LEFT_SYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_SYMMETRIC;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
		break;
	case ALGORITHM_PARITY_0_6:
		new_layout = ALGORITHM_PARITY_0;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 5;
	mddev->new_layout = new_layout;
	mddev->delta_disks = -1;
	mddev->raid_disks -= 1;
	return setup_conf(mddev);
}

5942

5943
static int raid5_check_reshape(struct mddev *mddev)
5944
{
5945 5946 5947 5948
	/* For a 2-drive array, the layout and chunk size can be changed
	 * immediately as not restriping is needed.
	 * For larger arrays we record the new value - after validation
	 * to be used by a reshape pass.
5949
	 */
5950
	struct r5conf *conf = mddev->private;
5951
	int new_chunk = mddev->new_chunk_sectors;
5952

5953
	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5954 5955
		return -EINVAL;
	if (new_chunk > 0) {
5956
		if (!is_power_of_2(new_chunk))
5957
			return -EINVAL;
5958
		if (new_chunk < (PAGE_SIZE>>9))
5959
			return -EINVAL;
5960
		if (mddev->array_sectors & (new_chunk-1))
5961 5962 5963 5964 5965 5966
			/* not factor of array size */
			return -EINVAL;
	}

	/* They look valid */

5967
	if (mddev->raid_disks == 2) {
5968 5969 5970 5971
		/* can make the change immediately */
		if (mddev->new_layout >= 0) {
			conf->algorithm = mddev->new_layout;
			mddev->layout = mddev->new_layout;
5972 5973
		}
		if (new_chunk > 0) {
5974 5975
			conf->chunk_sectors = new_chunk ;
			mddev->chunk_sectors = new_chunk;
5976 5977 5978
		}
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
5979
	}
5980
	return check_reshape(mddev);
5981 5982
}

5983
static int raid6_check_reshape(struct mddev *mddev)
5984
{
5985
	int new_chunk = mddev->new_chunk_sectors;
5986

5987
	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5988
		return -EINVAL;
5989
	if (new_chunk > 0) {
5990
		if (!is_power_of_2(new_chunk))
5991
			return -EINVAL;
5992
		if (new_chunk < (PAGE_SIZE >> 9))
5993
			return -EINVAL;
5994
		if (mddev->array_sectors & (new_chunk-1))
5995 5996
			/* not factor of array size */
			return -EINVAL;
5997
	}
5998 5999

	/* They look valid */
6000
	return check_reshape(mddev);
6001 6002
}

6003
static void *raid5_takeover(struct mddev *mddev)
6004 6005
{
	/* raid5 can take over:
D
Dan Williams 已提交
6006
	 *  raid0 - if there is only one strip zone - make it a raid4 layout
6007 6008 6009 6010
	 *  raid1 - if there are two drives.  We need to know the chunk size
	 *  raid4 - trivial - just use a raid4 layout.
	 *  raid6 - Providing it is a *_6 layout
	 */
D
Dan Williams 已提交
6011 6012
	if (mddev->level == 0)
		return raid45_takeover_raid0(mddev, 5);
6013 6014
	if (mddev->level == 1)
		return raid5_takeover_raid1(mddev);
6015 6016 6017 6018 6019
	if (mddev->level == 4) {
		mddev->new_layout = ALGORITHM_PARITY_N;
		mddev->new_level = 5;
		return setup_conf(mddev);
	}
6020 6021
	if (mddev->level == 6)
		return raid5_takeover_raid6(mddev);
6022 6023 6024 6025

	return ERR_PTR(-EINVAL);
}

6026
static void *raid4_takeover(struct mddev *mddev)
6027
{
D
Dan Williams 已提交
6028 6029 6030
	/* raid4 can take over:
	 *  raid0 - if there is only one strip zone
	 *  raid5 - if layout is right
6031
	 */
D
Dan Williams 已提交
6032 6033
	if (mddev->level == 0)
		return raid45_takeover_raid0(mddev, 4);
6034 6035 6036 6037 6038 6039 6040 6041
	if (mddev->level == 5 &&
	    mddev->layout == ALGORITHM_PARITY_N) {
		mddev->new_layout = 0;
		mddev->new_level = 4;
		return setup_conf(mddev);
	}
	return ERR_PTR(-EINVAL);
}
6042

6043
static struct md_personality raid5_personality;
6044

6045
static void *raid6_takeover(struct mddev *mddev)
6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091
{
	/* Currently can only take over a raid5.  We map the
	 * personality to an equivalent raid6 personality
	 * with the Q block at the end.
	 */
	int new_layout;

	if (mddev->pers != &raid5_personality)
		return ERR_PTR(-EINVAL);
	if (mddev->degraded > 1)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks > 253)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks < 3)
		return ERR_PTR(-EINVAL);

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
		break;
	case ALGORITHM_LEFT_SYMMETRIC:
		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
		break;
	case ALGORITHM_PARITY_0:
		new_layout = ALGORITHM_PARITY_0_6;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 6;
	mddev->new_layout = new_layout;
	mddev->delta_disks = 1;
	mddev->raid_disks += 1;
	return setup_conf(mddev);
}


6092
static struct md_personality raid6_personality =
6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106
{
	.name		= "raid6",
	.level		= 6,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
6107
	.size		= raid5_size,
6108
	.check_reshape	= raid6_check_reshape,
6109
	.start_reshape  = raid5_start_reshape,
6110
	.finish_reshape = raid5_finish_reshape,
6111
	.quiesce	= raid5_quiesce,
6112
	.takeover	= raid6_takeover,
6113
};
6114
static struct md_personality raid5_personality =
L
Linus Torvalds 已提交
6115 6116
{
	.name		= "raid5",
6117
	.level		= 5,
L
Linus Torvalds 已提交
6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
6129
	.size		= raid5_size,
6130 6131
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
6132
	.finish_reshape = raid5_finish_reshape,
6133
	.quiesce	= raid5_quiesce,
6134
	.takeover	= raid5_takeover,
L
Linus Torvalds 已提交
6135 6136
};

6137
static struct md_personality raid4_personality =
L
Linus Torvalds 已提交
6138
{
6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151
	.name		= "raid4",
	.level		= 4,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
6152
	.size		= raid5_size,
6153 6154
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
6155
	.finish_reshape = raid5_finish_reshape,
6156
	.quiesce	= raid5_quiesce,
6157
	.takeover	= raid4_takeover,
6158 6159 6160 6161
};

static int __init raid5_init(void)
{
6162
	register_md_personality(&raid6_personality);
6163 6164 6165
	register_md_personality(&raid5_personality);
	register_md_personality(&raid4_personality);
	return 0;
L
Linus Torvalds 已提交
6166 6167
}

6168
static void raid5_exit(void)
L
Linus Torvalds 已提交
6169
{
6170
	unregister_md_personality(&raid6_personality);
6171 6172
	unregister_md_personality(&raid5_personality);
	unregister_md_personality(&raid4_personality);
L
Linus Torvalds 已提交
6173 6174 6175 6176 6177
}

module_init(raid5_init);
module_exit(raid5_exit);
MODULE_LICENSE("GPL");
6178
MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
L
Linus Torvalds 已提交
6179
MODULE_ALIAS("md-personality-4"); /* RAID5 */
6180 6181
MODULE_ALIAS("md-raid5");
MODULE_ALIAS("md-raid4");
6182 6183
MODULE_ALIAS("md-level-5");
MODULE_ALIAS("md-level-4");
6184 6185 6186 6187 6188 6189 6190
MODULE_ALIAS("md-personality-8"); /* RAID6 */
MODULE_ALIAS("md-raid6");
MODULE_ALIAS("md-level-6");

/* This used to be two separate modules, they were: */
MODULE_ALIAS("raid5");
MODULE_ALIAS("raid6");