kprobes.c 18.2 KB
Newer Older
M
Michael Grundy 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
/*
 *  Kernel Probes (KProbes)
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright (C) IBM Corporation, 2002, 2006
 *
 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
 */

#include <linux/kprobes.h>
#include <linux/ptrace.h>
#include <linux/preempt.h>
#include <linux/stop_machine.h>
#include <asm/cacheflush.h>
#include <asm/kdebug.h>
#include <asm/sections.h>
#include <asm/uaccess.h>
#include <linux/module.h>

DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);

int __kprobes arch_prepare_kprobe(struct kprobe *p)
{
	/* Make sure the probe isn't going on a difficult instruction */
	if (is_prohibited_opcode((kprobe_opcode_t *) p->addr))
		return -EINVAL;

	if ((unsigned long)p->addr & 0x01) {
		printk("Attempt to register kprobe at an unaligned address\n");
		return -EINVAL;
		}

	/* Use the get_insn_slot() facility for correctness */
	if (!(p->ainsn.insn = get_insn_slot()))
		return -ENOMEM;

	memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));

	get_instruction_type(&p->ainsn);
	p->opcode = *p->addr;
	return 0;
}

int __kprobes is_prohibited_opcode(kprobe_opcode_t *instruction)
{
	switch (*(__u8 *) instruction) {
	case 0x0c:	/* bassm */
	case 0x0b:	/* bsm	 */
	case 0x83:	/* diag  */
	case 0x44:	/* ex	 */
		return -EINVAL;
	}
	switch (*(__u16 *) instruction) {
	case 0x0101:	/* pr	 */
	case 0xb25a:	/* bsa	 */
	case 0xb240:	/* bakr  */
	case 0xb258:	/* bsg	 */
	case 0xb218:	/* pc	 */
	case 0xb228:	/* pt	 */
		return -EINVAL;
	}
	return 0;
}

void __kprobes get_instruction_type(struct arch_specific_insn *ainsn)
{
	/* default fixup method */
	ainsn->fixup = FIXUP_PSW_NORMAL;

	/* save r1 operand */
	ainsn->reg = (*ainsn->insn & 0xf0) >> 4;

	/* save the instruction length (pop 5-5) in bytes */
	switch (*(__u8 *) (ainsn->insn) >> 4) {
	case 0:
		ainsn->ilen = 2;
		break;
	case 1:
	case 2:
		ainsn->ilen = 4;
		break;
	case 3:
		ainsn->ilen = 6;
		break;
	}

	switch (*(__u8 *) ainsn->insn) {
	case 0x05:	/* balr	*/
	case 0x0d:	/* basr */
		ainsn->fixup = FIXUP_RETURN_REGISTER;
		/* if r2 = 0, no branch will be taken */
		if ((*ainsn->insn & 0x0f) == 0)
			ainsn->fixup |= FIXUP_BRANCH_NOT_TAKEN;
		break;
	case 0x06:	/* bctr	*/
	case 0x07:	/* bcr	*/
		ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
		break;
	case 0x45:	/* bal	*/
	case 0x4d:	/* bas	*/
		ainsn->fixup = FIXUP_RETURN_REGISTER;
		break;
	case 0x47:	/* bc	*/
	case 0x46:	/* bct	*/
	case 0x86:	/* bxh	*/
	case 0x87:	/* bxle	*/
		ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
		break;
	case 0x82:	/* lpsw	*/
		ainsn->fixup = FIXUP_NOT_REQUIRED;
		break;
	case 0xb2:	/* lpswe */
		if (*(((__u8 *) ainsn->insn) + 1) == 0xb2) {
			ainsn->fixup = FIXUP_NOT_REQUIRED;
		}
		break;
	case 0xa7:	/* bras	*/
		if ((*ainsn->insn & 0x0f) == 0x05) {
			ainsn->fixup |= FIXUP_RETURN_REGISTER;
		}
		break;
	case 0xc0:
		if ((*ainsn->insn & 0x0f) == 0x00  /* larl  */
			|| (*ainsn->insn & 0x0f) == 0x05) /* brasl */
		ainsn->fixup |= FIXUP_RETURN_REGISTER;
		break;
	case 0xeb:
		if (*(((__u8 *) ainsn->insn) + 5 ) == 0x44 ||	/* bxhg  */
			*(((__u8 *) ainsn->insn) + 5) == 0x45) {/* bxleg */
			ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
		}
		break;
	case 0xe3:	/* bctg	*/
		if (*(((__u8 *) ainsn->insn) + 5) == 0x46) {
			ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
		}
		break;
	}
}

static int __kprobes swap_instruction(void *aref)
{
	struct ins_replace_args *args = aref;
158 159
	u32 *addr;
	u32 instr;
M
Michael Grundy 已提交
160 161
	int err = -EFAULT;

162 163 164 165 166 167 168 169
	/*
	 * Text segment is read-only, hence we use stura to bypass dynamic
	 * address translation to exchange the instruction. Since stura
	 * always operates on four bytes, but we only want to exchange two
	 * bytes do some calculations to get things right. In addition we
	 * shall not cross any page boundaries (vmalloc area!) when writing
	 * the new instruction.
	 */
170
	addr = (u32 *)((unsigned long)args->ptr & -4UL);
171 172 173 174 175
	if ((unsigned long)args->ptr & 2)
		instr = ((*addr) & 0xffff0000) | args->new;
	else
		instr = ((*addr) & 0x0000ffff) | args->new << 16;

M
Michael Grundy 已提交
176
	asm volatile(
177 178 179
		"	lra	%1,0(%1)\n"
		"0:	stura	%2,%1\n"
		"1:	la	%0,0\n"
M
Michael Grundy 已提交
180 181
		"2:\n"
		EX_TABLE(0b,2b)
182 183 184 185
		: "+d" (err)
		: "a" (addr), "d" (instr)
		: "memory", "cc");

M
Michael Grundy 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
	return err;
}

void __kprobes arch_arm_kprobe(struct kprobe *p)
{
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
	unsigned long status = kcb->kprobe_status;
	struct ins_replace_args args;

	args.ptr = p->addr;
	args.old = p->opcode;
	args.new = BREAKPOINT_INSTRUCTION;

	kcb->kprobe_status = KPROBE_SWAP_INST;
	stop_machine_run(swap_instruction, &args, NR_CPUS);
	kcb->kprobe_status = status;
}

void __kprobes arch_disarm_kprobe(struct kprobe *p)
{
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
	unsigned long status = kcb->kprobe_status;
	struct ins_replace_args args;

	args.ptr = p->addr;
	args.old = BREAKPOINT_INSTRUCTION;
	args.new = p->opcode;

	kcb->kprobe_status = KPROBE_SWAP_INST;
	stop_machine_run(swap_instruction, &args, NR_CPUS);
	kcb->kprobe_status = status;
}

void __kprobes arch_remove_kprobe(struct kprobe *p)
{
	mutex_lock(&kprobe_mutex);
222
	free_insn_slot(p->ainsn.insn, 0);
M
Michael Grundy 已提交
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
	mutex_unlock(&kprobe_mutex);
}

static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
{
	per_cr_bits kprobe_per_regs[1];

	memset(kprobe_per_regs, 0, sizeof(per_cr_bits));
	regs->psw.addr = (unsigned long)p->ainsn.insn | PSW_ADDR_AMODE;

	/* Set up the per control reg info, will pass to lctl */
	kprobe_per_regs[0].em_instruction_fetch = 1;
	kprobe_per_regs[0].starting_addr = (unsigned long)p->ainsn.insn;
	kprobe_per_regs[0].ending_addr = (unsigned long)p->ainsn.insn + 1;

	/* Set the PER control regs, turns on single step for this address */
	__ctl_load(kprobe_per_regs, 9, 11);
	regs->psw.mask |= PSW_MASK_PER;
	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK);
}

static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
{
	kcb->prev_kprobe.kp = kprobe_running();
	kcb->prev_kprobe.status = kcb->kprobe_status;
	kcb->prev_kprobe.kprobe_saved_imask = kcb->kprobe_saved_imask;
	memcpy(kcb->prev_kprobe.kprobe_saved_ctl, kcb->kprobe_saved_ctl,
					sizeof(kcb->kprobe_saved_ctl));
}

static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
{
	__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
	kcb->kprobe_status = kcb->prev_kprobe.status;
	kcb->kprobe_saved_imask = kcb->prev_kprobe.kprobe_saved_imask;
	memcpy(kcb->kprobe_saved_ctl, kcb->prev_kprobe.kprobe_saved_ctl,
					sizeof(kcb->kprobe_saved_ctl));
}

static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
						struct kprobe_ctlblk *kcb)
{
	__get_cpu_var(current_kprobe) = p;
	/* Save the interrupt and per flags */
	kcb->kprobe_saved_imask = regs->psw.mask &
	    (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK);
	/* Save the control regs that govern PER */
	__ctl_store(kcb->kprobe_saved_ctl, 9, 11);
}

/* Called with kretprobe_lock held */
void __kprobes arch_prepare_kretprobe(struct kretprobe *rp,
					struct pt_regs *regs)
{
	struct kretprobe_instance *ri;

	if ((ri = get_free_rp_inst(rp)) != NULL) {
		ri->rp = rp;
		ri->task = current;
		ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];

		/* Replace the return addr with trampoline addr */
		regs->gprs[14] = (unsigned long)&kretprobe_trampoline;

		add_rp_inst(ri);
	} else {
		rp->nmissed++;
	}
}

static int __kprobes kprobe_handler(struct pt_regs *regs)
{
	struct kprobe *p;
	int ret = 0;
	unsigned long *addr = (unsigned long *)
		((regs->psw.addr & PSW_ADDR_INSN) - 2);
	struct kprobe_ctlblk *kcb;

	/*
	 * We don't want to be preempted for the entire
	 * duration of kprobe processing
	 */
	preempt_disable();
	kcb = get_kprobe_ctlblk();

	/* Check we're not actually recursing */
	if (kprobe_running()) {
		p = get_kprobe(addr);
		if (p) {
			if (kcb->kprobe_status == KPROBE_HIT_SS &&
			    *p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
				regs->psw.mask &= ~PSW_MASK_PER;
				regs->psw.mask |= kcb->kprobe_saved_imask;
				goto no_kprobe;
			}
			/* We have reentered the kprobe_handler(), since
			 * another probe was hit while within the handler.
			 * We here save the original kprobes variables and
			 * just single step on the instruction of the new probe
			 * without calling any user handlers.
			 */
			save_previous_kprobe(kcb);
			set_current_kprobe(p, regs, kcb);
			kprobes_inc_nmissed_count(p);
			prepare_singlestep(p, regs);
			kcb->kprobe_status = KPROBE_REENTER;
			return 1;
		} else {
			p = __get_cpu_var(current_kprobe);
			if (p->break_handler && p->break_handler(p, regs)) {
				goto ss_probe;
			}
		}
		goto no_kprobe;
	}

	p = get_kprobe(addr);
340 341 342 343 344 345 346
	if (!p)
		/*
		 * No kprobe at this address. The fault has not been
		 * caused by a kprobe breakpoint. The race of breakpoint
		 * vs. kprobe remove does not exist because on s390 we
		 * use stop_machine_run to arm/disarm the breakpoints.
		 */
M
Michael Grundy 已提交
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
		goto no_kprobe;

	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
	set_current_kprobe(p, regs, kcb);
	if (p->pre_handler && p->pre_handler(p, regs))
		/* handler has already set things up, so skip ss setup */
		return 1;

ss_probe:
	prepare_singlestep(p, regs);
	kcb->kprobe_status = KPROBE_HIT_SS;
	return 1;

no_kprobe:
	preempt_enable_no_resched();
	return ret;
}

/*
 * Function return probe trampoline:
 *	- init_kprobes() establishes a probepoint here
 *	- When the probed function returns, this probe
 *		causes the handlers to fire
 */
371
void kretprobe_trampoline_holder(void)
M
Michael Grundy 已提交
372 373 374 375 376 377 378 379
{
	asm volatile(".global kretprobe_trampoline\n"
		     "kretprobe_trampoline: bcr 0,0\n");
}

/*
 * Called when the probe at kretprobe trampoline is hit
 */
380 381
static int __kprobes trampoline_probe_handler(struct kprobe *p,
					      struct pt_regs *regs)
M
Michael Grundy 已提交
382 383
{
	struct kretprobe_instance *ri = NULL;
384
	struct hlist_head *head, empty_rp;
M
Michael Grundy 已提交
385 386 387 388
	struct hlist_node *node, *tmp;
	unsigned long flags, orig_ret_address = 0;
	unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;

389
	INIT_HLIST_HEAD(&empty_rp);
M
Michael Grundy 已提交
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
	spin_lock_irqsave(&kretprobe_lock, flags);
	head = kretprobe_inst_table_head(current);

	/*
	 * It is possible to have multiple instances associated with a given
	 * task either because an multiple functions in the call path
	 * have a return probe installed on them, and/or more then one return
	 * return probe was registered for a target function.
	 *
	 * We can handle this because:
	 *     - instances are always inserted at the head of the list
	 *     - when multiple return probes are registered for the same
	 *	 function, the first instance's ret_addr will point to the
	 *	 real return address, and all the rest will point to
	 *	 kretprobe_trampoline
	 */
	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
		if (ri->task != current)
			/* another task is sharing our hash bucket */
			continue;

		if (ri->rp && ri->rp->handler)
			ri->rp->handler(ri, regs);

		orig_ret_address = (unsigned long)ri->ret_addr;
415
		recycle_rp_inst(ri, &empty_rp);
M
Michael Grundy 已提交
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432

		if (orig_ret_address != trampoline_address) {
			/*
			 * This is the real return address. Any other
			 * instances associated with this task are for
			 * other calls deeper on the call stack
			 */
			break;
		}
	}
	BUG_ON(!orig_ret_address || (orig_ret_address == trampoline_address));
	regs->psw.addr = orig_ret_address | PSW_ADDR_AMODE;

	reset_current_kprobe();
	spin_unlock_irqrestore(&kretprobe_lock, flags);
	preempt_enable_no_resched();

433 434 435 436
	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
		hlist_del(&ri->hlist);
		kfree(ri);
	}
M
Michael Grundy 已提交
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
	/*
	 * By returning a non-zero value, we are telling
	 * kprobe_handler() that we don't want the post_handler
	 * to run (and have re-enabled preemption)
	 */
	return 1;
}

/*
 * Called after single-stepping.  p->addr is the address of the
 * instruction whose first byte has been replaced by the "breakpoint"
 * instruction.  To avoid the SMP problems that can occur when we
 * temporarily put back the original opcode to single-step, we
 * single-stepped a copy of the instruction.  The address of this
 * copy is p->ainsn.insn.
 */
static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
{
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();

	regs->psw.addr &= PSW_ADDR_INSN;

	if (p->ainsn.fixup & FIXUP_PSW_NORMAL)
		regs->psw.addr = (unsigned long)p->addr +
				((unsigned long)regs->psw.addr -
				 (unsigned long)p->ainsn.insn);

	if (p->ainsn.fixup & FIXUP_BRANCH_NOT_TAKEN)
		if ((unsigned long)regs->psw.addr -
		    (unsigned long)p->ainsn.insn == p->ainsn.ilen)
			regs->psw.addr = (unsigned long)p->addr + p->ainsn.ilen;

	if (p->ainsn.fixup & FIXUP_RETURN_REGISTER)
		regs->gprs[p->ainsn.reg] = ((unsigned long)p->addr +
						(regs->gprs[p->ainsn.reg] -
						(unsigned long)p->ainsn.insn))
						| PSW_ADDR_AMODE;

	regs->psw.addr |= PSW_ADDR_AMODE;
	/* turn off PER mode */
	regs->psw.mask &= ~PSW_MASK_PER;
	/* Restore the original per control regs */
	__ctl_load(kcb->kprobe_saved_ctl, 9, 11);
	regs->psw.mask |= kcb->kprobe_saved_imask;
}

static int __kprobes post_kprobe_handler(struct pt_regs *regs)
{
	struct kprobe *cur = kprobe_running();
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();

	if (!cur)
		return 0;

	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
		kcb->kprobe_status = KPROBE_HIT_SSDONE;
		cur->post_handler(cur, regs, 0);
	}

	resume_execution(cur, regs);

	/*Restore back the original saved kprobes variables and continue. */
	if (kcb->kprobe_status == KPROBE_REENTER) {
		restore_previous_kprobe(kcb);
		goto out;
	}
	reset_current_kprobe();
out:
	preempt_enable_no_resched();

	/*
	 * if somebody else is singlestepping across a probe point, psw mask
	 * will have PER set, in which case, continue the remaining processing
	 * of do_single_step, as if this is not a probe hit.
	 */
	if (regs->psw.mask & PSW_MASK_PER) {
		return 0;
	}

	return 1;
}

static int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
{
	struct kprobe *cur = kprobe_running();
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
	const struct exception_table_entry *entry;

	switch(kcb->kprobe_status) {
	case KPROBE_SWAP_INST:
		/* We are here because the instruction replacement failed */
		return 0;
	case KPROBE_HIT_SS:
	case KPROBE_REENTER:
		/*
		 * We are here because the instruction being single
		 * stepped caused a page fault. We reset the current
		 * kprobe and the nip points back to the probe address
		 * and allow the page fault handler to continue as a
		 * normal page fault.
		 */
		regs->psw.addr = (unsigned long)cur->addr | PSW_ADDR_AMODE;
		regs->psw.mask &= ~PSW_MASK_PER;
		regs->psw.mask |= kcb->kprobe_saved_imask;
		if (kcb->kprobe_status == KPROBE_REENTER)
			restore_previous_kprobe(kcb);
		else
			reset_current_kprobe();
		preempt_enable_no_resched();
		break;
	case KPROBE_HIT_ACTIVE:
	case KPROBE_HIT_SSDONE:
		/*
		 * We increment the nmissed count for accounting,
		 * we can also use npre/npostfault count for accouting
		 * these specific fault cases.
		 */
		kprobes_inc_nmissed_count(cur);

		/*
		 * We come here because instructions in the pre/post
		 * handler caused the page_fault, this could happen
		 * if handler tries to access user space by
		 * copy_from_user(), get_user() etc. Let the
		 * user-specified handler try to fix it first.
		 */
		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
			return 1;

		/*
		 * In case the user-specified fault handler returned
		 * zero, try to fix up.
		 */
		entry = search_exception_tables(regs->psw.addr & PSW_ADDR_INSN);
		if (entry) {
			regs->psw.addr = entry->fixup | PSW_ADDR_AMODE;
			return 1;
		}

		/*
		 * fixup_exception() could not handle it,
		 * Let do_page_fault() fix it.
		 */
		break;
	default:
		break;
	}
	return 0;
}

/*
 * Wrapper routine to for handling exceptions.
 */
int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
				       unsigned long val, void *data)
{
	struct die_args *args = (struct die_args *)data;
	int ret = NOTIFY_DONE;

	switch (val) {
	case DIE_BPT:
		if (kprobe_handler(args->regs))
			ret = NOTIFY_STOP;
		break;
	case DIE_SSTEP:
		if (post_kprobe_handler(args->regs))
			ret = NOTIFY_STOP;
		break;
	case DIE_TRAP:
	case DIE_PAGE_FAULT:
		/* kprobe_running() needs smp_processor_id() */
		preempt_disable();
		if (kprobe_running() &&
		    kprobe_fault_handler(args->regs, args->trapnr))
			ret = NOTIFY_STOP;
		preempt_enable();
		break;
	default:
		break;
	}
	return ret;
}

int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
{
	struct jprobe *jp = container_of(p, struct jprobe, kp);
	unsigned long addr;
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();

	memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));

	/* setup return addr to the jprobe handler routine */
	regs->psw.addr = (unsigned long)(jp->entry) | PSW_ADDR_AMODE;

	/* r14 is the function return address */
	kcb->jprobe_saved_r14 = (unsigned long)regs->gprs[14];
	/* r15 is the stack pointer */
	kcb->jprobe_saved_r15 = (unsigned long)regs->gprs[15];
	addr = (unsigned long)kcb->jprobe_saved_r15;

	memcpy(kcb->jprobes_stack, (kprobe_opcode_t *) addr,
	       MIN_STACK_SIZE(addr));
	return 1;
}

void __kprobes jprobe_return(void)
{
	asm volatile(".word 0x0002");
}

void __kprobes jprobe_return_end(void)
{
	asm volatile("bcr 0,0");
}

int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
{
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
	unsigned long stack_addr = (unsigned long)(kcb->jprobe_saved_r15);

	/* Put the regs back */
	memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
	/* put the stack back */
	memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack,
	       MIN_STACK_SIZE(stack_addr));
	preempt_enable_no_resched();
	return 1;
}

static struct kprobe trampoline_p = {
	.addr = (kprobe_opcode_t *) & kretprobe_trampoline,
	.pre_handler = trampoline_probe_handler
};

int __init arch_init_kprobes(void)
{
	return register_kprobe(&trampoline_p);
}