io.h 8.0 KB
Newer Older
H
Haavard Skinnemoen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
#ifndef __ASM_AVR32_IO_H
#define __ASM_AVR32_IO_H

#include <linux/string.h>

#ifdef __KERNEL__

#include <asm/addrspace.h>
#include <asm/byteorder.h>

/* virt_to_phys will only work when address is in P1 or P2 */
static __inline__ unsigned long virt_to_phys(volatile void *address)
{
	return PHYSADDR(address);
}

static __inline__ void * phys_to_virt(unsigned long address)
{
	return (void *)P1SEGADDR(address);
}

#define cached_to_phys(addr)	((unsigned long)PHYSADDR(addr))
#define uncached_to_phys(addr)	((unsigned long)PHYSADDR(addr))
#define phys_to_cached(addr)	((void *)P1SEGADDR(addr))
#define phys_to_uncached(addr)	((void *)P2SEGADDR(addr))

/*
 * Generic IO read/write.  These perform native-endian accesses.  Note
 * that some architectures will want to re-define __raw_{read,write}w.
 */
31 32 33
extern void __raw_writesb(void __iomem *addr, const void *data, int bytelen);
extern void __raw_writesw(void __iomem *addr, const void *data, int wordlen);
extern void __raw_writesl(void __iomem *addr, const void *data, int longlen);
H
Haavard Skinnemoen 已提交
34

35 36 37
extern void __raw_readsb(const void __iomem *addr, void *data, int bytelen);
extern void __raw_readsw(const void __iomem *addr, void *data, int wordlen);
extern void __raw_readsl(const void __iomem *addr, void *data, int longlen);
H
Haavard Skinnemoen 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78

static inline void writeb(unsigned char b, volatile void __iomem *addr)
{
	*(volatile unsigned char __force *)addr = b;
}
static inline void writew(unsigned short b, volatile void __iomem *addr)
{
	*(volatile unsigned short __force *)addr = b;
}
static inline void writel(unsigned int b, volatile void __iomem *addr)
{
	*(volatile unsigned int __force *)addr = b;
}
#define __raw_writeb writeb
#define __raw_writew writew
#define __raw_writel writel

static inline unsigned char readb(const volatile void __iomem *addr)
{
	return *(const volatile unsigned char __force *)addr;
}
static inline unsigned short readw(const volatile void __iomem *addr)
{
	return *(const volatile unsigned short __force *)addr;
}
static inline unsigned int readl(const volatile void __iomem *addr)
{
	return *(const volatile unsigned int __force *)addr;
}
#define __raw_readb readb
#define __raw_readw readw
#define __raw_readl readl

#define writesb(p, d, l)	__raw_writesb((unsigned int)p, d, l)
#define writesw(p, d, l)	__raw_writesw((unsigned int)p, d, l)
#define writesl(p, d, l)	__raw_writesl((unsigned int)p, d, l)

#define readsb(p, d, l)		__raw_readsb((unsigned int)p, d, l)
#define readsw(p, d, l)		__raw_readsw((unsigned int)p, d, l)
#define readsl(p, d, l)		__raw_readsl((unsigned int)p, d, l)

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

/*
 * io{read,write}{8,16,32} macros in both le (for PCI style consumers) and native be
 */
#ifndef ioread8

#define ioread8(p)	({ unsigned int __v = __raw_readb(p); __v; })

#define ioread16(p)	({ unsigned int __v = le16_to_cpu(__raw_readw(p)); __v; })
#define ioread16be(p)	({ unsigned int __v = be16_to_cpu(__raw_readw(p)); __v; })

#define ioread32(p)	({ unsigned int __v = le32_to_cpu(__raw_readl(p)); __v; })
#define ioread32be(p)	({ unsigned int __v = be32_to_cpu(__raw_readl(p)); __v; })

#define iowrite8(v,p)	__raw_writeb(v, p)

#define iowrite16(v,p)	__raw_writew(cpu_to_le16(v), p)
#define iowrite16be(v,p)	__raw_writew(cpu_to_be16(v), p)

#define iowrite32(v,p)	__raw_writel(cpu_to_le32(v), p)
#define iowrite32be(v,p)	__raw_writel(cpu_to_be32(v), p)

#define ioread8_rep(p,d,c)	__raw_readsb(p,d,c)
#define ioread16_rep(p,d,c)	__raw_readsw(p,d,c)
#define ioread32_rep(p,d,c)	__raw_readsl(p,d,c)

#define iowrite8_rep(p,s,c)	__raw_writesb(p,s,c)
#define iowrite16_rep(p,s,c)	__raw_writesw(p,s,c)
#define iowrite32_rep(p,s,c)	__raw_writesl(p,s,c)

#endif


H
Haavard Skinnemoen 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
/*
 * These two are only here because ALSA _thinks_ it needs them...
 */
static inline void memcpy_fromio(void * to, const volatile void __iomem *from,
				 unsigned long count)
{
	char *p = to;
	while (count) {
		count--;
		*p = readb(from);
		p++;
		from++;
	}
}

static inline void  memcpy_toio(volatile void __iomem *to, const void * from,
				unsigned long count)
{
	const char *p = from;
	while (count) {
		count--;
		writeb(*p, to);
		p++;
		to++;
	}
}

static inline void memset_io(volatile void __iomem *addr, unsigned char val,
			     unsigned long count)
{
	memset((void __force *)addr, val, count);
}

/*
 * Bad read/write accesses...
 */
extern void __readwrite_bug(const char *fn);

#define IO_SPACE_LIMIT	0xffffffff

/* Convert I/O port address to virtual address */
#define __io(p)		((void __iomem *)phys_to_uncached(p))

/*
 *  IO port access primitives
 *  -------------------------
 *
 * The AVR32 doesn't have special IO access instructions; all IO is memory
 * mapped. Note that these are defined to perform little endian accesses
 * only. Their primary purpose is to access PCI and ISA peripherals.
 *
 * Note that for a big endian machine, this implies that the following
 * big endian mode connectivity is in place.
 *
 * The machine specific io.h include defines __io to translate an "IO"
 * address to a memory address.
 *
 * Note that we prevent GCC re-ordering or caching values in expressions
 * by introducing sequence points into the in*() definitions.  Note that
 * __raw_* do not guarantee this behaviour.
 *
 * The {in,out}[bwl] macros are for emulating x86-style PCI/ISA IO space.
 */
#define outb(v, p)		__raw_writeb(v, __io(p))
#define outw(v, p)		__raw_writew(cpu_to_le16(v), __io(p))
#define outl(v, p)		__raw_writel(cpu_to_le32(v), __io(p))

#define inb(p)			__raw_readb(__io(p))
#define inw(p)			le16_to_cpu(__raw_readw(__io(p)))
#define inl(p)			le32_to_cpu(__raw_readl(__io(p)))

static inline void __outsb(unsigned long port, void *addr, unsigned int count)
{
	while (count--) {
		outb(*(u8 *)addr, port);
		addr++;
	}
}

static inline void __insb(unsigned long port, void *addr, unsigned int count)
{
	while (count--) {
		*(u8 *)addr = inb(port);
		addr++;
	}
}

static inline void __outsw(unsigned long port, void *addr, unsigned int count)
{
	while (count--) {
		outw(*(u16 *)addr, port);
		addr += 2;
	}
}

static inline void __insw(unsigned long port, void *addr, unsigned int count)
{
	while (count--) {
		*(u16 *)addr = inw(port);
		addr += 2;
	}
}

static inline void __outsl(unsigned long port, void *addr, unsigned int count)
{
	while (count--) {
		outl(*(u32 *)addr, port);
		addr += 4;
	}
}

static inline void __insl(unsigned long port, void *addr, unsigned int count)
{
	while (count--) {
		*(u32 *)addr = inl(port);
		addr += 4;
	}
}

#define outsb(port, addr, count)	__outsb(port, addr, count)
#define insb(port, addr, count)		__insb(port, addr, count)
#define outsw(port, addr, count)	__outsw(port, addr, count)
#define insw(port, addr, count)		__insw(port, addr, count)
#define outsl(port, addr, count)	__outsl(port, addr, count)
#define insl(port, addr, count)		__insl(port, addr, count)

extern void __iomem *__ioremap(unsigned long offset, size_t size,
			       unsigned long flags);
extern void __iounmap(void __iomem *addr);

/*
 * ioremap	-   map bus memory into CPU space
 * @offset	bus address of the memory
 * @size	size of the resource to map
 *
 * ioremap performs a platform specific sequence of operations to make
 * bus memory CPU accessible via the readb/.../writel functions and
 * the other mmio helpers. The returned address is not guaranteed to
 * be usable directly as a virtual address.
 */
#define ioremap(offset, size)			\
	__ioremap((offset), (size), 0)

#define iounmap(addr)				\
	__iounmap(addr)

#define cached(addr) P1SEGADDR(addr)
#define uncached(addr) P2SEGADDR(addr)

#define virt_to_bus virt_to_phys
#define bus_to_virt phys_to_virt
#define page_to_bus page_to_phys
#define bus_to_page phys_to_page

#define dma_cache_wback_inv(_start, _size)	\
	flush_dcache_region(_start, _size)
#define dma_cache_inv(_start, _size)		\
	invalidate_dcache_region(_start, _size)
#define dma_cache_wback(_start, _size)		\
	clean_dcache_region(_start, _size)

/*
 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
 * access
 */
#define xlate_dev_mem_ptr(p)    __va(p)

/*
 * Convert a virtual cached pointer to an uncached pointer
 */
#define xlate_dev_kmem_ptr(p)   p

#endif /* __KERNEL__ */

#endif /* __ASM_AVR32_IO_H */