ghash-ce-glue.c 16.2 KB
Newer Older
1 2 3
/*
 * Accelerated GHASH implementation with ARMv8 PMULL instructions.
 *
4
 * Copyright (C) 2014 - 2018 Linaro Ltd. <ard.biesheuvel@linaro.org>
5 6 7 8 9 10 11
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 */

#include <asm/neon.h>
12
#include <asm/simd.h>
13
#include <asm/unaligned.h>
14 15 16
#include <crypto/aes.h>
#include <crypto/algapi.h>
#include <crypto/b128ops.h>
17
#include <crypto/gf128mul.h>
18
#include <crypto/internal/aead.h>
19
#include <crypto/internal/hash.h>
20 21
#include <crypto/internal/skcipher.h>
#include <crypto/scatterwalk.h>
22 23 24 25
#include <linux/cpufeature.h>
#include <linux/crypto.h>
#include <linux/module.h>

26
MODULE_DESCRIPTION("GHASH and AES-GCM using ARMv8 Crypto Extensions");
27 28
MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
MODULE_LICENSE("GPL v2");
29
MODULE_ALIAS_CRYPTO("ghash");
30 31 32

#define GHASH_BLOCK_SIZE	16
#define GHASH_DIGEST_SIZE	16
33
#define GCM_IV_SIZE		12
34 35

struct ghash_key {
36 37 38 39 40 41
	u64			h[2];
	u64			h2[2];
	u64			h3[2];
	u64			h4[2];

	be128			k;
42 43 44 45 46 47 48 49
};

struct ghash_desc_ctx {
	u64 digest[GHASH_DIGEST_SIZE/sizeof(u64)];
	u8 buf[GHASH_BLOCK_SIZE];
	u32 count;
};

50 51 52 53 54
struct gcm_aes_ctx {
	struct crypto_aes_ctx	aes_key;
	struct ghash_key	ghash_key;
};

55 56 57 58 59 60 61 62 63 64 65
asmlinkage void pmull_ghash_update_p64(int blocks, u64 dg[], const char *src,
				       struct ghash_key const *k,
				       const char *head);

asmlinkage void pmull_ghash_update_p8(int blocks, u64 dg[], const char *src,
				      struct ghash_key const *k,
				      const char *head);

static void (*pmull_ghash_update)(int blocks, u64 dg[], const char *src,
				  struct ghash_key const *k,
				  const char *head);
66

67
asmlinkage void pmull_gcm_encrypt(int blocks, u64 dg[], u8 dst[],
68 69 70
				  const u8 src[], struct ghash_key const *k,
				  u8 ctr[], u32 const rk[], int rounds,
				  u8 ks[]);
71 72

asmlinkage void pmull_gcm_decrypt(int blocks, u64 dg[], u8 dst[],
73
				  const u8 src[], struct ghash_key const *k,
74
				  u8 ctr[], u32 const rk[], int rounds);
75 76 77 78 79 80

asmlinkage void pmull_gcm_encrypt_block(u8 dst[], u8 const src[],
					u32 const rk[], int rounds);

asmlinkage void __aes_arm64_encrypt(u32 *rk, u8 *out, const u8 *in, int rounds);

81 82 83 84 85 86 87 88
static int ghash_init(struct shash_desc *desc)
{
	struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);

	*ctx = (struct ghash_desc_ctx){};
	return 0;
}

89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
static void ghash_do_update(int blocks, u64 dg[], const char *src,
			    struct ghash_key *key, const char *head)
{
	if (likely(may_use_simd())) {
		kernel_neon_begin();
		pmull_ghash_update(blocks, dg, src, key, head);
		kernel_neon_end();
	} else {
		be128 dst = { cpu_to_be64(dg[1]), cpu_to_be64(dg[0]) };

		do {
			const u8 *in = src;

			if (head) {
				in = head;
				blocks++;
				head = NULL;
			} else {
				src += GHASH_BLOCK_SIZE;
			}

			crypto_xor((u8 *)&dst, in, GHASH_BLOCK_SIZE);
			gf128mul_lle(&dst, &key->k);
		} while (--blocks);

		dg[0] = be64_to_cpu(dst.b);
		dg[1] = be64_to_cpu(dst.a);
	}
}

119 120 121
/* avoid hogging the CPU for too long */
#define MAX_BLOCKS	(SZ_64K / GHASH_BLOCK_SIZE)

122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
static int ghash_update(struct shash_desc *desc, const u8 *src,
			unsigned int len)
{
	struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
	unsigned int partial = ctx->count % GHASH_BLOCK_SIZE;

	ctx->count += len;

	if ((partial + len) >= GHASH_BLOCK_SIZE) {
		struct ghash_key *key = crypto_shash_ctx(desc->tfm);
		int blocks;

		if (partial) {
			int p = GHASH_BLOCK_SIZE - partial;

			memcpy(ctx->buf + partial, src, p);
			src += p;
			len -= p;
		}

		blocks = len / GHASH_BLOCK_SIZE;
		len %= GHASH_BLOCK_SIZE;

145 146 147 148 149
		do {
			int chunk = min(blocks, MAX_BLOCKS);

			ghash_do_update(chunk, ctx->digest, src, key,
					partial ? ctx->buf : NULL);
150

151 152 153 154
			blocks -= chunk;
			src += chunk * GHASH_BLOCK_SIZE;
			partial = 0;
		} while (unlikely(blocks > 0));
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
	}
	if (len)
		memcpy(ctx->buf + partial, src, len);
	return 0;
}

static int ghash_final(struct shash_desc *desc, u8 *dst)
{
	struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
	unsigned int partial = ctx->count % GHASH_BLOCK_SIZE;

	if (partial) {
		struct ghash_key *key = crypto_shash_ctx(desc->tfm);

		memset(ctx->buf + partial, 0, GHASH_BLOCK_SIZE - partial);

171
		ghash_do_update(1, ctx->digest, ctx->buf, key, NULL);
172 173 174 175 176 177 178 179
	}
	put_unaligned_be64(ctx->digest[1], dst);
	put_unaligned_be64(ctx->digest[0], dst + 8);

	*ctx = (struct ghash_desc_ctx){};
	return 0;
}

180 181 182 183 184 185 186 187 188 189 190
static void ghash_reflect(u64 h[], const be128 *k)
{
	u64 carry = be64_to_cpu(k->a) & BIT(63) ? 1 : 0;

	h[0] = (be64_to_cpu(k->b) << 1) | carry;
	h[1] = (be64_to_cpu(k->a) << 1) | (be64_to_cpu(k->b) >> 63);

	if (carry)
		h[1] ^= 0xc200000000000000UL;
}

191 192
static int __ghash_setkey(struct ghash_key *key,
			  const u8 *inkey, unsigned int keylen)
193
{
194
	be128 h;
195

196 197 198
	/* needed for the fallback */
	memcpy(&key->k, inkey, GHASH_BLOCK_SIZE);

199 200 201 202 203
	ghash_reflect(key->h, &key->k);

	h = key->k;
	gf128mul_lle(&h, &key->k);
	ghash_reflect(key->h2, &h);
204

205 206
	gf128mul_lle(&h, &key->k);
	ghash_reflect(key->h3, &h);
207

208 209
	gf128mul_lle(&h, &key->k);
	ghash_reflect(key->h4, &h);
210 211 212 213

	return 0;
}

214 215 216 217 218 219 220 221 222 223 224 225 226
static int ghash_setkey(struct crypto_shash *tfm,
			const u8 *inkey, unsigned int keylen)
{
	struct ghash_key *key = crypto_shash_ctx(tfm);

	if (keylen != GHASH_BLOCK_SIZE) {
		crypto_shash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
		return -EINVAL;
	}

	return __ghash_setkey(key, inkey, keylen);
}

227
static struct shash_alg ghash_alg = {
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
	.base.cra_name		= "ghash",
	.base.cra_driver_name	= "ghash-ce",
	.base.cra_priority	= 200,
	.base.cra_blocksize	= GHASH_BLOCK_SIZE,
	.base.cra_ctxsize	= sizeof(struct ghash_key),
	.base.cra_module	= THIS_MODULE,

	.digestsize		= GHASH_DIGEST_SIZE,
	.init			= ghash_init,
	.update			= ghash_update,
	.final			= ghash_final,
	.setkey			= ghash_setkey,
	.descsize		= sizeof(struct ghash_desc_ctx),
};

static int num_rounds(struct crypto_aes_ctx *ctx)
{
	/*
	 * # of rounds specified by AES:
	 * 128 bit key		10 rounds
	 * 192 bit key		12 rounds
	 * 256 bit key		14 rounds
	 * => n byte key	=> 6 + (n/4) rounds
	 */
	return 6 + ctx->key_length / 4;
}

static int gcm_setkey(struct crypto_aead *tfm, const u8 *inkey,
		      unsigned int keylen)
{
	struct gcm_aes_ctx *ctx = crypto_aead_ctx(tfm);
259
	u8 key[GHASH_BLOCK_SIZE];
260 261 262 263 264 265 266 267 268 269 270
	int ret;

	ret = crypto_aes_expand_key(&ctx->aes_key, inkey, keylen);
	if (ret) {
		tfm->base.crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
		return -EINVAL;
	}

	__aes_arm64_encrypt(ctx->aes_key.key_enc, key, (u8[AES_BLOCK_SIZE]){},
			    num_rounds(&ctx->aes_key));

271
	return __ghash_setkey(&ctx->ghash_key, key, sizeof(be128));
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
}

static int gcm_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
{
	switch (authsize) {
	case 4:
	case 8:
	case 12 ... 16:
		break;
	default:
		return -EINVAL;
	}
	return 0;
}

static void gcm_update_mac(u64 dg[], const u8 *src, int count, u8 buf[],
			   int *buf_count, struct gcm_aes_ctx *ctx)
{
	if (*buf_count > 0) {
		int buf_added = min(count, GHASH_BLOCK_SIZE - *buf_count);

		memcpy(&buf[*buf_count], src, buf_added);

		*buf_count += buf_added;
		src += buf_added;
		count -= buf_added;
	}

	if (count >= GHASH_BLOCK_SIZE || *buf_count == GHASH_BLOCK_SIZE) {
		int blocks = count / GHASH_BLOCK_SIZE;

		ghash_do_update(blocks, dg, src, &ctx->ghash_key,
				*buf_count ? buf : NULL);

		src += blocks * GHASH_BLOCK_SIZE;
		count %= GHASH_BLOCK_SIZE;
		*buf_count = 0;
	}

	if (count > 0) {
		memcpy(buf, src, count);
		*buf_count = count;
	}
}

static void gcm_calculate_auth_mac(struct aead_request *req, u64 dg[])
{
	struct crypto_aead *aead = crypto_aead_reqtfm(req);
	struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
	u8 buf[GHASH_BLOCK_SIZE];
	struct scatter_walk walk;
	u32 len = req->assoclen;
	int buf_count = 0;

	scatterwalk_start(&walk, req->src);

	do {
		u32 n = scatterwalk_clamp(&walk, len);
		u8 *p;

		if (!n) {
			scatterwalk_start(&walk, sg_next(walk.sg));
			n = scatterwalk_clamp(&walk, len);
		}
		p = scatterwalk_map(&walk);

		gcm_update_mac(dg, p, n, buf, &buf_count, ctx);
		len -= n;

		scatterwalk_unmap(p);
		scatterwalk_advance(&walk, n);
		scatterwalk_done(&walk, 0, len);
	} while (len);

	if (buf_count) {
		memset(&buf[buf_count], 0, GHASH_BLOCK_SIZE - buf_count);
		ghash_do_update(1, dg, buf, &ctx->ghash_key, NULL);
	}
}

static void gcm_final(struct aead_request *req, struct gcm_aes_ctx *ctx,
		      u64 dg[], u8 tag[], int cryptlen)
{
	u8 mac[AES_BLOCK_SIZE];
	u128 lengths;

	lengths.a = cpu_to_be64(req->assoclen * 8);
	lengths.b = cpu_to_be64(cryptlen * 8);

	ghash_do_update(1, dg, (void *)&lengths, &ctx->ghash_key, NULL);

	put_unaligned_be64(dg[1], mac);
	put_unaligned_be64(dg[0], mac + 8);

	crypto_xor(tag, mac, AES_BLOCK_SIZE);
}

static int gcm_encrypt(struct aead_request *req)
{
	struct crypto_aead *aead = crypto_aead_reqtfm(req);
	struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
	struct skcipher_walk walk;
	u8 iv[AES_BLOCK_SIZE];
375
	u8 ks[2 * AES_BLOCK_SIZE];
376 377
	u8 tag[AES_BLOCK_SIZE];
	u64 dg[2] = {};
378
	int nrounds = num_rounds(&ctx->aes_key);
379 380 381 382 383 384 385 386
	int err;

	if (req->assoclen)
		gcm_calculate_auth_mac(req, dg);

	memcpy(iv, req->iv, GCM_IV_SIZE);
	put_unaligned_be32(1, iv + GCM_IV_SIZE);

387
	err = skcipher_walk_aead_encrypt(&walk, req, false);
388

389 390 391 392
	if (likely(may_use_simd() && walk.total >= 2 * AES_BLOCK_SIZE)) {
		u32 const *rk = NULL;

		kernel_neon_begin();
393
		pmull_gcm_encrypt_block(tag, iv, ctx->aes_key.key_enc, nrounds);
394
		put_unaligned_be32(2, iv + GCM_IV_SIZE);
395
		pmull_gcm_encrypt_block(ks, iv, NULL, nrounds);
396
		put_unaligned_be32(3, iv + GCM_IV_SIZE);
397 398
		pmull_gcm_encrypt_block(ks + AES_BLOCK_SIZE, iv, NULL, nrounds);
		put_unaligned_be32(4, iv + GCM_IV_SIZE);
399

400
		do {
401
			int blocks = walk.nbytes / (2 * AES_BLOCK_SIZE) * 2;
402

403 404 405
			if (rk)
				kernel_neon_begin();

406
			pmull_gcm_encrypt(blocks, dg, walk.dst.virt.addr,
407 408
					  walk.src.virt.addr, &ctx->ghash_key,
					  iv, rk, nrounds, ks);
409
			kernel_neon_end();
410 411

			err = skcipher_walk_done(&walk,
412
					walk.nbytes % (2 * AES_BLOCK_SIZE));
413 414 415

			rk = ctx->aes_key.key_enc;
		} while (walk.nbytes >= 2 * AES_BLOCK_SIZE);
416
	} else {
417
		__aes_arm64_encrypt(ctx->aes_key.key_enc, tag, iv, nrounds);
418 419
		put_unaligned_be32(2, iv + GCM_IV_SIZE);

420
		while (walk.nbytes >= (2 * AES_BLOCK_SIZE)) {
421 422 423 424 425 426
			int blocks = walk.nbytes / AES_BLOCK_SIZE;
			u8 *dst = walk.dst.virt.addr;
			u8 *src = walk.src.virt.addr;

			do {
				__aes_arm64_encrypt(ctx->aes_key.key_enc,
427
						    ks, iv, nrounds);
428 429 430 431 432 433 434 435 436 437 438 439
				crypto_xor_cpy(dst, src, ks, AES_BLOCK_SIZE);
				crypto_inc(iv, AES_BLOCK_SIZE);

				dst += AES_BLOCK_SIZE;
				src += AES_BLOCK_SIZE;
			} while (--blocks > 0);

			ghash_do_update(walk.nbytes / AES_BLOCK_SIZE, dg,
					walk.dst.virt.addr, &ctx->ghash_key,
					NULL);

			err = skcipher_walk_done(&walk,
440
						 walk.nbytes % (2 * AES_BLOCK_SIZE));
441
		}
442
		if (walk.nbytes) {
443
			__aes_arm64_encrypt(ctx->aes_key.key_enc, ks, iv,
444
					    nrounds);
445 446 447 448 449 450 451
			if (walk.nbytes > AES_BLOCK_SIZE) {
				crypto_inc(iv, AES_BLOCK_SIZE);
				__aes_arm64_encrypt(ctx->aes_key.key_enc,
					            ks + AES_BLOCK_SIZE, iv,
						    nrounds);
			}
		}
452 453 454 455 456
	}

	/* handle the tail */
	if (walk.nbytes) {
		u8 buf[GHASH_BLOCK_SIZE];
457 458 459
		unsigned int nbytes = walk.nbytes;
		u8 *dst = walk.dst.virt.addr;
		u8 *head = NULL;
460 461 462 463

		crypto_xor_cpy(walk.dst.virt.addr, walk.src.virt.addr, ks,
			       walk.nbytes);

464 465 466 467 468 469 470 471 472
		if (walk.nbytes > GHASH_BLOCK_SIZE) {
			head = dst;
			dst += GHASH_BLOCK_SIZE;
			nbytes %= GHASH_BLOCK_SIZE;
		}

		memcpy(buf, dst, nbytes);
		memset(buf + nbytes, 0, GHASH_BLOCK_SIZE - nbytes);
		ghash_do_update(!!nbytes, dg, buf, &ctx->ghash_key, head);
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494

		err = skcipher_walk_done(&walk, 0);
	}

	if (err)
		return err;

	gcm_final(req, ctx, dg, tag, req->cryptlen);

	/* copy authtag to end of dst */
	scatterwalk_map_and_copy(tag, req->dst, req->assoclen + req->cryptlen,
				 crypto_aead_authsize(aead), 1);

	return 0;
}

static int gcm_decrypt(struct aead_request *req)
{
	struct crypto_aead *aead = crypto_aead_reqtfm(req);
	struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
	unsigned int authsize = crypto_aead_authsize(aead);
	struct skcipher_walk walk;
495
	u8 iv[2 * AES_BLOCK_SIZE];
496
	u8 tag[AES_BLOCK_SIZE];
497
	u8 buf[2 * GHASH_BLOCK_SIZE];
498
	u64 dg[2] = {};
499
	int nrounds = num_rounds(&ctx->aes_key);
500 501 502 503 504 505 506 507
	int err;

	if (req->assoclen)
		gcm_calculate_auth_mac(req, dg);

	memcpy(iv, req->iv, GCM_IV_SIZE);
	put_unaligned_be32(1, iv + GCM_IV_SIZE);

508 509 510 511 512
	err = skcipher_walk_aead_decrypt(&walk, req, false);

	if (likely(may_use_simd() && walk.total >= 2 * AES_BLOCK_SIZE)) {
		u32 const *rk = NULL;

513
		kernel_neon_begin();
514
		pmull_gcm_encrypt_block(tag, iv, ctx->aes_key.key_enc, nrounds);
515 516
		put_unaligned_be32(2, iv + GCM_IV_SIZE);

517
		do {
518
			int blocks = walk.nbytes / (2 * AES_BLOCK_SIZE) * 2;
519 520 521 522
			int rem = walk.total - blocks * AES_BLOCK_SIZE;

			if (rk)
				kernel_neon_begin();
523 524

			pmull_gcm_decrypt(blocks, dg, walk.dst.virt.addr,
525 526
					  walk.src.virt.addr, &ctx->ghash_key,
					  iv, rk, nrounds);
527

528 529 530
			/* check if this is the final iteration of the loop */
			if (rem < (2 * AES_BLOCK_SIZE)) {
				u8 *iv2 = iv + AES_BLOCK_SIZE;
531

532 533 534 535
				if (rem > AES_BLOCK_SIZE) {
					memcpy(iv2, iv, AES_BLOCK_SIZE);
					crypto_inc(iv2, AES_BLOCK_SIZE);
				}
536

537
				pmull_gcm_encrypt_block(iv, iv, NULL, nrounds);
538

539 540 541 542
				if (rem > AES_BLOCK_SIZE)
					pmull_gcm_encrypt_block(iv2, iv2, NULL,
								nrounds);
			}
543

544
			kernel_neon_end();
545 546 547 548 549 550

			err = skcipher_walk_done(&walk,
					walk.nbytes % (2 * AES_BLOCK_SIZE));

			rk = ctx->aes_key.key_enc;
		} while (walk.nbytes >= 2 * AES_BLOCK_SIZE);
551
	} else {
552
		__aes_arm64_encrypt(ctx->aes_key.key_enc, tag, iv, nrounds);
553 554
		put_unaligned_be32(2, iv + GCM_IV_SIZE);

555
		while (walk.nbytes >= (2 * AES_BLOCK_SIZE)) {
556 557 558 559 560 561 562 563 564
			int blocks = walk.nbytes / AES_BLOCK_SIZE;
			u8 *dst = walk.dst.virt.addr;
			u8 *src = walk.src.virt.addr;

			ghash_do_update(blocks, dg, walk.src.virt.addr,
					&ctx->ghash_key, NULL);

			do {
				__aes_arm64_encrypt(ctx->aes_key.key_enc,
565
						    buf, iv, nrounds);
566 567 568 569 570 571 572 573
				crypto_xor_cpy(dst, src, buf, AES_BLOCK_SIZE);
				crypto_inc(iv, AES_BLOCK_SIZE);

				dst += AES_BLOCK_SIZE;
				src += AES_BLOCK_SIZE;
			} while (--blocks > 0);

			err = skcipher_walk_done(&walk,
574
						 walk.nbytes % (2 * AES_BLOCK_SIZE));
575
		}
576 577 578 579 580 581 582 583 584 585
		if (walk.nbytes) {
			if (walk.nbytes > AES_BLOCK_SIZE) {
				u8 *iv2 = iv + AES_BLOCK_SIZE;

				memcpy(iv2, iv, AES_BLOCK_SIZE);
				crypto_inc(iv2, AES_BLOCK_SIZE);

				__aes_arm64_encrypt(ctx->aes_key.key_enc, iv2,
						    iv2, nrounds);
			}
586
			__aes_arm64_encrypt(ctx->aes_key.key_enc, iv, iv,
587
					    nrounds);
588
		}
589 590 591 592
	}

	/* handle the tail */
	if (walk.nbytes) {
593 594 595 596 597 598 599 600 601 602 603 604 605
		const u8 *src = walk.src.virt.addr;
		const u8 *head = NULL;
		unsigned int nbytes = walk.nbytes;

		if (walk.nbytes > GHASH_BLOCK_SIZE) {
			head = src;
			src += GHASH_BLOCK_SIZE;
			nbytes %= GHASH_BLOCK_SIZE;
		}

		memcpy(buf, src, nbytes);
		memset(buf + nbytes, 0, GHASH_BLOCK_SIZE - nbytes);
		ghash_do_update(!!nbytes, dg, buf, &ctx->ghash_key, head);
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629

		crypto_xor_cpy(walk.dst.virt.addr, walk.src.virt.addr, iv,
			       walk.nbytes);

		err = skcipher_walk_done(&walk, 0);
	}

	if (err)
		return err;

	gcm_final(req, ctx, dg, tag, req->cryptlen - authsize);

	/* compare calculated auth tag with the stored one */
	scatterwalk_map_and_copy(buf, req->src,
				 req->assoclen + req->cryptlen - authsize,
				 authsize, 0);

	if (crypto_memneq(tag, buf, authsize))
		return -EBADMSG;
	return 0;
}

static struct aead_alg gcm_aes_alg = {
	.ivsize			= GCM_IV_SIZE,
630
	.chunksize		= 2 * AES_BLOCK_SIZE,
631 632 633 634 635 636 637 638 639 640 641 642
	.maxauthsize		= AES_BLOCK_SIZE,
	.setkey			= gcm_setkey,
	.setauthsize		= gcm_setauthsize,
	.encrypt		= gcm_encrypt,
	.decrypt		= gcm_decrypt,

	.base.cra_name		= "gcm(aes)",
	.base.cra_driver_name	= "gcm-aes-ce",
	.base.cra_priority	= 300,
	.base.cra_blocksize	= 1,
	.base.cra_ctxsize	= sizeof(struct gcm_aes_ctx),
	.base.cra_module	= THIS_MODULE,
643 644 645 646
};

static int __init ghash_ce_mod_init(void)
{
647 648
	int ret;

649 650 651 652 653 654 655 656
	if (!(elf_hwcap & HWCAP_ASIMD))
		return -ENODEV;

	if (elf_hwcap & HWCAP_PMULL)
		pmull_ghash_update = pmull_ghash_update_p64;

	else
		pmull_ghash_update = pmull_ghash_update_p8;
657 658 659

	ret = crypto_register_shash(&ghash_alg);
	if (ret)
660 661 662 663 664 665 666
		return ret;

	if (elf_hwcap & HWCAP_PMULL) {
		ret = crypto_register_aead(&gcm_aes_alg);
		if (ret)
			crypto_unregister_shash(&ghash_alg);
	}
667
	return ret;
668 669 670 671 672
}

static void __exit ghash_ce_mod_exit(void)
{
	crypto_unregister_shash(&ghash_alg);
673
	crypto_unregister_aead(&gcm_aes_alg);
674 675
}

676 677 678 679 680 681
static const struct cpu_feature ghash_cpu_feature[] = {
	{ cpu_feature(PMULL) }, { }
};
MODULE_DEVICE_TABLE(cpu, ghash_cpu_feature);

module_init(ghash_ce_mod_init);
682
module_exit(ghash_ce_mod_exit);