ptrace.c 84.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10
/*
 *  PowerPC version
 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
 *
 *  Derived from "arch/m68k/kernel/ptrace.c"
 *  Copyright (C) 1994 by Hamish Macdonald
 *  Taken from linux/kernel/ptrace.c and modified for M680x0.
 *  linux/kernel/ptrace.c is by Ross Biro 1/23/92, edited by Linus Torvalds
 *
 * Modified by Cort Dougan (cort@hq.fsmlabs.com)
11
 * and Paul Mackerras (paulus@samba.org).
L
Linus Torvalds 已提交
12 13 14 15 16 17 18 19 20 21 22 23
 *
 * This file is subject to the terms and conditions of the GNU General
 * Public License.  See the file README.legal in the main directory of
 * this archive for more details.
 */

#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/errno.h>
#include <linux/ptrace.h>
24
#include <linux/regset.h>
25
#include <linux/tracehook.h>
26
#include <linux/elf.h>
L
Linus Torvalds 已提交
27 28
#include <linux/user.h>
#include <linux/security.h>
29
#include <linux/signal.h>
30 31
#include <linux/seccomp.h>
#include <linux/audit.h>
32
#include <trace/syscall.h>
33 34
#include <linux/hw_breakpoint.h>
#include <linux/perf_event.h>
35
#include <linux/context_tracking.h>
L
Linus Torvalds 已提交
36

37
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
38 39
#include <asm/page.h>
#include <asm/pgtable.h>
40
#include <asm/switch_to.h>
41
#include <asm/tm.h>
42
#include <asm/asm-prototypes.h>
43

44 45 46
#define CREATE_TRACE_POINTS
#include <trace/events/syscalls.h>

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
/*
 * The parameter save area on the stack is used to store arguments being passed
 * to callee function and is located at fixed offset from stack pointer.
 */
#ifdef CONFIG_PPC32
#define PARAMETER_SAVE_AREA_OFFSET	24  /* bytes */
#else /* CONFIG_PPC32 */
#define PARAMETER_SAVE_AREA_OFFSET	48  /* bytes */
#endif

struct pt_regs_offset {
	const char *name;
	int offset;
};

#define STR(s)	#s			/* convert to string */
#define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
#define GPR_OFFSET_NAME(num)	\
65
	{.name = STR(r##num), .offset = offsetof(struct pt_regs, gpr[num])}, \
66 67 68
	{.name = STR(gpr##num), .offset = offsetof(struct pt_regs, gpr[num])}
#define REG_OFFSET_END {.name = NULL, .offset = 0}

69
#define TVSO(f)	(offsetof(struct thread_vr_state, f))
70
#define TFSO(f)	(offsetof(struct thread_fp_state, f))
71
#define TSO(f)	(offsetof(struct thread_struct, f))
72

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
static const struct pt_regs_offset regoffset_table[] = {
	GPR_OFFSET_NAME(0),
	GPR_OFFSET_NAME(1),
	GPR_OFFSET_NAME(2),
	GPR_OFFSET_NAME(3),
	GPR_OFFSET_NAME(4),
	GPR_OFFSET_NAME(5),
	GPR_OFFSET_NAME(6),
	GPR_OFFSET_NAME(7),
	GPR_OFFSET_NAME(8),
	GPR_OFFSET_NAME(9),
	GPR_OFFSET_NAME(10),
	GPR_OFFSET_NAME(11),
	GPR_OFFSET_NAME(12),
	GPR_OFFSET_NAME(13),
	GPR_OFFSET_NAME(14),
	GPR_OFFSET_NAME(15),
	GPR_OFFSET_NAME(16),
	GPR_OFFSET_NAME(17),
	GPR_OFFSET_NAME(18),
	GPR_OFFSET_NAME(19),
	GPR_OFFSET_NAME(20),
	GPR_OFFSET_NAME(21),
	GPR_OFFSET_NAME(22),
	GPR_OFFSET_NAME(23),
	GPR_OFFSET_NAME(24),
	GPR_OFFSET_NAME(25),
	GPR_OFFSET_NAME(26),
	GPR_OFFSET_NAME(27),
	GPR_OFFSET_NAME(28),
	GPR_OFFSET_NAME(29),
	GPR_OFFSET_NAME(30),
	GPR_OFFSET_NAME(31),
	REG_OFFSET_NAME(nip),
	REG_OFFSET_NAME(msr),
	REG_OFFSET_NAME(ctr),
	REG_OFFSET_NAME(link),
	REG_OFFSET_NAME(xer),
	REG_OFFSET_NAME(ccr),
#ifdef CONFIG_PPC64
	REG_OFFSET_NAME(softe),
#else
	REG_OFFSET_NAME(mq),
#endif
	REG_OFFSET_NAME(trap),
	REG_OFFSET_NAME(dar),
	REG_OFFSET_NAME(dsisr),
	REG_OFFSET_END,
};

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
static void flush_tmregs_to_thread(struct task_struct *tsk)
{
	/*
	 * If task is not current, it will have been flushed already to
	 * it's thread_struct during __switch_to().
	 *
	 * A reclaim flushes ALL the state.
	 */

	if (tsk == current && MSR_TM_SUSPENDED(mfmsr()))
		tm_reclaim_current(TM_CAUSE_SIGNAL);

}
#else
static inline void flush_tmregs_to_thread(struct task_struct *tsk) { }
#endif

141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
/**
 * regs_query_register_offset() - query register offset from its name
 * @name:	the name of a register
 *
 * regs_query_register_offset() returns the offset of a register in struct
 * pt_regs from its name. If the name is invalid, this returns -EINVAL;
 */
int regs_query_register_offset(const char *name)
{
	const struct pt_regs_offset *roff;
	for (roff = regoffset_table; roff->name != NULL; roff++)
		if (!strcmp(roff->name, name))
			return roff->offset;
	return -EINVAL;
}

/**
 * regs_query_register_name() - query register name from its offset
 * @offset:	the offset of a register in struct pt_regs.
 *
 * regs_query_register_name() returns the name of a register from its
 * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
 */
const char *regs_query_register_name(unsigned int offset)
{
	const struct pt_regs_offset *roff;
	for (roff = regoffset_table; roff->name != NULL; roff++)
		if (roff->offset == offset)
			return roff->name;
	return NULL;
}

173 174 175 176 177 178 179 180
/*
 * does not yet catch signals sent when the child dies.
 * in exit.c or in signal.c.
 */

/*
 * Set of msr bits that gdb can change on behalf of a process.
 */
181
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
182
#define MSR_DEBUGCHANGE	0
L
Linus Torvalds 已提交
183
#else
184
#define MSR_DEBUGCHANGE	(MSR_SE | MSR_BE)
L
Linus Torvalds 已提交
185
#endif
186

L
Linus Torvalds 已提交
187
/*
188
 * Max register writeable via put_reg
L
Linus Torvalds 已提交
189
 */
190 191 192 193 194
#ifdef CONFIG_PPC32
#define PT_MAX_PUT_REG	PT_MQ
#else
#define PT_MAX_PUT_REG	PT_CCR
#endif
L
Linus Torvalds 已提交
195

196 197 198 199 200 201 202 203 204 205 206 207
static unsigned long get_user_msr(struct task_struct *task)
{
	return task->thread.regs->msr | task->thread.fpexc_mode;
}

static int set_user_msr(struct task_struct *task, unsigned long msr)
{
	task->thread.regs->msr &= ~MSR_DEBUGCHANGE;
	task->thread.regs->msr |= msr & MSR_DEBUGCHANGE;
	return 0;
}

208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
static unsigned long get_user_ckpt_msr(struct task_struct *task)
{
	return task->thread.ckpt_regs.msr | task->thread.fpexc_mode;
}

static int set_user_ckpt_msr(struct task_struct *task, unsigned long msr)
{
	task->thread.ckpt_regs.msr &= ~MSR_DEBUGCHANGE;
	task->thread.ckpt_regs.msr |= msr & MSR_DEBUGCHANGE;
	return 0;
}

static int set_user_ckpt_trap(struct task_struct *task, unsigned long trap)
{
	task->thread.ckpt_regs.trap = trap & 0xfff0;
	return 0;
}
#endif

228
#ifdef CONFIG_PPC64
229
static int get_user_dscr(struct task_struct *task, unsigned long *data)
230
{
231 232
	*data = task->thread.dscr;
	return 0;
233 234 235 236 237 238 239 240 241
}

static int set_user_dscr(struct task_struct *task, unsigned long dscr)
{
	task->thread.dscr = dscr;
	task->thread.dscr_inherit = 1;
	return 0;
}
#else
242
static int get_user_dscr(struct task_struct *task, unsigned long *data)
243 244 245 246 247 248 249 250 251 252
{
	return -EIO;
}

static int set_user_dscr(struct task_struct *task, unsigned long dscr)
{
	return -EIO;
}
#endif

253 254 255 256 257 258 259 260 261 262
/*
 * We prevent mucking around with the reserved area of trap
 * which are used internally by the kernel.
 */
static int set_user_trap(struct task_struct *task, unsigned long trap)
{
	task->thread.regs->trap = trap & 0xfff0;
	return 0;
}

263 264 265
/*
 * Get contents of register REGNO in task TASK.
 */
266
int ptrace_get_reg(struct task_struct *task, int regno, unsigned long *data)
267
{
268
	if ((task->thread.regs == NULL) || !data)
269 270
		return -EIO;

271 272 273 274
	if (regno == PT_MSR) {
		*data = get_user_msr(task);
		return 0;
	}
275

276
	if (regno == PT_DSCR)
277
		return get_user_dscr(task, data);
278

279 280 281 282
	if (regno < (sizeof(struct pt_regs) / sizeof(unsigned long))) {
		*data = ((unsigned long *)task->thread.regs)[regno];
		return 0;
	}
283 284 285 286 287 288 289 290 291 292 293 294

	return -EIO;
}

/*
 * Write contents of register REGNO in task TASK.
 */
int ptrace_put_reg(struct task_struct *task, int regno, unsigned long data)
{
	if (task->thread.regs == NULL)
		return -EIO;

295 296 297 298
	if (regno == PT_MSR)
		return set_user_msr(task, data);
	if (regno == PT_TRAP)
		return set_user_trap(task, data);
299 300
	if (regno == PT_DSCR)
		return set_user_dscr(task, data);
301 302

	if (regno <= PT_MAX_PUT_REG) {
303 304 305 306 307 308
		((unsigned long *)task->thread.regs)[regno] = data;
		return 0;
	}
	return -EIO;
}

309 310 311 312
static int gpr_get(struct task_struct *target, const struct user_regset *regset,
		   unsigned int pos, unsigned int count,
		   void *kbuf, void __user *ubuf)
{
313
	int i, ret;
314 315 316 317

	if (target->thread.regs == NULL)
		return -EIO;

318 319 320 321 322
	if (!FULL_REGS(target->thread.regs)) {
		/* We have a partial register set.  Fill 14-31 with bogus values */
		for (i = 14; i < 32; i++)
			target->thread.regs->gpr[i] = NV_REG_POISON;
	}
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403

	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
				  target->thread.regs,
				  0, offsetof(struct pt_regs, msr));
	if (!ret) {
		unsigned long msr = get_user_msr(target);
		ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &msr,
					  offsetof(struct pt_regs, msr),
					  offsetof(struct pt_regs, msr) +
					  sizeof(msr));
	}

	BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
		     offsetof(struct pt_regs, msr) + sizeof(long));

	if (!ret)
		ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
					  &target->thread.regs->orig_gpr3,
					  offsetof(struct pt_regs, orig_gpr3),
					  sizeof(struct pt_regs));
	if (!ret)
		ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
					       sizeof(struct pt_regs), -1);

	return ret;
}

static int gpr_set(struct task_struct *target, const struct user_regset *regset,
		   unsigned int pos, unsigned int count,
		   const void *kbuf, const void __user *ubuf)
{
	unsigned long reg;
	int ret;

	if (target->thread.regs == NULL)
		return -EIO;

	CHECK_FULL_REGS(target->thread.regs);

	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
				 target->thread.regs,
				 0, PT_MSR * sizeof(reg));

	if (!ret && count > 0) {
		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
					 PT_MSR * sizeof(reg),
					 (PT_MSR + 1) * sizeof(reg));
		if (!ret)
			ret = set_user_msr(target, reg);
	}

	BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
		     offsetof(struct pt_regs, msr) + sizeof(long));

	if (!ret)
		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
					 &target->thread.regs->orig_gpr3,
					 PT_ORIG_R3 * sizeof(reg),
					 (PT_MAX_PUT_REG + 1) * sizeof(reg));

	if (PT_MAX_PUT_REG + 1 < PT_TRAP && !ret)
		ret = user_regset_copyin_ignore(
			&pos, &count, &kbuf, &ubuf,
			(PT_MAX_PUT_REG + 1) * sizeof(reg),
			PT_TRAP * sizeof(reg));

	if (!ret && count > 0) {
		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
					 PT_TRAP * sizeof(reg),
					 (PT_TRAP + 1) * sizeof(reg));
		if (!ret)
			ret = set_user_trap(target, reg);
	}

	if (!ret)
		ret = user_regset_copyin_ignore(
			&pos, &count, &kbuf, &ubuf,
			(PT_TRAP + 1) * sizeof(reg), -1);

	return ret;
}
404

405
/*
406
 * Regardless of transactions, 'fp_state' holds the current running
407
 * value of all FPR registers and 'ckfp_state' holds the last checkpointed
408
 * value of all FPR registers for the current transaction.
409 410 411 412 413 414 415 416
 *
 * Userspace interface buffer layout:
 *
 * struct data {
 *	u64	fpr[32];
 *	u64	fpscr;
 * };
 */
417 418 419 420
static int fpr_get(struct task_struct *target, const struct user_regset *regset,
		   unsigned int pos, unsigned int count,
		   void *kbuf, void __user *ubuf)
{
421
#ifdef CONFIG_VSX
422
	u64 buf[33];
423
	int i;
424

425
	flush_fp_to_thread(target);
426

427 428 429
	/* copy to local buffer then write that out */
	for (i = 0; i < 32 ; i++)
		buf[i] = target->thread.TS_FPR(i);
430
	buf[32] = target->thread.fp_state.fpscr;
431
	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
432
#else
433
	BUILD_BUG_ON(offsetof(struct thread_fp_state, fpscr) !=
434
		     offsetof(struct thread_fp_state, fpr[32]));
435

436 437
	flush_fp_to_thread(target);

438
	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
439
				   &target->thread.fp_state, 0, -1);
440
#endif
441 442
}

443
/*
444
 * Regardless of transactions, 'fp_state' holds the current running
445
 * value of all FPR registers and 'ckfp_state' holds the last checkpointed
446
 * value of all FPR registers for the current transaction.
447 448 449 450 451 452 453 454 455
 *
 * Userspace interface buffer layout:
 *
 * struct data {
 *	u64	fpr[32];
 *	u64	fpscr;
 * };
 *
 */
456 457 458 459
static int fpr_set(struct task_struct *target, const struct user_regset *regset,
		   unsigned int pos, unsigned int count,
		   const void *kbuf, const void __user *ubuf)
{
460
#ifdef CONFIG_VSX
461
	u64 buf[33];
462
	int i;
463

464 465
	flush_fp_to_thread(target);

466 467 468 469
	for (i = 0; i < 32 ; i++)
		buf[i] = target->thread.TS_FPR(i);
	buf[32] = target->thread.fp_state.fpscr;

470 471 472 473 474
	/* copy to local buffer then write that out */
	i = user_regset_copyin(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
	if (i)
		return i;

475 476
	for (i = 0; i < 32 ; i++)
		target->thread.TS_FPR(i) = buf[i];
477
	target->thread.fp_state.fpscr = buf[32];
478
	return 0;
479
#else
480
	BUILD_BUG_ON(offsetof(struct thread_fp_state, fpscr) !=
481
		     offsetof(struct thread_fp_state, fpr[32]));
482

483 484
	flush_fp_to_thread(target);

485
	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
486
				  &target->thread.fp_state, 0, -1);
487
#endif
488 489
}

490 491 492 493 494 495 496 497 498 499 500 501 502 503
#ifdef CONFIG_ALTIVEC
/*
 * Get/set all the altivec registers vr0..vr31, vscr, vrsave, in one go.
 * The transfer totals 34 quadword.  Quadwords 0-31 contain the
 * corresponding vector registers.  Quadword 32 contains the vscr as the
 * last word (offset 12) within that quadword.  Quadword 33 contains the
 * vrsave as the first word (offset 0) within the quadword.
 *
 * This definition of the VMX state is compatible with the current PPC32
 * ptrace interface.  This allows signal handling and ptrace to use the
 * same structures.  This also simplifies the implementation of a bi-arch
 * (combined (32- and 64-bit) gdb.
 */

504 505 506 507 508 509 510
static int vr_active(struct task_struct *target,
		     const struct user_regset *regset)
{
	flush_altivec_to_thread(target);
	return target->thread.used_vr ? regset->n : 0;
}

511
/*
512
 * Regardless of transactions, 'vr_state' holds the current running
513
 * value of all the VMX registers and 'ckvr_state' holds the last
514 515
 * checkpointed value of all the VMX registers for the current
 * transaction to fall back on in case it aborts.
516 517 518 519 520 521 522 523 524
 *
 * Userspace interface buffer layout:
 *
 * struct data {
 *	vector128	vr[32];
 *	vector128	vscr;
 *	vector128	vrsave;
 * };
 */
525 526 527 528 529 530 531 532
static int vr_get(struct task_struct *target, const struct user_regset *regset,
		  unsigned int pos, unsigned int count,
		  void *kbuf, void __user *ubuf)
{
	int ret;

	flush_altivec_to_thread(target);

533 534
	BUILD_BUG_ON(offsetof(struct thread_vr_state, vscr) !=
		     offsetof(struct thread_vr_state, vr[32]));
535 536

	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
537
				  &target->thread.vr_state, 0,
538 539 540 541 542 543 544 545 546 547
				  33 * sizeof(vector128));
	if (!ret) {
		/*
		 * Copy out only the low-order word of vrsave.
		 */
		union {
			elf_vrreg_t reg;
			u32 word;
		} vrsave;
		memset(&vrsave, 0, sizeof(vrsave));
548

549
		vrsave.word = target->thread.vrsave;
550

551 552 553 554 555 556 557
		ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &vrsave,
					  33 * sizeof(vector128), -1);
	}

	return ret;
}

558
/*
559
 * Regardless of transactions, 'vr_state' holds the current running
560
 * value of all the VMX registers and 'ckvr_state' holds the last
561 562
 * checkpointed value of all the VMX registers for the current
 * transaction to fall back on in case it aborts.
563 564 565 566 567 568 569 570 571
 *
 * Userspace interface buffer layout:
 *
 * struct data {
 *	vector128	vr[32];
 *	vector128	vscr;
 *	vector128	vrsave;
 * };
 */
572 573 574 575 576 577 578 579
static int vr_set(struct task_struct *target, const struct user_regset *regset,
		  unsigned int pos, unsigned int count,
		  const void *kbuf, const void __user *ubuf)
{
	int ret;

	flush_altivec_to_thread(target);

580 581
	BUILD_BUG_ON(offsetof(struct thread_vr_state, vscr) !=
		     offsetof(struct thread_vr_state, vr[32]));
582 583

	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
584
				 &target->thread.vr_state, 0,
585
				 33 * sizeof(vector128));
586 587 588 589 590 591 592 593 594
	if (!ret && count > 0) {
		/*
		 * We use only the first word of vrsave.
		 */
		union {
			elf_vrreg_t reg;
			u32 word;
		} vrsave;
		memset(&vrsave, 0, sizeof(vrsave));
595

596
		vrsave.word = target->thread.vrsave;
597

598 599
		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &vrsave,
					 33 * sizeof(vector128), -1);
600
		if (!ret)
601 602 603 604 605
			target->thread.vrsave = vrsave.word;
	}

	return ret;
}
606 607
#endif /* CONFIG_ALTIVEC */

608 609 610
#ifdef CONFIG_VSX
/*
 * Currently to set and and get all the vsx state, you need to call
L
Lucas De Marchi 已提交
611
 * the fp and VMX calls as well.  This only get/sets the lower 32
612 613 614 615 616 617 618 619 620 621
 * 128bit VSX registers.
 */

static int vsr_active(struct task_struct *target,
		      const struct user_regset *regset)
{
	flush_vsx_to_thread(target);
	return target->thread.used_vsr ? regset->n : 0;
}

622
/*
623
 * Regardless of transactions, 'fp_state' holds the current running
624
 * value of all FPR registers and 'ckfp_state' holds the last
625 626
 * checkpointed value of all FPR registers for the current
 * transaction.
627 628 629 630 631 632 633
 *
 * Userspace interface buffer layout:
 *
 * struct data {
 *	u64	vsx[32];
 * };
 */
634 635 636 637
static int vsr_get(struct task_struct *target, const struct user_regset *regset,
		   unsigned int pos, unsigned int count,
		   void *kbuf, void __user *ubuf)
{
638
	u64 buf[32];
639
	int ret, i;
640

641
	flush_tmregs_to_thread(target);
642 643
	flush_fp_to_thread(target);
	flush_altivec_to_thread(target);
644 645
	flush_vsx_to_thread(target);

646
	for (i = 0; i < 32 ; i++)
647
		buf[i] = target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];
648

649
	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
650
				  buf, 0, 32 * sizeof(double));
651 652 653 654

	return ret;
}

655
/*
656
 * Regardless of transactions, 'fp_state' holds the current running
657
 * value of all FPR registers and 'ckfp_state' holds the last
658 659
 * checkpointed value of all FPR registers for the current
 * transaction.
660 661 662 663 664 665 666
 *
 * Userspace interface buffer layout:
 *
 * struct data {
 *	u64	vsx[32];
 * };
 */
667 668 669 670
static int vsr_set(struct task_struct *target, const struct user_regset *regset,
		   unsigned int pos, unsigned int count,
		   const void *kbuf, const void __user *ubuf)
{
671
	u64 buf[32];
672
	int ret,i;
673

674
	flush_tmregs_to_thread(target);
675 676
	flush_fp_to_thread(target);
	flush_altivec_to_thread(target);
677 678
	flush_vsx_to_thread(target);

679 680 681
	for (i = 0; i < 32 ; i++)
		buf[i] = target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];

682
	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
683
				 buf, 0, 32 * sizeof(double));
684
	if (!ret)
685
		for (i = 0; i < 32 ; i++)
686
			target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
687 688 689 690 691

	return ret;
}
#endif /* CONFIG_VSX */

692 693 694 695 696 697 698 699 700 701 702 703
#ifdef CONFIG_SPE

/*
 * For get_evrregs/set_evrregs functions 'data' has the following layout:
 *
 * struct {
 *   u32 evr[32];
 *   u64 acc;
 *   u32 spefscr;
 * }
 */

704 705
static int evr_active(struct task_struct *target,
		      const struct user_regset *regset)
706
{
707 708 709
	flush_spe_to_thread(target);
	return target->thread.used_spe ? regset->n : 0;
}
710

711 712 713 714 715
static int evr_get(struct task_struct *target, const struct user_regset *regset,
		   unsigned int pos, unsigned int count,
		   void *kbuf, void __user *ubuf)
{
	int ret;
716

717
	flush_spe_to_thread(target);
718

719 720 721
	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
				  &target->thread.evr,
				  0, sizeof(target->thread.evr));
722

723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
	BUILD_BUG_ON(offsetof(struct thread_struct, acc) + sizeof(u64) !=
		     offsetof(struct thread_struct, spefscr));

	if (!ret)
		ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
					  &target->thread.acc,
					  sizeof(target->thread.evr), -1);

	return ret;
}

static int evr_set(struct task_struct *target, const struct user_regset *regset,
		   unsigned int pos, unsigned int count,
		   const void *kbuf, const void __user *ubuf)
{
	int ret;

	flush_spe_to_thread(target);

	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
				 &target->thread.evr,
				 0, sizeof(target->thread.evr));
745

746 747 748 749 750 751 752 753 754
	BUILD_BUG_ON(offsetof(struct thread_struct, acc) + sizeof(u64) !=
		     offsetof(struct thread_struct, spefscr));

	if (!ret)
		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
					 &target->thread.acc,
					 sizeof(target->thread.evr), -1);

	return ret;
755 756 757
}
#endif /* CONFIG_SPE */

758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
/**
 * tm_cgpr_active - get active number of registers in CGPR
 * @target:	The target task.
 * @regset:	The user regset structure.
 *
 * This function checks for the active number of available
 * regisers in transaction checkpointed GPR category.
 */
static int tm_cgpr_active(struct task_struct *target,
			  const struct user_regset *regset)
{
	if (!cpu_has_feature(CPU_FTR_TM))
		return -ENODEV;

	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
		return 0;

	return regset->n;
}

/**
 * tm_cgpr_get - get CGPR registers
 * @target:	The target task.
 * @regset:	The user regset structure.
 * @pos:	The buffer position.
 * @count:	Number of bytes to copy.
 * @kbuf:	Kernel buffer to copy from.
 * @ubuf:	User buffer to copy into.
 *
 * This function gets transaction checkpointed GPR registers.
 *
 * When the transaction is active, 'ckpt_regs' holds all the checkpointed
 * GPR register values for the current transaction to fall back on if it
 * aborts in between. This function gets those checkpointed GPR registers.
 * The userspace interface buffer layout is as follows.
 *
 * struct data {
 *	struct pt_regs ckpt_regs;
 * };
 */
static int tm_cgpr_get(struct task_struct *target,
			const struct user_regset *regset,
			unsigned int pos, unsigned int count,
			void *kbuf, void __user *ubuf)
{
	int ret;

	if (!cpu_has_feature(CPU_FTR_TM))
		return -ENODEV;

	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
		return -ENODATA;

812
	flush_tmregs_to_thread(target);
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
	flush_fp_to_thread(target);
	flush_altivec_to_thread(target);

	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
				  &target->thread.ckpt_regs,
				  0, offsetof(struct pt_regs, msr));
	if (!ret) {
		unsigned long msr = get_user_ckpt_msr(target);

		ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &msr,
					  offsetof(struct pt_regs, msr),
					  offsetof(struct pt_regs, msr) +
					  sizeof(msr));
	}

	BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
		     offsetof(struct pt_regs, msr) + sizeof(long));

	if (!ret)
		ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
					  &target->thread.ckpt_regs.orig_gpr3,
					  offsetof(struct pt_regs, orig_gpr3),
					  sizeof(struct pt_regs));
	if (!ret)
		ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
					       sizeof(struct pt_regs), -1);

	return ret;
}

/*
 * tm_cgpr_set - set the CGPR registers
 * @target:	The target task.
 * @regset:	The user regset structure.
 * @pos:	The buffer position.
 * @count:	Number of bytes to copy.
 * @kbuf:	Kernel buffer to copy into.
 * @ubuf:	User buffer to copy from.
 *
 * This function sets in transaction checkpointed GPR registers.
 *
 * When the transaction is active, 'ckpt_regs' holds the checkpointed
 * GPR register values for the current transaction to fall back on if it
 * aborts in between. This function sets those checkpointed GPR registers.
 * The userspace interface buffer layout is as follows.
 *
 * struct data {
 *	struct pt_regs ckpt_regs;
 * };
 */
static int tm_cgpr_set(struct task_struct *target,
			const struct user_regset *regset,
			unsigned int pos, unsigned int count,
			const void *kbuf, const void __user *ubuf)
{
	unsigned long reg;
	int ret;

	if (!cpu_has_feature(CPU_FTR_TM))
		return -ENODEV;

	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
		return -ENODATA;

877
	flush_tmregs_to_thread(target);
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
	flush_fp_to_thread(target);
	flush_altivec_to_thread(target);

	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
				 &target->thread.ckpt_regs,
				 0, PT_MSR * sizeof(reg));

	if (!ret && count > 0) {
		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
					 PT_MSR * sizeof(reg),
					 (PT_MSR + 1) * sizeof(reg));
		if (!ret)
			ret = set_user_ckpt_msr(target, reg);
	}

	BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
		     offsetof(struct pt_regs, msr) + sizeof(long));

	if (!ret)
		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
					 &target->thread.ckpt_regs.orig_gpr3,
					 PT_ORIG_R3 * sizeof(reg),
					 (PT_MAX_PUT_REG + 1) * sizeof(reg));

	if (PT_MAX_PUT_REG + 1 < PT_TRAP && !ret)
		ret = user_regset_copyin_ignore(
			&pos, &count, &kbuf, &ubuf,
			(PT_MAX_PUT_REG + 1) * sizeof(reg),
			PT_TRAP * sizeof(reg));

	if (!ret && count > 0) {
		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
					 PT_TRAP * sizeof(reg),
					 (PT_TRAP + 1) * sizeof(reg));
		if (!ret)
			ret = set_user_ckpt_trap(target, reg);
	}

	if (!ret)
		ret = user_regset_copyin_ignore(
			&pos, &count, &kbuf, &ubuf,
			(PT_TRAP + 1) * sizeof(reg), -1);

	return ret;
}
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954

/**
 * tm_cfpr_active - get active number of registers in CFPR
 * @target:	The target task.
 * @regset:	The user regset structure.
 *
 * This function checks for the active number of available
 * regisers in transaction checkpointed FPR category.
 */
static int tm_cfpr_active(struct task_struct *target,
				const struct user_regset *regset)
{
	if (!cpu_has_feature(CPU_FTR_TM))
		return -ENODEV;

	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
		return 0;

	return regset->n;
}

/**
 * tm_cfpr_get - get CFPR registers
 * @target:	The target task.
 * @regset:	The user regset structure.
 * @pos:	The buffer position.
 * @count:	Number of bytes to copy.
 * @kbuf:	Kernel buffer to copy from.
 * @ubuf:	User buffer to copy into.
 *
 * This function gets in transaction checkpointed FPR registers.
 *
955
 * When the transaction is active 'ckfp_state' holds the checkpointed
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
 * values for the current transaction to fall back on if it aborts
 * in between. This function gets those checkpointed FPR registers.
 * The userspace interface buffer layout is as follows.
 *
 * struct data {
 *	u64	fpr[32];
 *	u64	fpscr;
 *};
 */
static int tm_cfpr_get(struct task_struct *target,
			const struct user_regset *regset,
			unsigned int pos, unsigned int count,
			void *kbuf, void __user *ubuf)
{
	u64 buf[33];
	int i;

	if (!cpu_has_feature(CPU_FTR_TM))
		return -ENODEV;

	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
		return -ENODATA;

979
	flush_tmregs_to_thread(target);
980 981 982 983 984
	flush_fp_to_thread(target);
	flush_altivec_to_thread(target);

	/* copy to local buffer then write that out */
	for (i = 0; i < 32 ; i++)
985 986
		buf[i] = target->thread.TS_CKFPR(i);
	buf[32] = target->thread.ckfp_state.fpscr;
987 988 989 990 991 992 993 994 995 996 997 998 999 1000
	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
}

/**
 * tm_cfpr_set - set CFPR registers
 * @target:	The target task.
 * @regset:	The user regset structure.
 * @pos:	The buffer position.
 * @count:	Number of bytes to copy.
 * @kbuf:	Kernel buffer to copy into.
 * @ubuf:	User buffer to copy from.
 *
 * This function sets in transaction checkpointed FPR registers.
 *
1001
 * When the transaction is active 'ckfp_state' holds the checkpointed
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
 * FPR register values for the current transaction to fall back on
 * if it aborts in between. This function sets these checkpointed
 * FPR registers. The userspace interface buffer layout is as follows.
 *
 * struct data {
 *	u64	fpr[32];
 *	u64	fpscr;
 *};
 */
static int tm_cfpr_set(struct task_struct *target,
			const struct user_regset *regset,
			unsigned int pos, unsigned int count,
			const void *kbuf, const void __user *ubuf)
{
	u64 buf[33];
	int i;

	if (!cpu_has_feature(CPU_FTR_TM))
		return -ENODEV;

	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
		return -ENODATA;

1025
	flush_tmregs_to_thread(target);
1026 1027 1028
	flush_fp_to_thread(target);
	flush_altivec_to_thread(target);

1029 1030 1031 1032
	for (i = 0; i < 32; i++)
		buf[i] = target->thread.TS_CKFPR(i);
	buf[32] = target->thread.ckfp_state.fpscr;

1033 1034 1035 1036 1037
	/* copy to local buffer then write that out */
	i = user_regset_copyin(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
	if (i)
		return i;
	for (i = 0; i < 32 ; i++)
1038 1039
		target->thread.TS_CKFPR(i) = buf[i];
	target->thread.ckfp_state.fpscr = buf[32];
1040 1041
	return 0;
}
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073

/**
 * tm_cvmx_active - get active number of registers in CVMX
 * @target:	The target task.
 * @regset:	The user regset structure.
 *
 * This function checks for the active number of available
 * regisers in checkpointed VMX category.
 */
static int tm_cvmx_active(struct task_struct *target,
				const struct user_regset *regset)
{
	if (!cpu_has_feature(CPU_FTR_TM))
		return -ENODEV;

	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
		return 0;

	return regset->n;
}

/**
 * tm_cvmx_get - get CMVX registers
 * @target:	The target task.
 * @regset:	The user regset structure.
 * @pos:	The buffer position.
 * @count:	Number of bytes to copy.
 * @kbuf:	Kernel buffer to copy from.
 * @ubuf:	User buffer to copy into.
 *
 * This function gets in transaction checkpointed VMX registers.
 *
1074
 * When the transaction is active 'ckvr_state' and 'ckvrsave' hold
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
 * the checkpointed values for the current transaction to fall
 * back on if it aborts in between. The userspace interface buffer
 * layout is as follows.
 *
 * struct data {
 *	vector128	vr[32];
 *	vector128	vscr;
 *	vector128	vrsave;
 *};
 */
static int tm_cvmx_get(struct task_struct *target,
			const struct user_regset *regset,
			unsigned int pos, unsigned int count,
			void *kbuf, void __user *ubuf)
{
	int ret;

	BUILD_BUG_ON(TVSO(vscr) != TVSO(vr[32]));

	if (!cpu_has_feature(CPU_FTR_TM))
		return -ENODEV;

	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
		return -ENODATA;

	/* Flush the state */
1101
	flush_tmregs_to_thread(target);
1102 1103 1104 1105
	flush_fp_to_thread(target);
	flush_altivec_to_thread(target);

	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1106
					&target->thread.ckvr_state, 0,
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
					33 * sizeof(vector128));
	if (!ret) {
		/*
		 * Copy out only the low-order word of vrsave.
		 */
		union {
			elf_vrreg_t reg;
			u32 word;
		} vrsave;
		memset(&vrsave, 0, sizeof(vrsave));
1117
		vrsave.word = target->thread.ckvrsave;
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
		ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &vrsave,
						33 * sizeof(vector128), -1);
	}

	return ret;
}

/**
 * tm_cvmx_set - set CMVX registers
 * @target:	The target task.
 * @regset:	The user regset structure.
 * @pos:	The buffer position.
 * @count:	Number of bytes to copy.
 * @kbuf:	Kernel buffer to copy into.
 * @ubuf:	User buffer to copy from.
 *
 * This function sets in transaction checkpointed VMX registers.
 *
1136
 * When the transaction is active 'ckvr_state' and 'ckvrsave' hold
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
 * the checkpointed values for the current transaction to fall
 * back on if it aborts in between. The userspace interface buffer
 * layout is as follows.
 *
 * struct data {
 *	vector128	vr[32];
 *	vector128	vscr;
 *	vector128	vrsave;
 *};
 */
static int tm_cvmx_set(struct task_struct *target,
			const struct user_regset *regset,
			unsigned int pos, unsigned int count,
			const void *kbuf, const void __user *ubuf)
{
	int ret;

	BUILD_BUG_ON(TVSO(vscr) != TVSO(vr[32]));

	if (!cpu_has_feature(CPU_FTR_TM))
		return -ENODEV;

	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
		return -ENODATA;

1162
	flush_tmregs_to_thread(target);
1163 1164 1165 1166
	flush_fp_to_thread(target);
	flush_altivec_to_thread(target);

	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1167
					&target->thread.ckvr_state, 0,
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
					33 * sizeof(vector128));
	if (!ret && count > 0) {
		/*
		 * We use only the low-order word of vrsave.
		 */
		union {
			elf_vrreg_t reg;
			u32 word;
		} vrsave;
		memset(&vrsave, 0, sizeof(vrsave));
1178
		vrsave.word = target->thread.ckvrsave;
1179 1180 1181
		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &vrsave,
						33 * sizeof(vector128), -1);
		if (!ret)
1182
			target->thread.ckvrsave = vrsave.word;
1183 1184 1185 1186
	}

	return ret;
}
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219

/**
 * tm_cvsx_active - get active number of registers in CVSX
 * @target:	The target task.
 * @regset:	The user regset structure.
 *
 * This function checks for the active number of available
 * regisers in transaction checkpointed VSX category.
 */
static int tm_cvsx_active(struct task_struct *target,
				const struct user_regset *regset)
{
	if (!cpu_has_feature(CPU_FTR_TM))
		return -ENODEV;

	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
		return 0;

	flush_vsx_to_thread(target);
	return target->thread.used_vsr ? regset->n : 0;
}

/**
 * tm_cvsx_get - get CVSX registers
 * @target:	The target task.
 * @regset:	The user regset structure.
 * @pos:	The buffer position.
 * @count:	Number of bytes to copy.
 * @kbuf:	Kernel buffer to copy from.
 * @ubuf:	User buffer to copy into.
 *
 * This function gets in transaction checkpointed VSX registers.
 *
1220
 * When the transaction is active 'ckfp_state' holds the checkpointed
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
 * values for the current transaction to fall back on if it aborts
 * in between. This function gets those checkpointed VSX registers.
 * The userspace interface buffer layout is as follows.
 *
 * struct data {
 *	u64	vsx[32];
 *};
 */
static int tm_cvsx_get(struct task_struct *target,
			const struct user_regset *regset,
			unsigned int pos, unsigned int count,
			void *kbuf, void __user *ubuf)
{
	u64 buf[32];
	int ret, i;

	if (!cpu_has_feature(CPU_FTR_TM))
		return -ENODEV;

	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
		return -ENODATA;

	/* Flush the state */
1244
	flush_tmregs_to_thread(target);
1245 1246 1247 1248 1249
	flush_fp_to_thread(target);
	flush_altivec_to_thread(target);
	flush_vsx_to_thread(target);

	for (i = 0; i < 32 ; i++)
1250
		buf[i] = target->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET];
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
				  buf, 0, 32 * sizeof(double));

	return ret;
}

/**
 * tm_cvsx_set - set CFPR registers
 * @target:	The target task.
 * @regset:	The user regset structure.
 * @pos:	The buffer position.
 * @count:	Number of bytes to copy.
 * @kbuf:	Kernel buffer to copy into.
 * @ubuf:	User buffer to copy from.
 *
 * This function sets in transaction checkpointed VSX registers.
 *
1268
 * When the transaction is active 'ckfp_state' holds the checkpointed
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
 * VSX register values for the current transaction to fall back on
 * if it aborts in between. This function sets these checkpointed
 * FPR registers. The userspace interface buffer layout is as follows.
 *
 * struct data {
 *	u64	vsx[32];
 *};
 */
static int tm_cvsx_set(struct task_struct *target,
			const struct user_regset *regset,
			unsigned int pos, unsigned int count,
			const void *kbuf, const void __user *ubuf)
{
	u64 buf[32];
	int ret, i;

	if (!cpu_has_feature(CPU_FTR_TM))
		return -ENODEV;

	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
		return -ENODATA;

	/* Flush the state */
1292
	flush_tmregs_to_thread(target);
1293 1294 1295 1296
	flush_fp_to_thread(target);
	flush_altivec_to_thread(target);
	flush_vsx_to_thread(target);

1297 1298 1299
	for (i = 0; i < 32 ; i++)
		buf[i] = target->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET];

1300 1301
	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
				 buf, 0, 32 * sizeof(double));
1302 1303
	if (!ret)
		for (i = 0; i < 32 ; i++)
1304
			target->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
1305 1306 1307

	return ret;
}
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359

/**
 * tm_spr_active - get active number of registers in TM SPR
 * @target:	The target task.
 * @regset:	The user regset structure.
 *
 * This function checks the active number of available
 * regisers in the transactional memory SPR category.
 */
static int tm_spr_active(struct task_struct *target,
			 const struct user_regset *regset)
{
	if (!cpu_has_feature(CPU_FTR_TM))
		return -ENODEV;

	return regset->n;
}

/**
 * tm_spr_get - get the TM related SPR registers
 * @target:	The target task.
 * @regset:	The user regset structure.
 * @pos:	The buffer position.
 * @count:	Number of bytes to copy.
 * @kbuf:	Kernel buffer to copy from.
 * @ubuf:	User buffer to copy into.
 *
 * This function gets transactional memory related SPR registers.
 * The userspace interface buffer layout is as follows.
 *
 * struct {
 *	u64		tm_tfhar;
 *	u64		tm_texasr;
 *	u64		tm_tfiar;
 * };
 */
static int tm_spr_get(struct task_struct *target,
		      const struct user_regset *regset,
		      unsigned int pos, unsigned int count,
		      void *kbuf, void __user *ubuf)
{
	int ret;

	/* Build tests */
	BUILD_BUG_ON(TSO(tm_tfhar) + sizeof(u64) != TSO(tm_texasr));
	BUILD_BUG_ON(TSO(tm_texasr) + sizeof(u64) != TSO(tm_tfiar));
	BUILD_BUG_ON(TSO(tm_tfiar) + sizeof(u64) != TSO(ckpt_regs));

	if (!cpu_has_feature(CPU_FTR_TM))
		return -ENODEV;

	/* Flush the states */
1360
	flush_tmregs_to_thread(target);
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
	flush_fp_to_thread(target);
	flush_altivec_to_thread(target);

	/* TFHAR register */
	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
				&target->thread.tm_tfhar, 0, sizeof(u64));

	/* TEXASR register */
	if (!ret)
		ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
				&target->thread.tm_texasr, sizeof(u64),
				2 * sizeof(u64));

	/* TFIAR register */
	if (!ret)
		ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
				&target->thread.tm_tfiar,
				2 * sizeof(u64), 3 * sizeof(u64));
	return ret;
}

/**
 * tm_spr_set - set the TM related SPR registers
 * @target:	The target task.
 * @regset:	The user regset structure.
 * @pos:	The buffer position.
 * @count:	Number of bytes to copy.
 * @kbuf:	Kernel buffer to copy into.
 * @ubuf:	User buffer to copy from.
 *
 * This function sets transactional memory related SPR registers.
 * The userspace interface buffer layout is as follows.
 *
 * struct {
 *	u64		tm_tfhar;
 *	u64		tm_texasr;
 *	u64		tm_tfiar;
 * };
 */
static int tm_spr_set(struct task_struct *target,
		      const struct user_regset *regset,
		      unsigned int pos, unsigned int count,
		      const void *kbuf, const void __user *ubuf)
{
	int ret;

	/* Build tests */
	BUILD_BUG_ON(TSO(tm_tfhar) + sizeof(u64) != TSO(tm_texasr));
	BUILD_BUG_ON(TSO(tm_texasr) + sizeof(u64) != TSO(tm_tfiar));
	BUILD_BUG_ON(TSO(tm_tfiar) + sizeof(u64) != TSO(ckpt_regs));

	if (!cpu_has_feature(CPU_FTR_TM))
		return -ENODEV;

	/* Flush the states */
1416
	flush_tmregs_to_thread(target);
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
	flush_fp_to_thread(target);
	flush_altivec_to_thread(target);

	/* TFHAR register */
	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
				&target->thread.tm_tfhar, 0, sizeof(u64));

	/* TEXASR register */
	if (!ret)
		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
				&target->thread.tm_texasr, sizeof(u64),
				2 * sizeof(u64));

	/* TFIAR register */
	if (!ret)
		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
				&target->thread.tm_tfiar,
				 2 * sizeof(u64), 3 * sizeof(u64));
	return ret;
}
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581

static int tm_tar_active(struct task_struct *target,
			 const struct user_regset *regset)
{
	if (!cpu_has_feature(CPU_FTR_TM))
		return -ENODEV;

	if (MSR_TM_ACTIVE(target->thread.regs->msr))
		return regset->n;

	return 0;
}

static int tm_tar_get(struct task_struct *target,
		      const struct user_regset *regset,
		      unsigned int pos, unsigned int count,
		      void *kbuf, void __user *ubuf)
{
	int ret;

	if (!cpu_has_feature(CPU_FTR_TM))
		return -ENODEV;

	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
		return -ENODATA;

	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
				&target->thread.tm_tar, 0, sizeof(u64));
	return ret;
}

static int tm_tar_set(struct task_struct *target,
		      const struct user_regset *regset,
		      unsigned int pos, unsigned int count,
		      const void *kbuf, const void __user *ubuf)
{
	int ret;

	if (!cpu_has_feature(CPU_FTR_TM))
		return -ENODEV;

	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
		return -ENODATA;

	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
				&target->thread.tm_tar, 0, sizeof(u64));
	return ret;
}

static int tm_ppr_active(struct task_struct *target,
			 const struct user_regset *regset)
{
	if (!cpu_has_feature(CPU_FTR_TM))
		return -ENODEV;

	if (MSR_TM_ACTIVE(target->thread.regs->msr))
		return regset->n;

	return 0;
}


static int tm_ppr_get(struct task_struct *target,
		      const struct user_regset *regset,
		      unsigned int pos, unsigned int count,
		      void *kbuf, void __user *ubuf)
{
	int ret;

	if (!cpu_has_feature(CPU_FTR_TM))
		return -ENODEV;

	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
		return -ENODATA;

	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
				&target->thread.tm_ppr, 0, sizeof(u64));
	return ret;
}

static int tm_ppr_set(struct task_struct *target,
		      const struct user_regset *regset,
		      unsigned int pos, unsigned int count,
		      const void *kbuf, const void __user *ubuf)
{
	int ret;

	if (!cpu_has_feature(CPU_FTR_TM))
		return -ENODEV;

	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
		return -ENODATA;

	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
				&target->thread.tm_ppr, 0, sizeof(u64));
	return ret;
}

static int tm_dscr_active(struct task_struct *target,
			 const struct user_regset *regset)
{
	if (!cpu_has_feature(CPU_FTR_TM))
		return -ENODEV;

	if (MSR_TM_ACTIVE(target->thread.regs->msr))
		return regset->n;

	return 0;
}

static int tm_dscr_get(struct task_struct *target,
		      const struct user_regset *regset,
		      unsigned int pos, unsigned int count,
		      void *kbuf, void __user *ubuf)
{
	int ret;

	if (!cpu_has_feature(CPU_FTR_TM))
		return -ENODEV;

	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
		return -ENODATA;

	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
				&target->thread.tm_dscr, 0, sizeof(u64));
	return ret;
}

static int tm_dscr_set(struct task_struct *target,
		      const struct user_regset *regset,
		      unsigned int pos, unsigned int count,
		      const void *kbuf, const void __user *ubuf)
{
	int ret;

	if (!cpu_has_feature(CPU_FTR_TM))
		return -ENODEV;

	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
		return -ENODATA;

	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
				&target->thread.tm_dscr, 0, sizeof(u64));
	return ret;
}
1582
#endif	/* CONFIG_PPC_TRANSACTIONAL_MEM */
1583

1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
#ifdef CONFIG_PPC64
static int ppr_get(struct task_struct *target,
		      const struct user_regset *regset,
		      unsigned int pos, unsigned int count,
		      void *kbuf, void __user *ubuf)
{
	int ret;

	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
				&target->thread.ppr, 0, sizeof(u64));
	return ret;
}

static int ppr_set(struct task_struct *target,
		      const struct user_regset *regset,
		      unsigned int pos, unsigned int count,
		      const void *kbuf, const void __user *ubuf)
{
	int ret;

	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
				&target->thread.ppr, 0, sizeof(u64));
	return ret;
}

static int dscr_get(struct task_struct *target,
		      const struct user_regset *regset,
		      unsigned int pos, unsigned int count,
		      void *kbuf, void __user *ubuf)
{
	int ret;

	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
				&target->thread.dscr, 0, sizeof(u64));
	return ret;
}
static int dscr_set(struct task_struct *target,
		      const struct user_regset *regset,
		      unsigned int pos, unsigned int count,
		      const void *kbuf, const void __user *ubuf)
{
	int ret;

	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
				&target->thread.dscr, 0, sizeof(u64));
	return ret;
}
#endif
#ifdef CONFIG_PPC_BOOK3S_64
static int tar_get(struct task_struct *target,
		      const struct user_regset *regset,
		      unsigned int pos, unsigned int count,
		      void *kbuf, void __user *ubuf)
{
	int ret;

	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
				&target->thread.tar, 0, sizeof(u64));
	return ret;
}
static int tar_set(struct task_struct *target,
		      const struct user_regset *regset,
		      unsigned int pos, unsigned int count,
		      const void *kbuf, const void __user *ubuf)
{
	int ret;

	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
				&target->thread.tar, 0, sizeof(u64));
	return ret;
}
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718

static int ebb_active(struct task_struct *target,
			 const struct user_regset *regset)
{
	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
		return -ENODEV;

	if (target->thread.used_ebb)
		return regset->n;

	return 0;
}

static int ebb_get(struct task_struct *target,
		      const struct user_regset *regset,
		      unsigned int pos, unsigned int count,
		      void *kbuf, void __user *ubuf)
{
	/* Build tests */
	BUILD_BUG_ON(TSO(ebbrr) + sizeof(unsigned long) != TSO(ebbhr));
	BUILD_BUG_ON(TSO(ebbhr) + sizeof(unsigned long) != TSO(bescr));

	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
		return -ENODEV;

	if (!target->thread.used_ebb)
		return -ENODATA;

	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
			&target->thread.ebbrr, 0, 3 * sizeof(unsigned long));
}

static int ebb_set(struct task_struct *target,
		      const struct user_regset *regset,
		      unsigned int pos, unsigned int count,
		      const void *kbuf, const void __user *ubuf)
{
	int ret = 0;

	/* Build tests */
	BUILD_BUG_ON(TSO(ebbrr) + sizeof(unsigned long) != TSO(ebbhr));
	BUILD_BUG_ON(TSO(ebbhr) + sizeof(unsigned long) != TSO(bescr));

	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
		return -ENODEV;

	if (target->thread.used_ebb)
		return -ENODATA;

	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
			&target->thread.ebbrr, 0, sizeof(unsigned long));

	if (!ret)
		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
			&target->thread.ebbhr, sizeof(unsigned long),
			2 * sizeof(unsigned long));

	if (!ret)
		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
			&target->thread.bescr,
			2 * sizeof(unsigned long), 3 * sizeof(unsigned long));

	return ret;
}
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
static int pmu_active(struct task_struct *target,
			 const struct user_regset *regset)
{
	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
		return -ENODEV;

	return regset->n;
}

static int pmu_get(struct task_struct *target,
		      const struct user_regset *regset,
		      unsigned int pos, unsigned int count,
		      void *kbuf, void __user *ubuf)
{
	/* Build tests */
	BUILD_BUG_ON(TSO(siar) + sizeof(unsigned long) != TSO(sdar));
	BUILD_BUG_ON(TSO(sdar) + sizeof(unsigned long) != TSO(sier));
	BUILD_BUG_ON(TSO(sier) + sizeof(unsigned long) != TSO(mmcr2));
	BUILD_BUG_ON(TSO(mmcr2) + sizeof(unsigned long) != TSO(mmcr0));

	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
		return -ENODEV;

	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
			&target->thread.siar, 0,
			5 * sizeof(unsigned long));
}

static int pmu_set(struct task_struct *target,
		      const struct user_regset *regset,
		      unsigned int pos, unsigned int count,
		      const void *kbuf, const void __user *ubuf)
{
	int ret = 0;

	/* Build tests */
	BUILD_BUG_ON(TSO(siar) + sizeof(unsigned long) != TSO(sdar));
	BUILD_BUG_ON(TSO(sdar) + sizeof(unsigned long) != TSO(sier));
	BUILD_BUG_ON(TSO(sier) + sizeof(unsigned long) != TSO(mmcr2));
	BUILD_BUG_ON(TSO(mmcr2) + sizeof(unsigned long) != TSO(mmcr0));

	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
		return -ENODEV;

	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
			&target->thread.siar, 0,
			sizeof(unsigned long));

	if (!ret)
		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
			&target->thread.sdar, sizeof(unsigned long),
			2 * sizeof(unsigned long));

	if (!ret)
		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
			&target->thread.sier, 2 * sizeof(unsigned long),
			3 * sizeof(unsigned long));

	if (!ret)
		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
			&target->thread.mmcr2, 3 * sizeof(unsigned long),
			4 * sizeof(unsigned long));

	if (!ret)
		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
			&target->thread.mmcr0, 4 * sizeof(unsigned long),
			5 * sizeof(unsigned long));
	return ret;
}
1788
#endif
1789 1790 1791 1792 1793 1794 1795 1796 1797
/*
 * These are our native regset flavors.
 */
enum powerpc_regset {
	REGSET_GPR,
	REGSET_FPR,
#ifdef CONFIG_ALTIVEC
	REGSET_VMX,
#endif
1798 1799 1800
#ifdef CONFIG_VSX
	REGSET_VSX,
#endif
1801 1802 1803
#ifdef CONFIG_SPE
	REGSET_SPE,
#endif
1804 1805
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	REGSET_TM_CGPR,		/* TM checkpointed GPR registers */
1806
	REGSET_TM_CFPR,		/* TM checkpointed FPR registers */
1807
	REGSET_TM_CVMX,		/* TM checkpointed VMX registers */
1808
	REGSET_TM_CVSX,		/* TM checkpointed VSX registers */
1809
	REGSET_TM_SPR,		/* TM specific SPR registers */
1810 1811 1812
	REGSET_TM_CTAR,		/* TM checkpointed TAR register */
	REGSET_TM_CPPR,		/* TM checkpointed PPR register */
	REGSET_TM_CDSCR,	/* TM checkpointed DSCR register */
1813
#endif
1814 1815 1816 1817 1818 1819
#ifdef CONFIG_PPC64
	REGSET_PPR,		/* PPR register */
	REGSET_DSCR,		/* DSCR register */
#endif
#ifdef CONFIG_PPC_BOOK3S_64
	REGSET_TAR,		/* TAR register */
1820
	REGSET_EBB,		/* EBB registers */
1821
	REGSET_PMR,		/* Performance Monitor Registers */
1822
#endif
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
};

static const struct user_regset native_regsets[] = {
	[REGSET_GPR] = {
		.core_note_type = NT_PRSTATUS, .n = ELF_NGREG,
		.size = sizeof(long), .align = sizeof(long),
		.get = gpr_get, .set = gpr_set
	},
	[REGSET_FPR] = {
		.core_note_type = NT_PRFPREG, .n = ELF_NFPREG,
		.size = sizeof(double), .align = sizeof(double),
		.get = fpr_get, .set = fpr_set
	},
#ifdef CONFIG_ALTIVEC
	[REGSET_VMX] = {
		.core_note_type = NT_PPC_VMX, .n = 34,
		.size = sizeof(vector128), .align = sizeof(vector128),
		.active = vr_active, .get = vr_get, .set = vr_set
	},
#endif
1843 1844
#ifdef CONFIG_VSX
	[REGSET_VSX] = {
1845 1846
		.core_note_type = NT_PPC_VSX, .n = 32,
		.size = sizeof(double), .align = sizeof(double),
1847 1848 1849
		.active = vsr_active, .get = vsr_get, .set = vsr_set
	},
#endif
1850 1851
#ifdef CONFIG_SPE
	[REGSET_SPE] = {
1852
		.core_note_type = NT_PPC_SPE, .n = 35,
1853 1854 1855 1856
		.size = sizeof(u32), .align = sizeof(u32),
		.active = evr_active, .get = evr_get, .set = evr_set
	},
#endif
1857 1858 1859 1860 1861 1862
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	[REGSET_TM_CGPR] = {
		.core_note_type = NT_PPC_TM_CGPR, .n = ELF_NGREG,
		.size = sizeof(long), .align = sizeof(long),
		.active = tm_cgpr_active, .get = tm_cgpr_get, .set = tm_cgpr_set
	},
1863 1864 1865 1866 1867
	[REGSET_TM_CFPR] = {
		.core_note_type = NT_PPC_TM_CFPR, .n = ELF_NFPREG,
		.size = sizeof(double), .align = sizeof(double),
		.active = tm_cfpr_active, .get = tm_cfpr_get, .set = tm_cfpr_set
	},
1868 1869 1870 1871 1872
	[REGSET_TM_CVMX] = {
		.core_note_type = NT_PPC_TM_CVMX, .n = ELF_NVMX,
		.size = sizeof(vector128), .align = sizeof(vector128),
		.active = tm_cvmx_active, .get = tm_cvmx_get, .set = tm_cvmx_set
	},
1873 1874 1875 1876 1877
	[REGSET_TM_CVSX] = {
		.core_note_type = NT_PPC_TM_CVSX, .n = ELF_NVSX,
		.size = sizeof(double), .align = sizeof(double),
		.active = tm_cvsx_active, .get = tm_cvsx_get, .set = tm_cvsx_set
	},
1878 1879 1880 1881 1882
	[REGSET_TM_SPR] = {
		.core_note_type = NT_PPC_TM_SPR, .n = ELF_NTMSPRREG,
		.size = sizeof(u64), .align = sizeof(u64),
		.active = tm_spr_active, .get = tm_spr_get, .set = tm_spr_set
	},
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
	[REGSET_TM_CTAR] = {
		.core_note_type = NT_PPC_TM_CTAR, .n = 1,
		.size = sizeof(u64), .align = sizeof(u64),
		.active = tm_tar_active, .get = tm_tar_get, .set = tm_tar_set
	},
	[REGSET_TM_CPPR] = {
		.core_note_type = NT_PPC_TM_CPPR, .n = 1,
		.size = sizeof(u64), .align = sizeof(u64),
		.active = tm_ppr_active, .get = tm_ppr_get, .set = tm_ppr_set
	},
	[REGSET_TM_CDSCR] = {
		.core_note_type = NT_PPC_TM_CDSCR, .n = 1,
		.size = sizeof(u64), .align = sizeof(u64),
		.active = tm_dscr_active, .get = tm_dscr_get, .set = tm_dscr_set
	},
1898
#endif
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
#ifdef CONFIG_PPC64
	[REGSET_PPR] = {
		.core_note_type = NT_PPC_PPR, .n = 1,
		.size = sizeof(u64), .align = sizeof(u64),
		.get = ppr_get, .set = ppr_set
	},
	[REGSET_DSCR] = {
		.core_note_type = NT_PPC_DSCR, .n = 1,
		.size = sizeof(u64), .align = sizeof(u64),
		.get = dscr_get, .set = dscr_set
	},
#endif
#ifdef CONFIG_PPC_BOOK3S_64
	[REGSET_TAR] = {
		.core_note_type = NT_PPC_TAR, .n = 1,
		.size = sizeof(u64), .align = sizeof(u64),
		.get = tar_get, .set = tar_set
	},
1917 1918 1919 1920 1921
	[REGSET_EBB] = {
		.core_note_type = NT_PPC_EBB, .n = ELF_NEBB,
		.size = sizeof(u64), .align = sizeof(u64),
		.active = ebb_active, .get = ebb_get, .set = ebb_set
	},
1922 1923 1924 1925 1926
	[REGSET_PMR] = {
		.core_note_type = NT_PPC_PMU, .n = ELF_NPMU,
		.size = sizeof(u64), .align = sizeof(u64),
		.active = pmu_active, .get = pmu_get, .set = pmu_set
	},
1927
#endif
1928 1929 1930 1931 1932 1933 1934
};

static const struct user_regset_view user_ppc_native_view = {
	.name = UTS_MACHINE, .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI,
	.regsets = native_regsets, .n = ARRAY_SIZE(native_regsets)
};

1935 1936 1937
#ifdef CONFIG_PPC64
#include <linux/compat.h>

1938
static int gpr32_get_common(struct task_struct *target,
1939 1940
		     const struct user_regset *regset,
		     unsigned int pos, unsigned int count,
1941 1942
			    void *kbuf, void __user *ubuf,
			    unsigned long *regs)
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
{
	compat_ulong_t *k = kbuf;
	compat_ulong_t __user *u = ubuf;
	compat_ulong_t reg;

	pos /= sizeof(reg);
	count /= sizeof(reg);

	if (kbuf)
		for (; count > 0 && pos < PT_MSR; --count)
			*k++ = regs[pos++];
	else
		for (; count > 0 && pos < PT_MSR; --count)
			if (__put_user((compat_ulong_t) regs[pos++], u++))
				return -EFAULT;

	if (count > 0 && pos == PT_MSR) {
		reg = get_user_msr(target);
		if (kbuf)
			*k++ = reg;
		else if (__put_user(reg, u++))
			return -EFAULT;
		++pos;
		--count;
	}

	if (kbuf)
		for (; count > 0 && pos < PT_REGS_COUNT; --count)
			*k++ = regs[pos++];
	else
		for (; count > 0 && pos < PT_REGS_COUNT; --count)
			if (__put_user((compat_ulong_t) regs[pos++], u++))
				return -EFAULT;

	kbuf = k;
	ubuf = u;
	pos *= sizeof(reg);
	count *= sizeof(reg);
	return user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
					PT_REGS_COUNT * sizeof(reg), -1);
}

1985
static int gpr32_set_common(struct task_struct *target,
1986 1987
		     const struct user_regset *regset,
		     unsigned int pos, unsigned int count,
1988 1989
		     const void *kbuf, const void __user *ubuf,
		     unsigned long *regs)
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
{
	const compat_ulong_t *k = kbuf;
	const compat_ulong_t __user *u = ubuf;
	compat_ulong_t reg;

	pos /= sizeof(reg);
	count /= sizeof(reg);

	if (kbuf)
		for (; count > 0 && pos < PT_MSR; --count)
			regs[pos++] = *k++;
	else
		for (; count > 0 && pos < PT_MSR; --count) {
			if (__get_user(reg, u++))
				return -EFAULT;
			regs[pos++] = reg;
		}


	if (count > 0 && pos == PT_MSR) {
		if (kbuf)
			reg = *k++;
		else if (__get_user(reg, u++))
			return -EFAULT;
		set_user_msr(target, reg);
		++pos;
		--count;
	}

2019
	if (kbuf) {
2020 2021
		for (; count > 0 && pos <= PT_MAX_PUT_REG; --count)
			regs[pos++] = *k++;
2022 2023 2024
		for (; count > 0 && pos < PT_TRAP; --count, ++pos)
			++k;
	} else {
2025 2026 2027 2028 2029
		for (; count > 0 && pos <= PT_MAX_PUT_REG; --count) {
			if (__get_user(reg, u++))
				return -EFAULT;
			regs[pos++] = reg;
		}
2030 2031 2032 2033
		for (; count > 0 && pos < PT_TRAP; --count, ++pos)
			if (__get_user(reg, u++))
				return -EFAULT;
	}
2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052

	if (count > 0 && pos == PT_TRAP) {
		if (kbuf)
			reg = *k++;
		else if (__get_user(reg, u++))
			return -EFAULT;
		set_user_trap(target, reg);
		++pos;
		--count;
	}

	kbuf = k;
	ubuf = u;
	pos *= sizeof(reg);
	count *= sizeof(reg);
	return user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
					 (PT_TRAP + 1) * sizeof(reg), -1);
}

2053 2054 2055 2056 2057 2058
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
static int tm_cgpr32_get(struct task_struct *target,
		     const struct user_regset *regset,
		     unsigned int pos, unsigned int count,
		     void *kbuf, void __user *ubuf)
{
2059 2060
	return gpr32_get_common(target, regset, pos, count, kbuf, ubuf,
			&target->thread.ckpt_regs.gpr[0]);
2061 2062 2063 2064 2065 2066 2067
}

static int tm_cgpr32_set(struct task_struct *target,
		     const struct user_regset *regset,
		     unsigned int pos, unsigned int count,
		     const void *kbuf, const void __user *ubuf)
{
2068 2069
	return gpr32_set_common(target, regset, pos, count, kbuf, ubuf,
			&target->thread.ckpt_regs.gpr[0]);
2070 2071 2072
}
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */

2073 2074 2075 2076 2077
static int gpr32_get(struct task_struct *target,
		     const struct user_regset *regset,
		     unsigned int pos, unsigned int count,
		     void *kbuf, void __user *ubuf)
{
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
	int i;

	if (target->thread.regs == NULL)
		return -EIO;

	if (!FULL_REGS(target->thread.regs)) {
		/*
		 * We have a partial register set.
		 * Fill 14-31 with bogus values.
		 */
		for (i = 14; i < 32; i++)
			target->thread.regs->gpr[i] = NV_REG_POISON;
	}
	return gpr32_get_common(target, regset, pos, count, kbuf, ubuf,
			&target->thread.regs->gpr[0]);
2093 2094 2095 2096 2097 2098 2099
}

static int gpr32_set(struct task_struct *target,
		     const struct user_regset *regset,
		     unsigned int pos, unsigned int count,
		     const void *kbuf, const void __user *ubuf)
{
2100 2101 2102 2103 2104 2105
	if (target->thread.regs == NULL)
		return -EIO;

	CHECK_FULL_REGS(target->thread.regs);
	return gpr32_set_common(target, regset, pos, count, kbuf, ubuf,
			&target->thread.regs->gpr[0]);
2106 2107
}

2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
/*
 * These are the regset flavors matching the CONFIG_PPC32 native set.
 */
static const struct user_regset compat_regsets[] = {
	[REGSET_GPR] = {
		.core_note_type = NT_PRSTATUS, .n = ELF_NGREG,
		.size = sizeof(compat_long_t), .align = sizeof(compat_long_t),
		.get = gpr32_get, .set = gpr32_set
	},
	[REGSET_FPR] = {
		.core_note_type = NT_PRFPREG, .n = ELF_NFPREG,
		.size = sizeof(double), .align = sizeof(double),
		.get = fpr_get, .set = fpr_set
	},
#ifdef CONFIG_ALTIVEC
	[REGSET_VMX] = {
		.core_note_type = NT_PPC_VMX, .n = 34,
		.size = sizeof(vector128), .align = sizeof(vector128),
		.active = vr_active, .get = vr_get, .set = vr_set
	},
#endif
#ifdef CONFIG_SPE
	[REGSET_SPE] = {
2131
		.core_note_type = NT_PPC_SPE, .n = 35,
2132 2133 2134 2135
		.size = sizeof(u32), .align = sizeof(u32),
		.active = evr_active, .get = evr_get, .set = evr_set
	},
#endif
2136 2137 2138 2139 2140 2141 2142
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	[REGSET_TM_CGPR] = {
		.core_note_type = NT_PPC_TM_CGPR, .n = ELF_NGREG,
		.size = sizeof(long), .align = sizeof(long),
		.active = tm_cgpr_active,
		.get = tm_cgpr32_get, .set = tm_cgpr32_set
	},
2143 2144 2145 2146 2147
	[REGSET_TM_CFPR] = {
		.core_note_type = NT_PPC_TM_CFPR, .n = ELF_NFPREG,
		.size = sizeof(double), .align = sizeof(double),
		.active = tm_cfpr_active, .get = tm_cfpr_get, .set = tm_cfpr_set
	},
2148 2149 2150 2151 2152
	[REGSET_TM_CVMX] = {
		.core_note_type = NT_PPC_TM_CVMX, .n = ELF_NVMX,
		.size = sizeof(vector128), .align = sizeof(vector128),
		.active = tm_cvmx_active, .get = tm_cvmx_get, .set = tm_cvmx_set
	},
2153 2154 2155 2156 2157
	[REGSET_TM_CVSX] = {
		.core_note_type = NT_PPC_TM_CVSX, .n = ELF_NVSX,
		.size = sizeof(double), .align = sizeof(double),
		.active = tm_cvsx_active, .get = tm_cvsx_get, .set = tm_cvsx_set
	},
2158 2159 2160 2161 2162
	[REGSET_TM_SPR] = {
		.core_note_type = NT_PPC_TM_SPR, .n = ELF_NTMSPRREG,
		.size = sizeof(u64), .align = sizeof(u64),
		.active = tm_spr_active, .get = tm_spr_get, .set = tm_spr_set
	},
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
	[REGSET_TM_CTAR] = {
		.core_note_type = NT_PPC_TM_CTAR, .n = 1,
		.size = sizeof(u64), .align = sizeof(u64),
		.active = tm_tar_active, .get = tm_tar_get, .set = tm_tar_set
	},
	[REGSET_TM_CPPR] = {
		.core_note_type = NT_PPC_TM_CPPR, .n = 1,
		.size = sizeof(u64), .align = sizeof(u64),
		.active = tm_ppr_active, .get = tm_ppr_get, .set = tm_ppr_set
	},
	[REGSET_TM_CDSCR] = {
		.core_note_type = NT_PPC_TM_CDSCR, .n = 1,
		.size = sizeof(u64), .align = sizeof(u64),
		.active = tm_dscr_active, .get = tm_dscr_get, .set = tm_dscr_set
	},
2178
#endif
2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
#ifdef CONFIG_PPC64
	[REGSET_PPR] = {
		.core_note_type = NT_PPC_PPR, .n = 1,
		.size = sizeof(u64), .align = sizeof(u64),
		.get = ppr_get, .set = ppr_set
	},
	[REGSET_DSCR] = {
		.core_note_type = NT_PPC_DSCR, .n = 1,
		.size = sizeof(u64), .align = sizeof(u64),
		.get = dscr_get, .set = dscr_set
	},
#endif
#ifdef CONFIG_PPC_BOOK3S_64
	[REGSET_TAR] = {
		.core_note_type = NT_PPC_TAR, .n = 1,
		.size = sizeof(u64), .align = sizeof(u64),
		.get = tar_get, .set = tar_set
	},
2197 2198 2199 2200 2201
	[REGSET_EBB] = {
		.core_note_type = NT_PPC_EBB, .n = ELF_NEBB,
		.size = sizeof(u64), .align = sizeof(u64),
		.active = ebb_active, .get = ebb_get, .set = ebb_set
	},
2202
#endif
2203 2204 2205 2206 2207 2208 2209 2210
};

static const struct user_regset_view user_ppc_compat_view = {
	.name = "ppc", .e_machine = EM_PPC, .ei_osabi = ELF_OSABI,
	.regsets = compat_regsets, .n = ARRAY_SIZE(compat_regsets)
};
#endif	/* CONFIG_PPC64 */

2211 2212
const struct user_regset_view *task_user_regset_view(struct task_struct *task)
{
2213 2214 2215 2216
#ifdef CONFIG_PPC64
	if (test_tsk_thread_flag(task, TIF_32BIT))
		return &user_ppc_compat_view;
#endif
2217 2218 2219 2220
	return &user_ppc_native_view;
}


R
Roland McGrath 已提交
2221
void user_enable_single_step(struct task_struct *task)
2222 2223 2224 2225
{
	struct pt_regs *regs = task->thread.regs;

	if (regs != NULL) {
2226
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
2227 2228
		task->thread.debug.dbcr0 &= ~DBCR0_BT;
		task->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
2229 2230
		regs->msr |= MSR_DE;
#else
2231
		regs->msr &= ~MSR_BE;
2232 2233 2234 2235 2236 2237
		regs->msr |= MSR_SE;
#endif
	}
	set_tsk_thread_flag(task, TIF_SINGLESTEP);
}

2238 2239 2240 2241 2242
void user_enable_block_step(struct task_struct *task)
{
	struct pt_regs *regs = task->thread.regs;

	if (regs != NULL) {
2243
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
2244 2245
		task->thread.debug.dbcr0 &= ~DBCR0_IC;
		task->thread.debug.dbcr0 = DBCR0_IDM | DBCR0_BT;
2246 2247 2248 2249 2250 2251 2252 2253 2254
		regs->msr |= MSR_DE;
#else
		regs->msr &= ~MSR_SE;
		regs->msr |= MSR_BE;
#endif
	}
	set_tsk_thread_flag(task, TIF_SINGLESTEP);
}

R
Roland McGrath 已提交
2255
void user_disable_single_step(struct task_struct *task)
2256 2257 2258 2259
{
	struct pt_regs *regs = task->thread.regs;

	if (regs != NULL) {
2260
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
2261 2262 2263 2264 2265 2266
		/*
		 * The logic to disable single stepping should be as
		 * simple as turning off the Instruction Complete flag.
		 * And, after doing so, if all debug flags are off, turn
		 * off DBCR0(IDM) and MSR(DE) .... Torez
		 */
2267
		task->thread.debug.dbcr0 &= ~(DBCR0_IC|DBCR0_BT);
2268 2269 2270
		/*
		 * Test to see if any of the DBCR_ACTIVE_EVENTS bits are set.
		 */
2271 2272
		if (!DBCR_ACTIVE_EVENTS(task->thread.debug.dbcr0,
					task->thread.debug.dbcr1)) {
2273 2274 2275
			/*
			 * All debug events were off.....
			 */
2276
			task->thread.debug.dbcr0 &= ~DBCR0_IDM;
2277 2278
			regs->msr &= ~MSR_DE;
		}
2279
#else
2280
		regs->msr &= ~(MSR_SE | MSR_BE);
2281 2282 2283 2284 2285
#endif
	}
	clear_tsk_thread_flag(task, TIF_SINGLESTEP);
}

2286
#ifdef CONFIG_HAVE_HW_BREAKPOINT
2287
void ptrace_triggered(struct perf_event *bp,
2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
		      struct perf_sample_data *data, struct pt_regs *regs)
{
	struct perf_event_attr attr;

	/*
	 * Disable the breakpoint request here since ptrace has defined a
	 * one-shot behaviour for breakpoint exceptions in PPC64.
	 * The SIGTRAP signal is generated automatically for us in do_dabr().
	 * We don't have to do anything about that here
	 */
	attr = bp->attr;
	attr.disabled = true;
	modify_user_hw_breakpoint(bp, &attr);
}
#endif /* CONFIG_HAVE_HW_BREAKPOINT */

2304
static int ptrace_set_debugreg(struct task_struct *task, unsigned long addr,
2305 2306
			       unsigned long data)
{
2307 2308 2309 2310 2311 2312
#ifdef CONFIG_HAVE_HW_BREAKPOINT
	int ret;
	struct thread_struct *thread = &(task->thread);
	struct perf_event *bp;
	struct perf_event_attr attr;
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
2313 2314 2315
#ifndef CONFIG_PPC_ADV_DEBUG_REGS
	struct arch_hw_breakpoint hw_brk;
#endif
2316

2317 2318 2319 2320
	/* For ppc64 we support one DABR and no IABR's at the moment (ppc64).
	 *  For embedded processors we support one DAC and no IAC's at the
	 *  moment.
	 */
2321 2322 2323
	if (addr > 0)
		return -EINVAL;

2324
	/* The bottom 3 bits in dabr are flags */
2325 2326 2327
	if ((data & ~0x7UL) >= TASK_SIZE)
		return -EIO;

2328
#ifndef CONFIG_PPC_ADV_DEBUG_REGS
2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
	/* For processors using DABR (i.e. 970), the bottom 3 bits are flags.
	 *  It was assumed, on previous implementations, that 3 bits were
	 *  passed together with the data address, fitting the design of the
	 *  DABR register, as follows:
	 *
	 *  bit 0: Read flag
	 *  bit 1: Write flag
	 *  bit 2: Breakpoint translation
	 *
	 *  Thus, we use them here as so.
	 */

	/* Ensure breakpoint translation bit is set */
2342
	if (data && !(data & HW_BRK_TYPE_TRANSLATE))
2343
		return -EIO;
2344 2345 2346
	hw_brk.address = data & (~HW_BRK_TYPE_DABR);
	hw_brk.type = (data & HW_BRK_TYPE_DABR) | HW_BRK_TYPE_PRIV_ALL;
	hw_brk.len = 8;
2347 2348
#ifdef CONFIG_HAVE_HW_BREAKPOINT
	bp = thread->ptrace_bps[0];
2349
	if ((!data) || !(hw_brk.type & HW_BRK_TYPE_RDWR)) {
2350 2351 2352 2353 2354 2355 2356 2357
		if (bp) {
			unregister_hw_breakpoint(bp);
			thread->ptrace_bps[0] = NULL;
		}
		return 0;
	}
	if (bp) {
		attr = bp->attr;
2358 2359
		attr.bp_addr = hw_brk.address;
		arch_bp_generic_fields(hw_brk.type, &attr.bp_type);
2360 2361 2362 2363

		/* Enable breakpoint */
		attr.disabled = false;

2364
		ret =  modify_user_hw_breakpoint(bp, &attr);
2365
		if (ret) {
2366
			return ret;
2367
		}
2368
		thread->ptrace_bps[0] = bp;
2369
		thread->hw_brk = hw_brk;
2370 2371 2372 2373 2374
		return 0;
	}

	/* Create a new breakpoint request if one doesn't exist already */
	hw_breakpoint_init(&attr);
2375 2376 2377
	attr.bp_addr = hw_brk.address;
	arch_bp_generic_fields(hw_brk.type,
			       &attr.bp_type);
2378 2379

	thread->ptrace_bps[0] = bp = register_user_hw_breakpoint(&attr,
2380
					       ptrace_triggered, NULL, task);
2381 2382 2383 2384 2385 2386
	if (IS_ERR(bp)) {
		thread->ptrace_bps[0] = NULL;
		return PTR_ERR(bp);
	}

#endif /* CONFIG_HAVE_HW_BREAKPOINT */
2387
	task->thread.hw_brk = hw_brk;
2388
#else /* CONFIG_PPC_ADV_DEBUG_REGS */
2389 2390 2391 2392 2393 2394
	/* As described above, it was assumed 3 bits were passed with the data
	 *  address, but we will assume only the mode bits will be passed
	 *  as to not cause alignment restrictions for DAC-based processors.
	 */

	/* DAC's hold the whole address without any mode flags */
2395
	task->thread.debug.dac1 = data & ~0x3UL;
2396

2397
	if (task->thread.debug.dac1 == 0) {
2398
		dbcr_dac(task) &= ~(DBCR_DAC1R | DBCR_DAC1W);
2399 2400
		if (!DBCR_ACTIVE_EVENTS(task->thread.debug.dbcr0,
					task->thread.debug.dbcr1)) {
2401
			task->thread.regs->msr &= ~MSR_DE;
2402
			task->thread.debug.dbcr0 &= ~DBCR0_IDM;
2403
		}
2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
		return 0;
	}

	/* Read or Write bits must be set */

	if (!(data & 0x3UL))
		return -EINVAL;

	/* Set the Internal Debugging flag (IDM bit 1) for the DBCR0
	   register */
2414
	task->thread.debug.dbcr0 |= DBCR0_IDM;
2415 2416 2417

	/* Check for write and read flags and set DBCR0
	   accordingly */
2418
	dbcr_dac(task) &= ~(DBCR_DAC1R|DBCR_DAC1W);
2419
	if (data & 0x1UL)
2420
		dbcr_dac(task) |= DBCR_DAC1R;
2421
	if (data & 0x2UL)
2422
		dbcr_dac(task) |= DBCR_DAC1W;
2423
	task->thread.regs->msr |= MSR_DE;
2424
#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
2425 2426 2427
	return 0;
}

L
Linus Torvalds 已提交
2428 2429 2430 2431 2432 2433 2434 2435
/*
 * Called by kernel/ptrace.c when detaching..
 *
 * Make sure single step bits etc are not set.
 */
void ptrace_disable(struct task_struct *child)
{
	/* make sure the single step bit is not set. */
R
Roland McGrath 已提交
2436
	user_disable_single_step(child);
L
Linus Torvalds 已提交
2437 2438
}

2439
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
2440
static long set_instruction_bp(struct task_struct *child,
2441 2442 2443
			      struct ppc_hw_breakpoint *bp_info)
{
	int slot;
2444 2445 2446 2447
	int slot1_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC1) != 0);
	int slot2_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC2) != 0);
	int slot3_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC3) != 0);
	int slot4_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC4) != 0);
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465

	if (dbcr_iac_range(child) & DBCR_IAC12MODE)
		slot2_in_use = 1;
	if (dbcr_iac_range(child) & DBCR_IAC34MODE)
		slot4_in_use = 1;

	if (bp_info->addr >= TASK_SIZE)
		return -EIO;

	if (bp_info->addr_mode != PPC_BREAKPOINT_MODE_EXACT) {

		/* Make sure range is valid. */
		if (bp_info->addr2 >= TASK_SIZE)
			return -EIO;

		/* We need a pair of IAC regsisters */
		if ((!slot1_in_use) && (!slot2_in_use)) {
			slot = 1;
2466 2467 2468
			child->thread.debug.iac1 = bp_info->addr;
			child->thread.debug.iac2 = bp_info->addr2;
			child->thread.debug.dbcr0 |= DBCR0_IAC1;
2469 2470 2471 2472 2473 2474 2475 2476
			if (bp_info->addr_mode ==
					PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
				dbcr_iac_range(child) |= DBCR_IAC12X;
			else
				dbcr_iac_range(child) |= DBCR_IAC12I;
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
		} else if ((!slot3_in_use) && (!slot4_in_use)) {
			slot = 3;
2477 2478 2479
			child->thread.debug.iac3 = bp_info->addr;
			child->thread.debug.iac4 = bp_info->addr2;
			child->thread.debug.dbcr0 |= DBCR0_IAC3;
2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
			if (bp_info->addr_mode ==
					PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
				dbcr_iac_range(child) |= DBCR_IAC34X;
			else
				dbcr_iac_range(child) |= DBCR_IAC34I;
#endif
		} else
			return -ENOSPC;
	} else {
		/* We only need one.  If possible leave a pair free in
		 * case a range is needed later
		 */
		if (!slot1_in_use) {
			/*
			 * Don't use iac1 if iac1-iac2 are free and either
			 * iac3 or iac4 (but not both) are free
			 */
			if (slot2_in_use || (slot3_in_use == slot4_in_use)) {
				slot = 1;
2499 2500
				child->thread.debug.iac1 = bp_info->addr;
				child->thread.debug.dbcr0 |= DBCR0_IAC1;
2501 2502 2503 2504 2505
				goto out;
			}
		}
		if (!slot2_in_use) {
			slot = 2;
2506 2507
			child->thread.debug.iac2 = bp_info->addr;
			child->thread.debug.dbcr0 |= DBCR0_IAC2;
2508 2509 2510
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
		} else if (!slot3_in_use) {
			slot = 3;
2511 2512
			child->thread.debug.iac3 = bp_info->addr;
			child->thread.debug.dbcr0 |= DBCR0_IAC3;
2513 2514
		} else if (!slot4_in_use) {
			slot = 4;
2515 2516
			child->thread.debug.iac4 = bp_info->addr;
			child->thread.debug.dbcr0 |= DBCR0_IAC4;
2517 2518 2519 2520 2521
#endif
		} else
			return -ENOSPC;
	}
out:
2522
	child->thread.debug.dbcr0 |= DBCR0_IDM;
2523 2524 2525 2526 2527 2528 2529 2530 2531
	child->thread.regs->msr |= MSR_DE;

	return slot;
}

static int del_instruction_bp(struct task_struct *child, int slot)
{
	switch (slot) {
	case 1:
2532
		if ((child->thread.debug.dbcr0 & DBCR0_IAC1) == 0)
2533 2534 2535 2536
			return -ENOENT;

		if (dbcr_iac_range(child) & DBCR_IAC12MODE) {
			/* address range - clear slots 1 & 2 */
2537
			child->thread.debug.iac2 = 0;
2538 2539
			dbcr_iac_range(child) &= ~DBCR_IAC12MODE;
		}
2540 2541
		child->thread.debug.iac1 = 0;
		child->thread.debug.dbcr0 &= ~DBCR0_IAC1;
2542 2543
		break;
	case 2:
2544
		if ((child->thread.debug.dbcr0 & DBCR0_IAC2) == 0)
2545 2546 2547 2548 2549
			return -ENOENT;

		if (dbcr_iac_range(child) & DBCR_IAC12MODE)
			/* used in a range */
			return -EINVAL;
2550 2551
		child->thread.debug.iac2 = 0;
		child->thread.debug.dbcr0 &= ~DBCR0_IAC2;
2552 2553 2554
		break;
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
	case 3:
2555
		if ((child->thread.debug.dbcr0 & DBCR0_IAC3) == 0)
2556 2557 2558 2559
			return -ENOENT;

		if (dbcr_iac_range(child) & DBCR_IAC34MODE) {
			/* address range - clear slots 3 & 4 */
2560
			child->thread.debug.iac4 = 0;
2561 2562
			dbcr_iac_range(child) &= ~DBCR_IAC34MODE;
		}
2563 2564
		child->thread.debug.iac3 = 0;
		child->thread.debug.dbcr0 &= ~DBCR0_IAC3;
2565 2566
		break;
	case 4:
2567
		if ((child->thread.debug.dbcr0 & DBCR0_IAC4) == 0)
2568 2569 2570 2571 2572
			return -ENOENT;

		if (dbcr_iac_range(child) & DBCR_IAC34MODE)
			/* Used in a range */
			return -EINVAL;
2573 2574
		child->thread.debug.iac4 = 0;
		child->thread.debug.dbcr0 &= ~DBCR0_IAC4;
2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603
		break;
#endif
	default:
		return -EINVAL;
	}
	return 0;
}

static int set_dac(struct task_struct *child, struct ppc_hw_breakpoint *bp_info)
{
	int byte_enable =
		(bp_info->condition_mode >> PPC_BREAKPOINT_CONDITION_BE_SHIFT)
		& 0xf;
	int condition_mode =
		bp_info->condition_mode & PPC_BREAKPOINT_CONDITION_MODE;
	int slot;

	if (byte_enable && (condition_mode == 0))
		return -EINVAL;

	if (bp_info->addr >= TASK_SIZE)
		return -EIO;

	if ((dbcr_dac(child) & (DBCR_DAC1R | DBCR_DAC1W)) == 0) {
		slot = 1;
		if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
			dbcr_dac(child) |= DBCR_DAC1R;
		if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
			dbcr_dac(child) |= DBCR_DAC1W;
2604
		child->thread.debug.dac1 = (unsigned long)bp_info->addr;
2605 2606
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
		if (byte_enable) {
2607
			child->thread.debug.dvc1 =
2608
				(unsigned long)bp_info->condition_value;
2609
			child->thread.debug.dbcr2 |=
2610 2611 2612 2613 2614
				((byte_enable << DBCR2_DVC1BE_SHIFT) |
				 (condition_mode << DBCR2_DVC1M_SHIFT));
		}
#endif
#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2615
	} else if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE) {
2616 2617 2618 2619 2620 2621 2622 2623 2624
		/* Both dac1 and dac2 are part of a range */
		return -ENOSPC;
#endif
	} else if ((dbcr_dac(child) & (DBCR_DAC2R | DBCR_DAC2W)) == 0) {
		slot = 2;
		if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
			dbcr_dac(child) |= DBCR_DAC2R;
		if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
			dbcr_dac(child) |= DBCR_DAC2W;
2625
		child->thread.debug.dac2 = (unsigned long)bp_info->addr;
2626 2627
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
		if (byte_enable) {
2628
			child->thread.debug.dvc2 =
2629
				(unsigned long)bp_info->condition_value;
2630
			child->thread.debug.dbcr2 |=
2631 2632 2633 2634 2635 2636
				((byte_enable << DBCR2_DVC2BE_SHIFT) |
				 (condition_mode << DBCR2_DVC2M_SHIFT));
		}
#endif
	} else
		return -ENOSPC;
2637
	child->thread.debug.dbcr0 |= DBCR0_IDM;
2638 2639 2640 2641 2642 2643 2644 2645
	child->thread.regs->msr |= MSR_DE;

	return slot + 4;
}

static int del_dac(struct task_struct *child, int slot)
{
	if (slot == 1) {
2646
		if ((dbcr_dac(child) & (DBCR_DAC1R | DBCR_DAC1W)) == 0)
2647 2648
			return -ENOENT;

2649
		child->thread.debug.dac1 = 0;
2650 2651
		dbcr_dac(child) &= ~(DBCR_DAC1R | DBCR_DAC1W);
#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2652 2653 2654
		if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE) {
			child->thread.debug.dac2 = 0;
			child->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
2655
		}
2656
		child->thread.debug.dbcr2 &= ~(DBCR2_DVC1M | DBCR2_DVC1BE);
2657 2658
#endif
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2659
		child->thread.debug.dvc1 = 0;
2660 2661
#endif
	} else if (slot == 2) {
2662
		if ((dbcr_dac(child) & (DBCR_DAC2R | DBCR_DAC2W)) == 0)
2663 2664 2665
			return -ENOENT;

#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2666
		if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE)
2667 2668
			/* Part of a range */
			return -EINVAL;
2669
		child->thread.debug.dbcr2 &= ~(DBCR2_DVC2M | DBCR2_DVC2BE);
2670 2671
#endif
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2672
		child->thread.debug.dvc2 = 0;
2673
#endif
2674
		child->thread.debug.dac2 = 0;
2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715
		dbcr_dac(child) &= ~(DBCR_DAC2R | DBCR_DAC2W);
	} else
		return -EINVAL;

	return 0;
}
#endif /* CONFIG_PPC_ADV_DEBUG_REGS */

#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
static int set_dac_range(struct task_struct *child,
			 struct ppc_hw_breakpoint *bp_info)
{
	int mode = bp_info->addr_mode & PPC_BREAKPOINT_MODE_MASK;

	/* We don't allow range watchpoints to be used with DVC */
	if (bp_info->condition_mode)
		return -EINVAL;

	/*
	 * Best effort to verify the address range.  The user/supervisor bits
	 * prevent trapping in kernel space, but let's fail on an obvious bad
	 * range.  The simple test on the mask is not fool-proof, and any
	 * exclusive range will spill over into kernel space.
	 */
	if (bp_info->addr >= TASK_SIZE)
		return -EIO;
	if (mode == PPC_BREAKPOINT_MODE_MASK) {
		/*
		 * dac2 is a bitmask.  Don't allow a mask that makes a
		 * kernel space address from a valid dac1 value
		 */
		if (~((unsigned long)bp_info->addr2) >= TASK_SIZE)
			return -EIO;
	} else {
		/*
		 * For range breakpoints, addr2 must also be a valid address
		 */
		if (bp_info->addr2 >= TASK_SIZE)
			return -EIO;
	}

2716
	if (child->thread.debug.dbcr0 &
2717 2718 2719 2720
	    (DBCR0_DAC1R | DBCR0_DAC1W | DBCR0_DAC2R | DBCR0_DAC2W))
		return -ENOSPC;

	if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
2721
		child->thread.debug.dbcr0 |= (DBCR0_DAC1R | DBCR0_IDM);
2722
	if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
2723 2724 2725
		child->thread.debug.dbcr0 |= (DBCR0_DAC1W | DBCR0_IDM);
	child->thread.debug.dac1 = bp_info->addr;
	child->thread.debug.dac2 = bp_info->addr2;
2726
	if (mode == PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE)
2727
		child->thread.debug.dbcr2  |= DBCR2_DAC12M;
2728
	else if (mode == PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
2729
		child->thread.debug.dbcr2  |= DBCR2_DAC12MX;
2730
	else	/* PPC_BREAKPOINT_MODE_MASK */
2731
		child->thread.debug.dbcr2  |= DBCR2_DAC12MM;
2732 2733 2734 2735 2736 2737
	child->thread.regs->msr |= MSR_DE;

	return 5;
}
#endif /* CONFIG_PPC_ADV_DEBUG_DAC_RANGE */

2738 2739 2740
static long ppc_set_hwdebug(struct task_struct *child,
		     struct ppc_hw_breakpoint *bp_info)
{
2741 2742 2743 2744 2745 2746
#ifdef CONFIG_HAVE_HW_BREAKPOINT
	int len = 0;
	struct thread_struct *thread = &(child->thread);
	struct perf_event *bp;
	struct perf_event_attr attr;
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
2747
#ifndef CONFIG_PPC_ADV_DEBUG_REGS
2748
	struct arch_hw_breakpoint brk;
2749 2750
#endif

2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773
	if (bp_info->version != 1)
		return -ENOTSUPP;
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
	/*
	 * Check for invalid flags and combinations
	 */
	if ((bp_info->trigger_type == 0) ||
	    (bp_info->trigger_type & ~(PPC_BREAKPOINT_TRIGGER_EXECUTE |
				       PPC_BREAKPOINT_TRIGGER_RW)) ||
	    (bp_info->addr_mode & ~PPC_BREAKPOINT_MODE_MASK) ||
	    (bp_info->condition_mode &
	     ~(PPC_BREAKPOINT_CONDITION_MODE |
	       PPC_BREAKPOINT_CONDITION_BE_ALL)))
		return -EINVAL;
#if CONFIG_PPC_ADV_DEBUG_DVCS == 0
	if (bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE)
		return -EINVAL;
#endif

	if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_EXECUTE) {
		if ((bp_info->trigger_type != PPC_BREAKPOINT_TRIGGER_EXECUTE) ||
		    (bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE))
			return -EINVAL;
2774
		return set_instruction_bp(child, bp_info);
2775 2776 2777 2778 2779 2780 2781 2782 2783 2784
	}
	if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_EXACT)
		return set_dac(child, bp_info);

#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
	return set_dac_range(child, bp_info);
#else
	return -EINVAL;
#endif
#else /* !CONFIG_PPC_ADV_DEBUG_DVCS */
2785
	/*
2786
	 * We only support one data breakpoint
2787
	 */
2788 2789 2790
	if ((bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_RW) == 0 ||
	    (bp_info->trigger_type & ~PPC_BREAKPOINT_TRIGGER_RW) != 0 ||
	    bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE)
2791 2792 2793 2794 2795
		return -EINVAL;

	if ((unsigned long)bp_info->addr >= TASK_SIZE)
		return -EIO;

2796 2797
	brk.address = bp_info->addr & ~7UL;
	brk.type = HW_BRK_TYPE_TRANSLATE;
2798
	brk.len = 8;
2799
	if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
2800
		brk.type |= HW_BRK_TYPE_READ;
2801
	if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
2802
		brk.type |= HW_BRK_TYPE_WRITE;
2803 2804 2805 2806 2807
#ifdef CONFIG_HAVE_HW_BREAKPOINT
	/*
	 * Check if the request is for 'range' breakpoints. We can
	 * support it if range < 8 bytes.
	 */
2808
	if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE)
2809
		len = bp_info->addr2 - bp_info->addr;
2810
	else if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_EXACT)
2811
		len = 1;
2812
	else
2813 2814
		return -EINVAL;
	bp = thread->ptrace_bps[0];
2815
	if (bp)
2816 2817 2818 2819 2820 2821
		return -ENOSPC;

	/* Create a new breakpoint request if one doesn't exist already */
	hw_breakpoint_init(&attr);
	attr.bp_addr = (unsigned long)bp_info->addr & ~HW_BREAKPOINT_ALIGN;
	attr.bp_len = len;
2822
	arch_bp_generic_fields(brk.type, &attr.bp_type);
2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836

	thread->ptrace_bps[0] = bp = register_user_hw_breakpoint(&attr,
					       ptrace_triggered, NULL, child);
	if (IS_ERR(bp)) {
		thread->ptrace_bps[0] = NULL;
		return PTR_ERR(bp);
	}

	return 1;
#endif /* CONFIG_HAVE_HW_BREAKPOINT */

	if (bp_info->addr_mode != PPC_BREAKPOINT_MODE_EXACT)
		return -EINVAL;

2837
	if (child->thread.hw_brk.address)
2838
		return -ENOSPC;
2839

2840
	child->thread.hw_brk = brk;
2841

2842
	return 1;
2843
#endif /* !CONFIG_PPC_ADV_DEBUG_DVCS */
2844 2845
}

2846
static long ppc_del_hwdebug(struct task_struct *child, long data)
2847
{
2848 2849 2850 2851 2852
#ifdef CONFIG_HAVE_HW_BREAKPOINT
	int ret = 0;
	struct thread_struct *thread = &(child->thread);
	struct perf_event *bp;
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
2853 2854 2855 2856 2857 2858 2859 2860 2861
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
	int rc;

	if (data <= 4)
		rc = del_instruction_bp(child, (int)data);
	else
		rc = del_dac(child, (int)data - 4);

	if (!rc) {
2862 2863 2864
		if (!DBCR_ACTIVE_EVENTS(child->thread.debug.dbcr0,
					child->thread.debug.dbcr1)) {
			child->thread.debug.dbcr0 &= ~DBCR0_IDM;
2865 2866 2867 2868 2869
			child->thread.regs->msr &= ~MSR_DE;
		}
	}
	return rc;
#else
2870 2871
	if (data != 1)
		return -EINVAL;
2872 2873 2874 2875 2876 2877 2878 2879 2880 2881

#ifdef CONFIG_HAVE_HW_BREAKPOINT
	bp = thread->ptrace_bps[0];
	if (bp) {
		unregister_hw_breakpoint(bp);
		thread->ptrace_bps[0] = NULL;
	} else
		ret = -ENOENT;
	return ret;
#else /* CONFIG_HAVE_HW_BREAKPOINT */
2882
	if (child->thread.hw_brk.address == 0)
2883 2884
		return -ENOENT;

2885 2886
	child->thread.hw_brk.address = 0;
	child->thread.hw_brk.type = 0;
2887
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
2888

2889
	return 0;
2890
#endif
2891 2892
}

2893 2894
long arch_ptrace(struct task_struct *child, long request,
		 unsigned long addr, unsigned long data)
L
Linus Torvalds 已提交
2895 2896
{
	int ret = -EPERM;
2897 2898
	void __user *datavp = (void __user *) data;
	unsigned long __user *datalp = datavp;
L
Linus Torvalds 已提交
2899 2900 2901 2902 2903 2904 2905 2906

	switch (request) {
	/* read the word at location addr in the USER area. */
	case PTRACE_PEEKUSR: {
		unsigned long index, tmp;

		ret = -EIO;
		/* convert to index and check */
S
Stephen Rothwell 已提交
2907
#ifdef CONFIG_PPC32
2908
		index = addr >> 2;
S
Stephen Rothwell 已提交
2909 2910 2911
		if ((addr & 3) || (index > PT_FPSCR)
		    || (child->thread.regs == NULL))
#else
2912
		index = addr >> 3;
S
Stephen Rothwell 已提交
2913 2914
		if ((addr & 7) || (index > PT_FPSCR))
#endif
L
Linus Torvalds 已提交
2915 2916 2917 2918
			break;

		CHECK_FULL_REGS(child->thread.regs);
		if (index < PT_FPR0) {
2919 2920 2921
			ret = ptrace_get_reg(child, (int) index, &tmp);
			if (ret)
				break;
L
Linus Torvalds 已提交
2922
		} else {
2923 2924
			unsigned int fpidx = index - PT_FPR0;

S
Stephen Rothwell 已提交
2925
			flush_fp_to_thread(child);
2926
			if (fpidx < (PT_FPSCR - PT_FPR0))
2927
				memcpy(&tmp, &child->thread.TS_FPR(fpidx),
2928
				       sizeof(long));
2929
			else
2930
				tmp = child->thread.fp_state.fpscr;
L
Linus Torvalds 已提交
2931
		}
2932
		ret = put_user(tmp, datalp);
L
Linus Torvalds 已提交
2933 2934 2935 2936 2937 2938 2939 2940 2941
		break;
	}

	/* write the word at location addr in the USER area */
	case PTRACE_POKEUSR: {
		unsigned long index;

		ret = -EIO;
		/* convert to index and check */
S
Stephen Rothwell 已提交
2942
#ifdef CONFIG_PPC32
2943
		index = addr >> 2;
S
Stephen Rothwell 已提交
2944 2945 2946
		if ((addr & 3) || (index > PT_FPSCR)
		    || (child->thread.regs == NULL))
#else
2947
		index = addr >> 3;
S
Stephen Rothwell 已提交
2948 2949
		if ((addr & 7) || (index > PT_FPSCR))
#endif
L
Linus Torvalds 已提交
2950 2951 2952 2953
			break;

		CHECK_FULL_REGS(child->thread.regs);
		if (index < PT_FPR0) {
2954
			ret = ptrace_put_reg(child, index, data);
L
Linus Torvalds 已提交
2955
		} else {
2956 2957
			unsigned int fpidx = index - PT_FPR0;

S
Stephen Rothwell 已提交
2958
			flush_fp_to_thread(child);
2959
			if (fpidx < (PT_FPSCR - PT_FPR0))
2960
				memcpy(&child->thread.TS_FPR(fpidx), &data,
2961
				       sizeof(long));
2962
			else
2963
				child->thread.fp_state.fpscr = data;
L
Linus Torvalds 已提交
2964 2965 2966 2967 2968
			ret = 0;
		}
		break;
	}

2969 2970 2971 2972
	case PPC_PTRACE_GETHWDBGINFO: {
		struct ppc_debug_info dbginfo;

		dbginfo.version = 1;
2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
		dbginfo.num_instruction_bps = CONFIG_PPC_ADV_DEBUG_IACS;
		dbginfo.num_data_bps = CONFIG_PPC_ADV_DEBUG_DACS;
		dbginfo.num_condition_regs = CONFIG_PPC_ADV_DEBUG_DVCS;
		dbginfo.data_bp_alignment = 4;
		dbginfo.sizeof_condition = 4;
		dbginfo.features = PPC_DEBUG_FEATURE_INSN_BP_RANGE |
				   PPC_DEBUG_FEATURE_INSN_BP_MASK;
#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
		dbginfo.features |=
				   PPC_DEBUG_FEATURE_DATA_BP_RANGE |
				   PPC_DEBUG_FEATURE_DATA_BP_MASK;
#endif
#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
2987 2988 2989 2990 2991 2992 2993 2994 2995
		dbginfo.num_instruction_bps = 0;
		dbginfo.num_data_bps = 1;
		dbginfo.num_condition_regs = 0;
#ifdef CONFIG_PPC64
		dbginfo.data_bp_alignment = 8;
#else
		dbginfo.data_bp_alignment = 4;
#endif
		dbginfo.sizeof_condition = 0;
2996 2997
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		dbginfo.features = PPC_DEBUG_FEATURE_DATA_BP_RANGE;
2998 2999
		if (cpu_has_feature(CPU_FTR_DAWR))
			dbginfo.features |= PPC_DEBUG_FEATURE_DATA_BP_DAWR;
3000
#else
3001
		dbginfo.features = 0;
3002
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
3003
#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
3004

3005
		if (!access_ok(VERIFY_WRITE, datavp,
3006 3007
			       sizeof(struct ppc_debug_info)))
			return -EFAULT;
3008 3009
		ret = __copy_to_user(datavp, &dbginfo,
				     sizeof(struct ppc_debug_info)) ?
3010 3011 3012 3013 3014 3015 3016
		      -EFAULT : 0;
		break;
	}

	case PPC_PTRACE_SETHWDEBUG: {
		struct ppc_hw_breakpoint bp_info;

3017
		if (!access_ok(VERIFY_READ, datavp,
3018 3019
			       sizeof(struct ppc_hw_breakpoint)))
			return -EFAULT;
3020
		ret = __copy_from_user(&bp_info, datavp,
3021 3022 3023 3024 3025 3026 3027 3028
				       sizeof(struct ppc_hw_breakpoint)) ?
		      -EFAULT : 0;
		if (!ret)
			ret = ppc_set_hwdebug(child, &bp_info);
		break;
	}

	case PPC_PTRACE_DELHWDEBUG: {
3029
		ret = ppc_del_hwdebug(child, data);
3030 3031 3032
		break;
	}

S
Stephen Rothwell 已提交
3033
	case PTRACE_GET_DEBUGREG: {
3034 3035 3036
#ifndef CONFIG_PPC_ADV_DEBUG_REGS
		unsigned long dabr_fake;
#endif
S
Stephen Rothwell 已提交
3037 3038 3039 3040
		ret = -EINVAL;
		/* We only support one DABR and no IABRS at the moment */
		if (addr > 0)
			break;
3041
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
3042
		ret = put_user(child->thread.debug.dac1, datalp);
3043
#else
3044 3045 3046
		dabr_fake = ((child->thread.hw_brk.address & (~HW_BRK_TYPE_DABR)) |
			     (child->thread.hw_brk.type & HW_BRK_TYPE_DABR));
		ret = put_user(dabr_fake, datalp);
3047
#endif
S
Stephen Rothwell 已提交
3048 3049 3050 3051 3052 3053 3054
		break;
	}

	case PTRACE_SET_DEBUGREG:
		ret = ptrace_set_debugreg(child, addr, data);
		break;

3055 3056 3057
#ifdef CONFIG_PPC64
	case PTRACE_GETREGS64:
#endif
3058 3059 3060 3061
	case PTRACE_GETREGS:	/* Get all pt_regs from the child. */
		return copy_regset_to_user(child, &user_ppc_native_view,
					   REGSET_GPR,
					   0, sizeof(struct pt_regs),
3062
					   datavp);
S
Stephen Rothwell 已提交
3063

3064 3065 3066
#ifdef CONFIG_PPC64
	case PTRACE_SETREGS64:
#endif
3067 3068 3069 3070
	case PTRACE_SETREGS:	/* Set all gp regs in the child. */
		return copy_regset_from_user(child, &user_ppc_native_view,
					     REGSET_GPR,
					     0, sizeof(struct pt_regs),
3071
					     datavp);
3072 3073 3074 3075 3076

	case PTRACE_GETFPREGS: /* Get the child FPU state (FPR0...31 + FPSCR) */
		return copy_regset_to_user(child, &user_ppc_native_view,
					   REGSET_FPR,
					   0, sizeof(elf_fpregset_t),
3077
					   datavp);
3078 3079 3080 3081 3082

	case PTRACE_SETFPREGS: /* Set the child FPU state (FPR0...31 + FPSCR) */
		return copy_regset_from_user(child, &user_ppc_native_view,
					     REGSET_FPR,
					     0, sizeof(elf_fpregset_t),
3083
					     datavp);
S
Stephen Rothwell 已提交
3084

L
Linus Torvalds 已提交
3085 3086
#ifdef CONFIG_ALTIVEC
	case PTRACE_GETVRREGS:
3087 3088 3089 3090
		return copy_regset_to_user(child, &user_ppc_native_view,
					   REGSET_VMX,
					   0, (33 * sizeof(vector128) +
					       sizeof(u32)),
3091
					   datavp);
L
Linus Torvalds 已提交
3092 3093

	case PTRACE_SETVRREGS:
3094 3095 3096 3097
		return copy_regset_from_user(child, &user_ppc_native_view,
					     REGSET_VMX,
					     0, (33 * sizeof(vector128) +
						 sizeof(u32)),
3098
					     datavp);
L
Linus Torvalds 已提交
3099
#endif
3100 3101 3102 3103
#ifdef CONFIG_VSX
	case PTRACE_GETVSRREGS:
		return copy_regset_to_user(child, &user_ppc_native_view,
					   REGSET_VSX,
3104
					   0, 32 * sizeof(double),
3105
					   datavp);
3106 3107 3108 3109

	case PTRACE_SETVSRREGS:
		return copy_regset_from_user(child, &user_ppc_native_view,
					     REGSET_VSX,
3110
					     0, 32 * sizeof(double),
3111
					     datavp);
3112
#endif
L
Linus Torvalds 已提交
3113 3114 3115
#ifdef CONFIG_SPE
	case PTRACE_GETEVRREGS:
		/* Get the child spe register state. */
3116 3117
		return copy_regset_to_user(child, &user_ppc_native_view,
					   REGSET_SPE, 0, 35 * sizeof(u32),
3118
					   datavp);
L
Linus Torvalds 已提交
3119 3120 3121

	case PTRACE_SETEVRREGS:
		/* Set the child spe register state. */
3122 3123
		return copy_regset_from_user(child, &user_ppc_native_view,
					     REGSET_SPE, 0, 35 * sizeof(u32),
3124
					     datavp);
L
Linus Torvalds 已提交
3125 3126 3127 3128 3129 3130 3131 3132 3133
#endif

	default:
		ret = ptrace_request(child, request, addr, data);
		break;
	}
	return ret;
}

3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153
#ifdef CONFIG_SECCOMP
static int do_seccomp(struct pt_regs *regs)
{
	if (!test_thread_flag(TIF_SECCOMP))
		return 0;

	/*
	 * The ABI we present to seccomp tracers is that r3 contains
	 * the syscall return value and orig_gpr3 contains the first
	 * syscall parameter. This is different to the ptrace ABI where
	 * both r3 and orig_gpr3 contain the first syscall parameter.
	 */
	regs->gpr[3] = -ENOSYS;

	/*
	 * We use the __ version here because we have already checked
	 * TIF_SECCOMP. If this fails, there is nothing left to do, we
	 * have already loaded -ENOSYS into r3, or seccomp has put
	 * something else in r3 (via SECCOMP_RET_ERRNO/TRACE).
	 */
3154
	if (__secure_computing(NULL))
3155 3156 3157 3158
		return -1;

	/*
	 * The syscall was allowed by seccomp, restore the register
3159
	 * state to what audit expects.
3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171
	 * Note that we use orig_gpr3, which means a seccomp tracer can
	 * modify the first syscall parameter (in orig_gpr3) and also
	 * allow the syscall to proceed.
	 */
	regs->gpr[3] = regs->orig_gpr3;

	return 0;
}
#else
static inline int do_seccomp(struct pt_regs *regs) { return 0; }
#endif /* CONFIG_SECCOMP */

3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189
/**
 * do_syscall_trace_enter() - Do syscall tracing on kernel entry.
 * @regs: the pt_regs of the task to trace (current)
 *
 * Performs various types of tracing on syscall entry. This includes seccomp,
 * ptrace, syscall tracepoints and audit.
 *
 * The pt_regs are potentially visible to userspace via ptrace, so their
 * contents is ABI.
 *
 * One or more of the tracers may modify the contents of pt_regs, in particular
 * to modify arguments or even the syscall number itself.
 *
 * It's also possible that a tracer can choose to reject the system call. In
 * that case this function will return an illegal syscall number, and will put
 * an appropriate return value in regs->r3.
 *
 * Return: the (possibly changed) syscall number.
3190 3191
 */
long do_syscall_trace_enter(struct pt_regs *regs)
L
Linus Torvalds 已提交
3192
{
3193 3194
	user_exit();

3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205
	/*
	 * The tracer may decide to abort the syscall, if so tracehook
	 * will return !0. Note that the tracer may also just change
	 * regs->gpr[0] to an invalid syscall number, that is handled
	 * below on the exit path.
	 */
	if (test_thread_flag(TIF_SYSCALL_TRACE) &&
	    tracehook_report_syscall_entry(regs))
		goto skip;

	/* Run seccomp after ptrace; allow it to set gpr[3]. */
3206 3207
	if (do_seccomp(regs))
		return -1;
S
Stephen Rothwell 已提交
3208

3209 3210 3211
	/* Avoid trace and audit when syscall is invalid. */
	if (regs->gpr[0] >= NR_syscalls)
		goto skip;
3212

3213 3214 3215
	if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
		trace_sys_enter(regs, regs->gpr[0]);

3216
#ifdef CONFIG_PPC64
3217
	if (!is_32bit_task())
3218
		audit_syscall_entry(regs->gpr[0], regs->gpr[3], regs->gpr[4],
3219 3220
				    regs->gpr[5], regs->gpr[6]);
	else
S
Stephen Rothwell 已提交
3221
#endif
3222
		audit_syscall_entry(regs->gpr[0],
3223 3224 3225 3226
				    regs->gpr[3] & 0xffffffff,
				    regs->gpr[4] & 0xffffffff,
				    regs->gpr[5] & 0xffffffff,
				    regs->gpr[6] & 0xffffffff);
3227

3228 3229
	/* Return the possibly modified but valid syscall number */
	return regs->gpr[0];
3230 3231 3232 3233 3234 3235 3236 3237

skip:
	/*
	 * If we are aborting explicitly, or if the syscall number is
	 * now invalid, set the return value to -ENOSYS.
	 */
	regs->gpr[3] = -ENOSYS;
	return -1;
3238 3239 3240 3241
}

void do_syscall_trace_leave(struct pt_regs *regs)
{
3242 3243
	int step;

3244
	audit_syscall_exit(regs);
3245

3246 3247 3248
	if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
		trace_sys_exit(regs, regs->result);

3249 3250 3251
	step = test_thread_flag(TIF_SINGLESTEP);
	if (step || test_thread_flag(TIF_SYSCALL_TRACE))
		tracehook_report_syscall_exit(regs, step);
3252 3253

	user_enter();
3254
}