vgic.c 65.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright (C) 2012 ARM Ltd.
 * Author: Marc Zyngier <marc.zyngier@arm.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 */

19
#include <linux/cpu.h>
20 21 22 23
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/interrupt.h>
#include <linux/io.h>
24 25 26
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
27
#include <linux/uaccess.h>
28 29 30

#include <linux/irqchip/arm-gic.h>

31
#include <asm/kvm_emulate.h>
32 33
#include <asm/kvm_arm.h>
#include <asm/kvm_mmu.h>
34

35 36 37 38
/*
 * How the whole thing works (courtesy of Christoffer Dall):
 *
 * - At any time, the dist->irq_pending_on_cpu is the oracle that knows if
39 40 41 42 43
 *   something is pending on the CPU interface.
 * - Interrupts that are pending on the distributor are stored on the
 *   vgic.irq_pending vgic bitmap (this bitmap is updated by both user land
 *   ioctls and guest mmio ops, and other in-kernel peripherals such as the
 *   arch. timers).
44 45 46 47
 * - Every time the bitmap changes, the irq_pending_on_cpu oracle is
 *   recalculated
 * - To calculate the oracle, we need info for each cpu from
 *   compute_pending_for_cpu, which considers:
48 49
 *   - PPI: dist->irq_pending & dist->irq_enable
 *   - SPI: dist->irq_pending & dist->irq_enable & dist->irq_spi_target
50
 *   - irq_spi_target is a 'formatted' version of the GICD_ITARGETSRn
51 52 53
 *     registers, stored on each vcpu. We only keep one bit of
 *     information per interrupt, making sure that only one vcpu can
 *     accept the interrupt.
54
 * - If any of the above state changes, we must recalculate the oracle.
55 56 57 58 59 60 61 62 63
 * - The same is true when injecting an interrupt, except that we only
 *   consider a single interrupt at a time. The irq_spi_cpu array
 *   contains the target CPU for each SPI.
 *
 * The handling of level interrupts adds some extra complexity. We
 * need to track when the interrupt has been EOIed, so we can sample
 * the 'line' again. This is achieved as such:
 *
 * - When a level interrupt is moved onto a vcpu, the corresponding
64
 *   bit in irq_queued is set. As long as this bit is set, the line
65 66 67 68
 *   will be ignored for further interrupts. The interrupt is injected
 *   into the vcpu with the GICH_LR_EOI bit set (generate a
 *   maintenance interrupt on EOI).
 * - When the interrupt is EOIed, the maintenance interrupt fires,
69
 *   and clears the corresponding bit in irq_queued. This allows the
70
 *   interrupt line to be sampled again.
71 72 73 74 75
 * - Note that level-triggered interrupts can also be set to pending from
 *   writes to GICD_ISPENDRn and lowering the external input line does not
 *   cause the interrupt to become inactive in such a situation.
 *   Conversely, writes to GICD_ICPENDRn do not cause the interrupt to become
 *   inactive as long as the external input line is held high.
76 77
 */

78 79 80
#define VGIC_ADDR_UNDEF		(-1)
#define IS_VGIC_ADDR_UNDEF(_x)  ((_x) == VGIC_ADDR_UNDEF)

81 82 83 84
#define PRODUCT_ID_KVM		0x4b	/* ASCII code K */
#define IMPLEMENTER_ARM		0x43b
#define GICC_ARCH_VERSION_V2	0x2

85 86 87 88 89 90 91 92 93
#define ACCESS_READ_VALUE	(1 << 0)
#define ACCESS_READ_RAZ		(0 << 0)
#define ACCESS_READ_MASK(x)	((x) & (1 << 0))
#define ACCESS_WRITE_IGNORED	(0 << 1)
#define ACCESS_WRITE_SETBIT	(1 << 1)
#define ACCESS_WRITE_CLEARBIT	(2 << 1)
#define ACCESS_WRITE_VALUE	(3 << 1)
#define ACCESS_WRITE_MASK(x)	((x) & (3 << 1))

94
static int vgic_init(struct kvm *kvm);
95
static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu);
96
static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu);
97
static void vgic_update_state(struct kvm *kvm);
98
static void vgic_kick_vcpus(struct kvm *kvm);
99
static u8 *vgic_get_sgi_sources(struct vgic_dist *dist, int vcpu_id, int sgi);
100
static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg);
101 102
static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr);
static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr, struct vgic_lr lr_desc);
103 104
static void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr);
static void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr);
105

106 107
static const struct vgic_ops *vgic_ops;
static const struct vgic_params *vgic;
108

109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
static void add_sgi_source(struct kvm_vcpu *vcpu, int irq, int source)
{
	vcpu->kvm->arch.vgic.vm_ops.add_sgi_source(vcpu, irq, source);
}

static bool queue_sgi(struct kvm_vcpu *vcpu, int irq)
{
	return vcpu->kvm->arch.vgic.vm_ops.queue_sgi(vcpu, irq);
}

int kvm_vgic_map_resources(struct kvm *kvm)
{
	return kvm->arch.vgic.vm_ops.map_resources(kvm, vgic);
}

124
/*
125 126
 * struct vgic_bitmap contains a bitmap made of unsigned longs, but
 * extracts u32s out of them.
127 128 129 130 131 132 133 134 135 136 137 138 139 140
 *
 * This does not work on 64-bit BE systems, because the bitmap access
 * will store two consecutive 32-bit words with the higher-addressed
 * register's bits at the lower index and the lower-addressed register's
 * bits at the higher index.
 *
 * Therefore, swizzle the register index when accessing the 32-bit word
 * registers to access the right register's value.
 */
#if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 64
#define REG_OFFSET_SWIZZLE	1
#else
#define REG_OFFSET_SWIZZLE	0
#endif
141

142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
static int vgic_init_bitmap(struct vgic_bitmap *b, int nr_cpus, int nr_irqs)
{
	int nr_longs;

	nr_longs = nr_cpus + BITS_TO_LONGS(nr_irqs - VGIC_NR_PRIVATE_IRQS);

	b->private = kzalloc(sizeof(unsigned long) * nr_longs, GFP_KERNEL);
	if (!b->private)
		return -ENOMEM;

	b->shared = b->private + nr_cpus;

	return 0;
}

static void vgic_free_bitmap(struct vgic_bitmap *b)
{
	kfree(b->private);
	b->private = NULL;
	b->shared = NULL;
}

164 165 166 167 168 169 170 171 172 173 174 175 176 177
/*
 * Call this function to convert a u64 value to an unsigned long * bitmask
 * in a way that works on both 32-bit and 64-bit LE and BE platforms.
 *
 * Warning: Calling this function may modify *val.
 */
static unsigned long *u64_to_bitmask(u64 *val)
{
#if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 32
	*val = (*val >> 32) | (*val << 32);
#endif
	return (unsigned long *)val;
}

178 179 180 181 182
static u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x,
				int cpuid, u32 offset)
{
	offset >>= 2;
	if (!offset)
183
		return (u32 *)(x->private + cpuid) + REG_OFFSET_SWIZZLE;
184
	else
185
		return (u32 *)(x->shared) + ((offset - 1) ^ REG_OFFSET_SWIZZLE);
186 187 188 189 190 191
}

static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x,
				   int cpuid, int irq)
{
	if (irq < VGIC_NR_PRIVATE_IRQS)
192
		return test_bit(irq, x->private + cpuid);
193

194
	return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared);
195 196 197 198 199 200 201 202
}

static void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
				    int irq, int val)
{
	unsigned long *reg;

	if (irq < VGIC_NR_PRIVATE_IRQS) {
203
		reg = x->private + cpuid;
204
	} else {
205
		reg = x->shared;
206 207 208 209 210 211 212 213 214 215 216
		irq -= VGIC_NR_PRIVATE_IRQS;
	}

	if (val)
		set_bit(irq, reg);
	else
		clear_bit(irq, reg);
}

static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid)
{
217
	return x->private + cpuid;
218 219 220 221
}

static unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x)
{
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
	return x->shared;
}

static int vgic_init_bytemap(struct vgic_bytemap *x, int nr_cpus, int nr_irqs)
{
	int size;

	size  = nr_cpus * VGIC_NR_PRIVATE_IRQS;
	size += nr_irqs - VGIC_NR_PRIVATE_IRQS;

	x->private = kzalloc(size, GFP_KERNEL);
	if (!x->private)
		return -ENOMEM;

	x->shared = x->private + nr_cpus * VGIC_NR_PRIVATE_IRQS / sizeof(u32);
	return 0;
}

static void vgic_free_bytemap(struct vgic_bytemap *b)
{
	kfree(b->private);
	b->private = NULL;
	b->shared = NULL;
245 246 247 248
}

static u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset)
{
249 250 251 252 253 254 255 256 257 258 259
	u32 *reg;

	if (offset < VGIC_NR_PRIVATE_IRQS) {
		reg = x->private;
		offset += cpuid * VGIC_NR_PRIVATE_IRQS;
	} else {
		reg = x->shared;
		offset -= VGIC_NR_PRIVATE_IRQS;
	}

	return reg + (offset / sizeof(u32));
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
}

#define VGIC_CFG_LEVEL	0
#define VGIC_CFG_EDGE	1

static bool vgic_irq_is_edge(struct kvm_vcpu *vcpu, int irq)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
	int irq_val;

	irq_val = vgic_bitmap_get_irq_val(&dist->irq_cfg, vcpu->vcpu_id, irq);
	return irq_val == VGIC_CFG_EDGE;
}

static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq);
}

281
static int vgic_irq_is_queued(struct kvm_vcpu *vcpu, int irq)
282 283 284
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

285
	return vgic_bitmap_get_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq);
286 287
}

288
static void vgic_irq_set_queued(struct kvm_vcpu *vcpu, int irq)
289 290 291
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

292
	vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 1);
293 294
}

295
static void vgic_irq_clear_queued(struct kvm_vcpu *vcpu, int irq)
296 297 298
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

299
	vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 0);
300 301
}

302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
static int vgic_dist_irq_get_level(struct kvm_vcpu *vcpu, int irq)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	return vgic_bitmap_get_irq_val(&dist->irq_level, vcpu->vcpu_id, irq);
}

static void vgic_dist_irq_set_level(struct kvm_vcpu *vcpu, int irq)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 1);
}

static void vgic_dist_irq_clear_level(struct kvm_vcpu *vcpu, int irq)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 0);
}

static int vgic_dist_irq_soft_pend(struct kvm_vcpu *vcpu, int irq)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	return vgic_bitmap_get_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq);
}

static void vgic_dist_irq_clear_soft_pend(struct kvm_vcpu *vcpu, int irq)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	vgic_bitmap_set_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq, 0);
}

337 338 339 340
static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

341
	return vgic_bitmap_get_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq);
342 343
}

344
static void vgic_dist_irq_set_pending(struct kvm_vcpu *vcpu, int irq)
345 346 347
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

348
	vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 1);
349 350
}

351
static void vgic_dist_irq_clear_pending(struct kvm_vcpu *vcpu, int irq)
352 353 354
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

355
	vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 0);
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
}

static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq)
{
	if (irq < VGIC_NR_PRIVATE_IRQS)
		set_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
	else
		set_bit(irq - VGIC_NR_PRIVATE_IRQS,
			vcpu->arch.vgic_cpu.pending_shared);
}

static void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq)
{
	if (irq < VGIC_NR_PRIVATE_IRQS)
		clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
	else
		clear_bit(irq - VGIC_NR_PRIVATE_IRQS,
			  vcpu->arch.vgic_cpu.pending_shared);
}

376 377 378 379 380
static bool vgic_can_sample_irq(struct kvm_vcpu *vcpu, int irq)
{
	return vgic_irq_is_edge(vcpu, irq) || !vgic_irq_is_queued(vcpu, irq);
}

381 382
static u32 mmio_data_read(struct kvm_exit_mmio *mmio, u32 mask)
{
383
	return le32_to_cpu(*((u32 *)mmio->data)) & mask;
384 385 386 387
}

static void mmio_data_write(struct kvm_exit_mmio *mmio, u32 mask, u32 value)
{
388
	*((u32 *)mmio->data) = cpu_to_le32(value) & mask;
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
}

/**
 * vgic_reg_access - access vgic register
 * @mmio:   pointer to the data describing the mmio access
 * @reg:    pointer to the virtual backing of vgic distributor data
 * @offset: least significant 2 bits used for word offset
 * @mode:   ACCESS_ mode (see defines above)
 *
 * Helper to make vgic register access easier using one of the access
 * modes defined for vgic register access
 * (read,raz,write-ignored,setbit,clearbit,write)
 */
static void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
			    phys_addr_t offset, int mode)
{
	int word_offset = (offset & 3) * 8;
	u32 mask = (1UL << (mmio->len * 8)) - 1;
	u32 regval;

	/*
	 * Any alignment fault should have been delivered to the guest
	 * directly (ARM ARM B3.12.7 "Prioritization of aborts").
	 */

	if (reg) {
		regval = *reg;
	} else {
		BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED));
		regval = 0;
	}

	if (mmio->is_write) {
		u32 data = mmio_data_read(mmio, mask) << word_offset;
		switch (ACCESS_WRITE_MASK(mode)) {
		case ACCESS_WRITE_IGNORED:
			return;

		case ACCESS_WRITE_SETBIT:
			regval |= data;
			break;

		case ACCESS_WRITE_CLEARBIT:
			regval &= ~data;
			break;

		case ACCESS_WRITE_VALUE:
			regval = (regval & ~(mask << word_offset)) | data;
			break;
		}
		*reg = regval;
	} else {
		switch (ACCESS_READ_MASK(mode)) {
		case ACCESS_READ_RAZ:
			regval = 0;
			/* fall through */

		case ACCESS_READ_VALUE:
			mmio_data_write(mmio, mask, regval >> word_offset);
		}
	}
}

452 453 454 455 456 457 458
static bool handle_mmio_misc(struct kvm_vcpu *vcpu,
			     struct kvm_exit_mmio *mmio, phys_addr_t offset)
{
	u32 reg;
	u32 word_offset = offset & 3;

	switch (offset & ~3) {
459
	case 0:			/* GICD_CTLR */
460 461 462 463 464 465 466 467 468 469
		reg = vcpu->kvm->arch.vgic.enabled;
		vgic_reg_access(mmio, &reg, word_offset,
				ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
		if (mmio->is_write) {
			vcpu->kvm->arch.vgic.enabled = reg & 1;
			vgic_update_state(vcpu->kvm);
			return true;
		}
		break;

470
	case 4:			/* GICD_TYPER */
471
		reg  = (atomic_read(&vcpu->kvm->online_vcpus) - 1) << 5;
472
		reg |= (vcpu->kvm->arch.vgic.nr_irqs >> 5) - 1;
473 474 475 476
		vgic_reg_access(mmio, &reg, word_offset,
				ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
		break;

477 478
	case 8:			/* GICD_IIDR */
		reg = (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
		vgic_reg_access(mmio, &reg, word_offset,
				ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
		break;
	}

	return false;
}

static bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu,
			       struct kvm_exit_mmio *mmio, phys_addr_t offset)
{
	vgic_reg_access(mmio, NULL, offset,
			ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
	return false;
}

static bool handle_mmio_set_enable_reg(struct kvm_vcpu *vcpu,
				       struct kvm_exit_mmio *mmio,
				       phys_addr_t offset)
{
	u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled,
				       vcpu->vcpu_id, offset);
	vgic_reg_access(mmio, reg, offset,
			ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
	if (mmio->is_write) {
		vgic_update_state(vcpu->kvm);
		return true;
	}

	return false;
}

static bool handle_mmio_clear_enable_reg(struct kvm_vcpu *vcpu,
					 struct kvm_exit_mmio *mmio,
					 phys_addr_t offset)
{
	u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled,
				       vcpu->vcpu_id, offset);
	vgic_reg_access(mmio, reg, offset,
			ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
	if (mmio->is_write) {
		if (offset < 4) /* Force SGI enabled */
			*reg |= 0xffff;
522
		vgic_retire_disabled_irqs(vcpu);
523 524 525 526 527 528 529 530 531 532 533
		vgic_update_state(vcpu->kvm);
		return true;
	}

	return false;
}

static bool handle_mmio_set_pending_reg(struct kvm_vcpu *vcpu,
					struct kvm_exit_mmio *mmio,
					phys_addr_t offset)
{
534
	u32 *reg, orig;
535 536 537 538 539 540 541 542
	u32 level_mask;
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	reg = vgic_bitmap_get_reg(&dist->irq_cfg, vcpu->vcpu_id, offset);
	level_mask = (~(*reg));

	/* Mark both level and edge triggered irqs as pending */
	reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu->vcpu_id, offset);
543
	orig = *reg;
544 545
	vgic_reg_access(mmio, reg, offset,
			ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
546

547
	if (mmio->is_write) {
548 549 550 551 552 553 554
		/* Set the soft-pending flag only for level-triggered irqs */
		reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
					  vcpu->vcpu_id, offset);
		vgic_reg_access(mmio, reg, offset,
				ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
		*reg &= level_mask;

555 556 557 558 559 560
		/* Ignore writes to SGIs */
		if (offset < 2) {
			*reg &= ~0xffff;
			*reg |= orig & 0xffff;
		}

561 562 563 564 565 566 567 568 569 570 571
		vgic_update_state(vcpu->kvm);
		return true;
	}

	return false;
}

static bool handle_mmio_clear_pending_reg(struct kvm_vcpu *vcpu,
					  struct kvm_exit_mmio *mmio,
					  phys_addr_t offset)
{
572
	u32 *level_active;
573
	u32 *reg, orig;
574 575 576
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu->vcpu_id, offset);
577
	orig = *reg;
578 579 580
	vgic_reg_access(mmio, reg, offset,
			ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
	if (mmio->is_write) {
581 582 583 584 585 586 587
		/* Re-set level triggered level-active interrupts */
		level_active = vgic_bitmap_get_reg(&dist->irq_level,
					  vcpu->vcpu_id, offset);
		reg = vgic_bitmap_get_reg(&dist->irq_pending,
					  vcpu->vcpu_id, offset);
		*reg |= *level_active;

588 589 590 591 592 593
		/* Ignore writes to SGIs */
		if (offset < 2) {
			*reg &= ~0xffff;
			*reg |= orig & 0xffff;
		}

594 595 596 597 598 599
		/* Clear soft-pending flags */
		reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
					  vcpu->vcpu_id, offset);
		vgic_reg_access(mmio, reg, offset,
				ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);

600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
		vgic_update_state(vcpu->kvm);
		return true;
	}

	return false;
}

static bool handle_mmio_priority_reg(struct kvm_vcpu *vcpu,
				     struct kvm_exit_mmio *mmio,
				     phys_addr_t offset)
{
	u32 *reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority,
					vcpu->vcpu_id, offset);
	vgic_reg_access(mmio, reg, offset,
			ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
	return false;
}

#define GICD_ITARGETSR_SIZE	32
#define GICD_CPUTARGETS_BITS	8
#define GICD_IRQS_PER_ITARGETSR	(GICD_ITARGETSR_SIZE / GICD_CPUTARGETS_BITS)
static u32 vgic_get_target_reg(struct kvm *kvm, int irq)
{
	struct vgic_dist *dist = &kvm->arch.vgic;
624
	int i;
625 626 627 628
	u32 val = 0;

	irq -= VGIC_NR_PRIVATE_IRQS;

629 630
	for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++)
		val |= 1 << (dist->irq_spi_cpu[irq + i] + i * 8);
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732

	return val;
}

static void vgic_set_target_reg(struct kvm *kvm, u32 val, int irq)
{
	struct vgic_dist *dist = &kvm->arch.vgic;
	struct kvm_vcpu *vcpu;
	int i, c;
	unsigned long *bmap;
	u32 target;

	irq -= VGIC_NR_PRIVATE_IRQS;

	/*
	 * Pick the LSB in each byte. This ensures we target exactly
	 * one vcpu per IRQ. If the byte is null, assume we target
	 * CPU0.
	 */
	for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++) {
		int shift = i * GICD_CPUTARGETS_BITS;
		target = ffs((val >> shift) & 0xffU);
		target = target ? (target - 1) : 0;
		dist->irq_spi_cpu[irq + i] = target;
		kvm_for_each_vcpu(c, vcpu, kvm) {
			bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[c]);
			if (c == target)
				set_bit(irq + i, bmap);
			else
				clear_bit(irq + i, bmap);
		}
	}
}

static bool handle_mmio_target_reg(struct kvm_vcpu *vcpu,
				   struct kvm_exit_mmio *mmio,
				   phys_addr_t offset)
{
	u32 reg;

	/* We treat the banked interrupts targets as read-only */
	if (offset < 32) {
		u32 roreg = 1 << vcpu->vcpu_id;
		roreg |= roreg << 8;
		roreg |= roreg << 16;

		vgic_reg_access(mmio, &roreg, offset,
				ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
		return false;
	}

	reg = vgic_get_target_reg(vcpu->kvm, offset & ~3U);
	vgic_reg_access(mmio, &reg, offset,
			ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
	if (mmio->is_write) {
		vgic_set_target_reg(vcpu->kvm, reg, offset & ~3U);
		vgic_update_state(vcpu->kvm);
		return true;
	}

	return false;
}

static u32 vgic_cfg_expand(u16 val)
{
	u32 res = 0;
	int i;

	/*
	 * Turn a 16bit value like abcd...mnop into a 32bit word
	 * a0b0c0d0...m0n0o0p0, which is what the HW cfg register is.
	 */
	for (i = 0; i < 16; i++)
		res |= ((val >> i) & VGIC_CFG_EDGE) << (2 * i + 1);

	return res;
}

static u16 vgic_cfg_compress(u32 val)
{
	u16 res = 0;
	int i;

	/*
	 * Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like
	 * abcd...mnop which is what we really care about.
	 */
	for (i = 0; i < 16; i++)
		res |= ((val >> (i * 2 + 1)) & VGIC_CFG_EDGE) << i;

	return res;
}

/*
 * The distributor uses 2 bits per IRQ for the CFG register, but the
 * LSB is always 0. As such, we only keep the upper bit, and use the
 * two above functions to compress/expand the bits
 */
static bool handle_mmio_cfg_reg(struct kvm_vcpu *vcpu,
				struct kvm_exit_mmio *mmio, phys_addr_t offset)
{
	u32 val;
733 734 735
	u32 *reg;

	reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg,
736
				  vcpu->vcpu_id, offset >> 1);
737

738
	if (offset & 4)
739 740 741 742 743 744 745 746
		val = *reg >> 16;
	else
		val = *reg & 0xffff;

	val = vgic_cfg_expand(val);
	vgic_reg_access(mmio, &val, offset,
			ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
	if (mmio->is_write) {
747
		if (offset < 8) {
748 749 750 751 752
			*reg = ~0U; /* Force PPIs/SGIs to 1 */
			return false;
		}

		val = vgic_cfg_compress(val);
753
		if (offset & 4) {
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
			*reg &= 0xffff;
			*reg |= val << 16;
		} else {
			*reg &= 0xffff << 16;
			*reg |= val;
		}
	}

	return false;
}

static bool handle_mmio_sgi_reg(struct kvm_vcpu *vcpu,
				struct kvm_exit_mmio *mmio, phys_addr_t offset)
{
	u32 reg;
	vgic_reg_access(mmio, &reg, offset,
			ACCESS_READ_RAZ | ACCESS_WRITE_VALUE);
	if (mmio->is_write) {
		vgic_dispatch_sgi(vcpu, reg);
		vgic_update_state(vcpu->kvm);
		return true;
	}

	return false;
}

780 781 782 783 784 785 786
static void vgic_v2_add_sgi_source(struct kvm_vcpu *vcpu, int irq, int source)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	*vgic_get_sgi_sources(dist, vcpu->vcpu_id, irq) |= 1 << source;
}

787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
/**
 * vgic_unqueue_irqs - move pending IRQs from LRs to the distributor
 * @vgic_cpu: Pointer to the vgic_cpu struct holding the LRs
 *
 * Move any pending IRQs that have already been assigned to LRs back to the
 * emulated distributor state so that the complete emulated state can be read
 * from the main emulation structures without investigating the LRs.
 *
 * Note that IRQs in the active state in the LRs get their pending state moved
 * to the distributor but the active state stays in the LRs, because we don't
 * track the active state on the distributor side.
 */
static void vgic_unqueue_irqs(struct kvm_vcpu *vcpu)
{
	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
802
	int i;
803 804

	for_each_set_bit(i, vgic_cpu->lr_used, vgic_cpu->nr_lr) {
805
		struct vgic_lr lr = vgic_get_lr(vcpu, i);
806 807 808 809 810 811 812 813 814 815 816

		/*
		 * There are three options for the state bits:
		 *
		 * 01: pending
		 * 10: active
		 * 11: pending and active
		 *
		 * If the LR holds only an active interrupt (not pending) then
		 * just leave it alone.
		 */
817
		if ((lr.state & LR_STATE_MASK) == LR_STATE_ACTIVE)
818 819 820 821 822 823 824 825
			continue;

		/*
		 * Reestablish the pending state on the distributor and the
		 * CPU interface.  It may have already been pending, but that
		 * is fine, then we are only setting a few bits that were
		 * already set.
		 */
826
		vgic_dist_irq_set_pending(vcpu, lr.irq);
827
		if (lr.irq < VGIC_NR_SGIS)
828
			add_sgi_source(vcpu, lr.irq, lr.source);
829 830
		lr.state &= ~LR_STATE_PENDING;
		vgic_set_lr(vcpu, i, lr);
831 832 833 834 835 836

		/*
		 * If there's no state left on the LR (it could still be
		 * active), then the LR does not hold any useful info and can
		 * be marked as free for other use.
		 */
837
		if (!(lr.state & LR_STATE_MASK)) {
838
			vgic_retire_lr(i, lr.irq, vcpu);
839 840
			vgic_irq_clear_queued(vcpu, lr.irq);
		}
841 842 843 844 845 846

		/* Finally update the VGIC state. */
		vgic_update_state(vcpu->kvm);
	}
}

847 848 849 850
/* Handle reads of GICD_CPENDSGIRn and GICD_SPENDSGIRn */
static bool read_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu,
					struct kvm_exit_mmio *mmio,
					phys_addr_t offset)
851
{
852 853
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
	int sgi;
854
	int min_sgi = (offset & ~0x3);
855 856 857 858 859 860 861
	int max_sgi = min_sgi + 3;
	int vcpu_id = vcpu->vcpu_id;
	u32 reg = 0;

	/* Copy source SGIs from distributor side */
	for (sgi = min_sgi; sgi <= max_sgi; sgi++) {
		int shift = 8 * (sgi - min_sgi);
862
		reg |= ((u32)*vgic_get_sgi_sources(dist, vcpu_id, sgi)) << shift;
863 864 865
	}

	mmio_data_write(mmio, ~0, reg);
866 867 868
	return false;
}

869 870 871 872 873 874
static bool write_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu,
					 struct kvm_exit_mmio *mmio,
					 phys_addr_t offset, bool set)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
	int sgi;
875
	int min_sgi = (offset & ~0x3);
876 877 878 879 880 881 882 883 884 885
	int max_sgi = min_sgi + 3;
	int vcpu_id = vcpu->vcpu_id;
	u32 reg;
	bool updated = false;

	reg = mmio_data_read(mmio, ~0);

	/* Clear pending SGIs on the distributor */
	for (sgi = min_sgi; sgi <= max_sgi; sgi++) {
		u8 mask = reg >> (8 * (sgi - min_sgi));
886
		u8 *src = vgic_get_sgi_sources(dist, vcpu_id, sgi);
887
		if (set) {
888
			if ((*src & mask) != mask)
889
				updated = true;
890
			*src |= mask;
891
		} else {
892
			if (*src & mask)
893
				updated = true;
894
			*src &= ~mask;
895 896 897 898 899 900 901 902 903
		}
	}

	if (updated)
		vgic_update_state(vcpu->kvm);

	return updated;
}

904 905 906 907
static bool handle_mmio_sgi_set(struct kvm_vcpu *vcpu,
				struct kvm_exit_mmio *mmio,
				phys_addr_t offset)
{
908 909 910 911 912 913 914 915 916 917 918 919 920 921
	if (!mmio->is_write)
		return read_set_clear_sgi_pend_reg(vcpu, mmio, offset);
	else
		return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, true);
}

static bool handle_mmio_sgi_clear(struct kvm_vcpu *vcpu,
				  struct kvm_exit_mmio *mmio,
				  phys_addr_t offset)
{
	if (!mmio->is_write)
		return read_set_clear_sgi_pend_reg(vcpu, mmio, offset);
	else
		return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, false);
922 923
}

924 925 926 927 928 929 930 931 932
/*
 * I would have liked to use the kvm_bus_io_*() API instead, but it
 * cannot cope with banked registers (only the VM pointer is passed
 * around, and we need the vcpu). One of these days, someone please
 * fix it!
 */
struct mmio_range {
	phys_addr_t base;
	unsigned long len;
933
	int bits_per_irq;
934 935 936 937
	bool (*handle_mmio)(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
			    phys_addr_t offset);
};

938
static const struct mmio_range vgic_dist_ranges[] = {
939 940 941
	{
		.base		= GIC_DIST_CTRL,
		.len		= 12,
942
		.bits_per_irq	= 0,
943 944 945 946
		.handle_mmio	= handle_mmio_misc,
	},
	{
		.base		= GIC_DIST_IGROUP,
947 948
		.len		= VGIC_MAX_IRQS / 8,
		.bits_per_irq	= 1,
949 950 951 952
		.handle_mmio	= handle_mmio_raz_wi,
	},
	{
		.base		= GIC_DIST_ENABLE_SET,
953 954
		.len		= VGIC_MAX_IRQS / 8,
		.bits_per_irq	= 1,
955 956 957 958
		.handle_mmio	= handle_mmio_set_enable_reg,
	},
	{
		.base		= GIC_DIST_ENABLE_CLEAR,
959 960
		.len		= VGIC_MAX_IRQS / 8,
		.bits_per_irq	= 1,
961 962 963 964
		.handle_mmio	= handle_mmio_clear_enable_reg,
	},
	{
		.base		= GIC_DIST_PENDING_SET,
965 966
		.len		= VGIC_MAX_IRQS / 8,
		.bits_per_irq	= 1,
967 968 969 970
		.handle_mmio	= handle_mmio_set_pending_reg,
	},
	{
		.base		= GIC_DIST_PENDING_CLEAR,
971 972
		.len		= VGIC_MAX_IRQS / 8,
		.bits_per_irq	= 1,
973 974 975 976
		.handle_mmio	= handle_mmio_clear_pending_reg,
	},
	{
		.base		= GIC_DIST_ACTIVE_SET,
977 978
		.len		= VGIC_MAX_IRQS / 8,
		.bits_per_irq	= 1,
979 980 981 982
		.handle_mmio	= handle_mmio_raz_wi,
	},
	{
		.base		= GIC_DIST_ACTIVE_CLEAR,
983 984
		.len		= VGIC_MAX_IRQS / 8,
		.bits_per_irq	= 1,
985 986 987 988
		.handle_mmio	= handle_mmio_raz_wi,
	},
	{
		.base		= GIC_DIST_PRI,
989 990
		.len		= VGIC_MAX_IRQS,
		.bits_per_irq	= 8,
991 992 993 994
		.handle_mmio	= handle_mmio_priority_reg,
	},
	{
		.base		= GIC_DIST_TARGET,
995 996
		.len		= VGIC_MAX_IRQS,
		.bits_per_irq	= 8,
997 998 999 1000
		.handle_mmio	= handle_mmio_target_reg,
	},
	{
		.base		= GIC_DIST_CONFIG,
1001 1002
		.len		= VGIC_MAX_IRQS / 4,
		.bits_per_irq	= 2,
1003 1004 1005 1006 1007 1008 1009
		.handle_mmio	= handle_mmio_cfg_reg,
	},
	{
		.base		= GIC_DIST_SOFTINT,
		.len		= 4,
		.handle_mmio	= handle_mmio_sgi_reg,
	},
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
	{
		.base		= GIC_DIST_SGI_PENDING_CLEAR,
		.len		= VGIC_NR_SGIS,
		.handle_mmio	= handle_mmio_sgi_clear,
	},
	{
		.base		= GIC_DIST_SGI_PENDING_SET,
		.len		= VGIC_NR_SGIS,
		.handle_mmio	= handle_mmio_sgi_set,
	},
1020 1021 1022 1023 1024 1025
	{}
};

static const
struct mmio_range *find_matching_range(const struct mmio_range *ranges,
				       struct kvm_exit_mmio *mmio,
1026
				       phys_addr_t offset)
1027 1028 1029 1030
{
	const struct mmio_range *r = ranges;

	while (r->len) {
1031 1032
		if (offset >= r->base &&
		    (offset + mmio->len) <= (r->base + r->len))
1033 1034 1035 1036 1037 1038 1039
			return r;
		r++;
	}

	return NULL;
}

1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
static bool vgic_validate_access(const struct vgic_dist *dist,
				 const struct mmio_range *range,
				 unsigned long offset)
{
	int irq;

	if (!range->bits_per_irq)
		return true;	/* Not an irq-based access */

	irq = offset * 8 / range->bits_per_irq;
	if (irq >= dist->nr_irqs)
		return false;

	return true;
}

1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
/*
 * Call the respective handler function for the given range.
 * We split up any 64 bit accesses into two consecutive 32 bit
 * handler calls and merge the result afterwards.
 * We do this in a little endian fashion regardless of the host's
 * or guest's endianness, because the GIC is always LE and the rest of
 * the code (vgic_reg_access) also puts it in a LE fashion already.
 * At this point we have already identified the handle function, so
 * range points to that one entry and offset is relative to this.
 */
static bool call_range_handler(struct kvm_vcpu *vcpu,
			       struct kvm_exit_mmio *mmio,
			       unsigned long offset,
			       const struct mmio_range *range)
{
	u32 *data32 = (void *)mmio->data;
	struct kvm_exit_mmio mmio32;
	bool ret;

	if (likely(mmio->len <= 4))
		return range->handle_mmio(vcpu, mmio, offset);

	/*
	 * Any access bigger than 4 bytes (that we currently handle in KVM)
	 * is actually 8 bytes long, caused by a 64-bit access
	 */

	mmio32.len = 4;
	mmio32.is_write = mmio->is_write;

	mmio32.phys_addr = mmio->phys_addr + 4;
	if (mmio->is_write)
		*(u32 *)mmio32.data = data32[1];
	ret = range->handle_mmio(vcpu, &mmio32, offset + 4);
	if (!mmio->is_write)
		data32[1] = *(u32 *)mmio32.data;

	mmio32.phys_addr = mmio->phys_addr;
	if (mmio->is_write)
		*(u32 *)mmio32.data = data32[0];
	ret |= range->handle_mmio(vcpu, &mmio32, offset);
	if (!mmio->is_write)
		data32[0] = *(u32 *)mmio32.data;

	return ret;
}

1103
/**
1104
 * vgic_handle_mmio_range - handle an in-kernel MMIO access
1105 1106 1107
 * @vcpu:	pointer to the vcpu performing the access
 * @run:	pointer to the kvm_run structure
 * @mmio:	pointer to the data describing the access
1108 1109
 * @ranges:	array of MMIO ranges in a given region
 * @mmio_base:	base address of that region
1110
 *
1111
 * returns true if the MMIO access could be performed
1112
 */
1113 1114 1115 1116
static bool vgic_handle_mmio_range(struct kvm_vcpu *vcpu, struct kvm_run *run,
			    struct kvm_exit_mmio *mmio,
			    const struct mmio_range *ranges,
			    unsigned long mmio_base)
1117
{
1118 1119 1120 1121 1122
	const struct mmio_range *range;
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
	bool updated_state;
	unsigned long offset;

1123 1124
	offset = mmio->phys_addr - mmio_base;
	range = find_matching_range(ranges, mmio, offset);
1125 1126 1127 1128 1129 1130 1131
	if (unlikely(!range || !range->handle_mmio)) {
		pr_warn("Unhandled access %d %08llx %d\n",
			mmio->is_write, mmio->phys_addr, mmio->len);
		return false;
	}

	spin_lock(&vcpu->kvm->arch.vgic.lock);
1132
	offset -= range->base;
1133
	if (vgic_validate_access(dist, range, offset)) {
1134
		updated_state = call_range_handler(vcpu, mmio, offset, range);
1135
	} else {
1136 1137
		if (!mmio->is_write)
			memset(mmio->data, 0, mmio->len);
1138 1139
		updated_state = false;
	}
1140 1141 1142 1143
	spin_unlock(&vcpu->kvm->arch.vgic.lock);
	kvm_prepare_mmio(run, mmio);
	kvm_handle_mmio_return(vcpu, run);

1144 1145 1146
	if (updated_state)
		vgic_kick_vcpus(vcpu->kvm);

1147 1148 1149
	return true;
}

1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
static inline bool is_in_range(phys_addr_t addr, unsigned long len,
			       phys_addr_t baseaddr, unsigned long size)
{
	return (addr >= baseaddr) && (addr + len <= baseaddr + size);
}

static bool vgic_v2_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run,
				struct kvm_exit_mmio *mmio)
{
	unsigned long base = vcpu->kvm->arch.vgic.vgic_dist_base;

	if (!is_in_range(mmio->phys_addr, mmio->len, base,
			 KVM_VGIC_V2_DIST_SIZE))
		return false;

	/* GICv2 does not support accesses wider than 32 bits */
	if (mmio->len > 4) {
		kvm_inject_dabt(vcpu, mmio->phys_addr);
		return true;
	}

	return vgic_handle_mmio_range(vcpu, run, mmio, vgic_dist_ranges, base);
}

/**
 * vgic_handle_mmio - handle an in-kernel MMIO access for the GIC emulation
 * @vcpu:      pointer to the vcpu performing the access
 * @run:       pointer to the kvm_run structure
 * @mmio:      pointer to the data describing the access
 *
 * returns true if the MMIO access has been performed in kernel space,
 * and false if it needs to be emulated in user space.
1182
 * Calls the actual handling routine for the selected VGIC model.
1183 1184 1185 1186 1187 1188 1189
 */
bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run,
		      struct kvm_exit_mmio *mmio)
{
	if (!irqchip_in_kernel(vcpu->kvm))
		return false;

1190 1191 1192 1193 1194 1195
	/*
	 * This will currently call either vgic_v2_handle_mmio() or
	 * vgic_v3_handle_mmio(), which in turn will call
	 * vgic_handle_mmio_range() defined above.
	 */
	return vcpu->kvm->arch.vgic.vm_ops.handle_mmio(vcpu, run, mmio);
1196 1197
}

1198 1199 1200 1201 1202
static u8 *vgic_get_sgi_sources(struct vgic_dist *dist, int vcpu_id, int sgi)
{
	return dist->irq_sgi_sources + vcpu_id * VGIC_NR_SGIS + sgi;
}

1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg)
{
	struct kvm *kvm = vcpu->kvm;
	struct vgic_dist *dist = &kvm->arch.vgic;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	u8 target_cpus;
	int sgi, mode, c, vcpu_id;

	vcpu_id = vcpu->vcpu_id;

	sgi = reg & 0xf;
	target_cpus = (reg >> 16) & 0xff;
	mode = (reg >> 24) & 3;

	switch (mode) {
	case 0:
		if (!target_cpus)
			return;
1221
		break;
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234

	case 1:
		target_cpus = ((1 << nrcpus) - 1) & ~(1 << vcpu_id) & 0xff;
		break;

	case 2:
		target_cpus = 1 << vcpu_id;
		break;
	}

	kvm_for_each_vcpu(c, vcpu, kvm) {
		if (target_cpus & 1) {
			/* Flag the SGI as pending */
1235
			vgic_dist_irq_set_pending(vcpu, sgi);
1236
			*vgic_get_sgi_sources(dist, c, sgi) |= 1 << vcpu_id;
1237 1238 1239 1240 1241 1242 1243
			kvm_debug("SGI%d from CPU%d to CPU%d\n", sgi, vcpu_id, c);
		}

		target_cpus >>= 1;
	}
}

1244 1245 1246 1247 1248
static int vgic_nr_shared_irqs(struct vgic_dist *dist)
{
	return dist->nr_irqs - VGIC_NR_PRIVATE_IRQS;
}

1249 1250
static int compute_pending_for_cpu(struct kvm_vcpu *vcpu)
{
1251 1252 1253
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
	unsigned long *pending, *enabled, *pend_percpu, *pend_shared;
	unsigned long pending_private, pending_shared;
1254
	int nr_shared = vgic_nr_shared_irqs(dist);
1255 1256 1257 1258 1259 1260
	int vcpu_id;

	vcpu_id = vcpu->vcpu_id;
	pend_percpu = vcpu->arch.vgic_cpu.pending_percpu;
	pend_shared = vcpu->arch.vgic_cpu.pending_shared;

1261
	pending = vgic_bitmap_get_cpu_map(&dist->irq_pending, vcpu_id);
1262 1263 1264
	enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
	bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS);

1265
	pending = vgic_bitmap_get_shared_map(&dist->irq_pending);
1266
	enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
1267
	bitmap_and(pend_shared, pending, enabled, nr_shared);
1268 1269
	bitmap_and(pend_shared, pend_shared,
		   vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
1270
		   nr_shared);
1271 1272

	pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS);
1273
	pending_shared = find_first_bit(pend_shared, nr_shared);
1274
	return (pending_private < VGIC_NR_PRIVATE_IRQS ||
1275
		pending_shared < vgic_nr_shared_irqs(dist));
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
}

/*
 * Update the interrupt state and determine which CPUs have pending
 * interrupts. Must be called with distributor lock held.
 */
static void vgic_update_state(struct kvm *kvm)
{
	struct vgic_dist *dist = &kvm->arch.vgic;
	struct kvm_vcpu *vcpu;
	int c;

	if (!dist->enabled) {
1289
		set_bit(0, dist->irq_pending_on_cpu);
1290 1291 1292 1293 1294 1295
		return;
	}

	kvm_for_each_vcpu(c, vcpu, kvm) {
		if (compute_pending_for_cpu(vcpu)) {
			pr_debug("CPU%d has pending interrupts\n", c);
1296
			set_bit(c, dist->irq_pending_on_cpu);
1297 1298
		}
	}
1299
}
1300

1301 1302
static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr)
{
1303
	return vgic_ops->get_lr(vcpu, lr);
1304 1305 1306 1307 1308
}

static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr,
			       struct vgic_lr vlr)
{
1309
	vgic_ops->set_lr(vcpu, lr, vlr);
1310 1311
}

1312 1313 1314
static void vgic_sync_lr_elrsr(struct kvm_vcpu *vcpu, int lr,
			       struct vgic_lr vlr)
{
1315
	vgic_ops->sync_lr_elrsr(vcpu, lr, vlr);
1316 1317 1318 1319
}

static inline u64 vgic_get_elrsr(struct kvm_vcpu *vcpu)
{
1320
	return vgic_ops->get_elrsr(vcpu);
1321 1322
}

1323 1324
static inline u64 vgic_get_eisr(struct kvm_vcpu *vcpu)
{
1325
	return vgic_ops->get_eisr(vcpu);
1326 1327
}

1328 1329
static inline u32 vgic_get_interrupt_status(struct kvm_vcpu *vcpu)
{
1330
	return vgic_ops->get_interrupt_status(vcpu);
1331 1332
}

1333 1334
static inline void vgic_enable_underflow(struct kvm_vcpu *vcpu)
{
1335
	vgic_ops->enable_underflow(vcpu);
1336 1337 1338 1339
}

static inline void vgic_disable_underflow(struct kvm_vcpu *vcpu)
{
1340
	vgic_ops->disable_underflow(vcpu);
1341 1342
}

1343 1344
static inline void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
{
1345
	vgic_ops->get_vmcr(vcpu, vmcr);
1346 1347 1348 1349
}

static void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
{
1350
	vgic_ops->set_vmcr(vcpu, vmcr);
1351 1352
}

1353 1354
static inline void vgic_enable(struct kvm_vcpu *vcpu)
{
1355
	vgic_ops->enable(vcpu);
1356 1357
}

1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu)
{
	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
	struct vgic_lr vlr = vgic_get_lr(vcpu, lr_nr);

	vlr.state = 0;
	vgic_set_lr(vcpu, lr_nr, vlr);
	clear_bit(lr_nr, vgic_cpu->lr_used);
	vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY;
}
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382

/*
 * An interrupt may have been disabled after being made pending on the
 * CPU interface (the classic case is a timer running while we're
 * rebooting the guest - the interrupt would kick as soon as the CPU
 * interface gets enabled, with deadly consequences).
 *
 * The solution is to examine already active LRs, and check the
 * interrupt is still enabled. If not, just retire it.
 */
static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu)
{
	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
	int lr;

1383
	for_each_set_bit(lr, vgic_cpu->lr_used, vgic->nr_lr) {
1384
		struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
1385

1386 1387
		if (!vgic_irq_is_enabled(vcpu, vlr.irq)) {
			vgic_retire_lr(lr, vlr.irq, vcpu);
1388 1389
			if (vgic_irq_is_queued(vcpu, vlr.irq))
				vgic_irq_clear_queued(vcpu, vlr.irq);
1390 1391 1392 1393
		}
	}
}

1394 1395 1396 1397 1398 1399 1400
/*
 * Queue an interrupt to a CPU virtual interface. Return true on success,
 * or false if it wasn't possible to queue it.
 */
static bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq)
{
	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1401
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1402
	struct vgic_lr vlr;
1403 1404 1405 1406 1407
	int lr;

	/* Sanitize the input... */
	BUG_ON(sgi_source_id & ~7);
	BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS);
1408
	BUG_ON(irq >= dist->nr_irqs);
1409 1410 1411 1412 1413 1414

	kvm_debug("Queue IRQ%d\n", irq);

	lr = vgic_cpu->vgic_irq_lr_map[irq];

	/* Do we have an active interrupt for the same CPUID? */
1415 1416 1417 1418 1419 1420 1421 1422 1423
	if (lr != LR_EMPTY) {
		vlr = vgic_get_lr(vcpu, lr);
		if (vlr.source == sgi_source_id) {
			kvm_debug("LR%d piggyback for IRQ%d\n", lr, vlr.irq);
			BUG_ON(!test_bit(lr, vgic_cpu->lr_used));
			vlr.state |= LR_STATE_PENDING;
			vgic_set_lr(vcpu, lr, vlr);
			return true;
		}
1424 1425 1426 1427
	}

	/* Try to use another LR for this interrupt */
	lr = find_first_zero_bit((unsigned long *)vgic_cpu->lr_used,
1428 1429
			       vgic->nr_lr);
	if (lr >= vgic->nr_lr)
1430 1431 1432 1433 1434 1435
		return false;

	kvm_debug("LR%d allocated for IRQ%d %x\n", lr, irq, sgi_source_id);
	vgic_cpu->vgic_irq_lr_map[irq] = lr;
	set_bit(lr, vgic_cpu->lr_used);

1436 1437 1438
	vlr.irq = irq;
	vlr.source = sgi_source_id;
	vlr.state = LR_STATE_PENDING;
1439
	if (!vgic_irq_is_edge(vcpu, irq))
1440 1441 1442
		vlr.state |= LR_EOI_INT;

	vgic_set_lr(vcpu, lr, vlr);
1443 1444 1445 1446

	return true;
}

1447
static bool vgic_v2_queue_sgi(struct kvm_vcpu *vcpu, int irq)
1448 1449 1450 1451 1452 1453
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
	unsigned long sources;
	int vcpu_id = vcpu->vcpu_id;
	int c;

1454
	sources = *vgic_get_sgi_sources(dist, vcpu_id, irq);
1455

1456
	for_each_set_bit(c, &sources, dist->nr_cpus) {
1457 1458 1459 1460
		if (vgic_queue_irq(vcpu, c, irq))
			clear_bit(c, &sources);
	}

1461
	*vgic_get_sgi_sources(dist, vcpu_id, irq) = sources;
1462 1463 1464 1465 1466 1467 1468 1469

	/*
	 * If the sources bitmap has been cleared it means that we
	 * could queue all the SGIs onto link registers (see the
	 * clear_bit above), and therefore we are done with them in
	 * our emulated gic and can get rid of them.
	 */
	if (!sources) {
1470
		vgic_dist_irq_clear_pending(vcpu, irq);
1471 1472 1473 1474 1475 1476 1477 1478 1479
		vgic_cpu_irq_clear(vcpu, irq);
		return true;
	}

	return false;
}

static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq)
{
1480
	if (!vgic_can_sample_irq(vcpu, irq))
1481 1482 1483 1484
		return true; /* level interrupt, already queued */

	if (vgic_queue_irq(vcpu, 0, irq)) {
		if (vgic_irq_is_edge(vcpu, irq)) {
1485
			vgic_dist_irq_clear_pending(vcpu, irq);
1486 1487
			vgic_cpu_irq_clear(vcpu, irq);
		} else {
1488
			vgic_irq_set_queued(vcpu, irq);
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
		}

		return true;
	}

	return false;
}

/*
 * Fill the list registers with pending interrupts before running the
 * guest.
 */
static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
{
	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
	int i, vcpu_id;
	int overflow = 0;

	vcpu_id = vcpu->vcpu_id;

	/*
	 * We may not have any pending interrupt, or the interrupts
	 * may have been serviced from another vcpu. In all cases,
	 * move along.
	 */
	if (!kvm_vgic_vcpu_pending_irq(vcpu)) {
		pr_debug("CPU%d has no pending interrupt\n", vcpu_id);
		goto epilog;
	}

	/* SGIs */
	for_each_set_bit(i, vgic_cpu->pending_percpu, VGIC_NR_SGIS) {
1522
		if (!queue_sgi(vcpu, i))
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
			overflow = 1;
	}

	/* PPIs */
	for_each_set_bit_from(i, vgic_cpu->pending_percpu, VGIC_NR_PRIVATE_IRQS) {
		if (!vgic_queue_hwirq(vcpu, i))
			overflow = 1;
	}

	/* SPIs */
1533
	for_each_set_bit(i, vgic_cpu->pending_shared, vgic_nr_shared_irqs(dist)) {
1534 1535 1536 1537 1538 1539
		if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS))
			overflow = 1;
	}

epilog:
	if (overflow) {
1540
		vgic_enable_underflow(vcpu);
1541
	} else {
1542
		vgic_disable_underflow(vcpu);
1543 1544 1545 1546 1547 1548
		/*
		 * We're about to run this VCPU, and we've consumed
		 * everything the distributor had in store for
		 * us. Claim we don't have anything pending. We'll
		 * adjust that if needed while exiting.
		 */
1549
		clear_bit(vcpu_id, dist->irq_pending_on_cpu);
1550 1551 1552 1553 1554
	}
}

static bool vgic_process_maintenance(struct kvm_vcpu *vcpu)
{
1555
	u32 status = vgic_get_interrupt_status(vcpu);
1556 1557
	bool level_pending = false;

1558
	kvm_debug("STATUS = %08x\n", status);
1559

1560
	if (status & INT_STATUS_EOI) {
1561 1562 1563 1564
		/*
		 * Some level interrupts have been EOIed. Clear their
		 * active bit.
		 */
1565
		u64 eisr = vgic_get_eisr(vcpu);
1566
		unsigned long *eisr_ptr = u64_to_bitmask(&eisr);
1567
		int lr;
1568

1569
		for_each_set_bit(lr, eisr_ptr, vgic->nr_lr) {
1570
			struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
1571
			WARN_ON(vgic_irq_is_edge(vcpu, vlr.irq));
1572

1573
			vgic_irq_clear_queued(vcpu, vlr.irq);
1574 1575 1576
			WARN_ON(vlr.state & LR_STATE_MASK);
			vlr.state = 0;
			vgic_set_lr(vcpu, lr, vlr);
1577

1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
			/*
			 * If the IRQ was EOIed it was also ACKed and we we
			 * therefore assume we can clear the soft pending
			 * state (should it had been set) for this interrupt.
			 *
			 * Note: if the IRQ soft pending state was set after
			 * the IRQ was acked, it actually shouldn't be
			 * cleared, but we have no way of knowing that unless
			 * we start trapping ACKs when the soft-pending state
			 * is set.
			 */
			vgic_dist_irq_clear_soft_pend(vcpu, vlr.irq);

1591
			/* Any additional pending interrupt? */
1592
			if (vgic_dist_irq_get_level(vcpu, vlr.irq)) {
1593
				vgic_cpu_irq_set(vcpu, vlr.irq);
1594 1595
				level_pending = true;
			} else {
1596
				vgic_dist_irq_clear_pending(vcpu, vlr.irq);
1597
				vgic_cpu_irq_clear(vcpu, vlr.irq);
1598
			}
1599 1600 1601 1602 1603

			/*
			 * Despite being EOIed, the LR may not have
			 * been marked as empty.
			 */
1604
			vgic_sync_lr_elrsr(vcpu, lr, vlr);
1605 1606 1607
		}
	}

1608
	if (status & INT_STATUS_UNDERFLOW)
1609
		vgic_disable_underflow(vcpu);
1610 1611 1612 1613 1614

	return level_pending;
}

/*
1615 1616
 * Sync back the VGIC state after a guest run. The distributor lock is
 * needed so we don't get preempted in the middle of the state processing.
1617 1618 1619 1620 1621
 */
static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
{
	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1622 1623
	u64 elrsr;
	unsigned long *elrsr_ptr;
1624 1625 1626 1627
	int lr, pending;
	bool level_pending;

	level_pending = vgic_process_maintenance(vcpu);
1628
	elrsr = vgic_get_elrsr(vcpu);
1629
	elrsr_ptr = u64_to_bitmask(&elrsr);
1630 1631

	/* Clear mappings for empty LRs */
1632
	for_each_set_bit(lr, elrsr_ptr, vgic->nr_lr) {
1633
		struct vgic_lr vlr;
1634 1635 1636 1637

		if (!test_and_clear_bit(lr, vgic_cpu->lr_used))
			continue;

1638
		vlr = vgic_get_lr(vcpu, lr);
1639

1640
		BUG_ON(vlr.irq >= dist->nr_irqs);
1641
		vgic_cpu->vgic_irq_lr_map[vlr.irq] = LR_EMPTY;
1642 1643 1644
	}

	/* Check if we still have something up our sleeve... */
1645 1646
	pending = find_first_zero_bit(elrsr_ptr, vgic->nr_lr);
	if (level_pending || pending < vgic->nr_lr)
1647
		set_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
}

void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	if (!irqchip_in_kernel(vcpu->kvm))
		return;

	spin_lock(&dist->lock);
	__kvm_vgic_flush_hwstate(vcpu);
	spin_unlock(&dist->lock);
}

void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
{
1664 1665
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

1666 1667 1668
	if (!irqchip_in_kernel(vcpu->kvm))
		return;

1669
	spin_lock(&dist->lock);
1670
	__kvm_vgic_sync_hwstate(vcpu);
1671
	spin_unlock(&dist->lock);
1672 1673 1674 1675 1676 1677 1678 1679 1680
}

int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	if (!irqchip_in_kernel(vcpu->kvm))
		return 0;

1681
	return test_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
1682 1683
}

1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
static void vgic_kick_vcpus(struct kvm *kvm)
{
	struct kvm_vcpu *vcpu;
	int c;

	/*
	 * We've injected an interrupt, time to find out who deserves
	 * a good kick...
	 */
	kvm_for_each_vcpu(c, vcpu, kvm) {
		if (kvm_vgic_vcpu_pending_irq(vcpu))
			kvm_vcpu_kick(vcpu);
	}
}

static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level)
{
1701
	int edge_triggered = vgic_irq_is_edge(vcpu, irq);
1702 1703 1704 1705 1706 1707

	/*
	 * Only inject an interrupt if:
	 * - edge triggered and we have a rising edge
	 * - level triggered and we change level
	 */
1708 1709
	if (edge_triggered) {
		int state = vgic_dist_irq_is_pending(vcpu, irq);
1710
		return level > state;
1711 1712
	} else {
		int state = vgic_dist_irq_get_level(vcpu, irq);
1713
		return level != state;
1714
	}
1715 1716
}

1717
static int vgic_update_irq_pending(struct kvm *kvm, int cpuid,
1718 1719 1720 1721
				  unsigned int irq_num, bool level)
{
	struct vgic_dist *dist = &kvm->arch.vgic;
	struct kvm_vcpu *vcpu;
1722
	int edge_triggered, level_triggered;
1723 1724 1725 1726 1727 1728
	int enabled;
	bool ret = true;

	spin_lock(&dist->lock);

	vcpu = kvm_get_vcpu(kvm, cpuid);
1729 1730
	edge_triggered = vgic_irq_is_edge(vcpu, irq_num);
	level_triggered = !edge_triggered;
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743

	if (!vgic_validate_injection(vcpu, irq_num, level)) {
		ret = false;
		goto out;
	}

	if (irq_num >= VGIC_NR_PRIVATE_IRQS) {
		cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS];
		vcpu = kvm_get_vcpu(kvm, cpuid);
	}

	kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid);

1744 1745 1746
	if (level) {
		if (level_triggered)
			vgic_dist_irq_set_level(vcpu, irq_num);
1747
		vgic_dist_irq_set_pending(vcpu, irq_num);
1748 1749 1750 1751 1752 1753
	} else {
		if (level_triggered) {
			vgic_dist_irq_clear_level(vcpu, irq_num);
			if (!vgic_dist_irq_soft_pend(vcpu, irq_num))
				vgic_dist_irq_clear_pending(vcpu, irq_num);
		}
1754 1755 1756

		ret = false;
		goto out;
1757
	}
1758 1759 1760 1761 1762 1763 1764 1765

	enabled = vgic_irq_is_enabled(vcpu, irq_num);

	if (!enabled) {
		ret = false;
		goto out;
	}

1766
	if (!vgic_can_sample_irq(vcpu, irq_num)) {
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
		/*
		 * Level interrupt in progress, will be picked up
		 * when EOId.
		 */
		ret = false;
		goto out;
	}

	if (level) {
		vgic_cpu_irq_set(vcpu, irq_num);
1777
		set_bit(cpuid, dist->irq_pending_on_cpu);
1778 1779 1780 1781 1782
	}

out:
	spin_unlock(&dist->lock);

1783
	return ret ? cpuid : -EINVAL;
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
}

/**
 * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
 * @kvm:     The VM structure pointer
 * @cpuid:   The CPU for PPIs
 * @irq_num: The IRQ number that is assigned to the device
 * @level:   Edge-triggered:  true:  to trigger the interrupt
 *			      false: to ignore the call
 *	     Level-sensitive  true:  activates an interrupt
 *			      false: deactivates an interrupt
 *
 * The GIC is not concerned with devices being active-LOW or active-HIGH for
 * level-sensitive interrupts.  You can think of the level parameter as 1
 * being HIGH and 0 being LOW and all devices being active-HIGH.
 */
int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
			bool level)
{
1803
	int ret = 0;
1804
	int vcpu_id;
1805

1806
	if (unlikely(!vgic_initialized(kvm))) {
1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
		/*
		 * We only provide the automatic initialization of the VGIC
		 * for the legacy case of a GICv2. Any other type must
		 * be explicitly initialized once setup with the respective
		 * KVM device call.
		 */
		if (kvm->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V2) {
			ret = -EBUSY;
			goto out;
		}
1817 1818 1819 1820 1821 1822
		mutex_lock(&kvm->lock);
		ret = vgic_init(kvm);
		mutex_unlock(&kvm->lock);

		if (ret)
			goto out;
1823
	}
1824

1825 1826 1827 1828 1829 1830 1831 1832
	vcpu_id = vgic_update_irq_pending(kvm, cpuid, irq_num, level);
	if (vcpu_id >= 0) {
		/* kick the specified vcpu */
		kvm_vcpu_kick(kvm_get_vcpu(kvm, vcpu_id));
	}

out:
	return ret;
1833 1834
}

1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
static irqreturn_t vgic_maintenance_handler(int irq, void *data)
{
	/*
	 * We cannot rely on the vgic maintenance interrupt to be
	 * delivered synchronously. This means we can only use it to
	 * exit the VM, and we perform the handling of EOIed
	 * interrupts on the exit path (see vgic_process_maintenance).
	 */
	return IRQ_HANDLED;
}

1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;

	kfree(vgic_cpu->pending_shared);
	kfree(vgic_cpu->vgic_irq_lr_map);
	vgic_cpu->pending_shared = NULL;
	vgic_cpu->vgic_irq_lr_map = NULL;
}

static int vgic_vcpu_init_maps(struct kvm_vcpu *vcpu, int nr_irqs)
{
	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;

	int sz = (nr_irqs - VGIC_NR_PRIVATE_IRQS) / 8;
	vgic_cpu->pending_shared = kzalloc(sz, GFP_KERNEL);
1862
	vgic_cpu->vgic_irq_lr_map = kmalloc(nr_irqs, GFP_KERNEL);
1863 1864 1865 1866 1867 1868

	if (!vgic_cpu->pending_shared || !vgic_cpu->vgic_irq_lr_map) {
		kvm_vgic_vcpu_destroy(vcpu);
		return -ENOMEM;
	}

1869
	memset(vgic_cpu->vgic_irq_lr_map, LR_EMPTY, nr_irqs);
1870 1871

	/*
1872 1873 1874
	 * Store the number of LRs per vcpu, so we don't have to go
	 * all the way to the distributor structure to find out. Only
	 * assembly code should use this one.
1875
	 */
1876
	vgic_cpu->nr_lr = vgic->nr_lr;
1877

1878
	return 0;
1879 1880
}

1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
void kvm_vgic_destroy(struct kvm *kvm)
{
	struct vgic_dist *dist = &kvm->arch.vgic;
	struct kvm_vcpu *vcpu;
	int i;

	kvm_for_each_vcpu(i, vcpu, kvm)
		kvm_vgic_vcpu_destroy(vcpu);

	vgic_free_bitmap(&dist->irq_enabled);
	vgic_free_bitmap(&dist->irq_level);
	vgic_free_bitmap(&dist->irq_pending);
	vgic_free_bitmap(&dist->irq_soft_pend);
	vgic_free_bitmap(&dist->irq_queued);
	vgic_free_bitmap(&dist->irq_cfg);
	vgic_free_bytemap(&dist->irq_priority);
	if (dist->irq_spi_target) {
		for (i = 0; i < dist->nr_cpus; i++)
			vgic_free_bitmap(&dist->irq_spi_target[i]);
	}
	kfree(dist->irq_sgi_sources);
	kfree(dist->irq_spi_cpu);
	kfree(dist->irq_spi_target);
	kfree(dist->irq_pending_on_cpu);
	dist->irq_sgi_sources = NULL;
	dist->irq_spi_cpu = NULL;
	dist->irq_spi_target = NULL;
	dist->irq_pending_on_cpu = NULL;
1909
	dist->nr_cpus = 0;
1910 1911
}

1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
static int vgic_v2_init_model(struct kvm *kvm)
{
	int i;

	for (i = VGIC_NR_PRIVATE_IRQS; i < kvm->arch.vgic.nr_irqs; i += 4)
		vgic_set_target_reg(kvm, 0, i);

	return 0;
}

1922 1923 1924 1925
/*
 * Allocate and initialize the various data structures. Must be called
 * with kvm->lock held!
 */
1926
static int vgic_init(struct kvm *kvm)
1927 1928 1929 1930
{
	struct vgic_dist *dist = &kvm->arch.vgic;
	struct kvm_vcpu *vcpu;
	int nr_cpus, nr_irqs;
1931
	int ret, i, vcpu_id;
1932

1933
	if (vgic_initialized(kvm))
1934 1935 1936 1937
		return 0;

	nr_cpus = dist->nr_cpus = atomic_read(&kvm->online_vcpus);
	if (!nr_cpus)		/* No vcpus? Can't be good... */
1938
		return -ENODEV;
1939

1940 1941 1942 1943
	/*
	 * If nobody configured the number of interrupts, use the
	 * legacy one.
	 */
1944 1945 1946 1947
	if (!dist->nr_irqs)
		dist->nr_irqs = VGIC_NR_IRQS_LEGACY;

	nr_irqs = dist->nr_irqs;
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980

	ret  = vgic_init_bitmap(&dist->irq_enabled, nr_cpus, nr_irqs);
	ret |= vgic_init_bitmap(&dist->irq_level, nr_cpus, nr_irqs);
	ret |= vgic_init_bitmap(&dist->irq_pending, nr_cpus, nr_irqs);
	ret |= vgic_init_bitmap(&dist->irq_soft_pend, nr_cpus, nr_irqs);
	ret |= vgic_init_bitmap(&dist->irq_queued, nr_cpus, nr_irqs);
	ret |= vgic_init_bitmap(&dist->irq_cfg, nr_cpus, nr_irqs);
	ret |= vgic_init_bytemap(&dist->irq_priority, nr_cpus, nr_irqs);

	if (ret)
		goto out;

	dist->irq_sgi_sources = kzalloc(nr_cpus * VGIC_NR_SGIS, GFP_KERNEL);
	dist->irq_spi_cpu = kzalloc(nr_irqs - VGIC_NR_PRIVATE_IRQS, GFP_KERNEL);
	dist->irq_spi_target = kzalloc(sizeof(*dist->irq_spi_target) * nr_cpus,
				       GFP_KERNEL);
	dist->irq_pending_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long),
					   GFP_KERNEL);
	if (!dist->irq_sgi_sources ||
	    !dist->irq_spi_cpu ||
	    !dist->irq_spi_target ||
	    !dist->irq_pending_on_cpu) {
		ret = -ENOMEM;
		goto out;
	}

	for (i = 0; i < nr_cpus; i++)
		ret |= vgic_init_bitmap(&dist->irq_spi_target[i],
					nr_cpus, nr_irqs);

	if (ret)
		goto out;

1981 1982 1983
	ret = kvm->arch.vgic.vm_ops.init_model(kvm);
	if (ret)
		goto out;
1984 1985

	kvm_for_each_vcpu(vcpu_id, vcpu, kvm) {
1986 1987 1988 1989 1990 1991
		ret = vgic_vcpu_init_maps(vcpu, nr_irqs);
		if (ret) {
			kvm_err("VGIC: Failed to allocate vcpu memory\n");
			break;
		}

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
		for (i = 0; i < dist->nr_irqs; i++) {
			if (i < VGIC_NR_PPIS)
				vgic_bitmap_set_irq_val(&dist->irq_enabled,
							vcpu->vcpu_id, i, 1);
			if (i < VGIC_NR_PRIVATE_IRQS)
				vgic_bitmap_set_irq_val(&dist->irq_cfg,
							vcpu->vcpu_id, i,
							VGIC_CFG_EDGE);
		}

		vgic_enable(vcpu);
	}
2004

2005 2006 2007 2008 2009 2010 2011
out:
	if (ret)
		kvm_vgic_destroy(kvm);

	return ret;
}

2012
/**
2013
 * kvm_vgic_map_resources - Configure global VGIC state before running any VCPUs
2014 2015 2016 2017
 * @kvm: pointer to the kvm struct
 *
 * Map the virtual CPU interface into the VM before running any VCPUs.  We
 * can't do this at creation time, because user space must first set the
2018
 * virtual CPU interface address in the guest physical address space.
2019
 */
2020 2021
static int vgic_v2_map_resources(struct kvm *kvm,
				 const struct vgic_params *params)
2022
{
2023
	int ret = 0;
2024

2025 2026 2027
	if (!irqchip_in_kernel(kvm))
		return 0;

2028 2029
	mutex_lock(&kvm->lock);

2030
	if (vgic_ready(kvm))
2031 2032 2033 2034 2035 2036 2037 2038 2039
		goto out;

	if (IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_dist_base) ||
	    IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_cpu_base)) {
		kvm_err("Need to set vgic cpu and dist addresses first\n");
		ret = -ENXIO;
		goto out;
	}

2040 2041 2042 2043 2044
	/*
	 * Initialize the vgic if this hasn't already been done on demand by
	 * accessing the vgic state from userspace.
	 */
	ret = vgic_init(kvm);
2045 2046 2047 2048 2049
	if (ret) {
		kvm_err("Unable to allocate maps\n");
		goto out;
	}

2050
	ret = kvm_phys_addr_ioremap(kvm, kvm->arch.vgic.vgic_cpu_base,
2051
				    params->vcpu_base, KVM_VGIC_V2_CPU_SIZE,
2052
				    true);
2053 2054 2055 2056 2057 2058 2059
	if (ret) {
		kvm_err("Unable to remap VGIC CPU to VCPU\n");
		goto out;
	}

	kvm->arch.vgic.ready = true;
out:
2060 2061
	if (ret)
		kvm_vgic_destroy(kvm);
2062 2063 2064 2065
	mutex_unlock(&kvm->lock);
	return ret;
}

2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
static void vgic_v2_init_emulation(struct kvm *kvm)
{
	struct vgic_dist *dist = &kvm->arch.vgic;

	dist->vm_ops.handle_mmio = vgic_v2_handle_mmio;
	dist->vm_ops.queue_sgi = vgic_v2_queue_sgi;
	dist->vm_ops.add_sgi_source = vgic_v2_add_sgi_source;
	dist->vm_ops.init_model = vgic_v2_init_model;
	dist->vm_ops.map_resources = vgic_v2_map_resources;
}

static int init_vgic_model(struct kvm *kvm, int type)
{
	switch (type) {
	case KVM_DEV_TYPE_ARM_VGIC_V2:
		vgic_v2_init_emulation(kvm);
		break;
	default:
		return -ENODEV;
	}

	return 0;
}

2090
int kvm_vgic_create(struct kvm *kvm, u32 type)
2091
{
2092
	int i, vcpu_lock_idx = -1, ret;
2093
	struct kvm_vcpu *vcpu;
2094 2095 2096

	mutex_lock(&kvm->lock);

2097
	if (kvm->arch.vgic.vctrl_base) {
2098 2099 2100 2101
		ret = -EEXIST;
		goto out;
	}

2102 2103 2104 2105 2106
	/*
	 * Any time a vcpu is run, vcpu_load is called which tries to grab the
	 * vcpu->mutex.  By grabbing the vcpu->mutex of all VCPUs we ensure
	 * that no other VCPUs are run while we create the vgic.
	 */
2107
	ret = -EBUSY;
2108 2109 2110 2111 2112 2113 2114
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (!mutex_trylock(&vcpu->mutex))
			goto out_unlock;
		vcpu_lock_idx = i;
	}

	kvm_for_each_vcpu(i, vcpu, kvm) {
2115
		if (vcpu->arch.has_run_once)
2116 2117
			goto out_unlock;
	}
2118
	ret = 0;
2119

2120 2121 2122 2123
	ret = init_vgic_model(kvm, type);
	if (ret)
		goto out_unlock;

2124
	spin_lock_init(&kvm->arch.vgic.lock);
2125
	kvm->arch.vgic.in_kernel = true;
2126
	kvm->arch.vgic.vgic_model = type;
2127
	kvm->arch.vgic.vctrl_base = vgic->vctrl_base;
2128 2129 2130
	kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
	kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;

2131 2132 2133 2134 2135 2136
out_unlock:
	for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
		vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
		mutex_unlock(&vcpu->mutex);
	}

2137 2138 2139 2140 2141
out:
	mutex_unlock(&kvm->lock);
	return ret;
}

2142
static int vgic_ioaddr_overlap(struct kvm *kvm)
2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
{
	phys_addr_t dist = kvm->arch.vgic.vgic_dist_base;
	phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base;

	if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu))
		return 0;
	if ((dist <= cpu && dist + KVM_VGIC_V2_DIST_SIZE > cpu) ||
	    (cpu <= dist && cpu + KVM_VGIC_V2_CPU_SIZE > dist))
		return -EBUSY;
	return 0;
}

static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr,
			      phys_addr_t addr, phys_addr_t size)
{
	int ret;

2160 2161 2162 2163 2164 2165
	if (addr & ~KVM_PHYS_MASK)
		return -E2BIG;

	if (addr & (SZ_4K - 1))
		return -EINVAL;

2166 2167 2168 2169 2170
	if (!IS_VGIC_ADDR_UNDEF(*ioaddr))
		return -EEXIST;
	if (addr + size < addr)
		return -EINVAL;

2171
	*ioaddr = addr;
2172 2173
	ret = vgic_ioaddr_overlap(kvm);
	if (ret)
2174 2175
		*ioaddr = VGIC_ADDR_UNDEF;

2176 2177 2178
	return ret;
}

2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
/**
 * kvm_vgic_addr - set or get vgic VM base addresses
 * @kvm:   pointer to the vm struct
 * @type:  the VGIC addr type, one of KVM_VGIC_V2_ADDR_TYPE_XXX
 * @addr:  pointer to address value
 * @write: if true set the address in the VM address space, if false read the
 *          address
 *
 * Set or get the vgic base addresses for the distributor and the virtual CPU
 * interface in the VM physical address space.  These addresses are properties
 * of the emulated core/SoC and therefore user space initially knows this
 * information.
 */
int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write)
2193 2194 2195 2196 2197 2198 2199
{
	int r = 0;
	struct vgic_dist *vgic = &kvm->arch.vgic;

	mutex_lock(&kvm->lock);
	switch (type) {
	case KVM_VGIC_V2_ADDR_TYPE_DIST:
2200 2201 2202 2203 2204 2205
		if (write) {
			r = vgic_ioaddr_assign(kvm, &vgic->vgic_dist_base,
					       *addr, KVM_VGIC_V2_DIST_SIZE);
		} else {
			*addr = vgic->vgic_dist_base;
		}
2206 2207
		break;
	case KVM_VGIC_V2_ADDR_TYPE_CPU:
2208 2209 2210 2211 2212 2213
		if (write) {
			r = vgic_ioaddr_assign(kvm, &vgic->vgic_cpu_base,
					       *addr, KVM_VGIC_V2_CPU_SIZE);
		} else {
			*addr = vgic->vgic_cpu_base;
		}
2214 2215 2216 2217 2218 2219 2220 2221
		break;
	default:
		r = -ENODEV;
	}

	mutex_unlock(&kvm->lock);
	return r;
}
2222

2223 2224 2225
static bool handle_cpu_mmio_misc(struct kvm_vcpu *vcpu,
				 struct kvm_exit_mmio *mmio, phys_addr_t offset)
{
2226
	bool updated = false;
2227 2228 2229 2230 2231
	struct vgic_vmcr vmcr;
	u32 *vmcr_field;
	u32 reg;

	vgic_get_vmcr(vcpu, &vmcr);
2232 2233 2234

	switch (offset & ~0x3) {
	case GIC_CPU_CTRL:
2235
		vmcr_field = &vmcr.ctlr;
2236 2237
		break;
	case GIC_CPU_PRIMASK:
2238
		vmcr_field = &vmcr.pmr;
2239 2240
		break;
	case GIC_CPU_BINPOINT:
2241
		vmcr_field = &vmcr.bpr;
2242 2243
		break;
	case GIC_CPU_ALIAS_BINPOINT:
2244
		vmcr_field = &vmcr.abpr;
2245
		break;
2246 2247
	default:
		BUG();
2248 2249 2250
	}

	if (!mmio->is_write) {
2251
		reg = *vmcr_field;
2252 2253 2254
		mmio_data_write(mmio, ~0, reg);
	} else {
		reg = mmio_data_read(mmio, ~0);
2255 2256 2257
		if (reg != *vmcr_field) {
			*vmcr_field = reg;
			vgic_set_vmcr(vcpu, &vmcr);
2258
			updated = true;
2259
		}
2260 2261 2262 2263 2264 2265 2266 2267
	}
	return updated;
}

static bool handle_mmio_abpr(struct kvm_vcpu *vcpu,
			     struct kvm_exit_mmio *mmio, phys_addr_t offset)
{
	return handle_cpu_mmio_misc(vcpu, mmio, GIC_CPU_ALIAS_BINPOINT);
2268 2269
}

2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
static bool handle_cpu_mmio_ident(struct kvm_vcpu *vcpu,
				  struct kvm_exit_mmio *mmio,
				  phys_addr_t offset)
{
	u32 reg;

	if (mmio->is_write)
		return false;

	/* GICC_IIDR */
	reg = (PRODUCT_ID_KVM << 20) |
	      (GICC_ARCH_VERSION_V2 << 16) |
	      (IMPLEMENTER_ARM << 0);
	mmio_data_write(mmio, ~0, reg);
	return false;
}

/*
 * CPU Interface Register accesses - these are not accessed by the VM, but by
 * user space for saving and restoring VGIC state.
 */
2291 2292 2293 2294 2295 2296 2297 2298 2299
static const struct mmio_range vgic_cpu_ranges[] = {
	{
		.base		= GIC_CPU_CTRL,
		.len		= 12,
		.handle_mmio	= handle_cpu_mmio_misc,
	},
	{
		.base		= GIC_CPU_ALIAS_BINPOINT,
		.len		= 4,
2300
		.handle_mmio	= handle_mmio_abpr,
2301 2302 2303 2304
	},
	{
		.base		= GIC_CPU_ACTIVEPRIO,
		.len		= 16,
2305
		.handle_mmio	= handle_mmio_raz_wi,
2306 2307 2308 2309
	},
	{
		.base		= GIC_CPU_IDENT,
		.len		= 4,
2310
		.handle_mmio	= handle_cpu_mmio_ident,
2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
	},
};

static int vgic_attr_regs_access(struct kvm_device *dev,
				 struct kvm_device_attr *attr,
				 u32 *reg, bool is_write)
{
	const struct mmio_range *r = NULL, *ranges;
	phys_addr_t offset;
	int ret, cpuid, c;
	struct kvm_vcpu *vcpu, *tmp_vcpu;
	struct vgic_dist *vgic;
	struct kvm_exit_mmio mmio;

	offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
	cpuid = (attr->attr & KVM_DEV_ARM_VGIC_CPUID_MASK) >>
		KVM_DEV_ARM_VGIC_CPUID_SHIFT;

	mutex_lock(&dev->kvm->lock);

2331
	ret = vgic_init(dev->kvm);
2332 2333 2334
	if (ret)
		goto out;

2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382
	if (cpuid >= atomic_read(&dev->kvm->online_vcpus)) {
		ret = -EINVAL;
		goto out;
	}

	vcpu = kvm_get_vcpu(dev->kvm, cpuid);
	vgic = &dev->kvm->arch.vgic;

	mmio.len = 4;
	mmio.is_write = is_write;
	if (is_write)
		mmio_data_write(&mmio, ~0, *reg);
	switch (attr->group) {
	case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
		mmio.phys_addr = vgic->vgic_dist_base + offset;
		ranges = vgic_dist_ranges;
		break;
	case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
		mmio.phys_addr = vgic->vgic_cpu_base + offset;
		ranges = vgic_cpu_ranges;
		break;
	default:
		BUG();
	}
	r = find_matching_range(ranges, &mmio, offset);

	if (unlikely(!r || !r->handle_mmio)) {
		ret = -ENXIO;
		goto out;
	}


	spin_lock(&vgic->lock);

	/*
	 * Ensure that no other VCPU is running by checking the vcpu->cpu
	 * field.  If no other VPCUs are running we can safely access the VGIC
	 * state, because even if another VPU is run after this point, that
	 * VCPU will not touch the vgic state, because it will block on
	 * getting the vgic->lock in kvm_vgic_sync_hwstate().
	 */
	kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm) {
		if (unlikely(tmp_vcpu->cpu != -1)) {
			ret = -EBUSY;
			goto out_vgic_unlock;
		}
	}

2383 2384 2385 2386 2387 2388 2389 2390
	/*
	 * Move all pending IRQs from the LRs on all VCPUs so the pending
	 * state can be properly represented in the register state accessible
	 * through this API.
	 */
	kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm)
		vgic_unqueue_irqs(tmp_vcpu);

2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404
	offset -= r->base;
	r->handle_mmio(vcpu, &mmio, offset);

	if (!is_write)
		*reg = mmio_data_read(&mmio, ~0);

	ret = 0;
out_vgic_unlock:
	spin_unlock(&vgic->lock);
out:
	mutex_unlock(&dev->kvm->lock);
	return ret;
}

2405 2406
static int vgic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
{
2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420
	int r;

	switch (attr->group) {
	case KVM_DEV_ARM_VGIC_GRP_ADDR: {
		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
		u64 addr;
		unsigned long type = (unsigned long)attr->attr;

		if (copy_from_user(&addr, uaddr, sizeof(addr)))
			return -EFAULT;

		r = kvm_vgic_addr(dev->kvm, type, &addr, true);
		return (r == -ENODEV) ? -ENXIO : r;
	}
2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431

	case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
	case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: {
		u32 __user *uaddr = (u32 __user *)(long)attr->addr;
		u32 reg;

		if (get_user(reg, uaddr))
			return -EFAULT;

		return vgic_attr_regs_access(dev, attr, &reg, true);
	}
2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452
	case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
		u32 __user *uaddr = (u32 __user *)(long)attr->addr;
		u32 val;
		int ret = 0;

		if (get_user(val, uaddr))
			return -EFAULT;

		/*
		 * We require:
		 * - at least 32 SPIs on top of the 16 SGIs and 16 PPIs
		 * - at most 1024 interrupts
		 * - a multiple of 32 interrupts
		 */
		if (val < (VGIC_NR_PRIVATE_IRQS + 32) ||
		    val > VGIC_MAX_IRQS ||
		    (val & 31))
			return -EINVAL;

		mutex_lock(&dev->kvm->lock);

2453
		if (vgic_ready(dev->kvm) || dev->kvm->arch.vgic.nr_irqs)
2454 2455 2456 2457 2458 2459 2460 2461
			ret = -EBUSY;
		else
			dev->kvm->arch.vgic.nr_irqs = val;

		mutex_unlock(&dev->kvm->lock);

		return ret;
	}
2462 2463 2464 2465 2466 2467 2468 2469
	case KVM_DEV_ARM_VGIC_GRP_CTRL: {
		switch (attr->attr) {
		case KVM_DEV_ARM_VGIC_CTRL_INIT:
			r = vgic_init(dev->kvm);
			return r;
		}
		break;
	}
2470 2471
	}

2472 2473 2474 2475 2476
	return -ENXIO;
}

static int vgic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
{
2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490
	int r = -ENXIO;

	switch (attr->group) {
	case KVM_DEV_ARM_VGIC_GRP_ADDR: {
		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
		u64 addr;
		unsigned long type = (unsigned long)attr->attr;

		r = kvm_vgic_addr(dev->kvm, type, &addr, false);
		if (r)
			return (r == -ENODEV) ? -ENXIO : r;

		if (copy_to_user(uaddr, &addr, sizeof(addr)))
			return -EFAULT;
2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503
		break;
	}

	case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
	case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: {
		u32 __user *uaddr = (u32 __user *)(long)attr->addr;
		u32 reg = 0;

		r = vgic_attr_regs_access(dev, attr, &reg, false);
		if (r)
			return r;
		r = put_user(reg, uaddr);
		break;
2504
	}
2505 2506 2507 2508 2509
	case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
		u32 __user *uaddr = (u32 __user *)(long)attr->addr;
		r = put_user(dev->kvm->arch.vgic.nr_irqs, uaddr);
		break;
	}
2510

2511 2512 2513
	}

	return r;
2514 2515
}

2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
static int vgic_has_attr_regs(const struct mmio_range *ranges,
			      phys_addr_t offset)
{
	struct kvm_exit_mmio dev_attr_mmio;

	dev_attr_mmio.len = 4;
	if (find_matching_range(ranges, &dev_attr_mmio, offset))
		return 0;
	else
		return -ENXIO;
}

2528 2529
static int vgic_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
{
2530 2531
	phys_addr_t offset;

2532 2533 2534 2535 2536 2537 2538 2539
	switch (attr->group) {
	case KVM_DEV_ARM_VGIC_GRP_ADDR:
		switch (attr->attr) {
		case KVM_VGIC_V2_ADDR_TYPE_DIST:
		case KVM_VGIC_V2_ADDR_TYPE_CPU:
			return 0;
		}
		break;
2540 2541 2542 2543 2544 2545
	case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
		offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
		return vgic_has_attr_regs(vgic_dist_ranges, offset);
	case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
		offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
		return vgic_has_attr_regs(vgic_cpu_ranges, offset);
2546 2547
	case KVM_DEV_ARM_VGIC_GRP_NR_IRQS:
		return 0;
2548 2549 2550 2551 2552
	case KVM_DEV_ARM_VGIC_GRP_CTRL:
		switch (attr->attr) {
		case KVM_DEV_ARM_VGIC_CTRL_INIT:
			return 0;
		}
2553
	}
2554 2555 2556 2557 2558 2559 2560 2561 2562 2563
	return -ENXIO;
}

static void vgic_destroy(struct kvm_device *dev)
{
	kfree(dev);
}

static int vgic_create(struct kvm_device *dev, u32 type)
{
2564
	return kvm_vgic_create(dev->kvm, type);
2565 2566
}

2567
static struct kvm_device_ops kvm_arm_vgic_v2_ops = {
2568 2569 2570 2571 2572 2573 2574
	.name = "kvm-arm-vgic",
	.create = vgic_create,
	.destroy = vgic_destroy,
	.set_attr = vgic_set_attr,
	.get_attr = vgic_get_attr,
	.has_attr = vgic_has_attr,
};
2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610

static void vgic_init_maintenance_interrupt(void *info)
{
	enable_percpu_irq(vgic->maint_irq, 0);
}

static int vgic_cpu_notify(struct notifier_block *self,
			   unsigned long action, void *cpu)
{
	switch (action) {
	case CPU_STARTING:
	case CPU_STARTING_FROZEN:
		vgic_init_maintenance_interrupt(NULL);
		break;
	case CPU_DYING:
	case CPU_DYING_FROZEN:
		disable_percpu_irq(vgic->maint_irq);
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block vgic_cpu_nb = {
	.notifier_call = vgic_cpu_notify,
};

static const struct of_device_id vgic_ids[] = {
	{ .compatible = "arm,cortex-a15-gic", .data = vgic_v2_probe, },
	{ .compatible = "arm,gic-v3", .data = vgic_v3_probe, },
	{},
};

int kvm_vgic_hyp_init(void)
{
	const struct of_device_id *matched_id;
2611 2612
	const int (*vgic_probe)(struct device_node *,const struct vgic_ops **,
				const struct vgic_params **);
2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652
	struct device_node *vgic_node;
	int ret;

	vgic_node = of_find_matching_node_and_match(NULL,
						    vgic_ids, &matched_id);
	if (!vgic_node) {
		kvm_err("error: no compatible GIC node found\n");
		return -ENODEV;
	}

	vgic_probe = matched_id->data;
	ret = vgic_probe(vgic_node, &vgic_ops, &vgic);
	if (ret)
		return ret;

	ret = request_percpu_irq(vgic->maint_irq, vgic_maintenance_handler,
				 "vgic", kvm_get_running_vcpus());
	if (ret) {
		kvm_err("Cannot register interrupt %d\n", vgic->maint_irq);
		return ret;
	}

	ret = __register_cpu_notifier(&vgic_cpu_nb);
	if (ret) {
		kvm_err("Cannot register vgic CPU notifier\n");
		goto out_free_irq;
	}

	/* Callback into for arch code for setup */
	vgic_arch_setup(vgic);

	on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1);

	return kvm_register_device_ops(&kvm_arm_vgic_v2_ops,
				       KVM_DEV_TYPE_ARM_VGIC_V2);

out_free_irq:
	free_percpu_irq(vgic->maint_irq, kvm_get_running_vcpus());
	return ret;
}