process.c 20.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Copyright 2010 Tilera Corporation. All Rights Reserved.
 *
 *   This program is free software; you can redistribute it and/or
 *   modify it under the terms of the GNU General Public License
 *   as published by the Free Software Foundation, version 2.
 *
 *   This program is distributed in the hope that it will be useful, but
 *   WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 *   NON INFRINGEMENT.  See the GNU General Public License for
 *   more details.
 */

#include <linux/sched.h>
#include <linux/preempt.h>
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/kprobes.h>
#include <linux/elfcore.h>
#include <linux/tick.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/compat.h>
#include <linux/hardirq.h>
#include <linux/syscalls.h>
27
#include <linux/kernel.h>
28 29
#include <linux/tracehook.h>
#include <linux/signal.h>
30
#include <linux/delay.h>
31
#include <linux/context_tracking.h>
32
#include <asm/stack.h>
33
#include <asm/switch_to.h>
34
#include <asm/homecache.h>
35
#include <asm/syscalls.h>
36
#include <asm/traps.h>
37
#include <asm/setup.h>
38
#include <asm/uaccess.h>
39 40 41
#ifdef CONFIG_HARDWALL
#include <asm/hardwall.h>
#endif
42 43
#include <arch/chip.h>
#include <arch/abi.h>
44
#include <arch/sim_def.h>
45 46 47 48 49 50 51 52 53 54 55 56

/*
 * Use the (x86) "idle=poll" option to prefer low latency when leaving the
 * idle loop over low power while in the idle loop, e.g. if we have
 * one thread per core and we want to get threads out of futex waits fast.
 */
static int __init idle_setup(char *str)
{
	if (!str)
		return -EINVAL;

	if (!strcmp(str, "poll")) {
57
		pr_info("using polling idle threads\n");
T
Thomas Gleixner 已提交
58 59 60 61 62 63
		cpu_idle_poll_ctrl(true);
		return 0;
	} else if (!strcmp(str, "halt")) {
		return 0;
	}
	return -1;
64 65 66
}
early_param("idle", idle_setup);

T
Thomas Gleixner 已提交
67
void arch_cpu_idle(void)
68
{
69
	__this_cpu_write(irq_stat.idle_timestamp, jiffies);
T
Thomas Gleixner 已提交
70
	_cpu_idle();
71 72 73
}

/*
74
 * Release a thread_info structure
75
 */
76
void arch_release_thread_stack(unsigned long *stack)
77
{
78
	struct thread_info *info = (void *)stack;
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
	struct single_step_state *step_state = info->step_state;

	if (step_state) {

		/*
		 * FIXME: we don't munmap step_state->buffer
		 * because the mm_struct for this process (info->task->mm)
		 * has already been zeroed in exit_mm().  Keeping a
		 * reference to it here seems like a bad move, so this
		 * means we can't munmap() the buffer, and therefore if we
		 * ptrace multiple threads in a process, we will slowly
		 * leak user memory.  (Note that as soon as the last
		 * thread in a process dies, we will reclaim all user
		 * memory including single-step buffers in the usual way.)
		 * We should either assign a kernel VA to this buffer
		 * somehow, or we should associate the buffer(s) with the
		 * mm itself so we can clean them up that way.
		 */
		kfree(step_state);
	}
}

static void save_arch_state(struct thread_struct *t);

int copy_thread(unsigned long clone_flags, unsigned long sp,
104
		unsigned long arg, struct task_struct *p)
105
{
106
	struct pt_regs *childregs = task_pt_regs(p);
107
	unsigned long ksp;
108
	unsigned long *callee_regs;
109 110

	/*
111 112 113 114 115 116
	 * Set up the stack and stack pointer appropriately for the
	 * new child to find itself woken up in __switch_to().
	 * The callee-saved registers must be on the stack to be read;
	 * the new task will then jump to assembly support to handle
	 * calling schedule_tail(), etc., and (for userspace tasks)
	 * returning to the context set up in the pt_regs.
117
	 */
118 119 120 121 122 123 124 125
	ksp = (unsigned long) childregs;
	ksp -= C_ABI_SAVE_AREA_SIZE;   /* interrupt-entry save area */
	((long *)ksp)[0] = ((long *)ksp)[1] = 0;
	ksp -= CALLEE_SAVED_REGS_COUNT * sizeof(unsigned long);
	callee_regs = (unsigned long *)ksp;
	ksp -= C_ABI_SAVE_AREA_SIZE;   /* __switch_to() save area */
	((long *)ksp)[0] = ((long *)ksp)[1] = 0;
	p->thread.ksp = ksp;
126

127 128 129
	/* Record the pid of the task that created this one. */
	p->thread.creator_pid = current->pid;

A
Al Viro 已提交
130
	if (unlikely(p->flags & PF_KTHREAD)) {
131 132 133 134 135 136 137 138 139
		/* kernel thread */
		memset(childregs, 0, sizeof(struct pt_regs));
		memset(&callee_regs[2], 0,
		       (CALLEE_SAVED_REGS_COUNT - 2) * sizeof(unsigned long));
		callee_regs[0] = sp;   /* r30 = function */
		callee_regs[1] = arg;  /* r31 = arg */
		p->thread.pc = (unsigned long) ret_from_kernel_thread;
		return 0;
	}
140 141 142 143 144 145 146

	/*
	 * Start new thread in ret_from_fork so it schedules properly
	 * and then return from interrupt like the parent.
	 */
	p->thread.pc = (unsigned long) ret_from_fork;

147 148 149 150 151 152
	/*
	 * Do not clone step state from the parent; each thread
	 * must make its own lazily.
	 */
	task_thread_info(p)->step_state = NULL;

153 154 155 156 157 158 159 160
#ifdef __tilegx__
	/*
	 * Do not clone unalign jit fixup from the parent; each thread
	 * must allocate its own on demand.
	 */
	task_thread_info(p)->unalign_jit_base = NULL;
#endif

161 162 163 164
	/*
	 * Copy the registers onto the kernel stack so the
	 * return-from-interrupt code will reload it into registers.
	 */
A
Al Viro 已提交
165
	*childregs = *current_pt_regs();
166
	childregs->regs[0] = 0;         /* return value is zero */
A
Al Viro 已提交
167 168 169
	if (sp)
		childregs->sp = sp;  /* override with new user stack pointer */
	memcpy(callee_regs, &childregs->regs[CALLEE_SAVED_FIRST_REG],
170
	       CALLEE_SAVED_REGS_COUNT * sizeof(unsigned long));
171

A
Al Viro 已提交
172 173 174
	/* Save user stack top pointer so we can ID the stack vm area later. */
	p->thread.usp0 = childregs->sp;

175 176 177 178 179
	/*
	 * If CLONE_SETTLS is set, set "tp" in the new task to "r4",
	 * which is passed in as arg #5 to sys_clone().
	 */
	if (clone_flags & CLONE_SETTLS)
A
Al Viro 已提交
180
		childregs->tp = childregs->regs[4];
181

182 183 184 185 186 187 188 189 190 191 192 193 194

#if CHIP_HAS_TILE_DMA()
	/*
	 * No DMA in the new thread.  We model this on the fact that
	 * fork() clears the pending signals, alarms, and aio for the child.
	 */
	memset(&p->thread.tile_dma_state, 0, sizeof(struct tile_dma_state));
	memset(&p->thread.dma_async_tlb, 0, sizeof(struct async_tlb));
#endif

	/* New thread has its miscellaneous processor state bits clear. */
	p->thread.proc_status = 0;

195 196
#ifdef CONFIG_HARDWALL
	/* New thread does not own any networks. */
197 198
	memset(&p->thread.hardwall[0], 0,
	       sizeof(struct hardwall_task) * HARDWALL_TYPES);
199
#endif
200 201 202 203 204 205 206 207 208 209 210


	/*
	 * Start the new thread with the current architecture state
	 * (user interrupt masks, etc.).
	 */
	save_arch_state(&p->thread);

	return 0;
}

211 212 213 214 215 216 217 218 219 220 221 222
int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
{
	task_thread_info(tsk)->align_ctl = val;
	return 0;
}

int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
{
	return put_user(task_thread_info(tsk)->align_ctl,
			(unsigned int __user *)adr);
}

223 224
static struct task_struct corrupt_current = { .comm = "<corrupt>" };

225 226 227 228 229 230 231 232
/*
 * Return "current" if it looks plausible, or else a pointer to a dummy.
 * This can be helpful if we are just trying to emit a clean panic.
 */
struct task_struct *validate_current(void)
{
	struct task_struct *tsk = current;
	if (unlikely((unsigned long)tsk < PAGE_OFFSET ||
233
		     (high_memory && (void *)tsk > high_memory) ||
234
		     ((unsigned long)tsk & (__alignof__(*tsk) - 1)) != 0)) {
235
		pr_err("Corrupt 'current' %p (sp %#lx)\n", tsk, stack_pointer);
236
		tsk = &corrupt_current;
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
	}
	return tsk;
}

/* Take and return the pointer to the previous task, for schedule_tail(). */
struct task_struct *sim_notify_fork(struct task_struct *prev)
{
	struct task_struct *tsk = current;
	__insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_FORK_PARENT |
		     (tsk->thread.creator_pid << _SIM_CONTROL_OPERATOR_BITS));
	__insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_FORK |
		     (tsk->pid << _SIM_CONTROL_OPERATOR_BITS));
	return prev;
}

int dump_task_regs(struct task_struct *tsk, elf_gregset_t *regs)
{
	struct pt_regs *ptregs = task_pt_regs(tsk);
	elf_core_copy_regs(regs, ptregs);
	return 1;
}

#if CHIP_HAS_TILE_DMA()

/* Allow user processes to access the DMA SPRs */
void grant_dma_mpls(void)
{
264 265 266 267
#if CONFIG_KERNEL_PL == 2
	__insn_mtspr(SPR_MPL_DMA_CPL_SET_1, 1);
	__insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_1, 1);
#else
268 269
	__insn_mtspr(SPR_MPL_DMA_CPL_SET_0, 1);
	__insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_0, 1);
270
#endif
271 272 273 274 275
}

/* Forbid user processes from accessing the DMA SPRs */
void restrict_dma_mpls(void)
{
276 277 278 279
#if CONFIG_KERNEL_PL == 2
	__insn_mtspr(SPR_MPL_DMA_CPL_SET_2, 1);
	__insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_2, 1);
#else
280 281
	__insn_mtspr(SPR_MPL_DMA_CPL_SET_1, 1);
	__insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_1, 1);
282
#endif
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
}

/* Pause the DMA engine, then save off its state registers. */
static void save_tile_dma_state(struct tile_dma_state *dma)
{
	unsigned long state = __insn_mfspr(SPR_DMA_USER_STATUS);
	unsigned long post_suspend_state;

	/* If we're running, suspend the engine. */
	if ((state & DMA_STATUS_MASK) == SPR_DMA_STATUS__RUNNING_MASK)
		__insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__SUSPEND_MASK);

	/*
	 * Wait for the engine to idle, then save regs.  Note that we
	 * want to record the "running" bit from before suspension,
	 * and the "done" bit from after, so that we can properly
	 * distinguish a case where the user suspended the engine from
	 * the case where the kernel suspended as part of the context
	 * swap.
	 */
	do {
		post_suspend_state = __insn_mfspr(SPR_DMA_USER_STATUS);
	} while (post_suspend_state & SPR_DMA_STATUS__BUSY_MASK);

	dma->src = __insn_mfspr(SPR_DMA_SRC_ADDR);
	dma->src_chunk = __insn_mfspr(SPR_DMA_SRC_CHUNK_ADDR);
	dma->dest = __insn_mfspr(SPR_DMA_DST_ADDR);
	dma->dest_chunk = __insn_mfspr(SPR_DMA_DST_CHUNK_ADDR);
	dma->strides = __insn_mfspr(SPR_DMA_STRIDE);
	dma->chunk_size = __insn_mfspr(SPR_DMA_CHUNK_SIZE);
	dma->byte = __insn_mfspr(SPR_DMA_BYTE);
	dma->status = (state & SPR_DMA_STATUS__RUNNING_MASK) |
		(post_suspend_state & SPR_DMA_STATUS__DONE_MASK);
}

/* Restart a DMA that was running before we were context-switched out. */
static void restore_tile_dma_state(struct thread_struct *t)
{
	const struct tile_dma_state *dma = &t->tile_dma_state;

	/*
	 * The only way to restore the done bit is to run a zero
	 * length transaction.
	 */
	if ((dma->status & SPR_DMA_STATUS__DONE_MASK) &&
	    !(__insn_mfspr(SPR_DMA_USER_STATUS) & SPR_DMA_STATUS__DONE_MASK)) {
		__insn_mtspr(SPR_DMA_BYTE, 0);
		__insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
		while (__insn_mfspr(SPR_DMA_USER_STATUS) &
		       SPR_DMA_STATUS__BUSY_MASK)
			;
	}

	__insn_mtspr(SPR_DMA_SRC_ADDR, dma->src);
	__insn_mtspr(SPR_DMA_SRC_CHUNK_ADDR, dma->src_chunk);
	__insn_mtspr(SPR_DMA_DST_ADDR, dma->dest);
	__insn_mtspr(SPR_DMA_DST_CHUNK_ADDR, dma->dest_chunk);
	__insn_mtspr(SPR_DMA_STRIDE, dma->strides);
	__insn_mtspr(SPR_DMA_CHUNK_SIZE, dma->chunk_size);
	__insn_mtspr(SPR_DMA_BYTE, dma->byte);

	/*
	 * Restart the engine if we were running and not done.
	 * Clear a pending async DMA fault that we were waiting on return
	 * to user space to execute, since we expect the DMA engine
	 * to regenerate those faults for us now.  Note that we don't
	 * try to clear the TIF_ASYNC_TLB flag, since it's relatively
	 * harmless if set, and it covers both DMA and the SN processor.
	 */
	if ((dma->status & DMA_STATUS_MASK) == SPR_DMA_STATUS__RUNNING_MASK) {
		t->dma_async_tlb.fault_num = 0;
		__insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
	}
}

#endif

static void save_arch_state(struct thread_struct *t)
{
#if CHIP_HAS_SPLIT_INTR_MASK()
	t->interrupt_mask = __insn_mfspr(SPR_INTERRUPT_MASK_0_0) |
		((u64)__insn_mfspr(SPR_INTERRUPT_MASK_0_1) << 32);
#else
	t->interrupt_mask = __insn_mfspr(SPR_INTERRUPT_MASK_0);
#endif
	t->ex_context[0] = __insn_mfspr(SPR_EX_CONTEXT_0_0);
	t->ex_context[1] = __insn_mfspr(SPR_EX_CONTEXT_0_1);
	t->system_save[0] = __insn_mfspr(SPR_SYSTEM_SAVE_0_0);
	t->system_save[1] = __insn_mfspr(SPR_SYSTEM_SAVE_0_1);
	t->system_save[2] = __insn_mfspr(SPR_SYSTEM_SAVE_0_2);
	t->system_save[3] = __insn_mfspr(SPR_SYSTEM_SAVE_0_3);
	t->intctrl_0 = __insn_mfspr(SPR_INTCTRL_0_STATUS);
	t->proc_status = __insn_mfspr(SPR_PROC_STATUS);
376 377 378 379 380 381 382
#if !CHIP_HAS_FIXED_INTVEC_BASE()
	t->interrupt_vector_base = __insn_mfspr(SPR_INTERRUPT_VECTOR_BASE_0);
#endif
	t->tile_rtf_hwm = __insn_mfspr(SPR_TILE_RTF_HWM);
#if CHIP_HAS_DSTREAM_PF()
	t->dstream_pf = __insn_mfspr(SPR_DSTREAM_PF);
#endif
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
}

static void restore_arch_state(const struct thread_struct *t)
{
#if CHIP_HAS_SPLIT_INTR_MASK()
	__insn_mtspr(SPR_INTERRUPT_MASK_0_0, (u32) t->interrupt_mask);
	__insn_mtspr(SPR_INTERRUPT_MASK_0_1, t->interrupt_mask >> 32);
#else
	__insn_mtspr(SPR_INTERRUPT_MASK_0, t->interrupt_mask);
#endif
	__insn_mtspr(SPR_EX_CONTEXT_0_0, t->ex_context[0]);
	__insn_mtspr(SPR_EX_CONTEXT_0_1, t->ex_context[1]);
	__insn_mtspr(SPR_SYSTEM_SAVE_0_0, t->system_save[0]);
	__insn_mtspr(SPR_SYSTEM_SAVE_0_1, t->system_save[1]);
	__insn_mtspr(SPR_SYSTEM_SAVE_0_2, t->system_save[2]);
	__insn_mtspr(SPR_SYSTEM_SAVE_0_3, t->system_save[3]);
	__insn_mtspr(SPR_INTCTRL_0_STATUS, t->intctrl_0);
	__insn_mtspr(SPR_PROC_STATUS, t->proc_status);
401 402 403 404 405 406
#if !CHIP_HAS_FIXED_INTVEC_BASE()
	__insn_mtspr(SPR_INTERRUPT_VECTOR_BASE_0, t->interrupt_vector_base);
#endif
	__insn_mtspr(SPR_TILE_RTF_HWM, t->tile_rtf_hwm);
#if CHIP_HAS_DSTREAM_PF()
	__insn_mtspr(SPR_DSTREAM_PF, t->dstream_pf);
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
#endif
}


void _prepare_arch_switch(struct task_struct *next)
{
#if CHIP_HAS_TILE_DMA()
	struct tile_dma_state *dma = &current->thread.tile_dma_state;
	if (dma->enabled)
		save_tile_dma_state(dma);
#endif
}


struct task_struct *__sched _switch_to(struct task_struct *prev,
				       struct task_struct *next)
{
	/* DMA state is already saved; save off other arch state. */
	save_arch_state(&prev->thread);

#if CHIP_HAS_TILE_DMA()
	/*
	 * Restore DMA in new task if desired.
	 * Note that it is only safe to restart here since interrupts
	 * are disabled, so we can't take any DMATLB miss or access
	 * interrupts before we have finished switching stacks.
	 */
	if (next->thread.tile_dma_state.enabled) {
		restore_tile_dma_state(&next->thread);
		grant_dma_mpls();
	} else {
		restrict_dma_mpls();
	}
#endif

	/* Restore other arch state. */
	restore_arch_state(&next->thread);

445 446
#ifdef CONFIG_HARDWALL
	/* Enable or disable access to the network registers appropriately. */
447
	hardwall_switch_tasks(prev, next);
448
#endif
449

C
Chris Metcalf 已提交
450
	/* Notify the simulator of task exit. */
451 452 453 454 455
	if (unlikely(prev->state == TASK_DEAD))
		__insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_EXIT |
			     (prev->pid << _SIM_CONTROL_OPERATOR_BITS));

	/*
C
Chris Metcalf 已提交
456
	 * Switch kernel SP, PC, and callee-saved registers.
457 458
	 * In the context of the new task, return the old task pointer
	 * (i.e. the task that actually called __switch_to).
C
Chris Metcalf 已提交
459
	 * Pass the value to use for SYSTEM_SAVE_K_0 when we reset our sp.
460
	 */
C
Chris Metcalf 已提交
461
	return __switch_to(prev, next, next_current_ksp0(next));
462 463
}

464 465
/*
 * This routine is called on return from interrupt if any of the
466 467 468 469 470 471 472 473
 * TIF_ALLWORK_MASK flags are set in thread_info->flags.  It is
 * entered with interrupts disabled so we don't miss an event that
 * modified the thread_info flags.  We loop until all the tested flags
 * are clear.  Note that the function is called on certain conditions
 * that are not listed in the loop condition here (e.g. SINGLESTEP)
 * which guarantees we will do those things once, and redo them if any
 * of the other work items is re-done, but won't continue looping if
 * all the other work is done.
474
 */
475
void prepare_exit_to_usermode(struct pt_regs *regs, u32 thread_info_flags)
476
{
477 478
	if (WARN_ON(!user_mode(regs)))
		return;
479

480 481
	do {
		local_irq_enable();
482

483 484
		if (thread_info_flags & _TIF_NEED_RESCHED)
			schedule();
485

C
Chris Metcalf 已提交
486
#if CHIP_HAS_TILE_DMA()
487 488
		if (thread_info_flags & _TIF_ASYNC_TLB)
			do_async_page_fault(regs);
489
#endif
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504

		if (thread_info_flags & _TIF_SIGPENDING)
			do_signal(regs);

		if (thread_info_flags & _TIF_NOTIFY_RESUME) {
			clear_thread_flag(TIF_NOTIFY_RESUME);
			tracehook_notify_resume(regs);
		}

		local_irq_disable();
		thread_info_flags = READ_ONCE(current_thread_info()->flags);

	} while (thread_info_flags & _TIF_WORK_MASK);

	if (thread_info_flags & _TIF_SINGLESTEP) {
505
		single_step_once(regs);
506 507 508 509 510 511 512 513 514
#ifndef __tilegx__
		/*
		 * FIXME: on tilepro, since we enable interrupts in
		 * this routine, it's possible that we miss a signal
		 * or other asynchronous event.
		 */
		local_irq_disable();
#endif
	}
515 516

	user_enter();
517 518
}

519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
unsigned long get_wchan(struct task_struct *p)
{
	struct KBacktraceIterator kbt;

	if (!p || p == current || p->state == TASK_RUNNING)
		return 0;

	for (KBacktraceIterator_init(&kbt, p, NULL);
	     !KBacktraceIterator_end(&kbt);
	     KBacktraceIterator_next(&kbt)) {
		if (!in_sched_functions(kbt.it.pc))
			return kbt.it.pc;
	}

	return 0;
}

/* Flush thread state. */
void flush_thread(void)
{
	/* Nothing */
}

/*
 * Free current thread data structures etc..
 */
545
void exit_thread(struct task_struct *tsk)
546
{
547 548 549 550 551 552 553
#ifdef CONFIG_HARDWALL
	/*
	 * Remove the task from the list of tasks that are associated
	 * with any live hardwalls.  (If the task that is exiting held
	 * the last reference to a hardwall fd, it would already have
	 * been released and deactivated at this point.)
	 */
554
	hardwall_deactivate_all(tsk);
555
#endif
556 557
}

C
Chris Metcalf 已提交
558
void tile_show_regs(struct pt_regs *regs)
559
{
560 561
	int i;
#ifdef __tilegx__
562
	for (i = 0; i < 17; i++)
C
Chris Metcalf 已提交
563
		pr_err(" r%-2d: "REGFMT" r%-2d: "REGFMT" r%-2d: "REGFMT"\n",
564 565
		       i, regs->regs[i], i+18, regs->regs[i+18],
		       i+36, regs->regs[i+36]);
C
Chris Metcalf 已提交
566
	pr_err(" r17: "REGFMT" r35: "REGFMT" tp : "REGFMT"\n",
567
	       regs->regs[17], regs->regs[35], regs->tp);
C
Chris Metcalf 已提交
568
	pr_err(" sp : "REGFMT" lr : "REGFMT"\n", regs->sp, regs->lr);
569
#else
570
	for (i = 0; i < 13; i++)
C
Chris Metcalf 已提交
571 572
		pr_err(" r%-2d: "REGFMT" r%-2d: "REGFMT
		       " r%-2d: "REGFMT" r%-2d: "REGFMT"\n",
573 574
		       i, regs->regs[i], i+14, regs->regs[i+14],
		       i+27, regs->regs[i+27], i+40, regs->regs[i+40]);
C
Chris Metcalf 已提交
575
	pr_err(" r13: "REGFMT" tp : "REGFMT" sp : "REGFMT" lr : "REGFMT"\n",
576
	       regs->regs[13], regs->tp, regs->sp, regs->lr);
577
#endif
C
Chris Metcalf 已提交
578 579 580 581 582 583 584 585 586 587 588 589 590 591
	pr_err(" pc : "REGFMT" ex1: %ld     faultnum: %ld flags:%s%s%s%s\n",
	       regs->pc, regs->ex1, regs->faultnum,
	       is_compat_task() ? " compat" : "",
	       (regs->flags & PT_FLAGS_DISABLE_IRQ) ? " noirq" : "",
	       !(regs->flags & PT_FLAGS_CALLER_SAVES) ? " nocallersave" : "",
	       (regs->flags & PT_FLAGS_RESTORE_REGS) ? " restoreregs" : "");
}

void show_regs(struct pt_regs *regs)
{
	struct KBacktraceIterator kbt;

	show_regs_print_info(KERN_DEFAULT);
	tile_show_regs(regs);
592

C
Chris Metcalf 已提交
593 594
	KBacktraceIterator_init(&kbt, NULL, regs);
	tile_show_stack(&kbt);
595
}
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695

/* To ensure stack dump on tiles occurs one by one. */
static DEFINE_SPINLOCK(backtrace_lock);
/* To ensure no backtrace occurs before all of the stack dump are done. */
static atomic_t backtrace_cpus;
/* The cpu mask to avoid reentrance. */
static struct cpumask backtrace_mask;

void do_nmi_dump_stack(struct pt_regs *regs)
{
	int is_idle = is_idle_task(current) && !in_interrupt();
	int cpu;

	nmi_enter();
	cpu = smp_processor_id();
	if (WARN_ON_ONCE(!cpumask_test_and_clear_cpu(cpu, &backtrace_mask)))
		goto done;

	spin_lock(&backtrace_lock);
	if (is_idle)
		pr_info("CPU: %d idle\n", cpu);
	else
		show_regs(regs);
	spin_unlock(&backtrace_lock);
	atomic_dec(&backtrace_cpus);
done:
	nmi_exit();
}

#ifdef __tilegx__
void arch_trigger_all_cpu_backtrace(bool self)
{
	struct cpumask mask;
	HV_Coord tile;
	unsigned int timeout;
	int cpu;
	int ongoing;
	HV_NMI_Info info[NR_CPUS];

	ongoing = atomic_cmpxchg(&backtrace_cpus, 0, num_online_cpus() - 1);
	if (ongoing != 0) {
		pr_err("Trying to do all-cpu backtrace.\n");
		pr_err("But another all-cpu backtrace is ongoing (%d cpus left)\n",
		       ongoing);
		if (self) {
			pr_err("Reporting the stack on this cpu only.\n");
			dump_stack();
		}
		return;
	}

	cpumask_copy(&mask, cpu_online_mask);
	cpumask_clear_cpu(smp_processor_id(), &mask);
	cpumask_copy(&backtrace_mask, &mask);

	/* Backtrace for myself first. */
	if (self)
		dump_stack();

	/* Tentatively dump stack on remote tiles via NMI. */
	timeout = 100;
	while (!cpumask_empty(&mask) && timeout) {
		for_each_cpu(cpu, &mask) {
			tile.x = cpu_x(cpu);
			tile.y = cpu_y(cpu);
			info[cpu] = hv_send_nmi(tile, TILE_NMI_DUMP_STACK, 0);
			if (info[cpu].result == HV_NMI_RESULT_OK)
				cpumask_clear_cpu(cpu, &mask);
		}

		mdelay(10);
		timeout--;
	}

	/* Warn about cpus stuck in ICS and decrement their counts here. */
	if (!cpumask_empty(&mask)) {
		for_each_cpu(cpu, &mask) {
			switch (info[cpu].result) {
			case HV_NMI_RESULT_FAIL_ICS:
				pr_warn("Skipping stack dump of cpu %d in ICS at pc %#llx\n",
					cpu, info[cpu].pc);
				break;
			case HV_NMI_RESULT_FAIL_HV:
				pr_warn("Skipping stack dump of cpu %d in hypervisor\n",
					cpu);
				break;
			case HV_ENOSYS:
				pr_warn("Hypervisor too old to allow remote stack dumps.\n");
				goto skip_for_each;
			default:  /* should not happen */
				pr_warn("Skipping stack dump of cpu %d [%d,%#llx]\n",
					cpu, info[cpu].result, info[cpu].pc);
				break;
			}
		}
skip_for_each:
		atomic_sub(cpumask_weight(&mask), &backtrace_cpus);
	}
}
#endif /* __tilegx_ */