core.c 198.6 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/highmem.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
37
#include <linux/capability.h>
L
Linus Torvalds 已提交
38 39
#include <linux/completion.h>
#include <linux/kernel_stat.h>
40
#include <linux/debug_locks.h>
41
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
57
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
58
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/unistd.h>
J
Jens Axboe 已提交
66
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
67
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
68
#include <linux/tick.h>
P
Peter Zijlstra 已提交
69 70
#include <linux/debugfs.h>
#include <linux/ctype.h>
71
#include <linux/ftrace.h>
72
#include <linux/slab.h>
73
#include <linux/init_task.h>
A
Al Viro 已提交
74
#include <linux/binfmts.h>
75
#include <linux/context_tracking.h>
L
Linus Torvalds 已提交
76

77
#include <asm/switch_to.h>
78
#include <asm/tlb.h>
79
#include <asm/irq_regs.h>
80
#include <asm/mutex.h>
G
Glauber Costa 已提交
81 82 83
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
84

85
#include "sched.h"
86
#include "../workqueue_internal.h"
87
#include "../smpboot.h"
88

89
#define CREATE_TRACE_POINTS
90
#include <trace/events/sched.h>
91

92
void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93
{
94 95
	unsigned long delta;
	ktime_t soft, hard, now;
96

97 98 99 100 101 102
	for (;;) {
		if (hrtimer_active(period_timer))
			break;

		now = hrtimer_cb_get_time(period_timer);
		hrtimer_forward(period_timer, now, period);
103

104 105 106 107 108 109 110 111
		soft = hrtimer_get_softexpires(period_timer);
		hard = hrtimer_get_expires(period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(period_timer, soft, delta,
					 HRTIMER_MODE_ABS_PINNED, 0);
	}
}

112 113
DEFINE_MUTEX(sched_domains_mutex);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114

115
static void update_rq_clock_task(struct rq *rq, s64 delta);
116

117
void update_rq_clock(struct rq *rq)
118
{
119
	s64 delta;
120

121
	if (rq->skip_clock_update > 0)
122
		return;
123

124 125 126
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
127 128
}

I
Ingo Molnar 已提交
129 130 131
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
132 133 134 135

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
136
const_debug unsigned int sysctl_sched_features =
137
#include "features.h"
P
Peter Zijlstra 已提交
138 139 140 141 142 143 144 145
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

146
static const char * const sched_feat_names[] = {
147
#include "features.h"
P
Peter Zijlstra 已提交
148 149 150 151
};

#undef SCHED_FEAT

L
Li Zefan 已提交
152
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
153 154 155
{
	int i;

156
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
L
Li Zefan 已提交
157 158 159
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
160
	}
L
Li Zefan 已提交
161
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
162

L
Li Zefan 已提交
163
	return 0;
P
Peter Zijlstra 已提交
164 165
}

166 167
#ifdef HAVE_JUMP_LABEL

168 169
#define jump_label_key__true  STATIC_KEY_INIT_TRUE
#define jump_label_key__false STATIC_KEY_INIT_FALSE
170 171 172 173

#define SCHED_FEAT(name, enabled)	\
	jump_label_key__##enabled ,

174
struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175 176 177 178 179 180 181
#include "features.h"
};

#undef SCHED_FEAT

static void sched_feat_disable(int i)
{
182 183
	if (static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_dec(&sched_feat_keys[i]);
184 185 186 187
}

static void sched_feat_enable(int i)
{
188 189
	if (!static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_inc(&sched_feat_keys[i]);
190 191 192 193 194 195
}
#else
static void sched_feat_disable(int i) { };
static void sched_feat_enable(int i) { };
#endif /* HAVE_JUMP_LABEL */

196
static int sched_feat_set(char *cmp)
P
Peter Zijlstra 已提交
197 198
{
	int i;
199
	int neg = 0;
P
Peter Zijlstra 已提交
200

H
Hillf Danton 已提交
201
	if (strncmp(cmp, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
202 203 204 205
		neg = 1;
		cmp += 3;
	}

206
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
207
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
208
			if (neg) {
P
Peter Zijlstra 已提交
209
				sysctl_sched_features &= ~(1UL << i);
210 211
				sched_feat_disable(i);
			} else {
P
Peter Zijlstra 已提交
212
				sysctl_sched_features |= (1UL << i);
213 214
				sched_feat_enable(i);
			}
P
Peter Zijlstra 已提交
215 216 217 218
			break;
		}
	}

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
	return i;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
	cmp = strstrip(buf);

	i = sched_feat_set(cmp);
240
	if (i == __SCHED_FEAT_NR)
P
Peter Zijlstra 已提交
241 242
		return -EINVAL;

243
	*ppos += cnt;
P
Peter Zijlstra 已提交
244 245 246 247

	return cnt;
}

L
Li Zefan 已提交
248 249 250 251 252
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

253
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
254 255 256 257 258
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
259 260 261 262 263 264 265 266 267 268
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);
269
#endif /* CONFIG_SCHED_DEBUG */
I
Ingo Molnar 已提交
270

271 272 273 274 275 276
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

277 278 279 280 281 282 283 284
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
285
/*
P
Peter Zijlstra 已提交
286
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
287 288
 * default: 1s
 */
P
Peter Zijlstra 已提交
289
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
290

291
__read_mostly int scheduler_running;
292

P
Peter Zijlstra 已提交
293 294 295 296 297
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
298 299


L
Linus Torvalds 已提交
300

301
/*
302
 * __task_rq_lock - lock the rq @p resides on.
303
 */
304
static inline struct rq *__task_rq_lock(struct task_struct *p)
305 306
	__acquires(rq->lock)
{
307 308
	struct rq *rq;

309 310
	lockdep_assert_held(&p->pi_lock);

311
	for (;;) {
312
		rq = task_rq(p);
313
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
314
		if (likely(rq == task_rq(p)))
315
			return rq;
316
		raw_spin_unlock(&rq->lock);
317 318 319
	}
}

L
Linus Torvalds 已提交
320
/*
321
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
L
Linus Torvalds 已提交
322
 */
323
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
324
	__acquires(p->pi_lock)
L
Linus Torvalds 已提交
325 326
	__acquires(rq->lock)
{
327
	struct rq *rq;
L
Linus Torvalds 已提交
328

329
	for (;;) {
330
		raw_spin_lock_irqsave(&p->pi_lock, *flags);
331
		rq = task_rq(p);
332
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
333
		if (likely(rq == task_rq(p)))
334
			return rq;
335 336
		raw_spin_unlock(&rq->lock);
		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
337 338 339
	}
}

A
Alexey Dobriyan 已提交
340
static void __task_rq_unlock(struct rq *rq)
341 342
	__releases(rq->lock)
{
343
	raw_spin_unlock(&rq->lock);
344 345
}

346 347
static inline void
task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
348
	__releases(rq->lock)
349
	__releases(p->pi_lock)
L
Linus Torvalds 已提交
350
{
351 352
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
353 354 355
}

/*
356
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
357
 */
A
Alexey Dobriyan 已提交
358
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
359 360
	__acquires(rq->lock)
{
361
	struct rq *rq;
L
Linus Torvalds 已提交
362 363 364

	local_irq_disable();
	rq = this_rq();
365
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
366 367 368 369

	return rq;
}

P
Peter Zijlstra 已提交
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

398
	raw_spin_lock(&rq->lock);
399
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
400
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
401
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
402 403 404 405

	return HRTIMER_NORESTART;
}

406
#ifdef CONFIG_SMP
407 408 409 410
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
411
{
412
	struct rq *rq = arg;
413

414
	raw_spin_lock(&rq->lock);
415 416
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
417
	raw_spin_unlock(&rq->lock);
418 419
}

420 421 422 423 424
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
425
void hrtick_start(struct rq *rq, u64 delay)
426
{
427 428
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
429

430
	hrtimer_set_expires(timer, time);
431 432 433 434

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
435
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
436 437
		rq->hrtick_csd_pending = 1;
	}
438 439 440 441 442 443 444 445 446 447 448 449 450 451
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
452
		hrtick_clear(cpu_rq(cpu));
453 454 455 456 457 458
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

459
static __init void init_hrtick(void)
460 461 462
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
463 464 465 466 467 468
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
469
void hrtick_start(struct rq *rq, u64 delay)
470
{
471
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
472
			HRTIMER_MODE_REL_PINNED, 0);
473
}
474

A
Andrew Morton 已提交
475
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
476 477
{
}
478
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
479

480
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
481
{
482 483
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
484

485 486 487 488
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
489

490 491
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
492
}
A
Andrew Morton 已提交
493
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
494 495 496 497 498 499 500 501
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

502 503 504
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
505
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
506

I
Ingo Molnar 已提交
507 508 509 510 511 512 513 514 515 516
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
A
Al Viro 已提交
517
#define tsk_is_polling(t) 0
I
Ingo Molnar 已提交
518 519
#endif

520
void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
521 522 523
{
	int cpu;

524
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
525

526
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
527 528
		return;

529
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
530 531 532 533 534 535 536 537 538 539 540

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

541
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
542 543 544 545
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

546
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
547 548
		return;
	resched_task(cpu_curr(cpu));
549
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
550
}
551 552

#ifdef CONFIG_NO_HZ
553 554 555 556 557 558 559 560 561 562 563 564 565 566
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
int get_nohz_timer_target(void)
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

567
	rcu_read_lock();
568
	for_each_domain(cpu, sd) {
569 570 571 572 573 574
		for_each_cpu(i, sched_domain_span(sd)) {
			if (!idle_cpu(i)) {
				cpu = i;
				goto unlock;
			}
		}
575
	}
576 577
unlock:
	rcu_read_unlock();
578 579
	return cpu;
}
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;
606 607

	/*
608 609 610
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
611
	 */
612
	set_tsk_need_resched(rq->idle);
613

614 615 616 617
	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
618 619
}

620
static inline bool got_nohz_idle_kick(void)
621
{
622 623
	int cpu = smp_processor_id();
	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
624 625
}

626
#else /* CONFIG_NO_HZ */
627

628
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
629
{
630
	return false;
P
Peter Zijlstra 已提交
631 632
}

633
#endif /* CONFIG_NO_HZ */
634

635
void sched_avg_update(struct rq *rq)
636
{
637 638 639
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
640 641 642 643 644 645
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
646 647 648
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
649 650
}

651
#else /* !CONFIG_SMP */
652
void resched_task(struct task_struct *p)
653
{
654
	assert_raw_spin_locked(&task_rq(p)->lock);
655
	set_tsk_need_resched(p);
656
}
657
#endif /* CONFIG_SMP */
658

659 660
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
661
/*
662 663 664 665
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
666
 */
667
int walk_tg_tree_from(struct task_group *from,
668
			     tg_visitor down, tg_visitor up, void *data)
669 670
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
671
	int ret;
672

673 674
	parent = from;

675
down:
P
Peter Zijlstra 已提交
676 677
	ret = (*down)(parent, data);
	if (ret)
678
		goto out;
679 680 681 682 683 684 685
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
686
	ret = (*up)(parent, data);
687 688
	if (ret || parent == from)
		goto out;
689 690 691 692 693

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
694
out:
P
Peter Zijlstra 已提交
695
	return ret;
696 697
}

698
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
699
{
700
	return 0;
P
Peter Zijlstra 已提交
701
}
702 703
#endif

704 705
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
706 707 708
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
709 710 711 712
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
713
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
714
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
715 716
		return;
	}
717

718
	load->weight = scale_load(prio_to_weight[prio]);
N
Nikhil Rao 已提交
719
	load->inv_weight = prio_to_wmult[prio];
720 721
}

722
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
723
{
724
	update_rq_clock(rq);
I
Ingo Molnar 已提交
725
	sched_info_queued(p);
726
	p->sched_class->enqueue_task(rq, p, flags);
727 728
}

729
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
730
{
731
	update_rq_clock(rq);
732
	sched_info_dequeued(p);
733
	p->sched_class->dequeue_task(rq, p, flags);
734 735
}

736
void activate_task(struct rq *rq, struct task_struct *p, int flags)
737 738 739 740
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

741
	enqueue_task(rq, p, flags);
742 743
}

744
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
745 746 747 748
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

749
	dequeue_task(rq, p, flags);
750 751
}

752
static void update_rq_clock_task(struct rq *rq, s64 delta)
753
{
754 755 756 757 758 759 760 761
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
762
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
784 785
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
786
	if (static_key_false((&paravirt_steal_rq_enabled))) {
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
		u64 st;

		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		st = steal_ticks(steal);
		steal = st * TICK_NSEC;

		rq->prev_steal_time_rq += steal;

		delta -= steal;
	}
#endif

804 805
	rq->clock_task += delta;

806 807 808 809
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
810 811
}

812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

842
/*
I
Ingo Molnar 已提交
843
 * __normal_prio - return the priority that is based on the static prio
844 845 846
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
847
	return p->static_prio;
848 849
}

850 851 852 853 854 855 856
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
857
static inline int normal_prio(struct task_struct *p)
858 859 860
{
	int prio;

861
	if (task_has_rt_policy(p))
862 863 864 865 866 867 868 869 870 871 872 873 874
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
875
static int effective_prio(struct task_struct *p)
876 877 878 879 880 881 882 883 884 885 886 887
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
888 889 890 891
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
892
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
893 894 895 896
{
	return cpu_curr(task_cpu(p)) == p;
}

897 898
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
899
				       int oldprio)
900 901 902
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
903 904 905 906
			prev_class->switched_from(rq, p);
		p->sched_class->switched_to(rq, p);
	} else if (oldprio != p->prio)
		p->sched_class->prio_changed(rq, p, oldprio);
907 908
}

909
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
				resched_task(rq->curr);
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
P
Peter Zijlstra 已提交
930
	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
931 932 933
		rq->skip_clock_update = 1;
}

934 935 936 937 938 939 940
static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);

void register_task_migration_notifier(struct notifier_block *n)
{
	atomic_notifier_chain_register(&task_migration_notifier, n);
}

L
Linus Torvalds 已提交
941
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
942
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
943
{
944 945 946 947 948
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
949 950
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
951 952

#ifdef CONFIG_LOCKDEP
953 954 955 956 957
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
958
	 * see task_group().
959 960 961 962
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
963 964 965
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
966 967
#endif

968
	trace_sched_migrate_task(p, new_cpu);
969

970
	if (task_cpu(p) != new_cpu) {
971 972
		struct task_migration_notifier tmn;

973 974
		if (p->sched_class->migrate_task_rq)
			p->sched_class->migrate_task_rq(p, new_cpu);
975
		p->se.nr_migrations++;
976
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
977 978 979 980 981 982

		tmn.task = p;
		tmn.from_cpu = task_cpu(p);
		tmn.to_cpu = new_cpu;

		atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
983
	}
I
Ingo Molnar 已提交
984 985

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
986 987
}

988
struct migration_arg {
989
	struct task_struct *task;
L
Linus Torvalds 已提交
990
	int dest_cpu;
991
};
L
Linus Torvalds 已提交
992

993 994
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
995 996 997
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
998 999 1000 1001 1002 1003 1004
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1005 1006 1007 1008 1009 1010
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1011
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1012 1013
{
	unsigned long flags;
I
Ingo Molnar 已提交
1014
	int running, on_rq;
R
Roland McGrath 已提交
1015
	unsigned long ncsw;
1016
	struct rq *rq;
L
Linus Torvalds 已提交
1017

1018 1019 1020 1021 1022 1023 1024 1025
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1026

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1038 1039 1040
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1041
			cpu_relax();
R
Roland McGrath 已提交
1042
		}
1043

1044 1045 1046 1047 1048 1049
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1050
		trace_sched_wait_task(p);
1051
		running = task_running(rq, p);
P
Peter Zijlstra 已提交
1052
		on_rq = p->on_rq;
R
Roland McGrath 已提交
1053
		ncsw = 0;
1054
		if (!match_state || p->state == match_state)
1055
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1056
		task_rq_unlock(rq, p, &flags);
1057

R
Roland McGrath 已提交
1058 1059 1060 1061 1062 1063
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1074

1075 1076 1077 1078 1079
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1080
		 * So if it was still runnable (but just not actively
1081 1082 1083 1084
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
1085 1086 1087 1088
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1089 1090
			continue;
		}
1091

1092 1093 1094 1095 1096 1097 1098
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1099 1100

	return ncsw;
L
Linus Torvalds 已提交
1101 1102 1103 1104 1105 1106 1107 1108 1109
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1110
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1111 1112 1113 1114 1115
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1116
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1117 1118 1119 1120 1121 1122 1123 1124 1125
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1126
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
1127
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1128

1129
#ifdef CONFIG_SMP
1130
/*
1131
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1132
 */
1133 1134
static int select_fallback_rq(int cpu, struct task_struct *p)
{
1135 1136
	int nid = cpu_to_node(cpu);
	const struct cpumask *nodemask = NULL;
1137 1138
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1139

1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
	/*
	 * If the node that the cpu is on has been offlined, cpu_to_node()
	 * will return -1. There is no cpu on the node, and we should
	 * select the cpu on the other node.
	 */
	if (nid != -1) {
		nodemask = cpumask_of_node(nid);

		/* Look for allowed, online CPU in same node. */
		for_each_cpu(dest_cpu, nodemask) {
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
				return dest_cpu;
		}
1157
	}
1158

1159 1160
	for (;;) {
		/* Any allowed, online CPU? */
1161
		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1162 1163 1164 1165 1166 1167
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			goto out;
		}
1168

1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
		switch (state) {
		case cpuset:
			/* No more Mr. Nice Guy. */
			cpuset_cpus_allowed_fallback(p);
			state = possible;
			break;

		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk_sched("process %d (%s) no longer affine to cpu%d\n",
					task_pid_nr(p), p->comm, cpu);
		}
1198 1199 1200 1201 1202
	}

	return dest_cpu;
}

1203
/*
1204
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1205
 */
1206
static inline
1207
int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1208
{
1209
	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1221
	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
P
Peter Zijlstra 已提交
1222
		     !cpu_online(cpu)))
1223
		cpu = select_fallback_rq(task_cpu(p), p);
1224 1225

	return cpu;
1226
}
1227 1228 1229 1230 1231 1232

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1233 1234
#endif

P
Peter Zijlstra 已提交
1235
static void
1236
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1237
{
P
Peter Zijlstra 已提交
1238
#ifdef CONFIG_SCHEDSTATS
1239 1240
	struct rq *rq = this_rq();

P
Peter Zijlstra 已提交
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1251
		rcu_read_lock();
P
Peter Zijlstra 已提交
1252 1253 1254 1255 1256 1257
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
1258
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1259
	}
1260 1261 1262 1263

	if (wake_flags & WF_MIGRATED)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
1264 1265 1266
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
1267
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1268 1269

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
1270
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1271 1272 1273 1274 1275 1276

#endif /* CONFIG_SCHEDSTATS */
}

static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
{
T
Tejun Heo 已提交
1277
	activate_task(rq, p, en_flags);
P
Peter Zijlstra 已提交
1278
	p->on_rq = 1;
1279 1280 1281 1282

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1283 1284
}

1285 1286 1287
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1288
static void
1289
ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
T
Tejun Heo 已提交
1290
{
1291
	trace_sched_wakeup(p, true);
T
Tejun Heo 已提交
1292 1293 1294 1295 1296 1297 1298
	check_preempt_curr(rq, p, wake_flags);

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

1299
	if (rq->idle_stamp) {
T
Tejun Heo 已提交
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
#endif
}

1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
static void
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
{
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
#endif

	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
	ttwu_do_wakeup(rq, p, wake_flags);
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
	if (p->on_rq) {
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;
}

1345
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1346
static void sched_ttwu_pending(void)
1347 1348
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1349 1350
	struct llist_node *llist = llist_del_all(&rq->wake_list);
	struct task_struct *p;
1351 1352 1353

	raw_spin_lock(&rq->lock);

P
Peter Zijlstra 已提交
1354 1355 1356
	while (llist) {
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
1357 1358 1359 1360 1361 1362 1363 1364
		ttwu_do_activate(rq, p, 0);
	}

	raw_spin_unlock(&rq->lock);
}

void scheduler_ipi(void)
{
1365
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
P
Peter Zijlstra 已提交
1382
	sched_ttwu_pending();
1383 1384 1385 1386

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1387 1388
	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
		this_rq()->idle_balance = 1;
1389
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1390
	}
1391
	irq_exit();
1392 1393 1394 1395
}

static void ttwu_queue_remote(struct task_struct *p, int cpu)
{
P
Peter Zijlstra 已提交
1396
	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1397 1398
		smp_send_reschedule(cpu);
}
1399

1400
bool cpus_share_cache(int this_cpu, int that_cpu)
1401 1402 1403
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1404
#endif /* CONFIG_SMP */
1405

1406 1407 1408 1409
static void ttwu_queue(struct task_struct *p, int cpu)
{
	struct rq *rq = cpu_rq(cpu);

1410
#if defined(CONFIG_SMP)
1411
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1412
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1413 1414 1415 1416 1417
		ttwu_queue_remote(p, cpu);
		return;
	}
#endif

1418 1419 1420
	raw_spin_lock(&rq->lock);
	ttwu_do_activate(rq, p, 0);
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
1421 1422 1423
}

/**
L
Linus Torvalds 已提交
1424
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1425
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1426
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1427
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1428 1429 1430 1431 1432 1433 1434
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
T
Tejun Heo 已提交
1435 1436
 * Returns %true if @p was woken up, %false if it was already running
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
1437
 */
1438 1439
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1440 1441
{
	unsigned long flags;
1442
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1443

1444
	smp_wmb();
1445
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
1446
	if (!(p->state & state))
L
Linus Torvalds 已提交
1447 1448
		goto out;

1449
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
1450 1451
	cpu = task_cpu(p);

1452 1453
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
1454 1455

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1456
	/*
1457 1458
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
P
Peter Zijlstra 已提交
1459
	 */
1460
	while (p->on_cpu)
1461
		cpu_relax();
1462
	/*
1463
	 * Pairs with the smp_wmb() in finish_lock_switch().
1464
	 */
1465
	smp_rmb();
L
Linus Torvalds 已提交
1466

1467
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
1468
	p->state = TASK_WAKING;
1469

1470
	if (p->sched_class->task_waking)
1471
		p->sched_class->task_waking(p);
1472

1473
	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1474 1475
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
1476
		set_task_cpu(p, cpu);
1477
	}
L
Linus Torvalds 已提交
1478 1479
#endif /* CONFIG_SMP */

1480 1481
	ttwu_queue(p, cpu);
stat:
1482
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
1483
out:
1484
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
1485 1486 1487 1488

	return success;
}

T
Tejun Heo 已提交
1489 1490 1491 1492
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
1493
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
1494
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1495
 * the current task.
T
Tejun Heo 已提交
1496 1497 1498 1499 1500 1501 1502 1503 1504
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	BUG_ON(rq != this_rq());
	BUG_ON(p == current);
	lockdep_assert_held(&rq->lock);

1505 1506 1507 1508 1509 1510
	if (!raw_spin_trylock(&p->pi_lock)) {
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
	}

T
Tejun Heo 已提交
1511
	if (!(p->state & TASK_NORMAL))
1512
		goto out;
T
Tejun Heo 已提交
1513

P
Peter Zijlstra 已提交
1514
	if (!p->on_rq)
P
Peter Zijlstra 已提交
1515 1516
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

1517
	ttwu_do_wakeup(rq, p, 0);
1518
	ttwu_stat(p, smp_processor_id(), 0);
1519 1520
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
1521 1522
}

1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
1534
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1535
{
1536 1537
	WARN_ON(task_is_stopped_or_traced(p));
	return try_to_wake_up(p, TASK_NORMAL, 0);
L
Linus Torvalds 已提交
1538 1539 1540
}
EXPORT_SYMBOL(wake_up_process);

1541
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1542 1543 1544 1545 1546 1547 1548
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1549 1550 1551 1552 1553
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
P
Peter Zijlstra 已提交
1554 1555 1556
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
1557 1558
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1559
	p->se.prev_sum_exec_runtime	= 0;
1560
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
1561
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
1562
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
1563

1564 1565 1566 1567 1568 1569
/*
 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
 * removed when useful for applications beyond shares distribution (e.g.
 * load-balance).
 */
#if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1570 1571 1572
	p->se.avg.runnable_avg_period = 0;
	p->se.avg.runnable_avg_sum = 0;
#endif
I
Ingo Molnar 已提交
1573
#ifdef CONFIG_SCHEDSTATS
1574
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
1575
#endif
N
Nick Piggin 已提交
1576

P
Peter Zijlstra 已提交
1577
	INIT_LIST_HEAD(&p->rt.run_list);
N
Nick Piggin 已提交
1578

1579 1580 1581
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
1582 1583 1584 1585

#ifdef CONFIG_NUMA_BALANCING
	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
		p->mm->numa_next_scan = jiffies;
1586
		p->mm->numa_next_reset = jiffies;
1587 1588 1589 1590 1591 1592
		p->mm->numa_scan_seq = 0;
	}

	p->node_stamp = 0ULL;
	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
	p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
1593
	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1594 1595
	p->numa_work.next = &p->numa_work;
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
1596 1597
}

1598
#ifdef CONFIG_NUMA_BALANCING
1599
#ifdef CONFIG_SCHED_DEBUG
1600 1601 1602 1603 1604 1605 1606
void set_numabalancing_state(bool enabled)
{
	if (enabled)
		sched_feat_set("NUMA");
	else
		sched_feat_set("NO_NUMA");
}
1607 1608 1609 1610 1611 1612
#else
__read_mostly bool numabalancing_enabled;

void set_numabalancing_state(bool enabled)
{
	numabalancing_enabled = enabled;
I
Ingo Molnar 已提交
1613
}
1614
#endif /* CONFIG_SCHED_DEBUG */
1615
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
1616 1617 1618 1619

/*
 * fork()/clone()-time setup:
 */
1620
void sched_fork(struct task_struct *p)
I
Ingo Molnar 已提交
1621
{
1622
	unsigned long flags;
I
Ingo Molnar 已提交
1623 1624 1625
	int cpu = get_cpu();

	__sched_fork(p);
1626
	/*
1627
	 * We mark the process as running here. This guarantees that
1628 1629 1630
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
1631
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1632

1633 1634 1635 1636 1637
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

1638 1639 1640 1641
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
1642
		if (task_has_rt_policy(p)) {
1643
			p->policy = SCHED_NORMAL;
1644
			p->static_prio = NICE_TO_PRIO(0);
1645 1646 1647 1648 1649 1650
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
1651

1652 1653 1654 1655 1656 1657
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
1658

H
Hiroshi Shimamoto 已提交
1659 1660
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
1661

P
Peter Zijlstra 已提交
1662 1663 1664
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

1665 1666 1667 1668 1669 1670 1671
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
1672
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1673
	set_task_cpu(p, cpu);
1674
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1675

1676
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1677
	if (likely(sched_info_on()))
1678
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1679
#endif
P
Peter Zijlstra 已提交
1680 1681
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
1682
#endif
1683
#ifdef CONFIG_PREEMPT_COUNT
1684
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1685
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1686
#endif
1687
#ifdef CONFIG_SMP
1688
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1689
#endif
1690

N
Nick Piggin 已提交
1691
	put_cpu();
L
Linus Torvalds 已提交
1692 1693 1694 1695 1696 1697 1698 1699 1700
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1701
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
1702 1703
{
	unsigned long flags;
I
Ingo Molnar 已提交
1704
	struct rq *rq;
1705

1706
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1707 1708 1709 1710 1711 1712
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 */
1713
	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1714 1715
#endif

1716
	rq = __task_rq_lock(p);
P
Peter Zijlstra 已提交
1717
	activate_task(rq, p, 0);
P
Peter Zijlstra 已提交
1718
	p->on_rq = 1;
1719
	trace_sched_wakeup_new(p, true);
P
Peter Zijlstra 已提交
1720
	check_preempt_curr(rq, p, WF_FORK);
1721
#ifdef CONFIG_SMP
1722 1723
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
1724
#endif
1725
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
1726 1727
}

1728 1729 1730
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
1731
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
1732
 * @notifier: notifier struct to register
1733 1734 1735 1736 1737 1738 1739 1740 1741
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1742
 * @notifier: notifier struct to unregister
1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;

1756
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1757 1758 1759 1760 1761 1762 1763 1764 1765
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;

1766
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1767 1768 1769
		notifier->ops->sched_out(notifier, next);
}

1770
#else /* !CONFIG_PREEMPT_NOTIFIERS */
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

1782
#endif /* CONFIG_PREEMPT_NOTIFIERS */
1783

1784 1785 1786
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1787
 * @prev: the current task that is being switched out
1788 1789 1790 1791 1792 1793 1794 1795 1796
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1797 1798 1799
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1800
{
1801
	trace_sched_switch(prev, next);
1802 1803
	sched_info_switch(prev, next);
	perf_event_task_sched_out(prev, next);
1804
	fire_sched_out_preempt_notifiers(prev, next);
1805 1806 1807 1808
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1809 1810
/**
 * finish_task_switch - clean up after a task-switch
1811
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1812 1813
 * @prev: the thread we just switched away from.
 *
1814 1815 1816 1817
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1818 1819
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
1820
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
1821 1822 1823
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
1824
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1825 1826 1827
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1828
	long prev_state;
L
Linus Torvalds 已提交
1829 1830 1831 1832 1833

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1834
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1835 1836
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1837
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1838 1839 1840 1841 1842
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1843
	prev_state = prev->state;
1844
	vtime_task_switch(prev);
1845
	finish_arch_switch(prev);
1846
	perf_event_task_sched_in(prev, current);
1847
	finish_lock_switch(rq, prev);
1848
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
1849

1850
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1851 1852
	if (mm)
		mmdrop(mm);
1853
	if (unlikely(prev_state == TASK_DEAD)) {
1854 1855 1856
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1857
		 */
1858
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1859
		put_task_struct(prev);
1860
	}
L
Linus Torvalds 已提交
1861 1862
}

1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

1878
		raw_spin_lock_irqsave(&rq->lock, flags);
1879 1880
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
1881
		raw_spin_unlock_irqrestore(&rq->lock, flags);
1882 1883 1884 1885 1886 1887

		rq->post_schedule = 0;
	}
}

#else
1888

1889 1890 1891 1892 1893 1894
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
1895 1896
}

1897 1898
#endif

L
Linus Torvalds 已提交
1899 1900 1901 1902
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1903
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1904 1905
	__releases(rq->lock)
{
1906 1907
	struct rq *rq = this_rq();

1908
	finish_task_switch(rq, prev);
1909

1910 1911 1912 1913 1914
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
1915

1916 1917 1918 1919
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1920
	if (current->set_child_tid)
1921
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
1922 1923 1924 1925 1926 1927
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
1928
static inline void
1929
context_switch(struct rq *rq, struct task_struct *prev,
1930
	       struct task_struct *next)
L
Linus Torvalds 已提交
1931
{
I
Ingo Molnar 已提交
1932
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
1933

1934
	prepare_task_switch(rq, prev, next);
1935

I
Ingo Molnar 已提交
1936 1937
	mm = next->mm;
	oldmm = prev->active_mm;
1938 1939 1940 1941 1942
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
1943
	arch_start_context_switch(prev);
1944

1945
	if (!mm) {
L
Linus Torvalds 已提交
1946 1947 1948 1949 1950 1951
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

1952
	if (!prev->mm) {
L
Linus Torvalds 已提交
1953 1954 1955
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
1956 1957 1958 1959 1960 1961 1962
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1963
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1964
#endif
L
Linus Torvalds 已提交
1965

1966
	context_tracking_task_switch(prev, next);
L
Linus Torvalds 已提交
1967 1968 1969
	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
1970 1971 1972 1973 1974 1975 1976
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
1977 1978 1979
}

/*
1980
 * nr_running and nr_context_switches:
L
Linus Torvalds 已提交
1981 1982
 *
 * externally visible scheduler statistics: current number of runnable
1983
 * threads, total number of context switches performed since bootup.
L
Linus Torvalds 已提交
1984 1985 1986 1987 1988 1989 1990 1991 1992
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
1993
}
L
Linus Torvalds 已提交
1994 1995

unsigned long long nr_context_switches(void)
1996
{
1997 1998
	int i;
	unsigned long long sum = 0;
1999

2000
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2001
		sum += cpu_rq(i)->nr_switches;
2002

L
Linus Torvalds 已提交
2003 2004
	return sum;
}
2005

L
Linus Torvalds 已提交
2006 2007 2008
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2009

2010
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2011
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2012

L
Linus Torvalds 已提交
2013 2014
	return sum;
}
2015

2016
unsigned long nr_iowait_cpu(int cpu)
2017
{
2018
	struct rq *this = cpu_rq(cpu);
2019 2020
	return atomic_read(&this->nr_iowait);
}
2021

2022 2023 2024 2025 2026
unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}
2027

2028

2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
/*
 * Global load-average calculations
 *
 * We take a distributed and async approach to calculating the global load-avg
 * in order to minimize overhead.
 *
 * The global load average is an exponentially decaying average of nr_running +
 * nr_uninterruptible.
 *
 * Once every LOAD_FREQ:
 *
 *   nr_active = 0;
 *   for_each_possible_cpu(cpu)
 *   	nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
 *
 *   avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
 *
 * Due to a number of reasons the above turns in the mess below:
 *
 *  - for_each_possible_cpu() is prohibitively expensive on machines with
 *    serious number of cpus, therefore we need to take a distributed approach
 *    to calculating nr_active.
 *
 *        \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
 *                      = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
 *
 *    So assuming nr_active := 0 when we start out -- true per definition, we
 *    can simply take per-cpu deltas and fold those into a global accumulate
 *    to obtain the same result. See calc_load_fold_active().
 *
 *    Furthermore, in order to avoid synchronizing all per-cpu delta folding
 *    across the machine, we assume 10 ticks is sufficient time for every
 *    cpu to have completed this task.
 *
 *    This places an upper-bound on the IRQ-off latency of the machine. Then
 *    again, being late doesn't loose the delta, just wrecks the sample.
 *
 *  - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
 *    this would add another cross-cpu cacheline miss and atomic operation
 *    to the wakeup path. Instead we increment on whatever cpu the task ran
 *    when it went into uninterruptible state and decrement on whatever cpu
 *    did the wakeup. This means that only the sum of nr_uninterruptible over
 *    all cpus yields the correct result.
 *
 *  This covers the NO_HZ=n code, for extra head-aches, see the comment below.
 */

2076 2077 2078 2079
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
EXPORT_SYMBOL(avenrun); /* should be removed */

/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
}
2096

2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
static long calc_load_fold_active(struct rq *this_rq)
{
	long nr_active, delta = 0;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
	}

	return delta;
}

2112 2113 2114
/*
 * a1 = a0 * e + a * (1 - e)
 */
2115 2116 2117 2118 2119 2120 2121 2122 2123
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
{
	load *= exp;
	load += active * (FIXED_1 - exp);
	load += 1UL << (FSHIFT - 1);
	return load >> FSHIFT;
}

2124 2125
#ifdef CONFIG_NO_HZ
/*
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
 * Handle NO_HZ for the global load-average.
 *
 * Since the above described distributed algorithm to compute the global
 * load-average relies on per-cpu sampling from the tick, it is affected by
 * NO_HZ.
 *
 * The basic idea is to fold the nr_active delta into a global idle-delta upon
 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
 * when we read the global state.
 *
 * Obviously reality has to ruin such a delightfully simple scheme:
 *
 *  - When we go NO_HZ idle during the window, we can negate our sample
 *    contribution, causing under-accounting.
 *
 *    We avoid this by keeping two idle-delta counters and flipping them
 *    when the window starts, thus separating old and new NO_HZ load.
 *
 *    The only trick is the slight shift in index flip for read vs write.
 *
 *        0s            5s            10s           15s
 *          +10           +10           +10           +10
 *        |-|-----------|-|-----------|-|-----------|-|
 *    r:0 0 1           1 0           0 1           1 0
 *    w:0 1 1           0 0           1 1           0 0
 *
 *    This ensures we'll fold the old idle contribution in this window while
 *    accumlating the new one.
 *
 *  - When we wake up from NO_HZ idle during the window, we push up our
 *    contribution, since we effectively move our sample point to a known
 *    busy state.
 *
 *    This is solved by pushing the window forward, and thus skipping the
 *    sample, for this cpu (effectively using the idle-delta for this cpu which
 *    was in effect at the time the window opened). This also solves the issue
 *    of having to deal with a cpu having been in NOHZ idle for multiple
 *    LOAD_FREQ intervals.
2164 2165 2166
 *
 * When making the ILB scale, we should try to pull this in as well.
 */
2167 2168
static atomic_long_t calc_load_idle[2];
static int calc_load_idx;
2169

2170
static inline int calc_load_write_idx(void)
2171
{
2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
	int idx = calc_load_idx;

	/*
	 * See calc_global_nohz(), if we observe the new index, we also
	 * need to observe the new update time.
	 */
	smp_rmb();

	/*
	 * If the folding window started, make sure we start writing in the
	 * next idle-delta.
	 */
	if (!time_before(jiffies, calc_load_update))
		idx++;

	return idx & 1;
}

static inline int calc_load_read_idx(void)
{
	return calc_load_idx & 1;
}

void calc_load_enter_idle(void)
{
	struct rq *this_rq = this_rq();
2198 2199
	long delta;

2200 2201 2202 2203
	/*
	 * We're going into NOHZ mode, if there's any pending delta, fold it
	 * into the pending idle delta.
	 */
2204
	delta = calc_load_fold_active(this_rq);
2205 2206 2207 2208
	if (delta) {
		int idx = calc_load_write_idx();
		atomic_long_add(delta, &calc_load_idle[idx]);
	}
2209 2210
}

2211
void calc_load_exit_idle(void)
2212
{
2213 2214 2215 2216 2217 2218 2219
	struct rq *this_rq = this_rq();

	/*
	 * If we're still before the sample window, we're done.
	 */
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
2220 2221

	/*
2222 2223 2224
	 * We woke inside or after the sample window, this means we're already
	 * accounted through the nohz accounting, so skip the entire deal and
	 * sync up for the next window.
2225
	 */
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
	this_rq->calc_load_update = calc_load_update;
	if (time_before(jiffies, this_rq->calc_load_update + 10))
		this_rq->calc_load_update += LOAD_FREQ;
}

static long calc_load_fold_idle(void)
{
	int idx = calc_load_read_idx();
	long delta = 0;

	if (atomic_long_read(&calc_load_idle[idx]))
		delta = atomic_long_xchg(&calc_load_idle[idx], 0);
2238 2239 2240

	return delta;
}
2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318

/**
 * fixed_power_int - compute: x^n, in O(log n) time
 *
 * @x:         base of the power
 * @frac_bits: fractional bits of @x
 * @n:         power to raise @x to.
 *
 * By exploiting the relation between the definition of the natural power
 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
 * (where: n_i \elem {0, 1}, the binary vector representing n),
 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
 * of course trivially computable in O(log_2 n), the length of our binary
 * vector.
 */
static unsigned long
fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
{
	unsigned long result = 1UL << frac_bits;

	if (n) for (;;) {
		if (n & 1) {
			result *= x;
			result += 1UL << (frac_bits - 1);
			result >>= frac_bits;
		}
		n >>= 1;
		if (!n)
			break;
		x *= x;
		x += 1UL << (frac_bits - 1);
		x >>= frac_bits;
	}

	return result;
}

/*
 * a1 = a0 * e + a * (1 - e)
 *
 * a2 = a1 * e + a * (1 - e)
 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
 *    = a0 * e^2 + a * (1 - e) * (1 + e)
 *
 * a3 = a2 * e + a * (1 - e)
 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
 *
 *  ...
 *
 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
 *    = a0 * e^n + a * (1 - e^n)
 *
 * [1] application of the geometric series:
 *
 *              n         1 - x^(n+1)
 *     S_n := \Sum x^i = -------------
 *             i=0          1 - x
 */
static unsigned long
calc_load_n(unsigned long load, unsigned long exp,
	    unsigned long active, unsigned int n)
{

	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
}

/*
 * NO_HZ can leave us missing all per-cpu ticks calling
 * calc_load_account_active(), but since an idle CPU folds its delta into
 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
 * in the pending idle delta if our idle period crossed a load cycle boundary.
 *
 * Once we've updated the global active value, we need to apply the exponential
 * weights adjusted to the number of cycles missed.
 */
2319
static void calc_global_nohz(void)
2320 2321 2322
{
	long delta, active, n;

2323 2324 2325 2326 2327 2328
	if (!time_before(jiffies, calc_load_update + 10)) {
		/*
		 * Catch-up, fold however many we are behind still
		 */
		delta = jiffies - calc_load_update - 10;
		n = 1 + (delta / LOAD_FREQ);
2329

2330 2331
		active = atomic_long_read(&calc_load_tasks);
		active = active > 0 ? active * FIXED_1 : 0;
2332

2333 2334 2335
		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2336

2337 2338
		calc_load_update += n * LOAD_FREQ;
	}
2339

2340 2341 2342 2343 2344 2345 2346 2347 2348
	/*
	 * Flip the idle index...
	 *
	 * Make sure we first write the new time then flip the index, so that
	 * calc_load_write_idx() will see the new time when it reads the new
	 * index, this avoids a double flip messing things up.
	 */
	smp_wmb();
	calc_load_idx++;
2349
}
2350
#else /* !CONFIG_NO_HZ */
2351

2352 2353
static inline long calc_load_fold_idle(void) { return 0; }
static inline void calc_global_nohz(void) { }
2354

2355
#endif /* CONFIG_NO_HZ */
2356 2357

/*
2358 2359
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
2360
 */
2361
void calc_global_load(unsigned long ticks)
2362
{
2363
	long active, delta;
L
Linus Torvalds 已提交
2364

2365
	if (time_before(jiffies, calc_load_update + 10))
2366
		return;
L
Linus Torvalds 已提交
2367

2368 2369 2370 2371 2372 2373 2374
	/*
	 * Fold the 'old' idle-delta to include all NO_HZ cpus.
	 */
	delta = calc_load_fold_idle();
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);

2375 2376
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
L
Linus Torvalds 已提交
2377

2378 2379 2380
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
I
Ingo Molnar 已提交
2381

2382
	calc_load_update += LOAD_FREQ;
2383 2384

	/*
2385
	 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
2386 2387
	 */
	calc_global_nohz();
2388
}
L
Linus Torvalds 已提交
2389

2390
/*
2391 2392
 * Called from update_cpu_load() to periodically update this CPU's
 * active count.
2393 2394 2395
 */
static void calc_load_account_active(struct rq *this_rq)
{
2396
	long delta;
2397

2398 2399
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
2400

2401 2402
	delta  = calc_load_fold_active(this_rq);
	if (delta)
2403
		atomic_long_add(delta, &calc_load_tasks);
2404 2405

	this_rq->calc_load_update += LOAD_FREQ;
2406 2407
}

2408 2409 2410 2411
/*
 * End of global load-average stuff
 */

2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
/*
 * The exact cpuload at various idx values, calculated at every tick would be
 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
 *
 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
 * on nth tick when cpu may be busy, then we have:
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
 *
 * decay_load_missed() below does efficient calculation of
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
 *
 * The calculation is approximated on a 128 point scale.
 * degrade_zero_ticks is the number of ticks after which load at any
 * particular idx is approximated to be zero.
 * degrade_factor is a precomputed table, a row for each load idx.
 * Each column corresponds to degradation factor for a power of two ticks,
 * based on 128 point scale.
 * Example:
 * row 2, col 3 (=12) says that the degradation at load idx 2 after
 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
 *
 * With this power of 2 load factors, we can degrade the load n times
 * by looking at 1 bits in n and doing as many mult/shift instead of
 * n mult/shifts needed by the exact degradation.
 */
#define DEGRADE_SHIFT		7
static const unsigned char
		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const unsigned char
		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
					{0, 0, 0, 0, 0, 0, 0, 0},
					{64, 32, 8, 0, 0, 0, 0, 0},
					{96, 72, 40, 12, 1, 0, 0},
					{112, 98, 75, 43, 15, 1, 0},
					{120, 112, 98, 76, 45, 16, 2} };

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}

2479
/*
I
Ingo Molnar 已提交
2480
 * Update rq->cpu_load[] statistics. This function is usually called every
2481 2482
 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
 * every tick. We fix it up based on jiffies.
2483
 */
2484 2485
static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
			      unsigned long pending_updates)
2486
{
I
Ingo Molnar 已提交
2487
	int i, scale;
2488

I
Ingo Molnar 已提交
2489
	this_rq->nr_load_updates++;
2490

I
Ingo Molnar 已提交
2491
	/* Update our load: */
2492 2493
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
I
Ingo Molnar 已提交
2494
		unsigned long old_load, new_load;
2495

I
Ingo Molnar 已提交
2496
		/* scale is effectively 1 << i now, and >> i divides by scale */
2497

I
Ingo Molnar 已提交
2498
		old_load = this_rq->cpu_load[i];
2499
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
I
Ingo Molnar 已提交
2500
		new_load = this_load;
I
Ingo Molnar 已提交
2501 2502 2503 2504 2505 2506
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
2507 2508 2509
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
I
Ingo Molnar 已提交
2510
	}
2511 2512

	sched_avg_update(this_rq);
2513 2514
}

2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528
#ifdef CONFIG_NO_HZ
/*
 * There is no sane way to deal with nohz on smp when using jiffies because the
 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
 *
 * Therefore we cannot use the delta approach from the regular tick since that
 * would seriously skew the load calculation. However we'll make do for those
 * updates happening while idle (nohz_idle_balance) or coming out of idle
 * (tick_nohz_idle_exit).
 *
 * This means we might still be one tick off for nohz periods.
 */

2529 2530 2531 2532 2533 2534
/*
 * Called from nohz_idle_balance() to update the load ratings before doing the
 * idle balance.
 */
void update_idle_cpu_load(struct rq *this_rq)
{
2535
	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2536 2537 2538 2539
	unsigned long load = this_rq->load.weight;
	unsigned long pending_updates;

	/*
2540
	 * bail if there's load or we're actually up-to-date.
2541 2542 2543 2544 2545 2546 2547 2548 2549 2550
	 */
	if (load || curr_jiffies == this_rq->last_load_update_tick)
		return;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	this_rq->last_load_update_tick = curr_jiffies;

	__update_cpu_load(this_rq, load, pending_updates);
}

2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576
/*
 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
 */
void update_cpu_load_nohz(void)
{
	struct rq *this_rq = this_rq();
	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
	unsigned long pending_updates;

	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

	raw_spin_lock(&this_rq->lock);
	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	if (pending_updates) {
		this_rq->last_load_update_tick = curr_jiffies;
		/*
		 * We were idle, this means load 0, the current load might be
		 * !0 due to remote wakeups and the sort.
		 */
		__update_cpu_load(this_rq, 0, pending_updates);
	}
	raw_spin_unlock(&this_rq->lock);
}
#endif /* CONFIG_NO_HZ */

2577 2578 2579
/*
 * Called from scheduler_tick()
 */
2580 2581
static void update_cpu_load_active(struct rq *this_rq)
{
2582
	/*
2583
	 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2584 2585 2586
	 */
	this_rq->last_load_update_tick = jiffies;
	__update_cpu_load(this_rq, this_rq->load.weight, 1);
2587

2588
	calc_load_account_active(this_rq);
2589 2590
}

I
Ingo Molnar 已提交
2591
#ifdef CONFIG_SMP
2592

2593
/*
P
Peter Zijlstra 已提交
2594 2595
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2596
 */
P
Peter Zijlstra 已提交
2597
void sched_exec(void)
2598
{
P
Peter Zijlstra 已提交
2599
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2600
	unsigned long flags;
2601
	int dest_cpu;
2602

2603
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2604
	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2605 2606
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2607

2608
	if (likely(cpu_active(dest_cpu))) {
2609
		struct migration_arg arg = { p, dest_cpu };
2610

2611 2612
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2613 2614
		return;
	}
2615
unlock:
2616
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2617
}
I
Ingo Molnar 已提交
2618

L
Linus Torvalds 已提交
2619 2620 2621
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2622
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2623 2624

EXPORT_PER_CPU_SYMBOL(kstat);
2625
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2626 2627

/*
2628
 * Return any ns on the sched_clock that have not yet been accounted in
2629
 * @p in case that task is currently running.
2630 2631
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
2632
 */
2633 2634 2635 2636 2637 2638
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
2639
		ns = rq->clock_task - p->se.exec_start;
2640 2641 2642 2643 2644 2645 2646
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

2647
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
2648 2649
{
	unsigned long flags;
2650
	struct rq *rq;
2651
	u64 ns = 0;
2652

2653
	rq = task_rq_lock(p, &flags);
2654
	ns = do_task_delta_exec(p, rq);
2655
	task_rq_unlock(rq, p, &flags);
2656

2657 2658
	return ns;
}
2659

2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2673
	task_rq_unlock(rq, p, &flags);
2674 2675 2676

	return ns;
}
2677

2678 2679 2680 2681 2682 2683 2684 2685
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2686
	struct task_struct *curr = rq->curr;
2687 2688

	sched_clock_tick();
I
Ingo Molnar 已提交
2689

2690
	raw_spin_lock(&rq->lock);
2691
	update_rq_clock(rq);
2692
	update_cpu_load_active(rq);
P
Peter Zijlstra 已提交
2693
	curr->sched_class->task_tick(rq, curr, 0);
2694
	raw_spin_unlock(&rq->lock);
2695

2696
	perf_event_task_tick();
2697

2698
#ifdef CONFIG_SMP
2699
	rq->idle_balance = idle_cpu(cpu);
I
Ingo Molnar 已提交
2700
	trigger_load_balance(rq, cpu);
2701
#endif
L
Linus Torvalds 已提交
2702 2703
}

2704
notrace unsigned long get_parent_ip(unsigned long addr)
2705 2706 2707 2708 2709 2710 2711 2712
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
2713

2714 2715 2716
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

2717
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
2718
{
2719
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2720 2721 2722
	/*
	 * Underflow?
	 */
2723 2724
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
2725
#endif
L
Linus Torvalds 已提交
2726
	preempt_count() += val;
2727
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2728 2729 2730
	/*
	 * Spinlock count overflowing soon?
	 */
2731 2732
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
2733 2734 2735
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
2736 2737 2738
}
EXPORT_SYMBOL(add_preempt_count);

2739
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
2740
{
2741
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2742 2743 2744
	/*
	 * Underflow?
	 */
2745
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2746
		return;
L
Linus Torvalds 已提交
2747 2748 2749
	/*
	 * Is the spinlock portion underflowing?
	 */
2750 2751 2752
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
2753
#endif
2754

2755 2756
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
2757 2758 2759 2760 2761 2762 2763
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
2764
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
2765
 */
I
Ingo Molnar 已提交
2766
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
2767
{
2768 2769 2770
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
2771 2772
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
2773

I
Ingo Molnar 已提交
2774
	debug_show_held_locks(prev);
2775
	print_modules();
I
Ingo Molnar 已提交
2776 2777
	if (irqs_disabled())
		print_irqtrace_events(prev);
2778
	dump_stack();
2779
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
I
Ingo Molnar 已提交
2780
}
L
Linus Torvalds 已提交
2781

I
Ingo Molnar 已提交
2782 2783 2784 2785 2786
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
2787
	/*
I
Ingo Molnar 已提交
2788
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
2789 2790 2791
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
2792
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
2793
		__schedule_bug(prev);
2794
	rcu_sleep_check();
I
Ingo Molnar 已提交
2795

L
Linus Torvalds 已提交
2796 2797
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

2798
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
2799 2800
}

P
Peter Zijlstra 已提交
2801
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
2802
{
2803
	if (prev->on_rq || rq->skip_clock_update < 0)
2804
		update_rq_clock(rq);
P
Peter Zijlstra 已提交
2805
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
2806 2807
}

I
Ingo Molnar 已提交
2808 2809 2810 2811
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
2812
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
2813
{
2814
	const struct sched_class *class;
I
Ingo Molnar 已提交
2815
	struct task_struct *p;
L
Linus Torvalds 已提交
2816 2817

	/*
I
Ingo Molnar 已提交
2818 2819
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
2820
	 */
2821
	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2822
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
2823 2824
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
2825 2826
	}

2827
	for_each_class(class) {
2828
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
2829 2830 2831
		if (p)
			return p;
	}
2832 2833

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
2834
}
L
Linus Torvalds 已提交
2835

I
Ingo Molnar 已提交
2836
/*
2837
 * __schedule() is the main scheduler function.
2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
I
Ingo Molnar 已提交
2872
 */
2873
static void __sched __schedule(void)
I
Ingo Molnar 已提交
2874 2875
{
	struct task_struct *prev, *next;
2876
	unsigned long *switch_count;
I
Ingo Molnar 已提交
2877
	struct rq *rq;
2878
	int cpu;
I
Ingo Molnar 已提交
2879

2880 2881
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
2882 2883
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
2884
	rcu_note_context_switch(cpu);
I
Ingo Molnar 已提交
2885 2886 2887
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
2888

2889
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
2890
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
2891

2892
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
2893

2894
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
2895
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
2896
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
2897
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
2898
		} else {
2899 2900 2901
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
2902
			/*
2903 2904 2905
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
2906 2907 2908 2909 2910 2911 2912 2913 2914
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
		}
I
Ingo Molnar 已提交
2915
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
2916 2917
	}

2918
	pre_schedule(rq, prev);
2919

I
Ingo Molnar 已提交
2920
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
2921 2922
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
2923
	put_prev_task(rq, prev);
2924
	next = pick_next_task(rq);
2925 2926
	clear_tsk_need_resched(prev);
	rq->skip_clock_update = 0;
L
Linus Torvalds 已提交
2927 2928 2929 2930 2931 2932

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
2933
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
2934
		/*
2935 2936 2937 2938
		 * The context switch have flipped the stack from under us
		 * and restored the local variables which were saved when
		 * this task called schedule() in the past. prev == current
		 * is still correct, but it can be moved to another cpu/rq.
P
Peter Zijlstra 已提交
2939 2940 2941
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
2942
	} else
2943
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
2944

2945
	post_schedule(rq);
L
Linus Torvalds 已提交
2946

2947
	sched_preempt_enable_no_resched();
2948
	if (need_resched())
L
Linus Torvalds 已提交
2949 2950
		goto need_resched;
}
2951

2952 2953
static inline void sched_submit_work(struct task_struct *tsk)
{
2954
	if (!tsk->state || tsk_is_pi_blocked(tsk))
2955 2956 2957 2958 2959 2960 2961 2962 2963
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

S
Simon Kirby 已提交
2964
asmlinkage void __sched schedule(void)
2965
{
2966 2967 2968
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
2969 2970
	__schedule();
}
L
Linus Torvalds 已提交
2971 2972
EXPORT_SYMBOL(schedule);

2973
#ifdef CONFIG_CONTEXT_TRACKING
2974 2975 2976 2977 2978 2979 2980 2981
asmlinkage void __sched schedule_user(void)
{
	/*
	 * If we come here after a random call to set_need_resched(),
	 * or we have been woken up remotely but the IPI has not yet arrived,
	 * we haven't yet exited the RCU idle mode. Do it here manually until
	 * we find a better solution.
	 */
2982
	user_exit();
2983
	schedule();
2984
	user_enter();
2985 2986 2987
}
#endif

2988 2989 2990 2991 2992 2993 2994
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
2995
	sched_preempt_enable_no_resched();
2996 2997 2998 2999
	schedule();
	preempt_disable();
}

3000
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3001

3002 3003 3004
static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
{
	if (lock->owner != owner)
3005
		return false;
3006 3007

	/*
3008 3009 3010 3011
	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
	 * lock->owner still matches owner, if that fails, owner might
	 * point to free()d memory, if it still matches, the rcu_read_lock()
	 * ensures the memory stays valid.
3012
	 */
3013
	barrier();
3014

3015
	return owner->on_cpu;
3016
}
3017

3018 3019 3020 3021 3022 3023 3024 3025
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
{
	if (!sched_feat(OWNER_SPIN))
		return 0;
3026

3027
	rcu_read_lock();
3028 3029
	while (owner_running(lock, owner)) {
		if (need_resched())
3030
			break;
3031

3032
		arch_mutex_cpu_relax();
3033
	}
3034
	rcu_read_unlock();
3035

3036
	/*
3037 3038 3039
	 * We break out the loop above on need_resched() and when the
	 * owner changed, which is a sign for heavy contention. Return
	 * success only when lock->owner is NULL.
3040
	 */
3041
	return lock->owner == NULL;
3042 3043 3044
}
#endif

L
Linus Torvalds 已提交
3045 3046
#ifdef CONFIG_PREEMPT
/*
3047
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3048
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3049 3050
 * occur there and call schedule directly.
 */
3051
asmlinkage void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
3052 3053
{
	struct thread_info *ti = current_thread_info();
3054

L
Linus Torvalds 已提交
3055 3056
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3057
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3058
	 */
N
Nick Piggin 已提交
3059
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3060 3061
		return;

3062
	do {
3063
		add_preempt_count_notrace(PREEMPT_ACTIVE);
3064
		__schedule();
3065
		sub_preempt_count_notrace(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3066

3067 3068 3069 3070 3071
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3072
	} while (need_resched());
L
Linus Torvalds 已提交
3073 3074 3075 3076
}
EXPORT_SYMBOL(preempt_schedule);

/*
3077
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3078 3079 3080 3081 3082 3083 3084
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
3085
	enum ctx_state prev_state;
3086

3087
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3088 3089
	BUG_ON(ti->preempt_count || !irqs_disabled());

3090 3091
	prev_state = exception_enter();

3092 3093 3094
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
3095
		__schedule();
3096 3097
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3098

3099 3100 3101 3102 3103
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3104
	} while (need_resched());
3105 3106

	exception_exit(prev_state);
L
Linus Torvalds 已提交
3107 3108 3109 3110
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
3111
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3112
			  void *key)
L
Linus Torvalds 已提交
3113
{
P
Peter Zijlstra 已提交
3114
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3115 3116 3117 3118
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
3119 3120
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
3121 3122 3123
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
3124
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
3125 3126
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
3127
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
3128
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
3129
{
3130
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3131

3132
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3133 3134
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
3135
		if (curr->func(curr, mode, wake_flags, key) &&
3136
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3137 3138 3139 3140 3141 3142 3143 3144 3145
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3146
 * @key: is directly passed to the wakeup function
3147 3148 3149
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3150
 */
3151
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3152
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
3165
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
L
Linus Torvalds 已提交
3166
{
3167
	__wake_up_common(q, mode, nr, 0, NULL);
L
Linus Torvalds 已提交
3168
}
3169
EXPORT_SYMBOL_GPL(__wake_up_locked);
L
Linus Torvalds 已提交
3170

3171 3172 3173 3174
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}
3175
EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3176

L
Linus Torvalds 已提交
3177
/**
3178
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3179 3180 3181
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3182
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
3183 3184 3185 3186 3187 3188 3189
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
3190 3191 3192
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3193
 */
3194 3195
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3196 3197
{
	unsigned long flags;
P
Peter Zijlstra 已提交
3198
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
3199 3200 3201 3202 3203

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
3204
		wake_flags = 0;
L
Linus Torvalds 已提交
3205 3206

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
3207
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
3208 3209
	spin_unlock_irqrestore(&q->lock, flags);
}
3210 3211 3212 3213 3214 3215 3216 3217 3218
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
3219 3220
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

3221 3222 3223 3224 3225 3226 3227 3228
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
3229 3230 3231
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3232
 */
3233
void complete(struct completion *x)
L
Linus Torvalds 已提交
3234 3235 3236 3237 3238
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
3239
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
3240 3241 3242 3243
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

3244 3245 3246 3247 3248
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
3249 3250 3251
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3252
 */
3253
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
3254 3255 3256 3257 3258
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
3259
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
3260 3261 3262 3263
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

3264
static inline long __sched
3265 3266
do_wait_for_common(struct completion *x,
		   long (*action)(long), long timeout, int state)
L
Linus Torvalds 已提交
3267 3268 3269 3270
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

C
Changli Gao 已提交
3271
		__add_wait_queue_tail_exclusive(&x->wait, &wait);
L
Linus Torvalds 已提交
3272
		do {
3273
			if (signal_pending_state(state, current)) {
3274 3275
				timeout = -ERESTARTSYS;
				break;
3276 3277
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
3278
			spin_unlock_irq(&x->wait.lock);
3279
			timeout = action(timeout);
L
Linus Torvalds 已提交
3280
			spin_lock_irq(&x->wait.lock);
3281
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
3282
		__remove_wait_queue(&x->wait, &wait);
3283 3284
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
3285 3286
	}
	x->done--;
3287
	return timeout ?: 1;
L
Linus Torvalds 已提交
3288 3289
}

3290 3291 3292
static inline long __sched
__wait_for_common(struct completion *x,
		  long (*action)(long), long timeout, int state)
L
Linus Torvalds 已提交
3293 3294 3295 3296
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
3297
	timeout = do_wait_for_common(x, action, timeout, state);
L
Linus Torvalds 已提交
3298
	spin_unlock_irq(&x->wait.lock);
3299 3300
	return timeout;
}
L
Linus Torvalds 已提交
3301

3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
{
	return __wait_for_common(x, schedule_timeout, timeout, state);
}

static long __sched
wait_for_common_io(struct completion *x, long timeout, int state)
{
	return __wait_for_common(x, io_schedule_timeout, timeout, state);
}

3314 3315 3316 3317 3318 3319 3320 3321 3322 3323
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
3324
void __sched wait_for_completion(struct completion *x)
3325 3326
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3327
}
3328
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
3329

3330 3331 3332 3333 3334 3335 3336 3337
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
3338 3339 3340
 *
 * The return value is 0 if timed out, and positive (at least 1, or number of
 * jiffies left till timeout) if completed.
3341
 */
3342
unsigned long __sched
3343
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
3344
{
3345
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3346
}
3347
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
3348

3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381
/**
 * wait_for_completion_io: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout. The caller is accounted as waiting
 * for IO.
 */
void __sched wait_for_completion_io(struct completion *x)
{
	wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
}
EXPORT_SYMBOL(wait_for_completion_io);

/**
 * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible. The caller is accounted as waiting for IO.
 *
 * The return value is 0 if timed out, and positive (at least 1, or number of
 * jiffies left till timeout) if completed.
 */
unsigned long __sched
wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
{
	return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
}
EXPORT_SYMBOL(wait_for_completion_io_timeout);

3382 3383 3384 3385 3386 3387
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
3388 3389
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3390
 */
3391
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
3392
{
3393 3394 3395 3396
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
3397
}
3398
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
3399

3400 3401 3402 3403 3404 3405 3406
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3407 3408 3409
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
 * positive (at least 1, or number of jiffies left till timeout) if completed.
3410
 */
3411
long __sched
3412 3413
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
3414
{
3415
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
3416
}
3417
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
3418

3419 3420 3421 3422 3423 3424
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
3425 3426
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3427
 */
M
Matthew Wilcox 已提交
3428 3429 3430 3431 3432 3433 3434 3435 3436
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

3437 3438 3439 3440 3441 3442 3443 3444
/**
 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be
 * signaled or for a specified timeout to expire. It can be
 * interrupted by a kill signal. The timeout is in jiffies.
3445 3446 3447
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
 * positive (at least 1, or number of jiffies left till timeout) if completed.
3448
 */
3449
long __sched
3450 3451 3452 3453 3454 3455 3456
wait_for_completion_killable_timeout(struct completion *x,
				     unsigned long timeout)
{
	return wait_for_common(x, timeout, TASK_KILLABLE);
}
EXPORT_SYMBOL(wait_for_completion_killable_timeout);

3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
3471
	unsigned long flags;
3472 3473
	int ret = 1;

3474
	spin_lock_irqsave(&x->wait.lock, flags);
3475 3476 3477 3478
	if (!x->done)
		ret = 0;
	else
		x->done--;
3479
	spin_unlock_irqrestore(&x->wait.lock, flags);
3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
3494
	unsigned long flags;
3495 3496
	int ret = 1;

3497
	spin_lock_irqsave(&x->wait.lock, flags);
3498 3499
	if (!x->done)
		ret = 0;
3500
	spin_unlock_irqrestore(&x->wait.lock, flags);
3501 3502 3503 3504
	return ret;
}
EXPORT_SYMBOL(completion_done);

3505 3506
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
3507
{
I
Ingo Molnar 已提交
3508 3509 3510 3511
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3512

3513
	__set_current_state(state);
L
Linus Torvalds 已提交
3514

3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3529 3530 3531
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3532
long __sched
I
Ingo Molnar 已提交
3533
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3534
{
3535
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3536 3537 3538
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
3539
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3540
{
3541
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3542 3543 3544
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3545
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3546
{
3547
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3548 3549 3550
}
EXPORT_SYMBOL(sleep_on_timeout);

3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3563
void rt_mutex_setprio(struct task_struct *p, int prio)
3564
{
3565
	int oldprio, on_rq, running;
3566
	struct rq *rq;
3567
	const struct sched_class *prev_class;
3568 3569 3570

	BUG_ON(prio < 0 || prio > MAX_PRIO);

3571
	rq = __task_rq_lock(p);
3572

3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

3591
	trace_sched_pi_setprio(p, prio);
3592
	oldprio = p->prio;
3593
	prev_class = p->sched_class;
P
Peter Zijlstra 已提交
3594
	on_rq = p->on_rq;
3595
	running = task_current(rq, p);
3596
	if (on_rq)
3597
		dequeue_task(rq, p, 0);
3598 3599
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
3600 3601 3602 3603 3604 3605

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

3606 3607
	p->prio = prio;

3608 3609
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
3610
	if (on_rq)
3611
		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3612

P
Peter Zijlstra 已提交
3613
	check_class_changed(rq, p, prev_class, oldprio);
3614
out_unlock:
3615
	__task_rq_unlock(rq);
3616 3617
}
#endif
3618
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3619
{
I
Ingo Molnar 已提交
3620
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
3621
	unsigned long flags;
3622
	struct rq *rq;
L
Linus Torvalds 已提交
3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
3635
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
3636
	 */
3637
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3638 3639 3640
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
P
Peter Zijlstra 已提交
3641
	on_rq = p->on_rq;
3642
	if (on_rq)
3643
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
3644 3645

	p->static_prio = NICE_TO_PRIO(nice);
3646
	set_load_weight(p);
3647 3648 3649
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3650

I
Ingo Molnar 已提交
3651
	if (on_rq) {
3652
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
3653
		/*
3654 3655
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3656
		 */
3657
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
3658 3659 3660
			resched_task(rq->curr);
	}
out_unlock:
3661
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3662 3663 3664
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3665 3666 3667 3668 3669
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3670
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3671
{
3672 3673
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
3674

3675
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3676 3677 3678
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3679 3680 3681 3682 3683 3684 3685 3686 3687
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3688
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3689
{
3690
	long nice, retval;
L
Linus Torvalds 已提交
3691 3692 3693 3694 3695 3696

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
3697 3698
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
3699 3700 3701
	if (increment > 40)
		increment = 40;

3702
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
3703 3704 3705 3706 3707
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
3708 3709 3710
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3729
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3730 3731 3732 3733 3734 3735 3736 3737
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
3738
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
3739 3740 3741
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
3742
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
3743 3744 3745 3746 3747 3748 3749

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3764 3765 3766 3767 3768 3769
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
3770
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3771 3772 3773 3774 3775 3776 3777 3778
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
3779
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3780
{
3781
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
3782 3783 3784
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
3785 3786
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
3787 3788 3789
{
	p->policy = policy;
	p->rt_priority = prio;
3790 3791 3792
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
3793 3794 3795 3796
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
3797
	set_load_weight(p);
L
Linus Torvalds 已提交
3798 3799
}

3800 3801 3802 3803 3804 3805 3806 3807 3808 3809
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
3810 3811
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
3812 3813 3814 3815
	rcu_read_unlock();
	return match;
}

3816
static int __sched_setscheduler(struct task_struct *p, int policy,
3817
				const struct sched_param *param, bool user)
L
Linus Torvalds 已提交
3818
{
3819
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
3820
	unsigned long flags;
3821
	const struct sched_class *prev_class;
3822
	struct rq *rq;
3823
	int reset_on_fork;
L
Linus Torvalds 已提交
3824

3825 3826
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
3827 3828
recheck:
	/* double check policy once rq lock held */
3829 3830
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
3831
		policy = oldpolicy = p->policy;
3832 3833 3834 3835 3836 3837 3838 3839 3840 3841
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
3842 3843
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
3844 3845
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
3846 3847
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
3848
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3849
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
3850
		return -EINVAL;
3851
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
3852 3853
		return -EINVAL;

3854 3855 3856
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
3857
	if (user && !capable(CAP_SYS_NICE)) {
3858
		if (rt_policy(policy)) {
3859 3860
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
3861 3862 3863 3864 3865 3866 3867 3868 3869 3870

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
3871

I
Ingo Molnar 已提交
3872
		/*
3873 3874
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
3875
		 */
3876 3877 3878 3879
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
			if (!can_nice(p, TASK_NICE(p)))
				return -EPERM;
		}
3880

3881
		/* can't change other user's priorities */
3882
		if (!check_same_owner(p))
3883
			return -EPERM;
3884 3885 3886 3887

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
3888
	}
L
Linus Torvalds 已提交
3889

3890
	if (user) {
3891
		retval = security_task_setscheduler(p);
3892 3893 3894 3895
		if (retval)
			return retval;
	}

3896 3897 3898
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
3899
	 *
L
Lucas De Marchi 已提交
3900
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
3901 3902
	 * runqueue lock must be held.
	 */
3903
	rq = task_rq_lock(p, &flags);
3904

3905 3906 3907 3908
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
3909
		task_rq_unlock(rq, p, &flags);
3910 3911 3912
		return -EINVAL;
	}

3913 3914 3915 3916 3917
	/*
	 * If not changing anything there's no need to proceed further:
	 */
	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
			param->sched_priority == p->rt_priority))) {
3918
		task_rq_unlock(rq, p, &flags);
3919 3920 3921
		return 0;
	}

3922 3923 3924 3925 3926 3927 3928
#ifdef CONFIG_RT_GROUP_SCHED
	if (user) {
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3929 3930
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
3931
			task_rq_unlock(rq, p, &flags);
3932 3933 3934 3935 3936
			return -EPERM;
		}
	}
#endif

L
Linus Torvalds 已提交
3937 3938 3939
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
3940
		task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3941 3942
		goto recheck;
	}
P
Peter Zijlstra 已提交
3943
	on_rq = p->on_rq;
3944
	running = task_current(rq, p);
3945
	if (on_rq)
3946
		dequeue_task(rq, p, 0);
3947 3948
	if (running)
		p->sched_class->put_prev_task(rq, p);
3949

3950 3951
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
3952
	oldprio = p->prio;
3953
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
3954
	__setscheduler(rq, p, policy, param->sched_priority);
3955

3956 3957
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
3958
	if (on_rq)
3959
		enqueue_task(rq, p, 0);
3960

P
Peter Zijlstra 已提交
3961
	check_class_changed(rq, p, prev_class, oldprio);
3962
	task_rq_unlock(rq, p, &flags);
3963

3964 3965
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
3966 3967
	return 0;
}
3968 3969 3970 3971 3972 3973 3974 3975 3976 3977

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
3978
		       const struct sched_param *param)
3979 3980 3981
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
3982 3983
EXPORT_SYMBOL_GPL(sched_setscheduler);

3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3996
			       const struct sched_param *param)
3997 3998 3999 4000
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
4001 4002
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4003 4004 4005
{
	struct sched_param lparam;
	struct task_struct *p;
4006
	int retval;
L
Linus Torvalds 已提交
4007 4008 4009 4010 4011

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4012 4013 4014

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4015
	p = find_process_by_pid(pid);
4016 4017 4018
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4019

L
Linus Torvalds 已提交
4020 4021 4022 4023 4024 4025 4026 4027 4028
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
4029 4030
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
4031
{
4032 4033 4034 4035
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4036 4037 4038 4039 4040 4041 4042 4043
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
4044
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4045 4046 4047 4048 4049 4050 4051 4052
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
4053
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4054
{
4055
	struct task_struct *p;
4056
	int retval;
L
Linus Torvalds 已提交
4057 4058

	if (pid < 0)
4059
		return -EINVAL;
L
Linus Torvalds 已提交
4060 4061

	retval = -ESRCH;
4062
	rcu_read_lock();
L
Linus Torvalds 已提交
4063 4064 4065 4066
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4067 4068
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4069
	}
4070
	rcu_read_unlock();
L
Linus Torvalds 已提交
4071 4072 4073 4074
	return retval;
}

/**
4075
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4076 4077 4078
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
4079
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4080 4081
{
	struct sched_param lp;
4082
	struct task_struct *p;
4083
	int retval;
L
Linus Torvalds 已提交
4084 4085

	if (!param || pid < 0)
4086
		return -EINVAL;
L
Linus Torvalds 已提交
4087

4088
	rcu_read_lock();
L
Linus Torvalds 已提交
4089 4090 4091 4092 4093 4094 4095 4096 4097 4098
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
4099
	rcu_read_unlock();
L
Linus Torvalds 已提交
4100 4101 4102 4103 4104 4105 4106 4107 4108

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4109
	rcu_read_unlock();
L
Linus Torvalds 已提交
4110 4111 4112
	return retval;
}

4113
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4114
{
4115
	cpumask_var_t cpus_allowed, new_mask;
4116 4117
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4118

4119
	get_online_cpus();
4120
	rcu_read_lock();
L
Linus Torvalds 已提交
4121 4122 4123

	p = find_process_by_pid(pid);
	if (!p) {
4124
		rcu_read_unlock();
4125
		put_online_cpus();
L
Linus Torvalds 已提交
4126 4127 4128
		return -ESRCH;
	}

4129
	/* Prevent p going away */
L
Linus Torvalds 已提交
4130
	get_task_struct(p);
4131
	rcu_read_unlock();
L
Linus Torvalds 已提交
4132

4133 4134 4135 4136 4137 4138 4139 4140
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4141
	retval = -EPERM;
E
Eric W. Biederman 已提交
4142 4143 4144 4145 4146 4147 4148 4149
	if (!check_same_owner(p)) {
		rcu_read_lock();
		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
			rcu_read_unlock();
			goto out_unlock;
		}
		rcu_read_unlock();
	}
L
Linus Torvalds 已提交
4150

4151
	retval = security_task_setscheduler(p);
4152 4153 4154
	if (retval)
		goto out_unlock;

4155 4156
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Peter Zijlstra 已提交
4157
again:
4158
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
4159

P
Paul Menage 已提交
4160
	if (!retval) {
4161 4162
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4163 4164 4165 4166 4167
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4168
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4169 4170 4171
			goto again;
		}
	}
L
Linus Torvalds 已提交
4172
out_unlock:
4173 4174 4175 4176
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4177
	put_task_struct(p);
4178
	put_online_cpus();
L
Linus Torvalds 已提交
4179 4180 4181 4182
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4183
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4184
{
4185 4186 4187 4188 4189
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4190 4191 4192 4193 4194 4195 4196 4197 4198
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
4199 4200
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4201
{
4202
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4203 4204
	int retval;

4205 4206
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4207

4208 4209 4210 4211 4212
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4213 4214
}

4215
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4216
{
4217
	struct task_struct *p;
4218
	unsigned long flags;
L
Linus Torvalds 已提交
4219 4220
	int retval;

4221
	get_online_cpus();
4222
	rcu_read_lock();
L
Linus Torvalds 已提交
4223 4224 4225 4226 4227 4228

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4229 4230 4231 4232
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4233
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4234
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4235
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4236 4237

out_unlock:
4238
	rcu_read_unlock();
4239
	put_online_cpus();
L
Linus Torvalds 已提交
4240

4241
	return retval;
L
Linus Torvalds 已提交
4242 4243 4244 4245 4246 4247 4248 4249
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
4250 4251
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4252 4253
{
	int ret;
4254
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4255

A
Anton Blanchard 已提交
4256
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4257 4258
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4259 4260
		return -EINVAL;

4261 4262
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4263

4264 4265
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4266
		size_t retlen = min_t(size_t, len, cpumask_size());
4267 4268

		if (copy_to_user(user_mask_ptr, mask, retlen))
4269 4270
			ret = -EFAULT;
		else
4271
			ret = retlen;
4272 4273
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4274

4275
	return ret;
L
Linus Torvalds 已提交
4276 4277 4278 4279 4280
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4281 4282
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4283
 */
4284
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4285
{
4286
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4287

4288
	schedstat_inc(rq, yld_count);
4289
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4290 4291 4292 4293 4294 4295

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4296
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4297
	do_raw_spin_unlock(&rq->lock);
4298
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
4299 4300 4301 4302 4303 4304

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
4305 4306 4307 4308 4309
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
4310
static void __cond_resched(void)
L
Linus Torvalds 已提交
4311
{
4312
	add_preempt_count(PREEMPT_ACTIVE);
4313
	__schedule();
4314
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4315 4316
}

4317
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4318
{
P
Peter Zijlstra 已提交
4319
	if (should_resched()) {
L
Linus Torvalds 已提交
4320 4321 4322 4323 4324
		__cond_resched();
		return 1;
	}
	return 0;
}
4325
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4326 4327

/*
4328
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4329 4330
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4331
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4332 4333 4334
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4335
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4336
{
P
Peter Zijlstra 已提交
4337
	int resched = should_resched();
J
Jan Kara 已提交
4338 4339
	int ret = 0;

4340 4341
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
4342
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4343
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4344
		if (resched)
N
Nick Piggin 已提交
4345 4346 4347
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
4348
		ret = 1;
L
Linus Torvalds 已提交
4349 4350
		spin_lock(lock);
	}
J
Jan Kara 已提交
4351
	return ret;
L
Linus Torvalds 已提交
4352
}
4353
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4354

4355
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4356 4357 4358
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
4359
	if (should_resched()) {
4360
		local_bh_enable();
L
Linus Torvalds 已提交
4361 4362 4363 4364 4365 4366
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
4367
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4368 4369 4370 4371

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
 * 	yield();
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
4390 4391 4392 4393 4394 4395 4396 4397
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

4398 4399 4400 4401
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
4402 4403
 * @p: target task
 * @preempt: whether task preemption is allowed or not
4404 4405 4406 4407
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
4408 4409 4410 4411
 * Returns:
 *	true (>0) if we indeed boosted the target task.
 *	false (0) if we failed to boost the target.
 *	-ESRCH if there's no task to yield to.
4412 4413 4414 4415 4416 4417
 */
bool __sched yield_to(struct task_struct *p, bool preempt)
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
4418
	int yielded = 0;
4419 4420 4421 4422 4423 4424

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
4425 4426 4427 4428 4429 4430 4431 4432 4433
	/*
	 * If we're the only runnable task on the rq and target rq also
	 * has only one task, there's absolutely no point in yielding.
	 */
	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
		yielded = -ESRCH;
		goto out_irq;
	}

4434 4435 4436 4437 4438 4439 4440
	double_rq_lock(rq, p_rq);
	while (task_rq(p) != p_rq) {
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
4441
		goto out_unlock;
4442 4443

	if (curr->sched_class != p->sched_class)
4444
		goto out_unlock;
4445 4446

	if (task_running(p_rq, p) || p->state)
4447
		goto out_unlock;
4448 4449

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4450
	if (yielded) {
4451
		schedstat_inc(rq, yld_count);
4452 4453 4454 4455 4456 4457 4458
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
			resched_task(p_rq->curr);
	}
4459

4460
out_unlock:
4461
	double_rq_unlock(rq, p_rq);
4462
out_irq:
4463 4464
	local_irq_restore(flags);

4465
	if (yielded > 0)
4466 4467 4468 4469 4470 4471
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
4472
/*
I
Ingo Molnar 已提交
4473
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4474 4475 4476 4477
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
4478
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4479

4480
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4481
	atomic_inc(&rq->nr_iowait);
4482
	blk_flush_plug(current);
4483
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4484
	schedule();
4485
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4486
	atomic_dec(&rq->nr_iowait);
4487
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4488 4489 4490 4491 4492
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4493
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4494 4495
	long ret;

4496
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4497
	atomic_inc(&rq->nr_iowait);
4498
	blk_flush_plug(current);
4499
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4500
	ret = schedule_timeout(timeout);
4501
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4502
	atomic_dec(&rq->nr_iowait);
4503
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4504 4505 4506 4507 4508 4509 4510 4511 4512 4513
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
4514
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
4515 4516 4517 4518 4519 4520 4521 4522 4523
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4524
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4525
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
4539
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
4540 4541 4542 4543 4544 4545 4546 4547 4548
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4549
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4550
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
4564
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4565
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
4566
{
4567
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4568
	unsigned int time_slice;
4569 4570
	unsigned long flags;
	struct rq *rq;
4571
	int retval;
L
Linus Torvalds 已提交
4572 4573 4574
	struct timespec t;

	if (pid < 0)
4575
		return -EINVAL;
L
Linus Torvalds 已提交
4576 4577

	retval = -ESRCH;
4578
	rcu_read_lock();
L
Linus Torvalds 已提交
4579 4580 4581 4582 4583 4584 4585 4586
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4587 4588
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
4589
	task_rq_unlock(rq, p, &flags);
D
Dmitry Adamushko 已提交
4590

4591
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
4592
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4593 4594
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4595

L
Linus Torvalds 已提交
4596
out_unlock:
4597
	rcu_read_unlock();
L
Linus Torvalds 已提交
4598 4599 4600
	return retval;
}

4601
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4602

4603
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4604 4605
{
	unsigned long free = 0;
4606
	int ppid;
4607
	unsigned state;
L
Linus Torvalds 已提交
4608 4609

	state = p->state ? __ffs(p->state) + 1 : 0;
4610
	printk(KERN_INFO "%-15.15s %c", p->comm,
4611
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4612
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4613
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4614
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4615
	else
P
Peter Zijlstra 已提交
4616
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4617 4618
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4619
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4620
	else
P
Peter Zijlstra 已提交
4621
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4622 4623
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
4624
	free = stack_not_used(p);
L
Linus Torvalds 已提交
4625
#endif
4626 4627 4628
	rcu_read_lock();
	ppid = task_pid_nr(rcu_dereference(p->real_parent));
	rcu_read_unlock();
P
Peter Zijlstra 已提交
4629
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4630
		task_pid_nr(p), ppid,
4631
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
4632

4633
	show_stack(p, NULL);
L
Linus Torvalds 已提交
4634 4635
}

I
Ingo Molnar 已提交
4636
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4637
{
4638
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4639

4640
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
4641 4642
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4643
#else
P
Peter Zijlstra 已提交
4644 4645
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4646
#endif
4647
	rcu_read_lock();
L
Linus Torvalds 已提交
4648 4649 4650
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
4651
		 * console might take a lot of time:
L
Linus Torvalds 已提交
4652 4653
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4654
		if (!state_filter || (p->state & state_filter))
4655
			sched_show_task(p);
L
Linus Torvalds 已提交
4656 4657
	} while_each_thread(g, p);

4658 4659
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4660 4661 4662
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
4663
	rcu_read_unlock();
I
Ingo Molnar 已提交
4664 4665 4666
	/*
	 * Only show locks if all tasks are dumped:
	 */
4667
	if (!state_filter)
I
Ingo Molnar 已提交
4668
		debug_show_all_locks();
L
Linus Torvalds 已提交
4669 4670
}

I
Ingo Molnar 已提交
4671 4672
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4673
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4674 4675
}

4676 4677 4678 4679 4680 4681 4682 4683
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4684
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4685
{
4686
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4687 4688
	unsigned long flags;

4689
	raw_spin_lock_irqsave(&rq->lock, flags);
4690

I
Ingo Molnar 已提交
4691
	__sched_fork(idle);
4692
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
4693 4694
	idle->se.exec_start = sched_clock();

4695
	do_set_cpus_allowed(idle, cpumask_of(cpu));
4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
4707
	__set_task_cpu(idle, cpu);
4708
	rcu_read_unlock();
L
Linus Torvalds 已提交
4709 4710

	rq->curr = rq->idle = idle;
P
Peter Zijlstra 已提交
4711 4712
#if defined(CONFIG_SMP)
	idle->on_cpu = 1;
4713
#endif
4714
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
4715 4716

	/* Set the preempt count _outside_ the spinlocks! */
A
Al Viro 已提交
4717
	task_thread_info(idle)->preempt_count = 0;
4718

I
Ingo Molnar 已提交
4719 4720 4721 4722
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
4723
	ftrace_graph_init_idle_task(idle, cpu);
4724
	vtime_init_idle(idle);
4725 4726 4727
#if defined(CONFIG_SMP)
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
4728 4729
}

L
Linus Torvalds 已提交
4730
#ifdef CONFIG_SMP
4731 4732 4733 4734
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
	if (p->sched_class && p->sched_class->set_cpus_allowed)
		p->sched_class->set_cpus_allowed(p, new_mask);
4735 4736

	cpumask_copy(&p->cpus_allowed, new_mask);
4737
	p->nr_cpus_allowed = cpumask_weight(new_mask);
4738 4739
}

L
Linus Torvalds 已提交
4740 4741 4742
/*
 * This is how migration works:
 *
4743 4744 4745 4746 4747 4748
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
4749
 *    it and puts it into the right queue.
4750 4751
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
4752 4753 4754 4755 4756 4757 4758 4759
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
4760
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
4761 4762
 * call is not atomic; no spinlocks may be held.
 */
4763
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
4764 4765
{
	unsigned long flags;
4766
	struct rq *rq;
4767
	unsigned int dest_cpu;
4768
	int ret = 0;
L
Linus Torvalds 已提交
4769 4770

	rq = task_rq_lock(p, &flags);
4771

4772 4773 4774
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

4775
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
4776 4777 4778 4779
		ret = -EINVAL;
		goto out;
	}

4780
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
4781 4782 4783 4784
		ret = -EINVAL;
		goto out;
	}

4785
	do_set_cpus_allowed(p, new_mask);
4786

L
Linus Torvalds 已提交
4787
	/* Can the task run on the task's current CPU? If so, we're done */
4788
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
4789 4790
		goto out;

4791
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4792
	if (p->on_rq) {
4793
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
4794
		/* Need help from migration thread: drop lock and wait. */
4795
		task_rq_unlock(rq, p, &flags);
4796
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
4797 4798 4799 4800
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
4801
	task_rq_unlock(rq, p, &flags);
4802

L
Linus Torvalds 已提交
4803 4804
	return ret;
}
4805
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
4806 4807

/*
I
Ingo Molnar 已提交
4808
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
4809 4810 4811 4812 4813 4814
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4815 4816
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4817
 */
4818
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4819
{
4820
	struct rq *rq_dest, *rq_src;
4821
	int ret = 0;
L
Linus Torvalds 已提交
4822

4823
	if (unlikely(!cpu_active(dest_cpu)))
4824
		return ret;
L
Linus Torvalds 已提交
4825 4826 4827 4828

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

4829
	raw_spin_lock(&p->pi_lock);
L
Linus Torvalds 已提交
4830 4831 4832
	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
4833
		goto done;
L
Linus Torvalds 已提交
4834
	/* Affinity changed (again). */
4835
	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
L
Linus Torvalds 已提交
4836
		goto fail;
L
Linus Torvalds 已提交
4837

4838 4839 4840 4841
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
P
Peter Zijlstra 已提交
4842
	if (p->on_rq) {
4843
		dequeue_task(rq_src, p, 0);
4844
		set_task_cpu(p, dest_cpu);
4845
		enqueue_task(rq_dest, p, 0);
4846
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
4847
	}
L
Linus Torvalds 已提交
4848
done:
4849
	ret = 1;
L
Linus Torvalds 已提交
4850
fail:
L
Linus Torvalds 已提交
4851
	double_rq_unlock(rq_src, rq_dest);
4852
	raw_spin_unlock(&p->pi_lock);
4853
	return ret;
L
Linus Torvalds 已提交
4854 4855 4856
}

/*
4857 4858 4859
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
4860
 */
4861
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
4862
{
4863
	struct migration_arg *arg = data;
4864

4865 4866 4867 4868
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
4869
	local_irq_disable();
4870
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4871
	local_irq_enable();
L
Linus Torvalds 已提交
4872
	return 0;
4873 4874
}

L
Linus Torvalds 已提交
4875
#ifdef CONFIG_HOTPLUG_CPU
4876

4877
/*
4878 4879
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
4880
 */
4881
void idle_task_exit(void)
L
Linus Torvalds 已提交
4882
{
4883
	struct mm_struct *mm = current->active_mm;
4884

4885
	BUG_ON(cpu_online(smp_processor_id()));
4886

4887 4888 4889
	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
L
Linus Torvalds 已提交
4890 4891 4892
}

/*
4893 4894 4895 4896 4897
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
 * nr_active count is stable.
 *
 * Also see the comment "Global load-average calculations".
L
Linus Torvalds 已提交
4898
 */
4899
static void calc_load_migrate(struct rq *rq)
L
Linus Torvalds 已提交
4900
{
4901 4902 4903
	long delta = calc_load_fold_active(rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
4904 4905
}

4906
/*
4907 4908 4909 4910 4911 4912
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
4913
 */
4914
static void migrate_tasks(unsigned int dead_cpu)
L
Linus Torvalds 已提交
4915
{
4916
	struct rq *rq = cpu_rq(dead_cpu);
4917 4918
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
4919 4920

	/*
4921 4922 4923 4924 4925 4926 4927
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
4928
	 */
4929
	rq->stop = NULL;
4930

I
Ingo Molnar 已提交
4931
	for ( ; ; ) {
4932 4933 4934 4935 4936
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
4937
			break;
4938

4939
		next = pick_next_task(rq);
4940
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
4941
		next->sched_class->put_prev_task(rq, next);
4942

4943 4944 4945 4946 4947 4948 4949
		/* Find suitable destination for @next, with force if needed. */
		dest_cpu = select_fallback_rq(dead_cpu, next);
		raw_spin_unlock(&rq->lock);

		__migrate_task(next, dead_cpu, dest_cpu);

		raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
4950
	}
4951

4952
	rq->stop = stop;
4953
}
4954

L
Linus Torvalds 已提交
4955 4956
#endif /* CONFIG_HOTPLUG_CPU */

4957 4958 4959
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
4960 4961
	{
		.procname	= "sched_domain",
4962
		.mode		= 0555,
4963
	},
4964
	{}
4965 4966 4967
};

static struct ctl_table sd_ctl_root[] = {
4968 4969
	{
		.procname	= "kernel",
4970
		.mode		= 0555,
4971 4972
		.child		= sd_ctl_dir,
	},
4973
	{}
4974 4975 4976 4977 4978
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
4979
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4980 4981 4982 4983

	return entry;
}

4984 4985
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
4986
	struct ctl_table *entry;
4987

4988 4989 4990
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
4991
	 * will always be set. In the lowest directory the names are
4992 4993 4994
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
4995 4996
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
4997 4998 4999
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5000 5001 5002 5003 5004

	kfree(*tablep);
	*tablep = NULL;
}

5005 5006 5007
static int min_load_idx = 0;
static int max_load_idx = CPU_LOAD_IDX_MAX;

5008
static void
5009
set_table_entry(struct ctl_table *entry,
5010
		const char *procname, void *data, int maxlen,
5011 5012
		umode_t mode, proc_handler *proc_handler,
		bool load_idx)
5013 5014 5015 5016 5017 5018
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
5019 5020 5021 5022 5023

	if (load_idx) {
		entry->extra1 = &min_load_idx;
		entry->extra2 = &max_load_idx;
	}
5024 5025 5026 5027 5028
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5029
	struct ctl_table *table = sd_alloc_ctl_entry(13);
5030

5031 5032 5033
	if (table == NULL)
		return NULL;

5034
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5035
		sizeof(long), 0644, proc_doulongvec_minmax, false);
5036
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5037
		sizeof(long), 0644, proc_doulongvec_minmax, false);
5038
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5039
		sizeof(int), 0644, proc_dointvec_minmax, true);
5040
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5041
		sizeof(int), 0644, proc_dointvec_minmax, true);
5042
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5043
		sizeof(int), 0644, proc_dointvec_minmax, true);
5044
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5045
		sizeof(int), 0644, proc_dointvec_minmax, true);
5046
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5047
		sizeof(int), 0644, proc_dointvec_minmax, true);
5048
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5049
		sizeof(int), 0644, proc_dointvec_minmax, false);
5050
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5051
		sizeof(int), 0644, proc_dointvec_minmax, false);
5052
	set_table_entry(&table[9], "cache_nice_tries",
5053
		&sd->cache_nice_tries,
5054
		sizeof(int), 0644, proc_dointvec_minmax, false);
5055
	set_table_entry(&table[10], "flags", &sd->flags,
5056
		sizeof(int), 0644, proc_dointvec_minmax, false);
5057
	set_table_entry(&table[11], "name", sd->name,
5058
		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5059
	/* &table[12] is terminator */
5060 5061 5062 5063

	return table;
}

5064
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5065 5066 5067 5068 5069 5070 5071 5072 5073
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5074 5075
	if (table == NULL)
		return NULL;
5076 5077 5078 5079 5080

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5081
		entry->mode = 0555;
5082 5083 5084 5085 5086 5087 5088 5089
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5090
static void register_sched_domain_sysctl(void)
5091
{
5092
	int i, cpu_num = num_possible_cpus();
5093 5094 5095
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5096 5097 5098
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5099 5100 5101
	if (entry == NULL)
		return;

5102
	for_each_possible_cpu(i) {
5103 5104
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5105
		entry->mode = 0555;
5106
		entry->child = sd_alloc_ctl_cpu_table(i);
5107
		entry++;
5108
	}
5109 5110

	WARN_ON(sd_sysctl_header);
5111 5112
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5113

5114
/* may be called multiple times per register */
5115 5116
static void unregister_sched_domain_sysctl(void)
{
5117 5118
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5119
	sd_sysctl_header = NULL;
5120 5121
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5122
}
5123
#else
5124 5125 5126 5127
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5128 5129 5130 5131
{
}
#endif

5132 5133 5134 5135 5136
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5137
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5157
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5158 5159 5160 5161
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5162 5163 5164 5165
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5166 5167
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5168
{
5169
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5170
	unsigned long flags;
5171
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5172

5173
	switch (action & ~CPU_TASKS_FROZEN) {
5174

L
Linus Torvalds 已提交
5175
	case CPU_UP_PREPARE:
5176
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5177
		break;
5178

L
Linus Torvalds 已提交
5179
	case CPU_ONLINE:
5180
		/* Update our root-domain */
5181
		raw_spin_lock_irqsave(&rq->lock, flags);
5182
		if (rq->rd) {
5183
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5184 5185

			set_rq_online(rq);
5186
		}
5187
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5188
		break;
5189

L
Linus Torvalds 已提交
5190
#ifdef CONFIG_HOTPLUG_CPU
5191
	case CPU_DYING:
5192
		sched_ttwu_pending();
G
Gregory Haskins 已提交
5193
		/* Update our root-domain */
5194
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5195
		if (rq->rd) {
5196
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5197
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5198
		}
5199 5200
		migrate_tasks(cpu);
		BUG_ON(rq->nr_running != 1); /* the migration thread */
5201
		raw_spin_unlock_irqrestore(&rq->lock, flags);
5202
		break;
5203

5204
	case CPU_DEAD:
5205
		calc_load_migrate(rq);
G
Gregory Haskins 已提交
5206
		break;
L
Linus Torvalds 已提交
5207 5208
#endif
	}
5209 5210 5211

	update_max_interval();

L
Linus Torvalds 已提交
5212 5213 5214
	return NOTIFY_OK;
}

5215 5216 5217
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5218
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5219
 */
5220
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5221
	.notifier_call = migration_call,
5222
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
5223 5224
};

5225 5226 5227 5228
static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
5229
	case CPU_STARTING:
5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		set_cpu_active((long)hcpu, false);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

5250
static int __init migration_init(void)
L
Linus Torvalds 已提交
5251 5252
{
	void *cpu = (void *)(long)smp_processor_id();
5253
	int err;
5254

5255
	/* Initialize migration for the boot CPU */
5256 5257
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5258 5259
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5260

5261 5262 5263 5264
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

5265
	return 0;
L
Linus Torvalds 已提交
5266
}
5267
early_initcall(migration_init);
L
Linus Torvalds 已提交
5268 5269 5270
#endif

#ifdef CONFIG_SMP
5271

5272 5273
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

5274
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5275

5276
static __read_mostly int sched_debug_enabled;
5277

5278
static int __init sched_debug_setup(char *str)
5279
{
5280
	sched_debug_enabled = 1;
5281 5282 5283

	return 0;
}
5284 5285 5286 5287 5288 5289
early_param("sched_debug", sched_debug_setup);

static inline bool sched_debug(void)
{
	return sched_debug_enabled;
}
5290

5291
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5292
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5293
{
I
Ingo Molnar 已提交
5294
	struct sched_group *group = sd->groups;
5295
	char str[256];
L
Linus Torvalds 已提交
5296

R
Rusty Russell 已提交
5297
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5298
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5299 5300 5301 5302

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5303
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5304
		if (sd->parent)
P
Peter Zijlstra 已提交
5305 5306
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5307
		return -1;
N
Nick Piggin 已提交
5308 5309
	}

P
Peter Zijlstra 已提交
5310
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
5311

5312
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5313 5314
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5315
	}
5316
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5317 5318
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5319
	}
L
Linus Torvalds 已提交
5320

I
Ingo Molnar 已提交
5321
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5322
	do {
I
Ingo Molnar 已提交
5323
		if (!group) {
P
Peter Zijlstra 已提交
5324 5325
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5326 5327 5328
			break;
		}

5329 5330 5331 5332 5333 5334
		/*
		 * Even though we initialize ->power to something semi-sane,
		 * we leave power_orig unset. This allows us to detect if
		 * domain iteration is still funny without causing /0 traps.
		 */
		if (!group->sgp->power_orig) {
P
Peter Zijlstra 已提交
5335 5336 5337
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
5338 5339
			break;
		}
L
Linus Torvalds 已提交
5340

5341
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5342 5343
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5344 5345
			break;
		}
L
Linus Torvalds 已提交
5346

5347 5348
		if (!(sd->flags & SD_OVERLAP) &&
		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5349 5350
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5351 5352
			break;
		}
L
Linus Torvalds 已提交
5353

5354
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
5355

R
Rusty Russell 已提交
5356
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5357

P
Peter Zijlstra 已提交
5358
		printk(KERN_CONT " %s", str);
5359
		if (group->sgp->power != SCHED_POWER_SCALE) {
P
Peter Zijlstra 已提交
5360
			printk(KERN_CONT " (cpu_power = %d)",
5361
				group->sgp->power);
5362
		}
L
Linus Torvalds 已提交
5363

I
Ingo Molnar 已提交
5364 5365
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
5366
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5367

5368
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
5369
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5370

5371 5372
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
5373 5374
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
5375 5376
	return 0;
}
L
Linus Torvalds 已提交
5377

I
Ingo Molnar 已提交
5378 5379 5380
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5381

5382
	if (!sched_debug_enabled)
5383 5384
		return;

I
Ingo Molnar 已提交
5385 5386 5387 5388
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5389

I
Ingo Molnar 已提交
5390 5391 5392
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
5393
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
5394
			break;
L
Linus Torvalds 已提交
5395 5396
		level++;
		sd = sd->parent;
5397
		if (!sd)
I
Ingo Molnar 已提交
5398 5399
			break;
	}
L
Linus Torvalds 已提交
5400
}
5401
#else /* !CONFIG_SCHED_DEBUG */
5402
# define sched_domain_debug(sd, cpu) do { } while (0)
5403 5404 5405 5406
static inline bool sched_debug(void)
{
	return false;
}
5407
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
5408

5409
static int sd_degenerate(struct sched_domain *sd)
5410
{
5411
	if (cpumask_weight(sched_domain_span(sd)) == 1)
5412 5413 5414 5415 5416 5417
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5418 5419 5420
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5421 5422 5423 5424 5425
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
5426
	if (sd->flags & (SD_WAKE_AFFINE))
5427 5428 5429 5430 5431
		return 0;

	return 1;
}

5432 5433
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5434 5435 5436 5437 5438 5439
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

5440
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5441 5442 5443 5444 5445 5446 5447
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5448 5449 5450
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5451 5452
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
5453 5454 5455 5456 5457 5458 5459
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

5460
static void free_rootdomain(struct rcu_head *rcu)
5461
{
5462
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5463

5464
	cpupri_cleanup(&rd->cpupri);
5465 5466 5467 5468 5469 5470
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
5471 5472
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
5473
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
5474 5475
	unsigned long flags;

5476
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5477 5478

	if (rq->rd) {
I
Ingo Molnar 已提交
5479
		old_rd = rq->rd;
G
Gregory Haskins 已提交
5480

5481
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5482
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5483

5484
		cpumask_clear_cpu(rq->cpu, old_rd->span);
5485

I
Ingo Molnar 已提交
5486 5487 5488 5489 5490 5491 5492
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
5493 5494 5495 5496 5497
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

5498
	cpumask_set_cpu(rq->cpu, rd->span);
5499
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5500
		set_rq_online(rq);
G
Gregory Haskins 已提交
5501

5502
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
5503 5504

	if (old_rd)
5505
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
5506 5507
}

5508
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
5509 5510 5511
{
	memset(rd, 0, sizeof(*rd));

5512
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5513
		goto out;
5514
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5515
		goto free_span;
5516
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5517
		goto free_online;
5518

5519
	if (cpupri_init(&rd->cpupri) != 0)
5520
		goto free_rto_mask;
5521
	return 0;
5522

5523 5524
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
5525 5526 5527 5528
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
5529
out:
5530
	return -ENOMEM;
G
Gregory Haskins 已提交
5531 5532
}

5533 5534 5535 5536 5537 5538
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
struct root_domain def_root_domain;

G
Gregory Haskins 已提交
5539 5540
static void init_defrootdomain(void)
{
5541
	init_rootdomain(&def_root_domain);
5542

G
Gregory Haskins 已提交
5543 5544 5545
	atomic_set(&def_root_domain.refcount, 1);
}

5546
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
5547 5548 5549 5550 5551 5552 5553
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

5554
	if (init_rootdomain(rd) != 0) {
5555 5556 5557
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
5558 5559 5560 5561

	return rd;
}

5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580
static void free_sched_groups(struct sched_group *sg, int free_sgp)
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
			kfree(sg->sgp);

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

5581 5582 5583
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5584 5585 5586 5587 5588 5589 5590 5591

	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5592
		kfree(sd->groups->sgp);
5593
		kfree(sd->groups);
5594
	}
5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

5609 5610 5611 5612 5613 5614 5615
/*
 * Keep a special pointer to the highest sched_domain that has
 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 * allows us to avoid some pointer chasing select_idle_sibling().
 *
 * Also keep a unique ID per domain (we use the first cpu number in
 * the cpumask of the domain), this allows us to quickly tell if
5616
 * two cpus are in the same cache domain, see cpus_share_cache().
5617 5618 5619 5620 5621 5622 5623 5624 5625 5626
 */
DEFINE_PER_CPU(struct sched_domain *, sd_llc);
DEFINE_PER_CPU(int, sd_llc_id);

static void update_top_cache_domain(int cpu)
{
	struct sched_domain *sd;
	int id = cpu;

	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5627
	if (sd)
5628 5629 5630 5631 5632 5633
		id = cpumask_first(sched_domain_span(sd));

	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
	per_cpu(sd_llc_id, cpu) = id;
}

L
Linus Torvalds 已提交
5634
/*
I
Ingo Molnar 已提交
5635
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
5636 5637
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
5638 5639
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
5640
{
5641
	struct rq *rq = cpu_rq(cpu);
5642 5643 5644
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
5645
	for (tmp = sd; tmp; ) {
5646 5647 5648
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5649

5650
		if (sd_parent_degenerate(tmp, parent)) {
5651
			tmp->parent = parent->parent;
5652 5653
			if (parent->parent)
				parent->parent->child = tmp;
5654
			destroy_sched_domain(parent, cpu);
5655 5656
		} else
			tmp = tmp->parent;
5657 5658
	}

5659
	if (sd && sd_degenerate(sd)) {
5660
		tmp = sd;
5661
		sd = sd->parent;
5662
		destroy_sched_domain(tmp, cpu);
5663 5664 5665
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5666

5667
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
5668

G
Gregory Haskins 已提交
5669
	rq_attach_root(rq, rd);
5670
	tmp = rq->sd;
N
Nick Piggin 已提交
5671
	rcu_assign_pointer(rq->sd, sd);
5672
	destroy_sched_domains(tmp, cpu);
5673 5674

	update_top_cache_domain(cpu);
L
Linus Torvalds 已提交
5675 5676 5677
}

/* cpus with isolated domains */
5678
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
5679 5680 5681 5682

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
5683
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
5684
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
5685 5686 5687
	return 1;
}

I
Ingo Molnar 已提交
5688
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5689

5690 5691 5692 5693 5694
static const struct cpumask *cpu_cpu_mask(int cpu)
{
	return cpumask_of_node(cpu_to_node(cpu));
}

5695 5696 5697
struct sd_data {
	struct sched_domain **__percpu sd;
	struct sched_group **__percpu sg;
5698
	struct sched_group_power **__percpu sgp;
5699 5700
};

5701
struct s_data {
5702
	struct sched_domain ** __percpu sd;
5703 5704 5705
	struct root_domain	*rd;
};

5706 5707
enum s_alloc {
	sa_rootdomain,
5708
	sa_sd,
5709
	sa_sd_storage,
5710 5711 5712
	sa_none,
};

5713 5714 5715
struct sched_domain_topology_level;

typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5716 5717
typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);

5718 5719
#define SDTL_OVERLAP	0x01

5720
struct sched_domain_topology_level {
5721 5722
	sched_domain_init_f init;
	sched_domain_mask_f mask;
5723
	int		    flags;
5724
	int		    numa_level;
5725
	struct sd_data      data;
5726 5727
};

P
Peter Zijlstra 已提交
5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765
/*
 * Build an iteration mask that can exclude certain CPUs from the upwards
 * domain traversal.
 *
 * Asymmetric node setups can result in situations where the domain tree is of
 * unequal depth, make sure to skip domains that already cover the entire
 * range.
 *
 * In that case build_sched_domains() will have terminated the iteration early
 * and our sibling sd spans will be empty. Domains should always include the
 * cpu they're built on, so check that.
 *
 */
static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
{
	const struct cpumask *span = sched_domain_span(sd);
	struct sd_data *sdd = sd->private;
	struct sched_domain *sibling;
	int i;

	for_each_cpu(i, span) {
		sibling = *per_cpu_ptr(sdd->sd, i);
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
			continue;

		cpumask_set_cpu(i, sched_group_mask(sg));
	}
}

/*
 * Return the canonical balance cpu for this group, this is the first cpu
 * of this group that's also in the iteration mask.
 */
int group_balance_cpu(struct sched_group *sg)
{
	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
}

5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
	struct sched_domain *child;
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

P
Peter Zijlstra 已提交
5784 5785 5786 5787 5788 5789
		child = *per_cpu_ptr(sdd->sd, i);

		/* See the comment near build_group_mask(). */
		if (!cpumask_test_cpu(i, sched_domain_span(child)))
			continue;

5790
		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5791
				GFP_KERNEL, cpu_to_node(cpu));
5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);
		if (child->child) {
			child = child->child;
			cpumask_copy(sg_span, sched_domain_span(child));
		} else
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

P
Peter Zijlstra 已提交
5805
		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
P
Peter Zijlstra 已提交
5806 5807 5808
		if (atomic_inc_return(&sg->sgp->ref) == 1)
			build_group_mask(sd, sg);

5809 5810 5811 5812 5813 5814
		/*
		 * Initialize sgp->power such that even if we mess up the
		 * domains and no possible iteration will get us here, we won't
		 * die on a /0 trap.
		 */
		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5815

P
Peter Zijlstra 已提交
5816 5817 5818 5819 5820
		/*
		 * Make sure the first group of this domain contains the
		 * canonical balance cpu. Otherwise the sched_domain iteration
		 * breaks. See update_sg_lb_stats().
		 */
P
Peter Zijlstra 已提交
5821
		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
P
Peter Zijlstra 已提交
5822
		    group_balance_cpu(sg) == cpu)
5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841
			groups = sg;

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

5842
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
5843
{
5844 5845
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
5846

5847 5848
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
5849

5850
	if (sg) {
5851
		*sg = *per_cpu_ptr(sdd->sg, cpu);
5852
		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5853
		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5854
	}
5855 5856

	return cpu;
5857 5858
}

5859
/*
5860 5861 5862
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
5863 5864
 *
 * Assumes the sched_domain tree is fully constructed
5865
 */
5866 5867
static int
build_sched_groups(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5868
{
5869 5870 5871
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
5872
	struct cpumask *covered;
5873
	int i;
5874

5875 5876 5877 5878 5879 5880
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

	if (cpu != cpumask_first(sched_domain_span(sd)))
		return 0;

5881 5882 5883
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

5884
	cpumask_clear(covered);
5885

5886 5887 5888 5889
	for_each_cpu(i, span) {
		struct sched_group *sg;
		int group = get_group(i, sdd, &sg);
		int j;
5890

5891 5892
		if (cpumask_test_cpu(i, covered))
			continue;
5893

5894
		cpumask_clear(sched_group_cpus(sg));
5895
		sg->sgp->power = 0;
P
Peter Zijlstra 已提交
5896
		cpumask_setall(sched_group_mask(sg));
5897

5898 5899 5900
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
5901

5902 5903 5904
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
5905

5906 5907 5908 5909 5910 5911 5912
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
5913 5914

	return 0;
5915
}
5916

5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
5929
	struct sched_group *sg = sd->groups;
5930

5931 5932 5933 5934 5935 5936
	WARN_ON(!sd || !sg);

	do {
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
		sg = sg->next;
	} while (sg != sd->groups);
5937

P
Peter Zijlstra 已提交
5938
	if (cpu != group_balance_cpu(sg))
5939
		return;
5940

5941
	update_group_power(sd, cpu);
5942
	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5943 5944
}

5945 5946 5947
int __weak arch_sd_sibling_asym_packing(void)
{
       return 0*SD_ASYM_PACKING;
5948 5949
}

5950 5951 5952 5953 5954
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

5955 5956 5957 5958 5959 5960
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

5961 5962 5963 5964 5965 5966 5967 5968 5969
#define SD_INIT_FUNC(type)						\
static noinline struct sched_domain *					\
sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
{									\
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
	*sd = SD_##type##_INIT;						\
	SD_INIT_NAME(sd, type);						\
	sd->private = &tl->data;					\
	return sd;							\
5970 5971 5972 5973 5974 5975 5976 5977 5978
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif
5979 5980 5981
#ifdef CONFIG_SCHED_BOOK
 SD_INIT_FUNC(BOOK)
#endif
5982

5983
static int default_relax_domain_level = -1;
5984
int sched_domain_level_max;
5985 5986 5987

static int __init setup_relax_domain_level(char *str)
{
5988 5989
	if (kstrtoint(str, 0, &default_relax_domain_level))
		pr_warn("Unable to set relax_domain_level\n");
5990

5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
6009
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6010 6011
	} else {
		/* turn on idle balance on this domain */
6012
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6013 6014 6015
	}
}

6016 6017 6018
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

6019 6020 6021 6022 6023
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
6024 6025
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
6026 6027
	case sa_sd:
		free_percpu(d->sd); /* fall through */
6028
	case sa_sd_storage:
6029
		__sdt_free(cpu_map); /* fall through */
6030 6031 6032 6033
	case sa_none:
		break;
	}
}
6034

6035 6036 6037
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
6038 6039
	memset(d, 0, sizeof(*d));

6040 6041
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
6042 6043 6044
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
6045
	d->rd = alloc_rootdomain();
6046
	if (!d->rd)
6047
		return sa_sd;
6048 6049
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
6050

6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

6063
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6064
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6065 6066

	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6067
		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
6068 6069
}

6070 6071
#ifdef CONFIG_SCHED_SMT
static const struct cpumask *cpu_smt_mask(int cpu)
6072
{
6073
	return topology_thread_cpumask(cpu);
6074
}
6075
#endif
6076

6077 6078 6079
/*
 * Topology list, bottom-up.
 */
6080
static struct sched_domain_topology_level default_topology[] = {
6081 6082
#ifdef CONFIG_SCHED_SMT
	{ sd_init_SIBLING, cpu_smt_mask, },
6083
#endif
6084
#ifdef CONFIG_SCHED_MC
6085
	{ sd_init_MC, cpu_coregroup_mask, },
6086
#endif
6087 6088 6089 6090
#ifdef CONFIG_SCHED_BOOK
	{ sd_init_BOOK, cpu_book_mask, },
#endif
	{ sd_init_CPU, cpu_cpu_mask, },
6091 6092 6093 6094 6095
	{ NULL, },
};

static struct sched_domain_topology_level *sched_domain_topology = default_topology;

6096 6097 6098 6099 6100 6101 6102 6103 6104
#ifdef CONFIG_NUMA

static int sched_domains_numa_levels;
static int *sched_domains_numa_distance;
static struct cpumask ***sched_domains_numa_masks;
static int sched_domains_curr_level;

static inline int sd_local_flags(int level)
{
6105
	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122
		return 0;

	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
}

static struct sched_domain *
sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
{
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
	int level = tl->numa_level;
	int sd_weight = cpumask_weight(
			sched_domains_numa_masks[level][cpu_to_node(cpu)]);

	*sd = (struct sched_domain){
		.min_interval		= sd_weight,
		.max_interval		= 2*sd_weight,
		.busy_factor		= 32,
6123
		.imbalance_pct		= 125,
6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161
		.cache_nice_tries	= 2,
		.busy_idx		= 3,
		.idle_idx		= 2,
		.newidle_idx		= 0,
		.wake_idx		= 0,
		.forkexec_idx		= 0,

		.flags			= 1*SD_LOAD_BALANCE
					| 1*SD_BALANCE_NEWIDLE
					| 0*SD_BALANCE_EXEC
					| 0*SD_BALANCE_FORK
					| 0*SD_BALANCE_WAKE
					| 0*SD_WAKE_AFFINE
					| 0*SD_SHARE_CPUPOWER
					| 0*SD_SHARE_PKG_RESOURCES
					| 1*SD_SERIALIZE
					| 0*SD_PREFER_SIBLING
					| sd_local_flags(level)
					,
		.last_balance		= jiffies,
		.balance_interval	= sd_weight,
	};
	SD_INIT_NAME(sd, NUMA);
	sd->private = &tl->data;

	/*
	 * Ugly hack to pass state to sd_numa_mask()...
	 */
	sched_domains_curr_level = tl->numa_level;

	return sd;
}

static const struct cpumask *sd_numa_mask(int cpu)
{
	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
}

6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197
static void sched_numa_warn(const char *str)
{
	static int done = false;
	int i,j;

	if (done)
		return;

	done = true;

	printk(KERN_WARNING "ERROR: %s\n\n", str);

	for (i = 0; i < nr_node_ids; i++) {
		printk(KERN_WARNING "  ");
		for (j = 0; j < nr_node_ids; j++)
			printk(KERN_CONT "%02d ", node_distance(i,j));
		printk(KERN_CONT "\n");
	}
	printk(KERN_WARNING "\n");
}

static bool find_numa_distance(int distance)
{
	int i;

	if (distance == node_distance(0, 0))
		return true;

	for (i = 0; i < sched_domains_numa_levels; i++) {
		if (sched_domains_numa_distance[i] == distance)
			return true;
	}

	return false;
}

6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218
static void sched_init_numa(void)
{
	int next_distance, curr_distance = node_distance(0, 0);
	struct sched_domain_topology_level *tl;
	int level = 0;
	int i, j, k;

	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
	if (!sched_domains_numa_distance)
		return;

	/*
	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
	 * unique distances in the node_distance() table.
	 *
	 * Assumes node_distance(0,j) includes all distances in
	 * node_distance(i,j) in order to avoid cubic time.
	 */
	next_distance = curr_distance;
	for (i = 0; i < nr_node_ids; i++) {
		for (j = 0; j < nr_node_ids; j++) {
6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242
			for (k = 0; k < nr_node_ids; k++) {
				int distance = node_distance(i, k);

				if (distance > curr_distance &&
				    (distance < next_distance ||
				     next_distance == curr_distance))
					next_distance = distance;

				/*
				 * While not a strong assumption it would be nice to know
				 * about cases where if node A is connected to B, B is not
				 * equally connected to A.
				 */
				if (sched_debug() && node_distance(k, i) != distance)
					sched_numa_warn("Node-distance not symmetric");

				if (sched_debug() && i && !find_numa_distance(distance))
					sched_numa_warn("Node-0 not representative");
			}
			if (next_distance != curr_distance) {
				sched_domains_numa_distance[level++] = next_distance;
				sched_domains_numa_levels = level;
				curr_distance = next_distance;
			} else break;
6243
		}
6244 6245 6246 6247 6248 6249

		/*
		 * In case of sched_debug() we verify the above assumption.
		 */
		if (!sched_debug())
			break;
6250 6251 6252 6253 6254 6255 6256 6257 6258
	}
	/*
	 * 'level' contains the number of unique distances, excluding the
	 * identity distance node_distance(i,i).
	 *
	 * The sched_domains_nume_distance[] array includes the actual distance
	 * numbers.
	 */

6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269
	/*
	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
	 * the array will contain less then 'level' members. This could be
	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
	 * in other functions.
	 *
	 * We reset it to 'level' at the end of this function.
	 */
	sched_domains_numa_levels = 0;

6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284
	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
	if (!sched_domains_numa_masks)
		return;

	/*
	 * Now for each level, construct a mask per node which contains all
	 * cpus of nodes that are that many hops away from us.
	 */
	for (i = 0; i < level; i++) {
		sched_domains_numa_masks[i] =
			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
		if (!sched_domains_numa_masks[i])
			return;

		for (j = 0; j < nr_node_ids; j++) {
6285
			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6286 6287 6288 6289 6290 6291
			if (!mask)
				return;

			sched_domains_numa_masks[i][j] = mask;

			for (k = 0; k < nr_node_ids; k++) {
6292
				if (node_distance(j, k) > sched_domains_numa_distance[i])
6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323
					continue;

				cpumask_or(mask, mask, cpumask_of_node(k));
			}
		}
	}

	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
	if (!tl)
		return;

	/*
	 * Copy the default topology bits..
	 */
	for (i = 0; default_topology[i].init; i++)
		tl[i] = default_topology[i];

	/*
	 * .. and append 'j' levels of NUMA goodness.
	 */
	for (j = 0; j < level; i++, j++) {
		tl[i] = (struct sched_domain_topology_level){
			.init = sd_numa_init,
			.mask = sd_numa_mask,
			.flags = SDTL_OVERLAP,
			.numa_level = j,
		};
	}

	sched_domain_topology = tl;
6324 6325

	sched_domains_numa_levels = level;
6326
}
6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373

static void sched_domains_numa_masks_set(int cpu)
{
	int i, j;
	int node = cpu_to_node(cpu);

	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++) {
			if (node_distance(j, node) <= sched_domains_numa_distance[i])
				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
		}
	}
}

static void sched_domains_numa_masks_clear(int cpu)
{
	int i, j;
	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++)
			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
	}
}

/*
 * Update sched_domains_numa_masks[level][node] array when new cpus
 * are onlined.
 */
static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	int cpu = (long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
		sched_domains_numa_masks_set(cpu);
		break;

	case CPU_DEAD:
		sched_domains_numa_masks_clear(cpu);
		break;

	default:
		return NOTIFY_DONE;
	}

	return NOTIFY_OK;
6374 6375 6376 6377 6378
}
#else
static inline void sched_init_numa(void)
{
}
6379 6380 6381 6382 6383 6384 6385

static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	return 0;
}
6386 6387
#endif /* CONFIG_NUMA */

6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

6404 6405 6406 6407
		sdd->sgp = alloc_percpu(struct sched_group_power *);
		if (!sdd->sgp)
			return -ENOMEM;

6408 6409 6410
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;
6411
			struct sched_group_power *sgp;
6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424

		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

6425 6426
			sg->next = sg;

6427
			*per_cpu_ptr(sdd->sg, j) = sg;
6428

P
Peter Zijlstra 已提交
6429
			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6430 6431 6432 6433 6434
					GFP_KERNEL, cpu_to_node(j));
			if (!sgp)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sgp, j) = sgp;
6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462
			struct sched_domain *sd;

			if (sdd->sd) {
				sd = *per_cpu_ptr(sdd->sd, j);
				if (sd && (sd->flags & SD_OVERLAP))
					free_sched_groups(sd->groups, 0);
				kfree(*per_cpu_ptr(sdd->sd, j));
			}

			if (sdd->sg)
				kfree(*per_cpu_ptr(sdd->sg, j));
			if (sdd->sgp)
				kfree(*per_cpu_ptr(sdd->sgp, j));
6463 6464
		}
		free_percpu(sdd->sd);
6465
		sdd->sd = NULL;
6466
		free_percpu(sdd->sg);
6467
		sdd->sg = NULL;
6468
		free_percpu(sdd->sgp);
6469
		sdd->sgp = NULL;
6470 6471 6472
	}
}

6473 6474
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
		struct s_data *d, const struct cpumask *cpu_map,
6475
		struct sched_domain_attr *attr, struct sched_domain *child,
6476 6477
		int cpu)
{
6478
	struct sched_domain *sd = tl->init(tl, cpu);
6479
	if (!sd)
6480
		return child;
6481 6482

	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6483 6484 6485
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6486
		child->parent = sd;
6487
	}
6488
	sd->child = child;
6489
	set_domain_attribute(sd, attr);
6490 6491 6492 6493

	return sd;
}

6494 6495 6496 6497
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
6498 6499
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
6500 6501
{
	enum s_alloc alloc_state = sa_none;
6502
	struct sched_domain *sd;
6503
	struct s_data d;
6504
	int i, ret = -ENOMEM;
6505

6506 6507 6508
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
6509

6510
	/* Set up domains for cpus specified by the cpu_map. */
6511
	for_each_cpu(i, cpu_map) {
6512 6513
		struct sched_domain_topology_level *tl;

6514
		sd = NULL;
6515
		for (tl = sched_domain_topology; tl->init; tl++) {
6516
			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6517 6518
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
6519 6520
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
6521
		}
6522

6523 6524 6525
		while (sd->child)
			sd = sd->child;

6526
		*per_cpu_ptr(d.sd, i) = sd;
6527 6528 6529 6530 6531 6532
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6533 6534 6535 6536 6537 6538 6539
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
6540
		}
6541
	}
6542

L
Linus Torvalds 已提交
6543
	/* Calculate CPU power for physical packages and nodes */
6544 6545 6546
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
6547

6548 6549
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
6550
			init_sched_groups_power(i, sd);
6551
		}
6552
	}
6553

L
Linus Torvalds 已提交
6554
	/* Attach the domains */
6555
	rcu_read_lock();
6556
	for_each_cpu(i, cpu_map) {
6557
		sd = *per_cpu_ptr(d.sd, i);
6558
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
6559
	}
6560
	rcu_read_unlock();
6561

6562
	ret = 0;
6563
error:
6564
	__free_domain_allocs(&d, alloc_state, cpu_map);
6565
	return ret;
L
Linus Torvalds 已提交
6566
}
P
Paul Jackson 已提交
6567

6568
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
6569
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
6570 6571
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
6572 6573 6574

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
6575 6576
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
6577
 */
6578
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
6579

6580 6581 6582 6583 6584 6585
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
6586
{
6587
	return 0;
6588 6589
}

6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

6615
/*
I
Ingo Molnar 已提交
6616
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6617 6618
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6619
 */
6620
static int init_sched_domains(const struct cpumask *cpu_map)
6621
{
6622 6623
	int err;

6624
	arch_update_cpu_topology();
P
Paul Jackson 已提交
6625
	ndoms_cur = 1;
6626
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
6627
	if (!doms_cur)
6628 6629
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6630
	err = build_sched_domains(doms_cur[0], NULL);
6631
	register_sched_domain_sysctl();
6632 6633

	return err;
6634 6635 6636 6637 6638 6639
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6640
static void detach_destroy_domains(const struct cpumask *cpu_map)
6641 6642 6643
{
	int i;

6644
	rcu_read_lock();
6645
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
6646
		cpu_attach_domain(NULL, &def_root_domain, i);
6647
	rcu_read_unlock();
6648 6649
}

6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
6666 6667
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
6668
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
6669 6670 6671
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
6672
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
6673 6674 6675
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
6676 6677 6678
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
6679 6680 6681 6682 6683 6684
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
6685
 *
6686
 * If doms_new == NULL it will be replaced with cpu_online_mask.
6687 6688
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
6689
 *
P
Paul Jackson 已提交
6690 6691
 * Call with hotplug lock held
 */
6692
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6693
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
6694
{
6695
	int i, j, n;
6696
	int new_topology;
P
Paul Jackson 已提交
6697

6698
	mutex_lock(&sched_domains_mutex);
6699

6700 6701 6702
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

6703 6704 6705
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

6706
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
6707 6708 6709

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
6710
		for (j = 0; j < n && !new_topology; j++) {
6711
			if (cpumask_equal(doms_cur[i], doms_new[j])
6712
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
6713 6714 6715
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
6716
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
6717 6718 6719 6720
match1:
		;
	}

6721 6722
	if (doms_new == NULL) {
		ndoms_cur = 0;
6723
		doms_new = &fallback_doms;
6724
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6725
		WARN_ON_ONCE(dattr_new);
6726 6727
	}

P
Paul Jackson 已提交
6728 6729
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
6730
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6731
			if (cpumask_equal(doms_new[i], doms_cur[j])
6732
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
6733 6734 6735
				goto match2;
		}
		/* no match - add a new doms_new */
6736
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
6737 6738 6739 6740 6741
match2:
		;
	}

	/* Remember the new sched domains */
6742 6743
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
6744
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
6745
	doms_cur = doms_new;
6746
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
6747
	ndoms_cur = ndoms_new;
6748 6749

	register_sched_domain_sysctl();
6750

6751
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
6752 6753
}

6754 6755
static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */

L
Linus Torvalds 已提交
6756
/*
6757 6758 6759
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
6760 6761 6762
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
6763
 */
6764 6765
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
6766
{
6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788
	switch (action) {
	case CPU_ONLINE_FROZEN:
	case CPU_DOWN_FAILED_FROZEN:

		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
		num_cpus_frozen--;
		if (likely(num_cpus_frozen)) {
			partition_sched_domains(1, NULL, NULL);
			break;
		}

		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */

6789
	case CPU_ONLINE:
6790
	case CPU_DOWN_FAILED:
6791
		cpuset_update_active_cpus(true);
6792
		break;
6793 6794 6795
	default:
		return NOTIFY_DONE;
	}
6796
	return NOTIFY_OK;
6797
}
6798

6799 6800
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
6801
{
6802
	switch (action) {
6803
	case CPU_DOWN_PREPARE:
6804
		cpuset_update_active_cpus(false);
6805 6806 6807 6808 6809
		break;
	case CPU_DOWN_PREPARE_FROZEN:
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
		break;
6810 6811 6812
	default:
		return NOTIFY_DONE;
	}
6813
	return NOTIFY_OK;
6814 6815
}

L
Linus Torvalds 已提交
6816 6817
void __init sched_init_smp(void)
{
6818 6819 6820
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6821
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6822

6823 6824
	sched_init_numa();

6825
	get_online_cpus();
6826
	mutex_lock(&sched_domains_mutex);
6827
	init_sched_domains(cpu_active_mask);
6828 6829 6830
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6831
	mutex_unlock(&sched_domains_mutex);
6832
	put_online_cpus();
6833

6834
	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6835 6836
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6837 6838 6839 6840

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

6841
	init_hrtick();
6842 6843

	/* Move init over to a non-isolated CPU */
6844
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6845
		BUG();
I
Ingo Molnar 已提交
6846
	sched_init_granularity();
6847
	free_cpumask_var(non_isolated_cpus);
6848

6849
	init_sched_rt_class();
L
Linus Torvalds 已提交
6850 6851 6852 6853
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6854
	sched_init_granularity();
L
Linus Torvalds 已提交
6855 6856 6857
}
#endif /* CONFIG_SMP */

6858 6859
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
6860 6861 6862 6863 6864 6865 6866
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

6867 6868
#ifdef CONFIG_CGROUP_SCHED
struct task_group root_task_group;
6869
LIST_HEAD(task_groups);
6870
#endif
P
Peter Zijlstra 已提交
6871

6872
DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
P
Peter Zijlstra 已提交
6873

L
Linus Torvalds 已提交
6874 6875
void __init sched_init(void)
{
I
Ingo Molnar 已提交
6876
	int i, j;
6877 6878 6879 6880 6881 6882 6883
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6884
#endif
6885
#ifdef CONFIG_CPUMASK_OFFSTACK
6886
	alloc_size += num_possible_cpus() * cpumask_size();
6887 6888
#endif
	if (alloc_size) {
6889
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6890 6891

#ifdef CONFIG_FAIR_GROUP_SCHED
6892
		root_task_group.se = (struct sched_entity **)ptr;
6893 6894
		ptr += nr_cpu_ids * sizeof(void **);

6895
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6896
		ptr += nr_cpu_ids * sizeof(void **);
6897

6898
#endif /* CONFIG_FAIR_GROUP_SCHED */
6899
#ifdef CONFIG_RT_GROUP_SCHED
6900
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6901 6902
		ptr += nr_cpu_ids * sizeof(void **);

6903
		root_task_group.rt_rq = (struct rt_rq **)ptr;
6904 6905
		ptr += nr_cpu_ids * sizeof(void **);

6906
#endif /* CONFIG_RT_GROUP_SCHED */
6907 6908 6909 6910 6911 6912
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
6913
	}
I
Ingo Molnar 已提交
6914

G
Gregory Haskins 已提交
6915 6916 6917 6918
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

6919 6920 6921 6922
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
6923
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6924
			global_rt_period(), global_rt_runtime());
6925
#endif /* CONFIG_RT_GROUP_SCHED */
6926

D
Dhaval Giani 已提交
6927
#ifdef CONFIG_CGROUP_SCHED
6928 6929
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
6930
	INIT_LIST_HEAD(&root_task_group.siblings);
6931
	autogroup_init(&init_task);
6932

D
Dhaval Giani 已提交
6933
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
6934

6935 6936 6937 6938 6939 6940
#ifdef CONFIG_CGROUP_CPUACCT
	root_cpuacct.cpustat = &kernel_cpustat;
	root_cpuacct.cpuusage = alloc_percpu(u64);
	/* Too early, not expected to fail */
	BUG_ON(!root_cpuacct.cpuusage);
#endif
6941
	for_each_possible_cpu(i) {
6942
		struct rq *rq;
L
Linus Torvalds 已提交
6943 6944

		rq = cpu_rq(i);
6945
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
6946
		rq->nr_running = 0;
6947 6948
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
6949
		init_cfs_rq(&rq->cfs);
P
Peter Zijlstra 已提交
6950
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
6951
#ifdef CONFIG_FAIR_GROUP_SCHED
6952
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
6953
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
6954
		/*
6955
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
6956 6957 6958 6959
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
6960
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
6961 6962 6963
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
6964
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
6965 6966 6967
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
6968
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
6969
		 *
6970 6971
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
6972
		 */
6973
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6974
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
6975 6976 6977
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6978
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
6979
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6980
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
6981
#endif
L
Linus Torvalds 已提交
6982

I
Ingo Molnar 已提交
6983 6984
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
6985 6986 6987

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
6988
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6989
		rq->sd = NULL;
G
Gregory Haskins 已提交
6990
		rq->rd = NULL;
6991
		rq->cpu_power = SCHED_POWER_SCALE;
6992
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
6993
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6994
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6995
		rq->push_cpu = 0;
6996
		rq->cpu = i;
6997
		rq->online = 0;
6998 6999
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
7000 7001 7002

		INIT_LIST_HEAD(&rq->cfs_tasks);

7003
		rq_attach_root(rq, &def_root_domain);
7004
#ifdef CONFIG_NO_HZ
7005
		rq->nohz_flags = 0;
7006
#endif
L
Linus Torvalds 已提交
7007
#endif
P
Peter Zijlstra 已提交
7008
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7009 7010 7011
		atomic_set(&rq->nr_iowait, 0);
	}

7012
	set_load_weight(&init_task);
7013

7014 7015 7016 7017
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

7018
#ifdef CONFIG_RT_MUTEXES
7019
	plist_head_init(&init_task.pi_waiters);
7020 7021
#endif

L
Linus Torvalds 已提交
7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
7035 7036 7037

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
7038 7039 7040 7041
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
7042

7043
#ifdef CONFIG_SMP
7044
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
R
Rusty Russell 已提交
7045 7046 7047
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7048
	idle_thread_set_boot_cpu();
7049 7050
#endif
	init_sched_fair_class();
7051

7052
	scheduler_running = 1;
L
Linus Torvalds 已提交
7053 7054
}

7055
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7056 7057
static inline int preempt_count_equals(int preempt_offset)
{
7058
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7059

A
Arnd Bergmann 已提交
7060
	return (nested == preempt_offset);
7061 7062
}

7063
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7064 7065 7066
{
	static unsigned long prev_jiffy;	/* ratelimiting */

7067
	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7068 7069
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
7070 7071 7072 7073 7074
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
7075 7076 7077 7078 7079 7080 7081
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
7082 7083 7084 7085 7086

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
7087 7088 7089 7090 7091
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7092 7093
static void normalize_task(struct rq *rq, struct task_struct *p)
{
P
Peter Zijlstra 已提交
7094 7095
	const struct sched_class *prev_class = p->sched_class;
	int old_prio = p->prio;
7096
	int on_rq;
7097

P
Peter Zijlstra 已提交
7098
	on_rq = p->on_rq;
7099
	if (on_rq)
7100
		dequeue_task(rq, p, 0);
7101 7102
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
7103
		enqueue_task(rq, p, 0);
7104 7105
		resched_task(rq->curr);
	}
P
Peter Zijlstra 已提交
7106 7107

	check_class_changed(rq, p, prev_class, old_prio);
7108 7109
}

L
Linus Torvalds 已提交
7110 7111
void normalize_rt_tasks(void)
{
7112
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7113
	unsigned long flags;
7114
	struct rq *rq;
L
Linus Torvalds 已提交
7115

7116
	read_lock_irqsave(&tasklist_lock, flags);
7117
	do_each_thread(g, p) {
7118 7119 7120 7121 7122 7123
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7124 7125
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7126 7127 7128
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7129
#endif
I
Ingo Molnar 已提交
7130 7131 7132 7133 7134 7135 7136 7137

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7138
			continue;
I
Ingo Molnar 已提交
7139
		}
L
Linus Torvalds 已提交
7140

7141
		raw_spin_lock(&p->pi_lock);
7142
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7143

7144
		normalize_task(rq, p);
7145

7146
		__task_rq_unlock(rq);
7147
		raw_spin_unlock(&p->pi_lock);
7148 7149
	} while_each_thread(g, p);

7150
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7151 7152 7153
}

#endif /* CONFIG_MAGIC_SYSRQ */
7154

7155
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7156
/*
7157
 * These functions are only useful for the IA64 MCA handling, or kdb.
7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7172
struct task_struct *curr_task(int cpu)
7173 7174 7175 7176
{
	return cpu_curr(cpu);
}

7177 7178 7179
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
7180 7181 7182 7183 7184 7185
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7186 7187
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7188 7189 7190 7191 7192 7193 7194
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7195
void set_curr_task(int cpu, struct task_struct *p)
7196 7197 7198 7199 7200
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7201

D
Dhaval Giani 已提交
7202
#ifdef CONFIG_CGROUP_SCHED
7203 7204 7205
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

7206 7207 7208 7209
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
7210
	autogroup_free(tg);
7211 7212 7213 7214
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
7215
struct task_group *sched_create_group(struct task_group *parent)
7216 7217 7218 7219 7220 7221 7222
{
	struct task_group *tg;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

7223
	if (!alloc_fair_sched_group(tg, parent))
7224 7225
		goto err;

7226
	if (!alloc_rt_sched_group(tg, parent))
7227 7228
		goto err;

7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239
	return tg;

err:
	free_sched_group(tg);
	return ERR_PTR(-ENOMEM);
}

void sched_online_group(struct task_group *tg, struct task_group *parent)
{
	unsigned long flags;

7240
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7241
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
7242 7243 7244 7245 7246

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
7247
	list_add_rcu(&tg->siblings, &parent->children);
7248
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7249 7250
}

7251
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
7252
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7253 7254
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
7255
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7256 7257
}

7258
/* Destroy runqueue etc associated with a task group */
7259
void sched_destroy_group(struct task_group *tg)
7260 7261 7262 7263 7264 7265
{
	/* wait for possible concurrent references to cfs_rqs complete */
	call_rcu(&tg->rcu, free_sched_group_rcu);
}

void sched_offline_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7266
{
7267
	unsigned long flags;
7268
	int i;
S
Srivatsa Vaddagiri 已提交
7269

7270 7271
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
7272
		unregister_fair_sched_group(tg, i);
7273 7274

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7275
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
7276
	list_del_rcu(&tg->siblings);
7277
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7278 7279
}

7280
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7281 7282 7283
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7284 7285
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7286
{
P
Peter Zijlstra 已提交
7287
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
7288 7289 7290 7291 7292 7293
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

7294
	running = task_current(rq, tsk);
P
Peter Zijlstra 已提交
7295
	on_rq = tsk->on_rq;
S
Srivatsa Vaddagiri 已提交
7296

7297
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
7298
		dequeue_task(rq, tsk, 0);
7299 7300
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7301

P
Peter Zijlstra 已提交
7302 7303 7304 7305 7306 7307
	tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
				lockdep_is_held(&tsk->sighand->siglock)),
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
7308
#ifdef CONFIG_FAIR_GROUP_SCHED
7309 7310 7311
	if (tsk->sched_class->task_move_group)
		tsk->sched_class->task_move_group(tsk, on_rq);
	else
P
Peter Zijlstra 已提交
7312
#endif
7313
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
7314

7315 7316 7317
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
7318
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
7319

7320
	task_rq_unlock(rq, tsk, &flags);
S
Srivatsa Vaddagiri 已提交
7321
}
D
Dhaval Giani 已提交
7322
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
7323

7324
#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
P
Peter Zijlstra 已提交
7325 7326 7327
static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7328
		return 1ULL << 20;
P
Peter Zijlstra 已提交
7329

P
Peter Zijlstra 已提交
7330
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
7331
}
7332 7333 7334 7335 7336 7337 7338
#endif

#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
7339

P
Peter Zijlstra 已提交
7340 7341
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
7342
{
P
Peter Zijlstra 已提交
7343
	struct task_struct *g, *p;
7344

P
Peter Zijlstra 已提交
7345
	do_each_thread(g, p) {
7346
		if (rt_task(p) && task_rq(p)->rt.tg == tg)
P
Peter Zijlstra 已提交
7347 7348
			return 1;
	} while_each_thread(g, p);
7349

P
Peter Zijlstra 已提交
7350 7351
	return 0;
}
7352

P
Peter Zijlstra 已提交
7353 7354 7355 7356 7357
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
7358

7359
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
7360 7361 7362 7363 7364
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
7365

P
Peter Zijlstra 已提交
7366 7367
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
7368

P
Peter Zijlstra 已提交
7369 7370 7371
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
7372 7373
	}

7374 7375 7376 7377 7378
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
7379

7380 7381 7382
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
7383 7384
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
7385

P
Peter Zijlstra 已提交
7386
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7387

7388 7389 7390 7391 7392
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
7393

7394 7395 7396
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
7397 7398 7399
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7400

P
Peter Zijlstra 已提交
7401 7402 7403 7404
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
7405

P
Peter Zijlstra 已提交
7406
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7407
	}
P
Peter Zijlstra 已提交
7408

P
Peter Zijlstra 已提交
7409 7410 7411 7412
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
7413 7414
}

P
Peter Zijlstra 已提交
7415
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7416
{
7417 7418
	int ret;

P
Peter Zijlstra 已提交
7419 7420 7421 7422 7423 7424
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

7425 7426 7427 7428 7429
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7430 7431
}

7432
static int tg_set_rt_bandwidth(struct task_group *tg,
7433
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
7434
{
P
Peter Zijlstra 已提交
7435
	int i, err = 0;
P
Peter Zijlstra 已提交
7436 7437

	mutex_lock(&rt_constraints_mutex);
7438
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
7439 7440
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
7441
		goto unlock;
P
Peter Zijlstra 已提交
7442

7443
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7444 7445
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
7446 7447 7448 7449

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

7450
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7451
		rt_rq->rt_runtime = rt_runtime;
7452
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7453
	}
7454
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
7455
unlock:
7456
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
7457 7458 7459
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
7460 7461
}

7462 7463 7464 7465 7466 7467 7468 7469 7470
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

7471
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7472 7473
}

P
Peter Zijlstra 已提交
7474 7475 7476 7477
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

7478
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7479 7480
		return -1;

7481
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7482 7483 7484
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
7485 7486 7487 7488 7489 7490 7491 7492

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

7493 7494 7495
	if (rt_period == 0)
		return -EINVAL;

7496
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
7510
	u64 runtime, period;
7511 7512
	int ret = 0;

7513 7514 7515
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7516 7517 7518 7519 7520 7521 7522 7523
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
7524

7525
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
7526
	read_lock(&tasklist_lock);
7527
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
7528
	read_unlock(&tasklist_lock);
7529 7530 7531 7532
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
7533 7534 7535 7536 7537 7538 7539 7540 7541 7542

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

7543
#else /* !CONFIG_RT_GROUP_SCHED */
7544 7545
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
7546 7547 7548
	unsigned long flags;
	int i;

7549 7550 7551
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7552 7553 7554 7555 7556 7557 7558
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

7559
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7560 7561 7562
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

7563
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7564
		rt_rq->rt_runtime = global_rt_runtime();
7565
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7566
	}
7567
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7568

7569 7570
	return 0;
}
7571
#endif /* CONFIG_RT_GROUP_SCHED */
7572

7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591
int sched_rr_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
	/* make sure that internally we keep jiffies */
	/* also, writing zero resets timeslice to default */
	if (!ret && write) {
		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
	}
	mutex_unlock(&mutex);
	return ret;
}

7592
int sched_rt_handler(struct ctl_table *table, int write,
7593
		void __user *buffer, size_t *lenp,
7594 7595 7596 7597 7598 7599 7600 7601 7602 7603
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

7604
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
7621

7622
#ifdef CONFIG_CGROUP_SCHED
7623 7624

/* return corresponding task_group object of a cgroup */
7625
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7626
{
7627 7628
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
7629 7630
}

7631
static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp)
7632
{
7633
	struct task_group *tg, *parent;
7634

7635
	if (!cgrp->parent) {
7636
		/* This is early initialization for the top cgroup */
7637
		return &root_task_group.css;
7638 7639
	}

7640 7641
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
7642 7643 7644 7645 7646 7647
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660
static int cpu_cgroup_css_online(struct cgroup *cgrp)
{
	struct task_group *tg = cgroup_tg(cgrp);
	struct task_group *parent;

	if (!cgrp->parent)
		return 0;

	parent = cgroup_tg(cgrp->parent);
	sched_online_group(tg, parent);
	return 0;
}

7661
static void cpu_cgroup_css_free(struct cgroup *cgrp)
7662
{
7663
	struct task_group *tg = cgroup_tg(cgrp);
7664 7665 7666 7667

	sched_destroy_group(tg);
}

7668 7669 7670 7671 7672 7673 7674
static void cpu_cgroup_css_offline(struct cgroup *cgrp)
{
	struct task_group *tg = cgroup_tg(cgrp);

	sched_offline_group(tg);
}

7675
static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7676
				 struct cgroup_taskset *tset)
7677
{
7678 7679 7680
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset) {
7681
#ifdef CONFIG_RT_GROUP_SCHED
7682 7683
		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
			return -EINVAL;
7684
#else
7685 7686 7687
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
7688
#endif
7689
	}
7690 7691
	return 0;
}
7692

7693
static void cpu_cgroup_attach(struct cgroup *cgrp,
7694
			      struct cgroup_taskset *tset)
7695
{
7696 7697 7698 7699
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset)
		sched_move_task(task);
7700 7701
}

7702
static void
7703 7704
cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
		struct task_struct *task)
7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	sched_move_task(task);
}

7717
#ifdef CONFIG_FAIR_GROUP_SCHED
7718
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7719
				u64 shareval)
7720
{
7721
	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7722 7723
}

7724
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7725
{
7726
	struct task_group *tg = cgroup_tg(cgrp);
7727

7728
	return (u64) scale_load_down(tg->shares);
7729
}
7730 7731

#ifdef CONFIG_CFS_BANDWIDTH
7732 7733
static DEFINE_MUTEX(cfs_constraints_mutex);

7734 7735 7736
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

7737 7738
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

7739 7740
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
7741
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7742
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

7763 7764 7765 7766 7767
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

7768
	runtime_enabled = quota != RUNTIME_INF;
7769 7770
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7771 7772 7773
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
7774

P
Paul Turner 已提交
7775
	__refill_cfs_bandwidth_runtime(cfs_b);
7776 7777 7778 7779 7780 7781
	/* restart the period timer (if active) to handle new period expiry */
	if (runtime_enabled && cfs_b->timer_active) {
		/* force a reprogram */
		cfs_b->timer_active = 0;
		__start_cfs_bandwidth(cfs_b);
	}
7782 7783 7784 7785
	raw_spin_unlock_irq(&cfs_b->lock);

	for_each_possible_cpu(i) {
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7786
		struct rq *rq = cfs_rq->rq;
7787 7788

		raw_spin_lock_irq(&rq->lock);
7789
		cfs_rq->runtime_enabled = runtime_enabled;
7790
		cfs_rq->runtime_remaining = 0;
7791

7792
		if (cfs_rq->throttled)
7793
			unthrottle_cfs_rq(cfs_rq);
7794 7795
		raw_spin_unlock_irq(&rq->lock);
	}
7796 7797
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
7798

7799
	return ret;
7800 7801 7802 7803 7804 7805
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

7806
	period = ktime_to_ns(tg->cfs_bandwidth.period);
7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

7819
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7820 7821
		return -1;

7822
	quota_us = tg->cfs_bandwidth.quota;
7823 7824 7825 7826 7827 7828 7829 7830 7831 7832
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
7833
	quota = tg->cfs_bandwidth.quota;
7834 7835 7836 7837 7838 7839 7840 7841

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

7842
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
{
	return tg_get_cfs_quota(cgroup_tg(cgrp));
}

static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
				s64 cfs_quota_us)
{
	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
}

static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
{
	return tg_get_cfs_period(cgroup_tg(cgrp));
}

static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
				u64 cfs_period_us)
{
	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
}

7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
7902
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7903 7904 7905 7906 7907
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
7908
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928

		quota = normalize_cfs_quota(tg, d);
		parent_quota = parent_b->hierarchal_quota;

		/*
		 * ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
	cfs_b->hierarchal_quota = quota;

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
7929
	int ret;
7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

7941 7942 7943 7944 7945
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7946
}
7947 7948 7949 7950 7951

static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct task_group *tg = cgroup_tg(cgrp);
7952
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7953 7954 7955 7956 7957 7958 7959

	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
	cb->fill(cb, "throttled_time", cfs_b->throttled_time);

	return 0;
}
7960
#endif /* CONFIG_CFS_BANDWIDTH */
7961
#endif /* CONFIG_FAIR_GROUP_SCHED */
7962

7963
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
7964
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7965
				s64 val)
P
Peter Zijlstra 已提交
7966
{
7967
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
7968 7969
}

7970
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
7971
{
7972
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
7973
}
7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
7985
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
7986

7987
static struct cftype cpu_files[] = {
7988
#ifdef CONFIG_FAIR_GROUP_SCHED
7989 7990
	{
		.name = "shares",
7991 7992
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
7993
	},
7994
#endif
7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
8006 8007 8008 8009
	{
		.name = "stat",
		.read_map = cpu_stats_show,
	},
8010
#endif
8011
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8012
	{
P
Peter Zijlstra 已提交
8013
		.name = "rt_runtime_us",
8014 8015
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8016
	},
8017 8018
	{
		.name = "rt_period_us",
8019 8020
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8021
	},
8022
#endif
8023
	{ }	/* terminate */
8024 8025 8026
};

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
8027
	.name		= "cpu",
8028 8029
	.css_alloc	= cpu_cgroup_css_alloc,
	.css_free	= cpu_cgroup_css_free,
8030 8031
	.css_online	= cpu_cgroup_css_online,
	.css_offline	= cpu_cgroup_css_offline,
8032 8033
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
8034
	.exit		= cpu_cgroup_exit,
I
Ingo Molnar 已提交
8035
	.subsys_id	= cpu_cgroup_subsys_id,
8036
	.base_cftypes	= cpu_files,
8037 8038 8039
	.early_init	= 1,
};

8040
#endif	/* CONFIG_CGROUP_SCHED */
8041 8042 8043 8044 8045 8046 8047 8048 8049 8050

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

8051 8052
struct cpuacct root_cpuacct;

8053
/* create a new cpu accounting group */
8054
static struct cgroup_subsys_state *cpuacct_css_alloc(struct cgroup *cgrp)
8055
{
8056
	struct cpuacct *ca;
8057

8058 8059 8060 8061
	if (!cgrp->parent)
		return &root_cpuacct.css;

	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8062
	if (!ca)
8063
		goto out;
8064 8065

	ca->cpuusage = alloc_percpu(u64);
8066 8067 8068
	if (!ca->cpuusage)
		goto out_free_ca;

8069 8070 8071
	ca->cpustat = alloc_percpu(struct kernel_cpustat);
	if (!ca->cpustat)
		goto out_free_cpuusage;
8072

8073
	return &ca->css;
8074

8075
out_free_cpuusage:
8076 8077 8078 8079 8080
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
8081 8082 8083
}

/* destroy an existing cpu accounting group */
8084
static void cpuacct_css_free(struct cgroup *cgrp)
8085
{
8086
	struct cpuacct *ca = cgroup_ca(cgrp);
8087

8088
	free_percpu(ca->cpustat);
8089 8090 8091 8092
	free_percpu(ca->cpuusage);
	kfree(ca);
}

8093 8094
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
8095
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8096 8097 8098 8099 8100 8101
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
8102
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8103
	data = *cpuusage;
8104
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8105 8106 8107 8108 8109 8110 8111 8112 8113
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
8114
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8115 8116 8117 8118 8119

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
8120
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8121
	*cpuusage = val;
8122
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8123 8124 8125 8126 8127
#else
	*cpuusage = val;
#endif
}

8128
/* return total cpu usage (in nanoseconds) of a group */
8129
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8130
{
8131
	struct cpuacct *ca = cgroup_ca(cgrp);
8132 8133 8134
	u64 totalcpuusage = 0;
	int i;

8135 8136
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
8137 8138 8139 8140

	return totalcpuusage;
}

8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

8153 8154
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
8155 8156 8157 8158 8159

out:
	return err;
}

8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

8175 8176 8177 8178 8179 8180
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8181
			      struct cgroup_map_cb *cb)
8182 8183
{
	struct cpuacct *ca = cgroup_ca(cgrp);
8184 8185
	int cpu;
	s64 val = 0;
8186

8187 8188 8189 8190
	for_each_online_cpu(cpu) {
		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
		val += kcpustat->cpustat[CPUTIME_USER];
		val += kcpustat->cpustat[CPUTIME_NICE];
8191
	}
8192 8193
	val = cputime64_to_clock_t(val);
	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8194

8195 8196 8197 8198 8199 8200
	val = 0;
	for_each_online_cpu(cpu) {
		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
		val += kcpustat->cpustat[CPUTIME_SYSTEM];
		val += kcpustat->cpustat[CPUTIME_IRQ];
		val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8201
	}
8202 8203 8204 8205

	val = cputime64_to_clock_t(val);
	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);

8206 8207 8208
	return 0;
}

8209 8210 8211
static struct cftype files[] = {
	{
		.name = "usage",
8212 8213
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
8214
	},
8215 8216 8217 8218
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
8219 8220 8221 8222
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
8223
	{ }	/* terminate */
8224 8225 8226 8227 8228 8229 8230
};

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
8231
void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8232 8233
{
	struct cpuacct *ca;
8234
	int cpu;
8235

L
Li Zefan 已提交
8236
	if (unlikely(!cpuacct_subsys.active))
8237 8238
		return;

8239
	cpu = task_cpu(tsk);
8240 8241 8242

	rcu_read_lock();

8243 8244
	ca = task_ca(tsk);

8245
	for (; ca; ca = parent_ca(ca)) {
8246
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8247 8248
		*cpuusage += cputime;
	}
8249 8250

	rcu_read_unlock();
8251 8252 8253 8254
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
8255 8256
	.css_alloc = cpuacct_css_alloc,
	.css_free = cpuacct_css_free,
8257
	.subsys_id = cpuacct_subsys_id,
8258
	.base_cftypes = files,
8259 8260
};
#endif	/* CONFIG_CGROUP_CPUACCT */
8261 8262 8263 8264 8265 8266

void dump_cpu_task(int cpu)
{
	pr_info("Task dump for CPU %d:\n", cpu);
	sched_show_task(cpu_curr(cpu));
}