smp-bmips.c 16.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
/*
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
 *
 * SMP support for BMIPS
 */

#include <linux/init.h>
#include <linux/sched.h>
#include <linux/mm.h>
#include <linux/delay.h>
#include <linux/smp.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/reboot.h>
#include <linux/io.h>
#include <linux/compiler.h>
#include <linux/linkage.h>
#include <linux/bug.h>
#include <linux/kernel.h>

#include <asm/time.h>
#include <asm/pgtable.h>
#include <asm/processor.h>
#include <asm/bootinfo.h>
#include <asm/pmon.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/mipsregs.h>
#include <asm/bmips.h>
#include <asm/traps.h>
#include <asm/barrier.h>
38
#include <asm/cpu-features.h>
39 40 41 42 43 44 45

static int __maybe_unused max_cpus = 1;

/* these may be configured by the platform code */
int bmips_smp_enabled = 1;
int bmips_cpu_offset;
cpumask_t bmips_booted_mask;
46
unsigned long bmips_tp1_irqs = IE_IRQ1;
47

48 49 50
#define RESET_FROM_KSEG0		0x80080800
#define RESET_FROM_KSEG1		0xa0080800

51 52
static void bmips_set_reset_vec(int cpu, u32 val);

53 54 55 56 57 58
#ifdef CONFIG_SMP

/* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
unsigned long bmips_smp_boot_sp;
unsigned long bmips_smp_boot_gp;

59 60 61 62
static void bmips43xx_send_ipi_single(int cpu, unsigned int action);
static void bmips5000_send_ipi_single(int cpu, unsigned int action);
static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id);
static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id);
63 64 65 66 67 68 69 70 71 72 73 74

/* SW interrupts 0,1 are used for interprocessor signaling */
#define IPI0_IRQ			(MIPS_CPU_IRQ_BASE + 0)
#define IPI1_IRQ			(MIPS_CPU_IRQ_BASE + 1)

#define CPUNUM(cpu, shift)		(((cpu) + bmips_cpu_offset) << (shift))
#define ACTION_CLR_IPI(cpu, ipi)	(0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
#define ACTION_SET_IPI(cpu, ipi)	(0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
#define ACTION_BOOT_THREAD(cpu)		(0x08 | CPUNUM(cpu, 0))

static void __init bmips_smp_setup(void)
{
75
	int i, cpu = 1, boot_cpu = 0;
76 77
	int cpu_hw_intr;

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
	switch (current_cpu_type()) {
	case CPU_BMIPS4350:
	case CPU_BMIPS4380:
		/* arbitration priority */
		clear_c0_brcm_cmt_ctrl(0x30);

		/* NBK and weak order flags */
		set_c0_brcm_config_0(0x30000);

		/* Find out if we are running on TP0 or TP1 */
		boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31));

		/*
		 * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other
		 * thread
		 * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
		 * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
		 */
		if (boot_cpu == 0)
			cpu_hw_intr = 0x02;
		else
			cpu_hw_intr = 0x1d;

		change_c0_brcm_cmt_intr(0xf8018000,
					(cpu_hw_intr << 27) | (0x03 << 15));

		/* single core, 2 threads (2 pipelines) */
		max_cpus = 2;

		break;
	case CPU_BMIPS5000:
		/* enable raceless SW interrupts */
		set_c0_brcm_config(0x03 << 22);

		/* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
		change_c0_brcm_mode(0x1f << 27, 0x02 << 27);

		/* N cores, 2 threads per core */
		max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;

		/* clear any pending SW interrupts */
		for (i = 0; i < max_cpus; i++) {
			write_c0_brcm_action(ACTION_CLR_IPI(i, 0));
			write_c0_brcm_action(ACTION_CLR_IPI(i, 1));
		}
123

124 125 126
		break;
	default:
		max_cpus = 1;
127 128 129 130 131 132 133 134 135
	}

	if (!bmips_smp_enabled)
		max_cpus = 1;

	/* this can be overridden by the BSP */
	if (!board_ebase_setup)
		board_ebase_setup = &bmips_ebase_setup;

136 137 138
	__cpu_number_map[boot_cpu] = 0;
	__cpu_logical_map[0] = boot_cpu;

139
	for (i = 0; i < max_cpus; i++) {
140 141 142 143 144
		if (i != boot_cpu) {
			__cpu_number_map[i] = cpu;
			__cpu_logical_map[cpu] = i;
			cpu++;
		}
145 146 147 148 149 150 151 152 153 154
		set_cpu_possible(i, 1);
		set_cpu_present(i, 1);
	}
}

/*
 * IPI IRQ setup - runs on CPU0
 */
static void bmips_prepare_cpus(unsigned int max_cpus)
{
155 156 157 158 159 160 161 162 163 164 165 166 167 168
	irqreturn_t (*bmips_ipi_interrupt)(int irq, void *dev_id);

	switch (current_cpu_type()) {
	case CPU_BMIPS4350:
	case CPU_BMIPS4380:
		bmips_ipi_interrupt = bmips43xx_ipi_interrupt;
		break;
	case CPU_BMIPS5000:
		bmips_ipi_interrupt = bmips5000_ipi_interrupt;
		break;
	default:
		return;
	}

169 170
	if (request_irq(IPI0_IRQ, bmips_ipi_interrupt, IRQF_PERCPU,
			"smp_ipi0", NULL))
171
		panic("Can't request IPI0 interrupt");
172 173
	if (request_irq(IPI1_IRQ, bmips_ipi_interrupt, IRQF_PERCPU,
			"smp_ipi1", NULL))
174
		panic("Can't request IPI1 interrupt");
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
}

/*
 * Tell the hardware to boot CPUx - runs on CPU0
 */
static void bmips_boot_secondary(int cpu, struct task_struct *idle)
{
	bmips_smp_boot_sp = __KSTK_TOS(idle);
	bmips_smp_boot_gp = (unsigned long)task_thread_info(idle);
	mb();

	/*
	 * Initial boot sequence for secondary CPU:
	 *   bmips_reset_nmi_vec @ a000_0000 ->
	 *   bmips_smp_entry ->
	 *   plat_wired_tlb_setup (cached function call; optional) ->
	 *   start_secondary (cached jump)
	 *
	 * Warm restart sequence:
	 *   play_dead WAIT loop ->
	 *   bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
	 *   eret to play_dead ->
	 *   bmips_secondary_reentry ->
	 *   start_secondary
	 */

	pr_info("SMP: Booting CPU%d...\n", cpu);

203
	if (cpumask_test_cpu(cpu, &bmips_booted_mask)) {
204 205 206
		/* kseg1 might not exist if this CPU enabled XKS01 */
		bmips_set_reset_vec(cpu, RESET_FROM_KSEG0);

207 208 209 210 211 212 213 214 215
		switch (current_cpu_type()) {
		case CPU_BMIPS4350:
		case CPU_BMIPS4380:
			bmips43xx_send_ipi_single(cpu, 0);
			break;
		case CPU_BMIPS5000:
			bmips5000_send_ipi_single(cpu, 0);
			break;
		}
216 217 218
	} else {
		bmips_set_reset_vec(cpu, RESET_FROM_KSEG1);

219 220 221 222 223 224 225 226
		switch (current_cpu_type()) {
		case CPU_BMIPS4350:
		case CPU_BMIPS4380:
			/* Reset slave TP1 if booting from TP0 */
			if (cpu_logical_map(cpu) == 1)
				set_c0_brcm_cmt_ctrl(0x01);
			break;
		case CPU_BMIPS5000:
227
			write_c0_brcm_action(ACTION_BOOT_THREAD(cpu));
228
			break;
229 230 231 232 233 234 235 236 237 238
		}
		cpumask_set_cpu(cpu, &bmips_booted_mask);
	}
}

/*
 * Early setup - runs on secondary CPU after cache probe
 */
static void bmips_init_secondary(void)
{
239 240 241 242 243 244 245
	switch (current_cpu_type()) {
	case CPU_BMIPS4350:
	case CPU_BMIPS4380:
		clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0);
		break;
	case CPU_BMIPS5000:
		write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
246
		current_cpu_data.core = (read_c0_brcm_config() >> 25) & 3;
247 248
		break;
	}
249 250 251 252 253 254 255 256
}

/*
 * Late setup - runs on secondary CPU before entering the idle loop
 */
static void bmips_smp_finish(void)
{
	pr_info("SMP: CPU%d is running\n", smp_processor_id());
257 258 259 260 261

	/* make sure there won't be a timer interrupt for a little while */
	write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);

	irq_enable_hazard();
262
	set_c0_status(IE_SW0 | IE_SW1 | bmips_tp1_irqs | IE_IRQ5 | ST0_IE);
263
	irq_enable_hazard();
264 265 266 267 268 269 270 271 272 273
}

/*
 * BMIPS5000 raceless IPIs
 *
 * Each CPU has two inbound SW IRQs which are independent of all other CPUs.
 * IPI0 is used for SMP_RESCHEDULE_YOURSELF
 * IPI1 is used for SMP_CALL_FUNCTION
 */

274
static void bmips5000_send_ipi_single(int cpu, unsigned int action)
275 276 277 278
{
	write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION));
}

279
static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id)
280 281 282 283 284 285 286 287
{
	int action = irq - IPI0_IRQ;

	write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action));

	if (action == 0)
		scheduler_ipi();
	else
288
		generic_smp_call_function_interrupt();
289 290 291 292

	return IRQ_HANDLED;
}

293 294 295 296 297 298 299 300
static void bmips5000_send_ipi_mask(const struct cpumask *mask,
	unsigned int action)
{
	unsigned int i;

	for_each_cpu(i, mask)
		bmips5000_send_ipi_single(i, action);
}
301 302 303 304 305 306 307 308 309 310 311 312 313 314

/*
 * BMIPS43xx racey IPIs
 *
 * We use one inbound SW IRQ for each CPU.
 *
 * A spinlock must be held in order to keep CPUx from accidentally clearing
 * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy.  The
 * same spinlock is used to protect the action masks.
 */

static DEFINE_SPINLOCK(ipi_lock);
static DEFINE_PER_CPU(int, ipi_action_mask);

315
static void bmips43xx_send_ipi_single(int cpu, unsigned int action)
316 317 318 319 320 321 322 323 324 325
{
	unsigned long flags;

	spin_lock_irqsave(&ipi_lock, flags);
	set_c0_cause(cpu ? C_SW1 : C_SW0);
	per_cpu(ipi_action_mask, cpu) |= action;
	irq_enable_hazard();
	spin_unlock_irqrestore(&ipi_lock, flags);
}

326
static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id)
327 328 329 330 331
{
	unsigned long flags;
	int action, cpu = irq - IPI0_IRQ;

	spin_lock_irqsave(&ipi_lock, flags);
332
	action = __this_cpu_read(ipi_action_mask);
333 334 335 336 337 338 339
	per_cpu(ipi_action_mask, cpu) = 0;
	clear_c0_cause(cpu ? C_SW1 : C_SW0);
	spin_unlock_irqrestore(&ipi_lock, flags);

	if (action & SMP_RESCHEDULE_YOURSELF)
		scheduler_ipi();
	if (action & SMP_CALL_FUNCTION)
340
		generic_smp_call_function_interrupt();
341 342 343 344

	return IRQ_HANDLED;
}

345
static void bmips43xx_send_ipi_mask(const struct cpumask *mask,
346 347 348 349 350
	unsigned int action)
{
	unsigned int i;

	for_each_cpu(i, mask)
351
		bmips43xx_send_ipi_single(i, action);
352 353 354 355 356 357 358 359 360 361 362 363 364
}

#ifdef CONFIG_HOTPLUG_CPU

static int bmips_cpu_disable(void)
{
	unsigned int cpu = smp_processor_id();

	if (cpu == 0)
		return -EBUSY;

	pr_info("SMP: CPU%d is offline\n", cpu);

365
	set_cpu_online(cpu, false);
366
	calculate_cpu_foreign_map();
367
	irq_cpu_offline();
368
	clear_c0_status(IE_IRQ5);
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392

	local_flush_tlb_all();
	local_flush_icache_range(0, ~0);

	return 0;
}

static void bmips_cpu_die(unsigned int cpu)
{
}

void __ref play_dead(void)
{
	idle_task_exit();

	/* flush data cache */
	_dma_cache_wback_inv(0, ~0);

	/*
	 * Wakeup is on SW0 or SW1; disable everything else
	 * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
	 * IRQ handlers; this clears ST0_IE and returns immediately.
	 */
	clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1);
393 394
	change_c0_status(
		IE_IRQ5 | bmips_tp1_irqs | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV,
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
		IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV);
	irq_disable_hazard();

	/*
	 * wait for SW interrupt from bmips_boot_secondary(), then jump
	 * back to start_secondary()
	 */
	__asm__ __volatile__(
	"	wait\n"
	"	j	bmips_secondary_reentry\n"
	: : : "memory");
}

#endif /* CONFIG_HOTPLUG_CPU */

410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
struct plat_smp_ops bmips43xx_smp_ops = {
	.smp_setup		= bmips_smp_setup,
	.prepare_cpus		= bmips_prepare_cpus,
	.boot_secondary		= bmips_boot_secondary,
	.smp_finish		= bmips_smp_finish,
	.init_secondary		= bmips_init_secondary,
	.send_ipi_single	= bmips43xx_send_ipi_single,
	.send_ipi_mask		= bmips43xx_send_ipi_mask,
#ifdef CONFIG_HOTPLUG_CPU
	.cpu_disable		= bmips_cpu_disable,
	.cpu_die		= bmips_cpu_die,
#endif
};

struct plat_smp_ops bmips5000_smp_ops = {
425 426 427 428 429
	.smp_setup		= bmips_smp_setup,
	.prepare_cpus		= bmips_prepare_cpus,
	.boot_secondary		= bmips_boot_secondary,
	.smp_finish		= bmips_smp_finish,
	.init_secondary		= bmips_init_secondary,
430 431
	.send_ipi_single	= bmips5000_send_ipi_single,
	.send_ipi_mask		= bmips5000_send_ipi_mask,
432 433 434 435 436 437 438 439 440 441 442 443 444 445
#ifdef CONFIG_HOTPLUG_CPU
	.cpu_disable		= bmips_cpu_disable,
	.cpu_die		= bmips_cpu_die,
#endif
};

#endif /* CONFIG_SMP */

/***********************************************************************
 * BMIPS vector relocation
 * This is primarily used for SMP boot, but it is applicable to some
 * UP BMIPS systems as well.
 ***********************************************************************/

446
static void bmips_wr_vec(unsigned long dst, char *start, char *end)
447 448
{
	memcpy((void *)dst, start, end - start);
P
Petri Gynther 已提交
449
	dma_cache_wback(dst, end - start);
450 451 452 453
	local_flush_icache_range(dst, dst + (end - start));
	instruction_hazard();
}

454
static inline void bmips_nmi_handler_setup(void)
455 456 457 458 459 460 461
{
	bmips_wr_vec(BMIPS_NMI_RESET_VEC, &bmips_reset_nmi_vec,
		&bmips_reset_nmi_vec_end);
	bmips_wr_vec(BMIPS_WARM_RESTART_VEC, &bmips_smp_int_vec,
		&bmips_smp_int_vec_end);
}

462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
struct reset_vec_info {
	int cpu;
	u32 val;
};

static void bmips_set_reset_vec_remote(void *vinfo)
{
	struct reset_vec_info *info = vinfo;
	int shift = info->cpu & 0x01 ? 16 : 0;
	u32 mask = ~(0xffff << shift), val = info->val >> 16;

	preempt_disable();
	if (smp_processor_id() > 0) {
		smp_call_function_single(0, &bmips_set_reset_vec_remote,
					 info, 1);
	} else {
		if (info->cpu & 0x02) {
			/* BMIPS5200 "should" use mask/shift, but it's buggy */
			bmips_write_zscm_reg(0xa0, (val << 16) | val);
			bmips_read_zscm_reg(0xa0);
		} else {
			write_c0_brcm_bootvec((read_c0_brcm_bootvec() & mask) |
					      (val << shift));
		}
	}
	preempt_enable();
}

static void bmips_set_reset_vec(int cpu, u32 val)
{
	struct reset_vec_info info;

	if (current_cpu_type() == CPU_BMIPS5000) {
		/* this needs to run from CPU0 (which is always online) */
		info.cpu = cpu;
		info.val = val;
		bmips_set_reset_vec_remote(&info);
	} else {
		void __iomem *cbr = BMIPS_GET_CBR();

		if (cpu == 0)
			__raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_0);
		else {
			if (current_cpu_type() != CPU_BMIPS4380)
				return;
			__raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
		}
	}
	__sync();
	back_to_back_c0_hazard();
}

514
void bmips_ebase_setup(void)
515 516 517 518 519
{
	unsigned long new_ebase = ebase;

	BUG_ON(ebase != CKSEG0);

520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
	switch (current_cpu_type()) {
	case CPU_BMIPS4350:
		/*
		 * BMIPS4350 cannot relocate the normal vectors, but it
		 * can relocate the BEV=1 vectors.  So CPU1 starts up at
		 * the relocated BEV=1, IV=0 general exception vector @
		 * 0xa000_0380.
		 *
		 * set_uncached_handler() is used here because:
		 *  - CPU1 will run this from uncached space
		 *  - None of the cacheflush functions are set up yet
		 */
		set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0,
			&bmips_smp_int_vec, 0x80);
		__sync();
		return;
536
	case CPU_BMIPS3300:
537 538 539 540 541 542
	case CPU_BMIPS4380:
		/*
		 * 0x8000_0000: reset/NMI (initially in kseg1)
		 * 0x8000_0400: normal vectors
		 */
		new_ebase = 0x80000400;
543
		bmips_set_reset_vec(0, RESET_FROM_KSEG0);
544 545 546 547 548 549 550
		break;
	case CPU_BMIPS5000:
		/*
		 * 0x8000_0000: reset/NMI (initially in kseg1)
		 * 0x8000_1000: normal vectors
		 */
		new_ebase = 0x80001000;
551
		bmips_set_reset_vec(0, RESET_FROM_KSEG0);
552 553 554 555 556 557
		write_c0_ebase(new_ebase);
		break;
	default:
		return;
	}

558 559 560 561 562 563 564 565 566 567 568 569
	board_nmi_handler_setup = &bmips_nmi_handler_setup;
	ebase = new_ebase;
}

asmlinkage void __weak plat_wired_tlb_setup(void)
{
	/*
	 * Called when starting/restarting a secondary CPU.
	 * Kernel stacks and other important data might only be accessible
	 * once the wired entries are present.
	 */
}
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656

void __init bmips_cpu_setup(void)
{
	void __iomem __maybe_unused *cbr = BMIPS_GET_CBR();
	u32 __maybe_unused cfg;

	switch (current_cpu_type()) {
	case CPU_BMIPS3300:
		/* Set BIU to async mode */
		set_c0_brcm_bus_pll(BIT(22));
		__sync();

		/* put the BIU back in sync mode */
		clear_c0_brcm_bus_pll(BIT(22));

		/* clear BHTD to enable branch history table */
		clear_c0_brcm_reset(BIT(16));

		/* Flush and enable RAC */
		cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
		__raw_writel(cfg | 0x100, BMIPS_RAC_CONFIG);
		__raw_readl(cbr + BMIPS_RAC_CONFIG);

		cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
		__raw_writel(cfg | 0xf, BMIPS_RAC_CONFIG);
		__raw_readl(cbr + BMIPS_RAC_CONFIG);

		cfg = __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
		__raw_writel(cfg | 0x0fff0000, cbr + BMIPS_RAC_ADDRESS_RANGE);
		__raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
		break;

	case CPU_BMIPS4380:
		/* CBG workaround for early BMIPS4380 CPUs */
		switch (read_c0_prid()) {
		case 0x2a040:
		case 0x2a042:
		case 0x2a044:
		case 0x2a060:
			cfg = __raw_readl(cbr + BMIPS_L2_CONFIG);
			__raw_writel(cfg & ~0x07000000, cbr + BMIPS_L2_CONFIG);
			__raw_readl(cbr + BMIPS_L2_CONFIG);
		}

		/* clear BHTD to enable branch history table */
		clear_c0_brcm_config_0(BIT(21));

		/* XI/ROTR enable */
		set_c0_brcm_config_0(BIT(23));
		set_c0_brcm_cmt_ctrl(BIT(15));
		break;

	case CPU_BMIPS5000:
		/* enable RDHWR, BRDHWR */
		set_c0_brcm_config(BIT(17) | BIT(21));

		/* Disable JTB */
		__asm__ __volatile__(
		"	.set	noreorder\n"
		"	li	$8, 0x5a455048\n"
		"	.word	0x4088b00f\n"	/* mtc0	t0, $22, 15 */
		"	.word	0x4008b008\n"	/* mfc0	t0, $22, 8 */
		"	li	$9, 0x00008000\n"
		"	or	$8, $8, $9\n"
		"	.word	0x4088b008\n"	/* mtc0	t0, $22, 8 */
		"	sync\n"
		"	li	$8, 0x0\n"
		"	.word	0x4088b00f\n"	/* mtc0	t0, $22, 15 */
		"	.set	reorder\n"
		: : : "$8", "$9");

		/* XI enable */
		set_c0_brcm_config(BIT(27));

		/* enable MIPS32R2 ROR instruction for XI TLB handlers */
		__asm__ __volatile__(
		"	li	$8, 0x5a455048\n"
		"	.word	0x4088b00f\n"	/* mtc0 $8, $22, 15 */
		"	nop; nop; nop\n"
		"	.word	0x4008b008\n"	/* mfc0 $8, $22, 8 */
		"	lui	$9, 0x0100\n"
		"	or	$8, $9\n"
		"	.word	0x4088b008\n"	/* mtc0 $8, $22, 8 */
		: : : "$8", "$9");
		break;
	}
}