stv0367.c 75.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * stv0367.c
 *
 * Driver for ST STV0367 DVB-T & DVB-C demodulator IC.
 *
 * Copyright (C) ST Microelectronics.
 * Copyright (C) 2010,2011 NetUP Inc.
 * Copyright (C) 2010,2011 Igor M. Liplianin <liplianin@netup.ru>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *
 * GNU General Public License for more details.
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/i2c.h>

#include "stv0367.h"
29
#include "stv0367_defs.h"
30 31 32
#include "stv0367_regs.h"
#include "stv0367_priv.h"

33 34 35
/* Max transfer size done by I2C transfer functions */
#define MAX_XFER_SIZE  64

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
static int stvdebug;
module_param_named(debug, stvdebug, int, 0644);

static int i2cdebug;
module_param_named(i2c_debug, i2cdebug, int, 0644);

#define dprintk(args...) \
	do { \
		if (stvdebug) \
			printk(KERN_DEBUG args); \
	} while (0)
	/* DVB-C */

struct stv0367cab_state {
	enum stv0367_cab_signal_type	state;
	u32	mclk;
	u32	adc_clk;
	s32	search_range;
	s32	derot_offset;
	/* results */
	int locked;			/* channel found		*/
	u32 freq_khz;			/* found frequency (in kHz)	*/
	u32 symbol_rate;		/* found symbol rate (in Bds)	*/
59
	enum fe_spectral_inversion spect_inv; /* Spectrum Inversion	*/
60 61 62 63 64 65 66
};

struct stv0367ter_state {
	/* DVB-T */
	enum stv0367_ter_signal_type state;
	enum stv0367_ter_if_iq_mode if_iq_mode;
	enum stv0367_ter_mode mode;/* mode 2K or 8K */
67
	enum fe_guard_interval guard;
68 69
	enum stv0367_ter_hierarchy hierarchy;
	u32 frequency;
70
	enum fe_spectral_inversion sense; /*  current search spectrum */
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
	u8  force; /* force mode/guard */
	u8  bw; /* channel width 6, 7 or 8 in MHz */
	u8  pBW; /* channel width used during previous lock */
	u32 pBER;
	u32 pPER;
	u32 ucblocks;
	s8  echo_pos; /* echo position */
	u8  first_lock;
	u8  unlock_counter;
	u32 agc_val;
};

struct stv0367_state {
	struct dvb_frontend fe;
	struct i2c_adapter *i2c;
	/* config settings */
	const struct stv0367_config *config;
	u8 chip_id;
	/* DVB-C */
	struct stv0367cab_state *cab_state;
	/* DVB-T */
	struct stv0367ter_state *ter_state;
93 94
	/* flags for operation control */
	u8 use_i2c_gatectrl;
95
	u8 deftabs;
96
	u8 reinit_on_setfrontend;
97
	u8 auto_if_khz;
98 99 100 101 102
};

#define RF_LOOKUP_TABLE_SIZE  31
#define RF_LOOKUP_TABLE2_SIZE 16
/* RF Level (for RF AGC->AGC1) Lookup Table, depends on the board and tuner.*/
103
static const s32 stv0367cab_RF_LookUp1[RF_LOOKUP_TABLE_SIZE][RF_LOOKUP_TABLE_SIZE] = {
104 105 106 107 108 109 110 111 112 113 114
	{/*AGC1*/
		48, 50, 51, 53, 54, 56, 57, 58, 60, 61, 62, 63,
		64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75,
		76, 77, 78, 80, 83, 85, 88,
	}, {/*RF(dbm)*/
		22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
		34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47,
		49, 50, 52, 53, 54, 55, 56,
	}
};
/* RF Level (for IF AGC->AGC2) Lookup Table, depends on the board and tuner.*/
115
static const s32 stv0367cab_RF_LookUp2[RF_LOOKUP_TABLE2_SIZE][RF_LOOKUP_TABLE2_SIZE] = {
116 117 118 119 120 121 122 123 124 125 126 127
	{/*AGC2*/
		28, 29, 31, 32, 34, 35, 36, 37,
		38, 39, 40, 41, 42, 43, 44, 45,
	}, {/*RF(dbm)*/
		57, 58, 59, 60, 61, 62, 63, 64,
		65, 66, 67, 68, 69, 70, 71, 72,
	}
};

static
int stv0367_writeregs(struct stv0367_state *state, u16 reg, u8 *data, int len)
{
128
	u8 buf[MAX_XFER_SIZE];
129 130 131 132 133 134 135 136
	struct i2c_msg msg = {
		.addr = state->config->demod_address,
		.flags = 0,
		.buf = buf,
		.len = len + 2
	};
	int ret;

137 138 139 140 141 142 143 144
	if (2 + len > sizeof(buf)) {
		printk(KERN_WARNING
		       "%s: i2c wr reg=%04x: len=%d is too big!\n",
		       KBUILD_MODNAME, reg, len);
		return -EINVAL;
	}


145 146 147 148 149
	buf[0] = MSB(reg);
	buf[1] = LSB(reg);
	memcpy(buf + 2, data, len);

	if (i2cdebug)
150 151
		printk(KERN_DEBUG "%s: [%02x] %02x: %02x\n", __func__,
			state->config->demod_address, reg, buf[2]);
152 153 154

	ret = i2c_transfer(state->i2c, &msg, 1);
	if (ret != 1)
155 156
		printk(KERN_ERR "%s: i2c write error! ([%02x] %02x: %02x)\n",
			__func__, state->config->demod_address, reg, buf[2]);
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189

	return (ret != 1) ? -EREMOTEIO : 0;
}

static int stv0367_writereg(struct stv0367_state *state, u16 reg, u8 data)
{
	return stv0367_writeregs(state, reg, &data, 1);
}

static u8 stv0367_readreg(struct stv0367_state *state, u16 reg)
{
	u8 b0[] = { 0, 0 };
	u8 b1[] = { 0 };
	struct i2c_msg msg[] = {
		{
			.addr = state->config->demod_address,
			.flags = 0,
			.buf = b0,
			.len = 2
		}, {
			.addr = state->config->demod_address,
			.flags = I2C_M_RD,
			.buf = b1,
			.len = 1
		}
	};
	int ret;

	b0[0] = MSB(reg);
	b0[1] = LSB(reg);

	ret = i2c_transfer(state->i2c, msg, 2);
	if (ret != 2)
190 191
		printk(KERN_ERR "%s: i2c read error ([%02x] %02x: %02x)\n",
			__func__, state->config->demod_address, reg, b1[0]);
192 193

	if (i2cdebug)
194 195
		printk(KERN_DEBUG "%s: [%02x] %02x: %02x\n", __func__,
			state->config->demod_address, reg, b1[0]);
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251

	return b1[0];
}

static void extract_mask_pos(u32 label, u8 *mask, u8 *pos)
{
	u8 position = 0, i = 0;

	(*mask) = label & 0xff;

	while ((position == 0) && (i < 8)) {
		position = ((*mask) >> i) & 0x01;
		i++;
	}

	(*pos) = (i - 1);
}

static void stv0367_writebits(struct stv0367_state *state, u32 label, u8 val)
{
	u8 reg, mask, pos;

	reg = stv0367_readreg(state, (label >> 16) & 0xffff);
	extract_mask_pos(label, &mask, &pos);

	val = mask & (val << pos);

	reg = (reg & (~mask)) | val;
	stv0367_writereg(state, (label >> 16) & 0xffff, reg);

}

static void stv0367_setbits(u8 *reg, u32 label, u8 val)
{
	u8 mask, pos;

	extract_mask_pos(label, &mask, &pos);

	val = mask & (val << pos);

	(*reg) = ((*reg) & (~mask)) | val;
}

static u8 stv0367_readbits(struct stv0367_state *state, u32 label)
{
	u8 val = 0xff;
	u8 mask, pos;

	extract_mask_pos(label, &mask, &pos);

	val = stv0367_readreg(state, label >> 16);
	val = (val & mask) >> pos;

	return val;
}

252 253
#if 0 /* Currently, unused */
static u8 stv0367_getbits(u8 reg, u32 label)
254 255 256 257 258 259 260
{
	u8 mask, pos;

	extract_mask_pos(label, &mask, &pos);

	return (reg & mask) >> pos;
}
261
#endif
262 263 264 265 266 267 268 269 270 271 272 273 274 275

static void stv0367_write_table(struct stv0367_state *state,
				const struct st_register *deftab)
{
	int i = 0;

	while (1) {
		if (!deftab[i].addr)
			break;
		stv0367_writereg(state, deftab[i].addr, deftab[i].value);
		i++;
	}
}

276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
static void stv0367_pll_setup(struct stv0367_state *state,
				u32 icspeed, u32 xtal)
{
	/* note on regs: R367TER_* and R367CAB_* defines each point to
	 * 0xf0d8, so just use R367TER_ for both cases
	 */

	switch (icspeed) {
	case STV0367_ICSPEED_58000:
		switch (xtal) {
		default:
		case 27000000:
			dprintk("STV0367 SetCLKgen for 58MHz IC and 27Mhz crystal\n");
			/* PLLMDIV: 27, PLLNDIV: 232 */
			stv0367_writereg(state, R367TER_PLLMDIV, 0x1b);
			stv0367_writereg(state, R367TER_PLLNDIV, 0xe8);
			break;
		}
		break;
	default:
	case STV0367_ICSPEED_53125:
		switch (xtal) {
			/* set internal freq to 53.125MHz */
		case 16000000:
			stv0367_writereg(state, R367TER_PLLMDIV, 0x2);
			stv0367_writereg(state, R367TER_PLLNDIV, 0x1b);
			break;
		case 25000000:
			stv0367_writereg(state, R367TER_PLLMDIV, 0xa);
			stv0367_writereg(state, R367TER_PLLNDIV, 0x55);
			break;
		default:
		case 27000000:
			dprintk("FE_STV0367TER_SetCLKgen for 27Mhz\n");
			stv0367_writereg(state, R367TER_PLLMDIV, 0x1);
			stv0367_writereg(state, R367TER_PLLNDIV, 0x8);
			break;
		case 30000000:
			stv0367_writereg(state, R367TER_PLLMDIV, 0xc);
			stv0367_writereg(state, R367TER_PLLNDIV, 0x55);
			break;
		}
	}

	stv0367_writereg(state, R367TER_PLLSETUP, 0x18);
}

323 324 325 326 327 328 329 330 331 332 333
static int stv0367_get_if_khz(struct stv0367_state *state, u32 *ifkhz)
{
	if (state->auto_if_khz && state->fe.ops.tuner_ops.get_if_frequency) {
		state->fe.ops.tuner_ops.get_if_frequency(&state->fe, ifkhz);
		*ifkhz = *ifkhz / 1000; /* hz -> khz */
	} else
		*ifkhz = state->config->if_khz;

	return 0;
}

334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
static int stv0367ter_gate_ctrl(struct dvb_frontend *fe, int enable)
{
	struct stv0367_state *state = fe->demodulator_priv;
	u8 tmp = stv0367_readreg(state, R367TER_I2CRPT);

	dprintk("%s:\n", __func__);

	if (enable) {
		stv0367_setbits(&tmp, F367TER_STOP_ENABLE, 0);
		stv0367_setbits(&tmp, F367TER_I2CT_ON, 1);
	} else {
		stv0367_setbits(&tmp, F367TER_STOP_ENABLE, 1);
		stv0367_setbits(&tmp, F367TER_I2CT_ON, 0);
	}

	stv0367_writereg(state, R367TER_I2CRPT, tmp);

	return 0;
}

static u32 stv0367_get_tuner_freq(struct dvb_frontend *fe)
{
356 357
	struct dvb_frontend_ops	*frontend_ops = &fe->ops;
	struct dvb_tuner_ops	*tuner_ops = &frontend_ops->tuner_ops;
358
	u32 freq = 0;
359
	int err = 0;
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486

	dprintk("%s:\n", __func__);

	if (tuner_ops->get_frequency) {
		err = tuner_ops->get_frequency(fe, &freq);
		if (err < 0) {
			printk(KERN_ERR "%s: Invalid parameter\n", __func__);
			return err;
		}

		dprintk("%s: frequency=%d\n", __func__, freq);

	} else
		return -1;

	return freq;
}

static u16 CellsCoeffs_8MHz_367cofdm[3][6][5] = {
	{
		{0x10EF, 0xE205, 0x10EF, 0xCE49, 0x6DA7}, /* CELL 1 COEFFS 27M*/
		{0x2151, 0xc557, 0x2151, 0xc705, 0x6f93}, /* CELL 2 COEFFS */
		{0x2503, 0xc000, 0x2503, 0xc375, 0x7194}, /* CELL 3 COEFFS */
		{0x20E9, 0xca94, 0x20e9, 0xc153, 0x7194}, /* CELL 4 COEFFS */
		{0x06EF, 0xF852, 0x06EF, 0xC057, 0x7207}, /* CELL 5 COEFFS */
		{0x0000, 0x0ECC, 0x0ECC, 0x0000, 0x3647} /* CELL 6 COEFFS */
	}, {
		{0x10A0, 0xE2AF, 0x10A1, 0xCE76, 0x6D6D}, /* CELL 1 COEFFS 25M*/
		{0x20DC, 0xC676, 0x20D9, 0xC80A, 0x6F29},
		{0x2532, 0xC000, 0x251D, 0xC391, 0x706F},
		{0x1F7A, 0xCD2B, 0x2032, 0xC15E, 0x711F},
		{0x0698, 0xFA5E, 0x0568, 0xC059, 0x7193},
		{0x0000, 0x0918, 0x149C, 0x0000, 0x3642} /* CELL 6 COEFFS */
	}, {
		{0x0000, 0x0000, 0x0000, 0x0000, 0x0000}, /* 30M */
		{0x0000, 0x0000, 0x0000, 0x0000, 0x0000},
		{0x0000, 0x0000, 0x0000, 0x0000, 0x0000},
		{0x0000, 0x0000, 0x0000, 0x0000, 0x0000},
		{0x0000, 0x0000, 0x0000, 0x0000, 0x0000},
		{0x0000, 0x0000, 0x0000, 0x0000, 0x0000}
	}
};

static u16 CellsCoeffs_7MHz_367cofdm[3][6][5] = {
	{
		{0x12CA, 0xDDAF, 0x12CA, 0xCCEB, 0x6FB1}, /* CELL 1 COEFFS 27M*/
		{0x2329, 0xC000, 0x2329, 0xC6B0, 0x725F}, /* CELL 2 COEFFS */
		{0x2394, 0xC000, 0x2394, 0xC2C7, 0x7410}, /* CELL 3 COEFFS */
		{0x251C, 0xC000, 0x251C, 0xC103, 0x74D9}, /* CELL 4 COEFFS */
		{0x0804, 0xF546, 0x0804, 0xC040, 0x7544}, /* CELL 5 COEFFS */
		{0x0000, 0x0CD9, 0x0CD9, 0x0000, 0x370A} /* CELL 6 COEFFS */
	}, {
		{0x1285, 0xDE47, 0x1285, 0xCD17, 0x6F76}, /*25M*/
		{0x234C, 0xC000, 0x2348, 0xC6DA, 0x7206},
		{0x23B4, 0xC000, 0x23AC, 0xC2DB, 0x73B3},
		{0x253D, 0xC000, 0x25B6, 0xC10B, 0x747F},
		{0x0721, 0xF79C, 0x065F, 0xC041, 0x74EB},
		{0x0000, 0x08FA, 0x1162, 0x0000, 0x36FF}
	}, {
		{0x0000, 0x0000, 0x0000, 0x0000, 0x0000}, /* 30M */
		{0x0000, 0x0000, 0x0000, 0x0000, 0x0000},
		{0x0000, 0x0000, 0x0000, 0x0000, 0x0000},
		{0x0000, 0x0000, 0x0000, 0x0000, 0x0000},
		{0x0000, 0x0000, 0x0000, 0x0000, 0x0000},
		{0x0000, 0x0000, 0x0000, 0x0000, 0x0000}
	}
};

static u16 CellsCoeffs_6MHz_367cofdm[3][6][5] = {
	{
		{0x1699, 0xD5B8, 0x1699, 0xCBC3, 0x713B}, /* CELL 1 COEFFS 27M*/
		{0x2245, 0xC000, 0x2245, 0xC568, 0x74D5}, /* CELL 2 COEFFS */
		{0x227F, 0xC000, 0x227F, 0xC1FC, 0x76C6}, /* CELL 3 COEFFS */
		{0x235E, 0xC000, 0x235E, 0xC0A7, 0x778A}, /* CELL 4 COEFFS */
		{0x0ECB, 0xEA0B, 0x0ECB, 0xC027, 0x77DD}, /* CELL 5 COEFFS */
		{0x0000, 0x0B68, 0x0B68, 0x0000, 0xC89A}, /* CELL 6 COEFFS */
	}, {
		{0x1655, 0xD64E, 0x1658, 0xCBEF, 0x70FE}, /*25M*/
		{0x225E, 0xC000, 0x2256, 0xC589, 0x7489},
		{0x2293, 0xC000, 0x2295, 0xC209, 0x767E},
		{0x2377, 0xC000, 0x23AA, 0xC0AB, 0x7746},
		{0x0DC7, 0xEBC8, 0x0D07, 0xC027, 0x7799},
		{0x0000, 0x0888, 0x0E9C, 0x0000, 0x3757}

	}, {
		{0x0000, 0x0000, 0x0000, 0x0000, 0x0000}, /* 30M */
		{0x0000, 0x0000, 0x0000, 0x0000, 0x0000},
		{0x0000, 0x0000, 0x0000, 0x0000, 0x0000},
		{0x0000, 0x0000, 0x0000, 0x0000, 0x0000},
		{0x0000, 0x0000, 0x0000, 0x0000, 0x0000},
		{0x0000, 0x0000, 0x0000, 0x0000, 0x0000}
	}
};

static u32 stv0367ter_get_mclk(struct stv0367_state *state, u32 ExtClk_Hz)
{
	u32 mclk_Hz = 0; /* master clock frequency (Hz) */
	u32 m, n, p;

	dprintk("%s:\n", __func__);

	if (stv0367_readbits(state, F367TER_BYPASS_PLLXN) == 0) {
		n = (u32)stv0367_readbits(state, F367TER_PLL_NDIV);
		if (n == 0)
			n = n + 1;

		m = (u32)stv0367_readbits(state, F367TER_PLL_MDIV);
		if (m == 0)
			m = m + 1;

		p = (u32)stv0367_readbits(state, F367TER_PLL_PDIV);
		if (p > 5)
			p = 5;

		mclk_Hz = ((ExtClk_Hz / 2) * n) / (m * (1 << p));

		dprintk("N=%d M=%d P=%d mclk_Hz=%d ExtClk_Hz=%d\n",
				n, m, p, mclk_Hz, ExtClk_Hz);
	} else
		mclk_Hz = ExtClk_Hz;

	dprintk("%s: mclk_Hz=%d\n", __func__, mclk_Hz);

	return mclk_Hz;
}

static int stv0367ter_filt_coeff_init(struct stv0367_state *state,
487
				u16 CellsCoeffs[3][6][5], u32 DemodXtal)
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
{
	int i, j, k, freq;

	dprintk("%s:\n", __func__);

	freq = stv0367ter_get_mclk(state, DemodXtal);

	if (freq == 53125000)
		k = 1; /* equivalent to Xtal 25M on 362*/
	else if (freq == 54000000)
		k = 0; /* equivalent to Xtal 27M on 362*/
	else if (freq == 52500000)
		k = 2; /* equivalent to Xtal 30M on 362*/
	else
		return 0;

	for (i = 1; i <= 6; i++) {
		stv0367_writebits(state, F367TER_IIR_CELL_NB, i - 1);

		for (j = 1; j <= 5; j++) {
			stv0367_writereg(state,
				(R367TER_IIRCX_COEFF1_MSB + 2 * (j - 1)),
				MSB(CellsCoeffs[k][i-1][j-1]));
			stv0367_writereg(state,
				(R367TER_IIRCX_COEFF1_LSB + 2 * (j - 1)),
				LSB(CellsCoeffs[k][i-1][j-1]));
		}
	}

	return 1;

}

static void stv0367ter_agc_iir_lock_detect_set(struct stv0367_state *state)
{
	dprintk("%s:\n", __func__);

	stv0367_writebits(state, F367TER_LOCK_DETECT_LSB, 0x00);

	/* Lock detect 1 */
	stv0367_writebits(state, F367TER_LOCK_DETECT_CHOICE, 0x00);
	stv0367_writebits(state, F367TER_LOCK_DETECT_MSB, 0x06);
	stv0367_writebits(state, F367TER_AUT_AGC_TARGET_LSB, 0x04);

	/* Lock detect 2 */
	stv0367_writebits(state, F367TER_LOCK_DETECT_CHOICE, 0x01);
	stv0367_writebits(state, F367TER_LOCK_DETECT_MSB, 0x06);
	stv0367_writebits(state, F367TER_AUT_AGC_TARGET_LSB, 0x04);

	/* Lock detect 3 */
	stv0367_writebits(state, F367TER_LOCK_DETECT_CHOICE, 0x02);
	stv0367_writebits(state, F367TER_LOCK_DETECT_MSB, 0x01);
	stv0367_writebits(state, F367TER_AUT_AGC_TARGET_LSB, 0x00);

	/* Lock detect 4 */
	stv0367_writebits(state, F367TER_LOCK_DETECT_CHOICE, 0x03);
	stv0367_writebits(state, F367TER_LOCK_DETECT_MSB, 0x01);
	stv0367_writebits(state, F367TER_AUT_AGC_TARGET_LSB, 0x00);

}

static int stv0367_iir_filt_init(struct stv0367_state *state, u8 Bandwidth,
							u32 DemodXtalValue)
{
	dprintk("%s:\n", __func__);

	stv0367_writebits(state, F367TER_NRST_IIR, 0);

	switch (Bandwidth) {
	case 6:
		if (!stv0367ter_filt_coeff_init(state,
				CellsCoeffs_6MHz_367cofdm,
				DemodXtalValue))
			return 0;
		break;
	case 7:
		if (!stv0367ter_filt_coeff_init(state,
				CellsCoeffs_7MHz_367cofdm,
				DemodXtalValue))
			return 0;
		break;
	case 8:
		if (!stv0367ter_filt_coeff_init(state,
				CellsCoeffs_8MHz_367cofdm,
				DemodXtalValue))
			return 0;
		break;
	default:
		return 0;
	}

	stv0367_writebits(state, F367TER_NRST_IIR, 1);

	return 1;
}

static void stv0367ter_agc_iir_rst(struct stv0367_state *state)
{

	u8 com_n;

	dprintk("%s:\n", __func__);

	com_n = stv0367_readbits(state, F367TER_COM_N);

	stv0367_writebits(state, F367TER_COM_N, 0x07);

	stv0367_writebits(state, F367TER_COM_SOFT_RSTN, 0x00);
	stv0367_writebits(state, F367TER_COM_AGC_ON, 0x00);

	stv0367_writebits(state, F367TER_COM_SOFT_RSTN, 0x01);
	stv0367_writebits(state, F367TER_COM_AGC_ON, 0x01);

	stv0367_writebits(state, F367TER_COM_N, com_n);

}

static int stv0367ter_duration(s32 mode, int tempo1, int tempo2, int tempo3)
{
	int local_tempo = 0;
	switch (mode) {
	case 0:
		local_tempo = tempo1;
		break;
	case 1:
		local_tempo = tempo2;
		break ;

	case 2:
		local_tempo = tempo3;
		break;

	default:
		break;
	}
	/*	msleep(local_tempo);  */
	return local_tempo;
}

static enum
stv0367_ter_signal_type stv0367ter_check_syr(struct stv0367_state *state)
{
	int wd = 100;
	unsigned short int SYR_var;
	s32 SYRStatus;

	dprintk("%s:\n", __func__);

	SYR_var = stv0367_readbits(state, F367TER_SYR_LOCK);

	while ((!SYR_var) && (wd > 0)) {
		usleep_range(2000, 3000);
		wd -= 2;
		SYR_var = stv0367_readbits(state, F367TER_SYR_LOCK);
	}

	if (!SYR_var)
		SYRStatus = FE_TER_NOSYMBOL;
	else
		SYRStatus =  FE_TER_SYMBOLOK;

	dprintk("stv0367ter_check_syr SYRStatus %s\n",
				SYR_var == 0 ? "No Symbol" : "OK");

	return SYRStatus;
}

static enum
stv0367_ter_signal_type stv0367ter_check_cpamp(struct stv0367_state *state,
								s32 FFTmode)
{

	s32  CPAMPvalue = 0, CPAMPStatus, CPAMPMin;
	int wd = 0;

	dprintk("%s:\n", __func__);

	switch (FFTmode) {
	case 0: /*2k mode*/
		CPAMPMin = 20;
		wd = 10;
		break;
	case 1: /*8k mode*/
		CPAMPMin = 80;
		wd = 55;
		break;
	case 2: /*4k mode*/
		CPAMPMin = 40;
		wd = 30;
		break;
	default:
		CPAMPMin = 0xffff;  /*drives to NOCPAMP	*/
		break;
	}

	dprintk("%s: CPAMPMin=%d wd=%d\n", __func__, CPAMPMin, wd);

	CPAMPvalue = stv0367_readbits(state, F367TER_PPM_CPAMP_DIRECT);
	while ((CPAMPvalue < CPAMPMin) && (wd > 0)) {
		usleep_range(1000, 2000);
		wd -= 1;
		CPAMPvalue = stv0367_readbits(state, F367TER_PPM_CPAMP_DIRECT);
		/*dprintk("CPAMPvalue= %d at wd=%d\n",CPAMPvalue,wd); */
	}
	dprintk("******last CPAMPvalue= %d at wd=%d\n", CPAMPvalue, wd);
	if (CPAMPvalue < CPAMPMin) {
		CPAMPStatus = FE_TER_NOCPAMP;
695
		dprintk("%s: CPAMP failed\n", __func__);
696
	} else {
697
		dprintk("%s: CPAMP OK !\n", __func__);
698 699 700 701 702 703
		CPAMPStatus = FE_TER_CPAMPOK;
	}

	return CPAMPStatus;
}

704 705
static enum stv0367_ter_signal_type
stv0367ter_lock_algo(struct stv0367_state *state)
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
{
	enum stv0367_ter_signal_type ret_flag;
	short int wd, tempo;
	u8 try, u_var1 = 0, u_var2 = 0, u_var3 = 0, u_var4 = 0, mode, guard;
	u8 tmp, tmp2;

	dprintk("%s:\n", __func__);

	if (state == NULL)
		return FE_TER_SWNOK;

	try = 0;
	do {
		ret_flag = FE_TER_LOCKOK;

		stv0367_writebits(state, F367TER_CORE_ACTIVE, 0);

		if (state->config->if_iq_mode != 0)
			stv0367_writebits(state, F367TER_COM_N, 0x07);

		stv0367_writebits(state, F367TER_GUARD, 3);/* suggest 2k 1/4 */
		stv0367_writebits(state, F367TER_MODE, 0);
		stv0367_writebits(state, F367TER_SYR_TR_DIS, 0);
		usleep_range(5000, 10000);

		stv0367_writebits(state, F367TER_CORE_ACTIVE, 1);


		if (stv0367ter_check_syr(state) == FE_TER_NOSYMBOL)
			return FE_TER_NOSYMBOL;
		else { /*
			if chip locked on wrong mode first try,
			it must lock correctly second try */
			mode = stv0367_readbits(state, F367TER_SYR_MODE);
			if (stv0367ter_check_cpamp(state, mode) ==
							FE_TER_NOCPAMP) {
				if (try == 0)
					ret_flag = FE_TER_NOCPAMP;

			}
		}

		try++;
	} while ((try < 10) && (ret_flag != FE_TER_LOCKOK));

	tmp  = stv0367_readreg(state, R367TER_SYR_STAT);
	tmp2 = stv0367_readreg(state, R367TER_STATUS);
753
	dprintk("state=%p\n", state);
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
	dprintk("LOCK OK! mode=%d SYR_STAT=0x%x R367TER_STATUS=0x%x\n",
							mode, tmp, tmp2);

	tmp  = stv0367_readreg(state, R367TER_PRVIT);
	tmp2 = stv0367_readreg(state, R367TER_I2CRPT);
	dprintk("PRVIT=0x%x I2CRPT=0x%x\n", tmp, tmp2);

	tmp  = stv0367_readreg(state, R367TER_GAIN_SRC1);
	dprintk("GAIN_SRC1=0x%x\n", tmp);

	if ((mode != 0) && (mode != 1) && (mode != 2))
		return FE_TER_SWNOK;

	/*guard=stv0367_readbits(state,F367TER_SYR_GUARD); */

L
Lucas De Marchi 已提交
769
	/*suppress EPQ auto for SYR_GARD 1/16 or 1/32
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
	and set channel predictor in automatic */
#if 0
	switch (guard) {

	case 0:
	case 1:
		stv0367_writebits(state, F367TER_AUTO_LE_EN, 0);
		stv0367_writereg(state, R367TER_CHC_CTL, 0x01);
		break;
	case 2:
	case 3:
		stv0367_writebits(state, F367TER_AUTO_LE_EN, 1);
		stv0367_writereg(state, R367TER_CHC_CTL, 0x11);
		break;

	default:
		return FE_TER_SWNOK;
	}
#endif

	/*reset fec an reedsolo FOR 367 only*/
	stv0367_writebits(state, F367TER_RST_SFEC, 1);
	stv0367_writebits(state, F367TER_RST_REEDSOLO, 1);
	usleep_range(1000, 2000);
	stv0367_writebits(state, F367TER_RST_SFEC, 0);
	stv0367_writebits(state, F367TER_RST_REEDSOLO, 0);

	u_var1 = stv0367_readbits(state, F367TER_LK);
	u_var2 = stv0367_readbits(state, F367TER_PRF);
	u_var3 = stv0367_readbits(state, F367TER_TPS_LOCK);
	/*	u_var4=stv0367_readbits(state,F367TER_TSFIFO_LINEOK); */

	wd = stv0367ter_duration(mode, 125, 500, 250);
	tempo = stv0367ter_duration(mode, 4, 16, 8);

	/*while ( ((!u_var1)||(!u_var2)||(!u_var3)||(!u_var4))  && (wd>=0)) */
	while (((!u_var1) || (!u_var2) || (!u_var3)) && (wd >= 0)) {
		usleep_range(1000 * tempo, 1000 * (tempo + 1));
		wd -= tempo;
		u_var1 = stv0367_readbits(state, F367TER_LK);
		u_var2 = stv0367_readbits(state, F367TER_PRF);
		u_var3 = stv0367_readbits(state, F367TER_TPS_LOCK);
		/*u_var4=stv0367_readbits(state, F367TER_TSFIFO_LINEOK); */
	}

	if (!u_var1)
		return FE_TER_NOLOCK;


	if (!u_var2)
		return FE_TER_NOPRFOUND;

	if (!u_var3)
		return FE_TER_NOTPS;

	guard = stv0367_readbits(state, F367TER_SYR_GUARD);
	stv0367_writereg(state, R367TER_CHC_CTL, 0x11);
	switch (guard) {
	case 0:
	case 1:
		stv0367_writebits(state, F367TER_AUTO_LE_EN, 0);
		/*stv0367_writereg(state,R367TER_CHC_CTL, 0x1);*/
		stv0367_writebits(state, F367TER_SYR_FILTER, 0);
		break;
	case 2:
	case 3:
		stv0367_writebits(state, F367TER_AUTO_LE_EN, 1);
		/*stv0367_writereg(state,R367TER_CHC_CTL, 0x11);*/
		stv0367_writebits(state, F367TER_SYR_FILTER, 1);
		break;

	default:
		return FE_TER_SWNOK;
	}

	/* apply Sfec workaround if 8K 64QAM CR!=1/2*/
	if ((stv0367_readbits(state, F367TER_TPS_CONST) == 2) &&
			(mode == 1) &&
			(stv0367_readbits(state, F367TER_TPS_HPCODE) != 0)) {
		stv0367_writereg(state, R367TER_SFDLYSETH, 0xc0);
		stv0367_writereg(state, R367TER_SFDLYSETM, 0x60);
		stv0367_writereg(state, R367TER_SFDLYSETL, 0x0);
	} else
		stv0367_writereg(state, R367TER_SFDLYSETH, 0x0);

	wd = stv0367ter_duration(mode, 125, 500, 250);
	u_var4 = stv0367_readbits(state, F367TER_TSFIFO_LINEOK);

	while ((!u_var4) && (wd >= 0)) {
		usleep_range(1000 * tempo, 1000 * (tempo + 1));
		wd -= tempo;
		u_var4 = stv0367_readbits(state, F367TER_TSFIFO_LINEOK);
	}

	if (!u_var4)
		return FE_TER_NOLOCK;

	/* for 367 leave COM_N at 0x7 for IQ_mode*/
	/*if(ter_state->if_iq_mode!=FE_TER_NORMAL_IF_TUNER) {
		tempo=0;
		while ((stv0367_readbits(state,F367TER_COM_USEGAINTRK)!=1) &&
		(stv0367_readbits(state,F367TER_COM_AGCLOCK)!=1)&&(tempo<100)) {
			ChipWaitOrAbort(state,1);
			tempo+=1;
		}

		stv0367_writebits(state,F367TER_COM_N,0x17);
	} */

	stv0367_writebits(state, F367TER_SYR_TR_DIS, 1);

	dprintk("FE_TER_LOCKOK !!!\n");

	return	FE_TER_LOCKOK;

}

static void stv0367ter_set_ts_mode(struct stv0367_state *state,
					enum stv0367_ts_mode PathTS)
{

	dprintk("%s:\n", __func__);

	if (state == NULL)
		return;

	stv0367_writebits(state, F367TER_TS_DIS, 0);
	switch (PathTS) {
	default:
		/*for removing warning :default we can assume in parallel mode*/
	case STV0367_PARALLEL_PUNCT_CLOCK:
		stv0367_writebits(state, F367TER_TSFIFO_SERIAL, 0);
		stv0367_writebits(state, F367TER_TSFIFO_DVBCI, 0);
		break;
	case STV0367_SERIAL_PUNCT_CLOCK:
		stv0367_writebits(state, F367TER_TSFIFO_SERIAL, 1);
		stv0367_writebits(state, F367TER_TSFIFO_DVBCI, 1);
		break;
	}
}

static void stv0367ter_set_clk_pol(struct stv0367_state *state,
					enum stv0367_clk_pol clock)
{

	dprintk("%s:\n", __func__);

	if (state == NULL)
		return;

	switch (clock) {
	case STV0367_RISINGEDGE_CLOCK:
		stv0367_writebits(state, F367TER_TS_BYTE_CLK_INV, 1);
		break;
	case STV0367_FALLINGEDGE_CLOCK:
		stv0367_writebits(state, F367TER_TS_BYTE_CLK_INV, 0);
		break;
		/*case FE_TER_CLOCK_POLARITY_DEFAULT:*/
	default:
		stv0367_writebits(state, F367TER_TS_BYTE_CLK_INV, 0);
		break;
	}
}

#if 0
static void stv0367ter_core_sw(struct stv0367_state *state)
{

	dprintk("%s:\n", __func__);

	stv0367_writebits(state, F367TER_CORE_ACTIVE, 0);
	stv0367_writebits(state, F367TER_CORE_ACTIVE, 1);
	msleep(350);
}
#endif
static int stv0367ter_standby(struct dvb_frontend *fe, u8 standby_on)
{
	struct stv0367_state *state = fe->demodulator_priv;

	dprintk("%s:\n", __func__);

	if (standby_on) {
		stv0367_writebits(state, F367TER_STDBY, 1);
		stv0367_writebits(state, F367TER_STDBY_FEC, 1);
		stv0367_writebits(state, F367TER_STDBY_CORE, 1);
	} else {
		stv0367_writebits(state, F367TER_STDBY, 0);
		stv0367_writebits(state, F367TER_STDBY_FEC, 0);
		stv0367_writebits(state, F367TER_STDBY_CORE, 0);
	}

	return 0;
}

static int stv0367ter_sleep(struct dvb_frontend *fe)
{
	return stv0367ter_standby(fe, 1);
}

969
static int stv0367ter_init(struct dvb_frontend *fe)
970 971 972 973 974 975 976 977
{
	struct stv0367_state *state = fe->demodulator_priv;
	struct stv0367ter_state *ter_state = state->ter_state;

	dprintk("%s:\n", __func__);

	ter_state->pBER = 0;

978 979
	stv0367_write_table(state,
		stv0367_deftabs[state->deftabs][STV0367_TAB_TER]);
980

981
	stv0367_pll_setup(state, STV0367_ICSPEED_53125, state->config->xtal);
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996

	stv0367_writereg(state, R367TER_I2CRPT, 0xa0);
	stv0367_writereg(state, R367TER_ANACTRL, 0x00);

	/*Set TS1 and TS2 to serial or parallel mode */
	stv0367ter_set_ts_mode(state, state->config->ts_mode);
	stv0367ter_set_clk_pol(state, state->config->clk_pol);

	state->chip_id = stv0367_readreg(state, R367TER_ID);
	ter_state->first_lock = 0;
	ter_state->unlock_counter = 2;

	return 0;
}

997
static int stv0367ter_algo(struct dvb_frontend *fe)
998
{
999
	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
1000 1001 1002 1003
	struct stv0367_state *state = fe->demodulator_priv;
	struct stv0367ter_state *ter_state = state->ter_state;
	int offset = 0, tempo = 0;
	u8 u_var;
1004
	u8 /*constell,*/ counter;
1005 1006
	s8 step;
	s32 timing_offset = 0;
1007
	u32 trl_nomrate = 0, InternalFreq = 0, temp = 0, ifkhz = 0;
1008 1009 1010

	dprintk("%s:\n", __func__);

1011 1012
	stv0367_get_if_khz(state, &ifkhz);

1013
	ter_state->frequency = p->frequency;
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
	ter_state->force = FE_TER_FORCENONE
			+ stv0367_readbits(state, F367TER_FORCE) * 2;
	ter_state->if_iq_mode = state->config->if_iq_mode;
	switch (state->config->if_iq_mode) {
	case FE_TER_NORMAL_IF_TUNER:  /* Normal IF mode */
		dprintk("ALGO: FE_TER_NORMAL_IF_TUNER selected\n");
		stv0367_writebits(state, F367TER_TUNER_BB, 0);
		stv0367_writebits(state, F367TER_LONGPATH_IF, 0);
		stv0367_writebits(state, F367TER_DEMUX_SWAP, 0);
		break;
	case FE_TER_LONGPATH_IF_TUNER:  /* Long IF mode */
		dprintk("ALGO: FE_TER_LONGPATH_IF_TUNER selected\n");
		stv0367_writebits(state, F367TER_TUNER_BB, 0);
		stv0367_writebits(state, F367TER_LONGPATH_IF, 1);
		stv0367_writebits(state, F367TER_DEMUX_SWAP, 1);
		break;
	case FE_TER_IQ_TUNER:  /* IQ mode */
		dprintk("ALGO: FE_TER_IQ_TUNER selected\n");
		stv0367_writebits(state, F367TER_TUNER_BB, 1);
		stv0367_writebits(state, F367TER_PPM_INVSEL, 0);
		break;
	default:
		printk(KERN_ERR "ALGO: wrong TUNER type selected\n");
		return -EINVAL;
	}

	usleep_range(5000, 7000);

1042
	switch (p->inversion) {
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
	case INVERSION_AUTO:
	default:
		dprintk("%s: inversion AUTO\n", __func__);
		if (ter_state->if_iq_mode == FE_TER_IQ_TUNER)
			stv0367_writebits(state, F367TER_IQ_INVERT,
						ter_state->sense);
		else
			stv0367_writebits(state, F367TER_INV_SPECTR,
						ter_state->sense);

		break;
	case INVERSION_ON:
	case INVERSION_OFF:
		if (ter_state->if_iq_mode == FE_TER_IQ_TUNER)
			stv0367_writebits(state, F367TER_IQ_INVERT,
1058
						p->inversion);
1059 1060
		else
			stv0367_writebits(state, F367TER_INV_SPECTR,
1061
						p->inversion);
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114

		break;
	}

	if ((ter_state->if_iq_mode != FE_TER_NORMAL_IF_TUNER) &&
				(ter_state->pBW != ter_state->bw)) {
		stv0367ter_agc_iir_lock_detect_set(state);

		/*set fine agc target to 180 for LPIF or IQ mode*/
		/* set Q_AGCTarget */
		stv0367_writebits(state, F367TER_SEL_IQNTAR, 1);
		stv0367_writebits(state, F367TER_AUT_AGC_TARGET_MSB, 0xB);
		/*stv0367_writebits(state,AUT_AGC_TARGET_LSB,0x04); */

		/* set Q_AGCTarget */
		stv0367_writebits(state, F367TER_SEL_IQNTAR, 0);
		stv0367_writebits(state, F367TER_AUT_AGC_TARGET_MSB, 0xB);
		/*stv0367_writebits(state,AUT_AGC_TARGET_LSB,0x04); */

		if (!stv0367_iir_filt_init(state, ter_state->bw,
						state->config->xtal))
			return -EINVAL;
		/*set IIR filter once for 6,7 or 8MHz BW*/
		ter_state->pBW = ter_state->bw;

		stv0367ter_agc_iir_rst(state);
	}

	if (ter_state->hierarchy == FE_TER_HIER_LOW_PRIO)
		stv0367_writebits(state, F367TER_BDI_LPSEL, 0x01);
	else
		stv0367_writebits(state, F367TER_BDI_LPSEL, 0x00);

	InternalFreq = stv0367ter_get_mclk(state, state->config->xtal) / 1000;
	temp = (int)
		((((ter_state->bw * 64 * (1 << 15) * 100)
						/ (InternalFreq)) * 10) / 7);

	stv0367_writebits(state, F367TER_TRL_NOMRATE_LSB, temp % 2);
	temp = temp / 2;
	stv0367_writebits(state, F367TER_TRL_NOMRATE_HI, temp / 256);
	stv0367_writebits(state, F367TER_TRL_NOMRATE_LO, temp % 256);

	temp = stv0367_readbits(state, F367TER_TRL_NOMRATE_HI) * 512 +
			stv0367_readbits(state, F367TER_TRL_NOMRATE_LO) * 2 +
			stv0367_readbits(state, F367TER_TRL_NOMRATE_LSB);
	temp = (int)(((1 << 17) * ter_state->bw * 1000) / (7 * (InternalFreq)));
	stv0367_writebits(state, F367TER_GAIN_SRC_HI, temp / 256);
	stv0367_writebits(state, F367TER_GAIN_SRC_LO, temp % 256);
	temp = stv0367_readbits(state, F367TER_GAIN_SRC_HI) * 256 +
			stv0367_readbits(state, F367TER_GAIN_SRC_LO);

	temp = (int)
1115
		((InternalFreq - ifkhz) * (1 << 16) / (InternalFreq));
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223

	dprintk("DEROT temp=0x%x\n", temp);
	stv0367_writebits(state, F367TER_INC_DEROT_HI, temp / 256);
	stv0367_writebits(state, F367TER_INC_DEROT_LO, temp % 256);

	ter_state->echo_pos = 0;
	ter_state->ucblocks = 0; /* liplianin */
	ter_state->pBER = 0; /* liplianin */
	stv0367_writebits(state, F367TER_LONG_ECHO, ter_state->echo_pos);

	if (stv0367ter_lock_algo(state) != FE_TER_LOCKOK)
		return 0;

	ter_state->state = FE_TER_LOCKOK;

	ter_state->mode = stv0367_readbits(state, F367TER_SYR_MODE);
	ter_state->guard = stv0367_readbits(state, F367TER_SYR_GUARD);

	ter_state->first_lock = 1; /* we know sense now :) */

	ter_state->agc_val =
			(stv0367_readbits(state, F367TER_AGC1_VAL_LO) << 16) +
			(stv0367_readbits(state, F367TER_AGC1_VAL_HI) << 24) +
			stv0367_readbits(state, F367TER_AGC2_VAL_LO) +
			(stv0367_readbits(state, F367TER_AGC2_VAL_HI) << 8);

	/* Carrier offset calculation */
	stv0367_writebits(state, F367TER_FREEZE, 1);
	offset = (stv0367_readbits(state, F367TER_CRL_FOFFSET_VHI) << 16) ;
	offset += (stv0367_readbits(state, F367TER_CRL_FOFFSET_HI) << 8);
	offset += (stv0367_readbits(state, F367TER_CRL_FOFFSET_LO));
	stv0367_writebits(state, F367TER_FREEZE, 0);
	if (offset > 8388607)
		offset -= 16777216;

	offset = offset * 2 / 16384;

	if (ter_state->mode == FE_TER_MODE_2K)
		offset = (offset * 4464) / 1000;/*** 1 FFT BIN=4.464khz***/
	else if (ter_state->mode == FE_TER_MODE_4K)
		offset = (offset * 223) / 100;/*** 1 FFT BIN=2.23khz***/
	else  if (ter_state->mode == FE_TER_MODE_8K)
		offset = (offset * 111) / 100;/*** 1 FFT BIN=1.1khz***/

	if (stv0367_readbits(state, F367TER_PPM_INVSEL) == 1) {
		if ((stv0367_readbits(state, F367TER_INV_SPECTR) ==
				(stv0367_readbits(state,
					F367TER_STATUS_INV_SPECRUM) == 1)))
			offset = offset * -1;
	}

	if (ter_state->bw == 6)
		offset = (offset * 6) / 8;
	else if (ter_state->bw == 7)
		offset = (offset * 7) / 8;

	ter_state->frequency += offset;

	tempo = 10;  /* exit even if timing_offset stays null */
	while ((timing_offset == 0) && (tempo > 0)) {
		usleep_range(10000, 20000);	/*was 20ms  */
		/* fine tuning of timing offset if required */
		timing_offset = stv0367_readbits(state, F367TER_TRL_TOFFSET_LO)
				+ 256 * stv0367_readbits(state,
							F367TER_TRL_TOFFSET_HI);
		if (timing_offset >= 32768)
			timing_offset -= 65536;
		trl_nomrate = (512 * stv0367_readbits(state,
							F367TER_TRL_NOMRATE_HI)
			+ stv0367_readbits(state, F367TER_TRL_NOMRATE_LO) * 2
			+ stv0367_readbits(state, F367TER_TRL_NOMRATE_LSB));

		timing_offset = ((signed)(1000000 / trl_nomrate) *
							timing_offset) / 2048;
		tempo--;
	}

	if (timing_offset <= 0) {
		timing_offset = (timing_offset - 11) / 22;
		step = -1;
	} else {
		timing_offset = (timing_offset + 11) / 22;
		step = 1;
	}

	for (counter = 0; counter < abs(timing_offset); counter++) {
		trl_nomrate += step;
		stv0367_writebits(state, F367TER_TRL_NOMRATE_LSB,
						trl_nomrate % 2);
		stv0367_writebits(state, F367TER_TRL_NOMRATE_LO,
						trl_nomrate / 2);
		usleep_range(1000, 2000);
	}

	usleep_range(5000, 6000);
	/* unlocks could happen in case of trl centring big step,
	then a core off/on restarts demod */
	u_var = stv0367_readbits(state, F367TER_LK);

	if (!u_var) {
		stv0367_writebits(state, F367TER_CORE_ACTIVE, 0);
		msleep(20);
		stv0367_writebits(state, F367TER_CORE_ACTIVE, 1);
	}

	return 0;
}

1224
static int stv0367ter_set_frontend(struct dvb_frontend *fe)
1225
{
1226
	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
1227 1228 1229 1230 1231 1232 1233
	struct stv0367_state *state = fe->demodulator_priv;
	struct stv0367ter_state *ter_state = state->ter_state;

	/*u8 trials[2]; */
	s8 num_trials, index;
	u8 SenseTrials[] = { INVERSION_ON, INVERSION_OFF };

1234 1235
	if (state->reinit_on_setfrontend)
		stv0367ter_init(fe);
1236 1237

	if (fe->ops.tuner_ops.set_params) {
1238
		if (state->use_i2c_gatectrl && fe->ops.i2c_gate_ctrl)
1239
			fe->ops.i2c_gate_ctrl(fe, 1);
1240
		fe->ops.tuner_ops.set_params(fe);
1241
		if (state->use_i2c_gatectrl && fe->ops.i2c_gate_ctrl)
1242 1243 1244
			fe->ops.i2c_gate_ctrl(fe, 0);
	}

1245
	switch (p->transmission_mode) {
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
	default:
	case TRANSMISSION_MODE_AUTO:
	case TRANSMISSION_MODE_2K:
		ter_state->mode = FE_TER_MODE_2K;
		break;
/*	case TRANSMISSION_MODE_4K:
		pLook.mode = FE_TER_MODE_4K;
		break;*/
	case TRANSMISSION_MODE_8K:
		ter_state->mode = FE_TER_MODE_8K;
		break;
	}

1259
	switch (p->guard_interval) {
1260 1261 1262 1263 1264
	default:
	case GUARD_INTERVAL_1_32:
	case GUARD_INTERVAL_1_16:
	case GUARD_INTERVAL_1_8:
	case GUARD_INTERVAL_1_4:
1265
		ter_state->guard = p->guard_interval;
1266 1267 1268 1269 1270 1271
		break;
	case GUARD_INTERVAL_AUTO:
		ter_state->guard = GUARD_INTERVAL_1_32;
		break;
	}

1272 1273
	switch (p->bandwidth_hz) {
	case 6000000:
1274 1275
		ter_state->bw = FE_TER_CHAN_BW_6M;
		break;
1276
	case 7000000:
1277 1278
		ter_state->bw = FE_TER_CHAN_BW_7M;
		break;
1279
	case 8000000:
1280 1281 1282 1283 1284 1285
	default:
		ter_state->bw = FE_TER_CHAN_BW_8M;
	}

	ter_state->hierarchy = FE_TER_HIER_NONE;

1286
	switch (p->inversion) {
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
	case INVERSION_OFF:
	case INVERSION_ON:
		num_trials = 1;
		break;
	default:
		num_trials = 2;
		if (ter_state->first_lock)
			num_trials = 1;
		break;
	}

	ter_state->state = FE_TER_NOLOCK;
	index = 0;

	while (((index) < num_trials) && (ter_state->state != FE_TER_LOCKOK)) {
		if (!ter_state->first_lock) {
1303
			if (p->inversion == INVERSION_AUTO)
1304 1305 1306
				ter_state->sense = SenseTrials[index];

		}
1307
		stv0367ter_algo(fe);
1308 1309

		if ((ter_state->state == FE_TER_LOCKOK) &&
1310
				(p->inversion == INVERSION_AUTO) &&
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
								(index == 1)) {
			/* invert spectrum sense */
			SenseTrials[index] = SenseTrials[0];
			SenseTrials[(index + 1) % 2] = (SenseTrials[1] + 1) % 2;
		}

		index++;
	}

	return 0;
}

static int stv0367ter_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
{
	struct stv0367_state *state = fe->demodulator_priv;
	struct stv0367ter_state *ter_state = state->ter_state;
	u32 errs = 0;

	/*wait for counting completion*/
	if (stv0367_readbits(state, F367TER_SFERRC_OLDVALUE) == 0) {
		errs =
			((u32)stv0367_readbits(state, F367TER_ERR_CNT1)
			* (1 << 16))
			+ ((u32)stv0367_readbits(state, F367TER_ERR_CNT1_HI)
			* (1 << 8))
			+ ((u32)stv0367_readbits(state, F367TER_ERR_CNT1_LO));
		ter_state->ucblocks = errs;
	}

	(*ucblocks) = ter_state->ucblocks;

	return 0;
}

1345 1346
static int stv0367ter_get_frontend(struct dvb_frontend *fe,
				   struct dtv_frontend_properties *p)
1347 1348 1349 1350 1351 1352
{
	struct stv0367_state *state = fe->demodulator_priv;
	struct stv0367ter_state *ter_state = state->ter_state;
	enum stv0367_ter_mode mode;
	int constell = 0,/* snr = 0,*/ Data = 0;

1353 1354 1355
	p->frequency = stv0367_get_tuner_freq(fe);
	if ((int)p->frequency < 0)
		p->frequency = -p->frequency;
1356 1357 1358

	constell = stv0367_readbits(state, F367TER_TPS_CONST);
	if (constell == 0)
1359
		p->modulation = QPSK;
1360
	else if (constell == 1)
1361
		p->modulation = QAM_16;
1362
	else
1363
		p->modulation = QAM_64;
1364

1365
	p->inversion = stv0367_readbits(state, F367TER_INV_SPECTR);
1366 1367 1368 1369 1370 1371

	/* Get the Hierarchical mode */
	Data = stv0367_readbits(state, F367TER_TPS_HIERMODE);

	switch (Data) {
	case 0:
1372
		p->hierarchy = HIERARCHY_NONE;
1373 1374
		break;
	case 1:
1375
		p->hierarchy = HIERARCHY_1;
1376 1377
		break;
	case 2:
1378
		p->hierarchy = HIERARCHY_2;
1379 1380
		break;
	case 3:
1381
		p->hierarchy = HIERARCHY_4;
1382 1383
		break;
	default:
1384
		p->hierarchy = HIERARCHY_AUTO;
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
		break; /* error */
	}

	/* Get the FEC Rate */
	if (ter_state->hierarchy == FE_TER_HIER_LOW_PRIO)
		Data = stv0367_readbits(state, F367TER_TPS_LPCODE);
	else
		Data = stv0367_readbits(state, F367TER_TPS_HPCODE);

	switch (Data) {
	case 0:
1396
		p->code_rate_HP = FEC_1_2;
1397 1398
		break;
	case 1:
1399
		p->code_rate_HP = FEC_2_3;
1400 1401
		break;
	case 2:
1402
		p->code_rate_HP = FEC_3_4;
1403 1404
		break;
	case 3:
1405
		p->code_rate_HP = FEC_5_6;
1406 1407
		break;
	case 4:
1408
		p->code_rate_HP = FEC_7_8;
1409 1410
		break;
	default:
1411
		p->code_rate_HP = FEC_AUTO;
1412 1413 1414 1415 1416 1417 1418
		break; /* error */
	}

	mode = stv0367_readbits(state, F367TER_SYR_MODE);

	switch (mode) {
	case FE_TER_MODE_2K:
1419
		p->transmission_mode = TRANSMISSION_MODE_2K;
1420 1421
		break;
/*	case FE_TER_MODE_4K:
1422
		p->transmission_mode = TRANSMISSION_MODE_4K;
1423 1424
		break;*/
	case FE_TER_MODE_8K:
1425
		p->transmission_mode = TRANSMISSION_MODE_8K;
1426 1427
		break;
	default:
1428
		p->transmission_mode = TRANSMISSION_MODE_AUTO;
1429 1430
	}

1431
	p->guard_interval = stv0367_readbits(state, F367TER_SYR_GUARD);
1432

1433
	return 0;
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
}

static int stv0367ter_read_snr(struct dvb_frontend *fe, u16 *snr)
{
	struct stv0367_state *state = fe->demodulator_priv;
	u32 snru32 = 0;
	int cpt = 0;
	u8 cut = stv0367_readbits(state, F367TER_IDENTIFICATIONREG);

	while (cpt < 10) {
		usleep_range(2000, 3000);
		if (cut == 0x50) /*cut 1.0 cut 1.1*/
			snru32 += stv0367_readbits(state, F367TER_CHCSNR) / 4;
		else /*cu2.0*/
			snru32 += 125 * stv0367_readbits(state, F367TER_CHCSNR);

		cpt++;
	}

	snru32 /= 10;/*average on 10 values*/

	*snr = snru32 / 1000;

	return 0;
}

#if 0
static int stv0367ter_status(struct dvb_frontend *fe)
{

	struct stv0367_state *state = fe->demodulator_priv;
	struct stv0367ter_state *ter_state = state->ter_state;
	int locked = FALSE;

	locked = (stv0367_readbits(state, F367TER_LK));
	if (!locked)
		ter_state->unlock_counter += 1;
	else
		ter_state->unlock_counter = 0;

	if (ter_state->unlock_counter > 2) {
		if (!stv0367_readbits(state, F367TER_TPS_LOCK) ||
				(!stv0367_readbits(state, F367TER_LK))) {
			stv0367_writebits(state, F367TER_CORE_ACTIVE, 0);
			usleep_range(2000, 3000);
			stv0367_writebits(state, F367TER_CORE_ACTIVE, 1);
			msleep(350);
			locked = (stv0367_readbits(state, F367TER_TPS_LOCK)) &&
					(stv0367_readbits(state, F367TER_LK));
		}

	}

	return locked;
}
#endif
1490 1491
static int stv0367ter_read_status(struct dvb_frontend *fe,
				  enum fe_status *status)
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
{
	struct stv0367_state *state = fe->demodulator_priv;

	dprintk("%s:\n", __func__);

	*status = 0;

	if (stv0367_readbits(state, F367TER_LK)) {
		*status |= FE_HAS_LOCK;
		dprintk("%s: stv0367 has locked\n", __func__);
	}

	return 0;
}

static int stv0367ter_read_ber(struct dvb_frontend *fe, u32 *ber)
{
	struct stv0367_state *state = fe->demodulator_priv;
	struct stv0367ter_state *ter_state = state->ter_state;
	u32 Errors = 0, tber = 0, temporary = 0;
	int abc = 0, def = 0;


	/*wait for counting completion*/
	if (stv0367_readbits(state, F367TER_SFERRC_OLDVALUE) == 0)
		Errors = ((u32)stv0367_readbits(state, F367TER_SFEC_ERR_CNT)
			* (1 << 16))
			+ ((u32)stv0367_readbits(state, F367TER_SFEC_ERR_CNT_HI)
			* (1 << 8))
			+ ((u32)stv0367_readbits(state,
						F367TER_SFEC_ERR_CNT_LO));
	/*measurement not completed, load previous value*/
	else {
		tber = ter_state->pBER;
		return 0;
	}

	abc = stv0367_readbits(state, F367TER_SFEC_ERR_SOURCE);
	def = stv0367_readbits(state, F367TER_SFEC_NUM_EVENT);

	if (Errors == 0) {
		tber = 0;
	} else if (abc == 0x7) {
		if (Errors <= 4) {
			temporary = (Errors * 1000000000) / (8 * (1 << 14));
			temporary =  temporary;
		} else if (Errors <= 42) {
			temporary = (Errors * 100000000) / (8 * (1 << 14));
			temporary = temporary * 10;
		} else if (Errors <= 429) {
			temporary = (Errors * 10000000) / (8 * (1 << 14));
			temporary = temporary * 100;
		} else if (Errors <= 4294) {
			temporary = (Errors * 1000000) / (8 * (1 << 14));
			temporary = temporary * 1000;
		} else if (Errors <= 42949) {
			temporary = (Errors * 100000) / (8 * (1 << 14));
			temporary = temporary * 10000;
		} else if (Errors <= 429496) {
			temporary = (Errors * 10000) / (8 * (1 << 14));
			temporary = temporary * 100000;
		} else { /*if (Errors<4294967) 2^22 max error*/
			temporary = (Errors * 1000) / (8 * (1 << 14));
			temporary = temporary * 100000;	/* still to *10 */
		}

		/* Byte error*/
		if (def == 2)
			/*tber=Errors/(8*(1 <<14));*/
			tber = temporary;
		else if (def == 3)
			/*tber=Errors/(8*(1 <<16));*/
			tber = temporary / 4;
		else if (def == 4)
			/*tber=Errors/(8*(1 <<18));*/
			tber = temporary / 16;
		else if (def == 5)
			/*tber=Errors/(8*(1 <<20));*/
			tber = temporary / 64;
		else if (def == 6)
			/*tber=Errors/(8*(1 <<22));*/
			tber = temporary / 256;
		else
			/* should not pass here*/
			tber = 0;

		if ((Errors < 4294967) && (Errors > 429496))
			tber *= 10;

	}

	/* save actual value */
	ter_state->pBER = tber;

	(*ber) = tber;

	return 0;
}
#if 0
static u32 stv0367ter_get_per(struct stv0367_state *state)
{
	struct stv0367ter_state *ter_state = state->ter_state;
	u32 Errors = 0, Per = 0, temporary = 0;
	int abc = 0, def = 0, cpt = 0;

	while (((stv0367_readbits(state, F367TER_SFERRC_OLDVALUE) == 1) &&
			(cpt < 400)) || ((Errors == 0) && (cpt < 400))) {
		usleep_range(1000, 2000);
		Errors = ((u32)stv0367_readbits(state, F367TER_ERR_CNT1)
			* (1 << 16))
			+ ((u32)stv0367_readbits(state, F367TER_ERR_CNT1_HI)
			* (1 << 8))
			+ ((u32)stv0367_readbits(state, F367TER_ERR_CNT1_LO));
		cpt++;
	}
	abc = stv0367_readbits(state, F367TER_ERR_SRC1);
	def = stv0367_readbits(state, F367TER_NUM_EVT1);

	if (Errors == 0)
		Per = 0;
	else if (abc == 0x9) {
		if (Errors <= 4) {
			temporary = (Errors * 1000000000) / (8 * (1 << 8));
			temporary =  temporary;
		} else if (Errors <= 42) {
			temporary = (Errors * 100000000) / (8 * (1 << 8));
			temporary = temporary * 10;
		} else if (Errors <= 429) {
			temporary = (Errors * 10000000) / (8 * (1 << 8));
			temporary = temporary * 100;
		} else if (Errors <= 4294) {
			temporary = (Errors * 1000000) / (8 * (1 << 8));
			temporary = temporary * 1000;
		} else if (Errors <= 42949) {
			temporary = (Errors * 100000) / (8 * (1 << 8));
			temporary = temporary * 10000;
		} else { /*if(Errors<=429496)  2^16 errors max*/
			temporary = (Errors * 10000) / (8 * (1 << 8));
			temporary = temporary * 100000;
		}

		/* pkt error*/
		if (def == 2)
			/*Per=Errors/(1 << 8);*/
			Per = temporary;
		else if (def == 3)
			/*Per=Errors/(1 << 10);*/
			Per = temporary / 4;
		else if (def == 4)
			/*Per=Errors/(1 << 12);*/
			Per = temporary / 16;
		else if (def == 5)
			/*Per=Errors/(1 << 14);*/
			Per = temporary / 64;
		else if (def == 6)
			/*Per=Errors/(1 << 16);*/
			Per = temporary / 256;
		else
			Per = 0;

	}
	/* save actual value */
	ter_state->pPER = Per;

	return Per;
}
#endif
static int stv0367_get_tune_settings(struct dvb_frontend *fe,
					struct dvb_frontend_tune_settings
					*fe_tune_settings)
{
	fe_tune_settings->min_delay_ms = 1000;
	fe_tune_settings->step_size = 0;
	fe_tune_settings->max_drift = 0;

	return 0;
}

static void stv0367_release(struct dvb_frontend *fe)
{
	struct stv0367_state *state = fe->demodulator_priv;

	kfree(state->ter_state);
	kfree(state->cab_state);
	kfree(state);
}

1679
static const struct dvb_frontend_ops stv0367ter_ops = {
1680
	.delsys = { SYS_DVBT },
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
	.info = {
		.name			= "ST STV0367 DVB-T",
		.frequency_min		= 47000000,
		.frequency_max		= 862000000,
		.frequency_stepsize	= 15625,
		.frequency_tolerance	= 0,
		.caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 |
			FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 |
			FE_CAN_FEC_AUTO |
			FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 |
			FE_CAN_QAM_128 | FE_CAN_QAM_256 | FE_CAN_QAM_AUTO |
			FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_RECOVER |
			FE_CAN_INVERSION_AUTO |
			FE_CAN_MUTE_TS
	},
	.release = stv0367_release,
	.init = stv0367ter_init,
	.sleep = stv0367ter_sleep,
	.i2c_gate_ctrl = stv0367ter_gate_ctrl,
1700 1701
	.set_frontend = stv0367ter_set_frontend,
	.get_frontend = stv0367ter_get_frontend,
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
	.get_tune_settings = stv0367_get_tune_settings,
	.read_status = stv0367ter_read_status,
	.read_ber = stv0367ter_read_ber,/* too slow */
/*	.read_signal_strength = stv0367_read_signal_strength,*/
	.read_snr = stv0367ter_read_snr,
	.read_ucblocks = stv0367ter_read_ucblocks,
};

struct dvb_frontend *stv0367ter_attach(const struct stv0367_config *config,
				   struct i2c_adapter *i2c)
{
	struct stv0367_state *state = NULL;
	struct stv0367ter_state *ter_state = NULL;

	/* allocate memory for the internal state */
	state = kzalloc(sizeof(struct stv0367_state), GFP_KERNEL);
	if (state == NULL)
		goto error;
	ter_state = kzalloc(sizeof(struct stv0367ter_state), GFP_KERNEL);
	if (ter_state == NULL)
		goto error;

	/* setup the state */
	state->i2c = i2c;
	state->config = config;
	state->ter_state = ter_state;
	state->fe.ops = stv0367ter_ops;
	state->fe.demodulator_priv = state;
	state->chip_id = stv0367_readreg(state, 0xf000);

1732 1733
	/* demod operation options */
	state->use_i2c_gatectrl = 1;
1734
	state->deftabs = STV0367_DEFTAB_GENERIC;
1735
	state->reinit_on_setfrontend = 1;
1736
	state->auto_if_khz = 0;
1737

1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
	dprintk("%s: chip_id = 0x%x\n", __func__, state->chip_id);

	/* check if the demod is there */
	if ((state->chip_id != 0x50) && (state->chip_id != 0x60))
		goto error;

	return &state->fe;

error:
	kfree(ter_state);
	kfree(state);
	return NULL;
}
EXPORT_SYMBOL(stv0367ter_attach);

static int stv0367cab_gate_ctrl(struct dvb_frontend *fe, int enable)
{
	struct stv0367_state *state = fe->demodulator_priv;

	dprintk("%s:\n", __func__);

	stv0367_writebits(state, F367CAB_I2CT_ON, (enable > 0) ? 1 : 0);

	return 0;
}

static u32 stv0367cab_get_mclk(struct dvb_frontend *fe, u32 ExtClk_Hz)
{
	struct stv0367_state *state = fe->demodulator_priv;
	u32 mclk_Hz = 0;/* master clock frequency (Hz) */
	u32 M, N, P;


	if (stv0367_readbits(state, F367CAB_BYPASS_PLLXN) == 0) {
		N = (u32)stv0367_readbits(state, F367CAB_PLL_NDIV);
		if (N == 0)
			N = N + 1;

		M = (u32)stv0367_readbits(state, F367CAB_PLL_MDIV);
		if (M == 0)
			M = M + 1;

		P = (u32)stv0367_readbits(state, F367CAB_PLL_PDIV);

		if (P > 5)
			P = 5;

		mclk_Hz = ((ExtClk_Hz / 2) * N) / (M * (1 << P));
		dprintk("stv0367cab_get_mclk BYPASS_PLLXN mclk_Hz=%d\n",
								mclk_Hz);
	} else
		mclk_Hz = ExtClk_Hz;

	dprintk("stv0367cab_get_mclk final mclk_Hz=%d\n", mclk_Hz);

	return mclk_Hz;
}

static u32 stv0367cab_get_adc_freq(struct dvb_frontend *fe, u32 ExtClk_Hz)
{
	u32 ADCClk_Hz = ExtClk_Hz;

	ADCClk_Hz = stv0367cab_get_mclk(fe, ExtClk_Hz);

	return ADCClk_Hz;
}

1805 1806 1807
static enum stv0367cab_mod stv0367cab_SetQamSize(struct stv0367_state *state,
						 u32 SymbolRate,
						 enum stv0367cab_mod QAMSize)
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
{
	/* Set QAM size */
	stv0367_writebits(state, F367CAB_QAM_MODE, QAMSize);

	/* Set Registers settings specific to the QAM size */
	switch (QAMSize) {
	case FE_CAB_MOD_QAM4:
		stv0367_writereg(state, R367CAB_IQDEM_ADJ_AGC_REF, 0x00);
		break;
	case FE_CAB_MOD_QAM16:
		stv0367_writereg(state, R367CAB_AGC_PWR_REF_L, 0x64);
		stv0367_writereg(state, R367CAB_IQDEM_ADJ_AGC_REF, 0x00);
		stv0367_writereg(state, R367CAB_FSM_STATE, 0x90);
		stv0367_writereg(state, R367CAB_EQU_CTR_LPF_GAIN, 0xc1);
		stv0367_writereg(state, R367CAB_EQU_CRL_LPF_GAIN, 0xa7);
		stv0367_writereg(state, R367CAB_EQU_CRL_LD_SEN, 0x95);
		stv0367_writereg(state, R367CAB_EQU_CRL_LIMITER, 0x40);
		stv0367_writereg(state, R367CAB_EQU_PNT_GAIN, 0x8a);
		break;
	case FE_CAB_MOD_QAM32:
		stv0367_writereg(state, R367CAB_IQDEM_ADJ_AGC_REF, 0x00);
		stv0367_writereg(state, R367CAB_AGC_PWR_REF_L, 0x6e);
		stv0367_writereg(state, R367CAB_FSM_STATE, 0xb0);
		stv0367_writereg(state, R367CAB_EQU_CTR_LPF_GAIN, 0xc1);
		stv0367_writereg(state, R367CAB_EQU_CRL_LPF_GAIN, 0xb7);
		stv0367_writereg(state, R367CAB_EQU_CRL_LD_SEN, 0x9d);
		stv0367_writereg(state, R367CAB_EQU_CRL_LIMITER, 0x7f);
		stv0367_writereg(state, R367CAB_EQU_PNT_GAIN, 0xa7);
		break;
	case FE_CAB_MOD_QAM64:
		stv0367_writereg(state, R367CAB_IQDEM_ADJ_AGC_REF, 0x82);
		stv0367_writereg(state, R367CAB_AGC_PWR_REF_L, 0x5a);
		if (SymbolRate > 45000000) {
			stv0367_writereg(state, R367CAB_FSM_STATE, 0xb0);
			stv0367_writereg(state, R367CAB_EQU_CTR_LPF_GAIN, 0xc1);
			stv0367_writereg(state, R367CAB_EQU_CRL_LPF_GAIN, 0xa5);
		} else if (SymbolRate > 25000000) {
			stv0367_writereg(state, R367CAB_FSM_STATE, 0xa0);
			stv0367_writereg(state, R367CAB_EQU_CTR_LPF_GAIN, 0xc1);
			stv0367_writereg(state, R367CAB_EQU_CRL_LPF_GAIN, 0xa6);
		} else {
			stv0367_writereg(state, R367CAB_FSM_STATE, 0xa0);
			stv0367_writereg(state, R367CAB_EQU_CTR_LPF_GAIN, 0xd1);
			stv0367_writereg(state, R367CAB_EQU_CRL_LPF_GAIN, 0xa7);
		}
		stv0367_writereg(state, R367CAB_EQU_CRL_LD_SEN, 0x95);
		stv0367_writereg(state, R367CAB_EQU_CRL_LIMITER, 0x40);
		stv0367_writereg(state, R367CAB_EQU_PNT_GAIN, 0x99);
		break;
	case FE_CAB_MOD_QAM128:
		stv0367_writereg(state, R367CAB_IQDEM_ADJ_AGC_REF, 0x00);
		stv0367_writereg(state, R367CAB_AGC_PWR_REF_L, 0x76);
		stv0367_writereg(state, R367CAB_FSM_STATE, 0x90);
		stv0367_writereg(state, R367CAB_EQU_CTR_LPF_GAIN, 0xb1);
		if (SymbolRate > 45000000)
			stv0367_writereg(state, R367CAB_EQU_CRL_LPF_GAIN, 0xa7);
		else if (SymbolRate > 25000000)
			stv0367_writereg(state, R367CAB_EQU_CRL_LPF_GAIN, 0xa6);
		else
			stv0367_writereg(state, R367CAB_EQU_CRL_LPF_GAIN, 0x97);

		stv0367_writereg(state, R367CAB_EQU_CRL_LD_SEN, 0x8e);
		stv0367_writereg(state, R367CAB_EQU_CRL_LIMITER, 0x7f);
		stv0367_writereg(state, R367CAB_EQU_PNT_GAIN, 0xa7);
		break;
	case FE_CAB_MOD_QAM256:
		stv0367_writereg(state, R367CAB_IQDEM_ADJ_AGC_REF, 0x94);
		stv0367_writereg(state, R367CAB_AGC_PWR_REF_L, 0x5a);
		stv0367_writereg(state, R367CAB_FSM_STATE, 0xa0);
		if (SymbolRate > 45000000)
			stv0367_writereg(state, R367CAB_EQU_CTR_LPF_GAIN, 0xc1);
		else if (SymbolRate > 25000000)
			stv0367_writereg(state, R367CAB_EQU_CTR_LPF_GAIN, 0xc1);
		else
			stv0367_writereg(state, R367CAB_EQU_CTR_LPF_GAIN, 0xd1);

		stv0367_writereg(state, R367CAB_EQU_CRL_LPF_GAIN, 0xa7);
		stv0367_writereg(state, R367CAB_EQU_CRL_LD_SEN, 0x85);
		stv0367_writereg(state, R367CAB_EQU_CRL_LIMITER, 0x40);
		stv0367_writereg(state, R367CAB_EQU_PNT_GAIN, 0xa7);
		break;
	case FE_CAB_MOD_QAM512:
		stv0367_writereg(state, R367CAB_IQDEM_ADJ_AGC_REF, 0x00);
		break;
	case FE_CAB_MOD_QAM1024:
		stv0367_writereg(state, R367CAB_IQDEM_ADJ_AGC_REF, 0x00);
		break;
	default:
		break;
	}

	return QAMSize;
}

static u32 stv0367cab_set_derot_freq(struct stv0367_state *state,
					u32 adc_hz, s32 derot_hz)
{
	u32 sampled_if = 0;
	u32 adc_khz;

	adc_khz = adc_hz / 1000;

	dprintk("%s: adc_hz=%d derot_hz=%d\n", __func__, adc_hz, derot_hz);

	if (adc_khz != 0) {
		if (derot_hz < 1000000)
			derot_hz = adc_hz / 4; /* ZIF operation */
		if (derot_hz > adc_hz)
			derot_hz = derot_hz - adc_hz;
		sampled_if = (u32)derot_hz / 1000;
		sampled_if *= 32768;
		sampled_if /= adc_khz;
		sampled_if *= 256;
	}

	if (sampled_if > 8388607)
		sampled_if = 8388607;

	dprintk("%s: sampled_if=0x%x\n", __func__, sampled_if);

	stv0367_writereg(state, R367CAB_MIX_NCO_LL, sampled_if);
	stv0367_writereg(state, R367CAB_MIX_NCO_HL, (sampled_if >> 8));
	stv0367_writebits(state, F367CAB_MIX_NCO_INC_HH, (sampled_if >> 16));

	return derot_hz;
}

static u32 stv0367cab_get_derot_freq(struct stv0367_state *state, u32 adc_hz)
{
	u32 sampled_if;

	sampled_if = stv0367_readbits(state, F367CAB_MIX_NCO_INC_LL) +
			(stv0367_readbits(state, F367CAB_MIX_NCO_INC_HL) << 8) +
			(stv0367_readbits(state, F367CAB_MIX_NCO_INC_HH) << 16);

	sampled_if /= 256;
	sampled_if *= (adc_hz / 1000);
	sampled_if += 1;
	sampled_if /= 32768;

	return sampled_if;
}

static u32 stv0367cab_set_srate(struct stv0367_state *state, u32 adc_hz,
			u32 mclk_hz, u32 SymbolRate,
			enum stv0367cab_mod QAMSize)
{
	u32 QamSizeCorr = 0;
	u32 u32_tmp = 0, u32_tmp1 = 0;
	u32 adp_khz;

	dprintk("%s:\n", __func__);

	/* Set Correction factor of SRC gain */
	switch (QAMSize) {
	case FE_CAB_MOD_QAM4:
		QamSizeCorr = 1110;
		break;
	case FE_CAB_MOD_QAM16:
		QamSizeCorr = 1032;
		break;
	case FE_CAB_MOD_QAM32:
		QamSizeCorr =  954;
		break;
	case FE_CAB_MOD_QAM64:
		QamSizeCorr =  983;
		break;
	case FE_CAB_MOD_QAM128:
		QamSizeCorr =  957;
		break;
	case FE_CAB_MOD_QAM256:
		QamSizeCorr =  948;
		break;
	case FE_CAB_MOD_QAM512:
		QamSizeCorr =    0;
		break;
	case FE_CAB_MOD_QAM1024:
		QamSizeCorr =  944;
		break;
	default:
		break;
	}

	/* Transfer ratio calculation */
	if (adc_hz != 0) {
		u32_tmp = 256 * SymbolRate;
		u32_tmp = u32_tmp / adc_hz;
	}
	stv0367_writereg(state, R367CAB_EQU_CRL_TFR, (u8)u32_tmp);

	/* Symbol rate and SRC gain calculation */
	adp_khz = (mclk_hz >> 1) / 1000;/* TRL works at half the system clock */
	if (adp_khz != 0) {
		u32_tmp = SymbolRate;
		u32_tmp1 = SymbolRate;

		if (u32_tmp < 2097152) { /* 2097152 = 2^21 */
			/* Symbol rate calculation */
			u32_tmp *= 2048; /* 2048 = 2^11 */
			u32_tmp = u32_tmp / adp_khz;
			u32_tmp = u32_tmp * 16384; /* 16384 = 2^14 */
			u32_tmp /= 125 ; /* 125 = 1000/2^3 */
			u32_tmp = u32_tmp * 8; /* 8 = 2^3 */

			/* SRC Gain Calculation */
			u32_tmp1 *= 2048; /* *2*2^10 */
			u32_tmp1 /= 439; /* *2/878 */
			u32_tmp1 *= 256; /* *2^8 */
			u32_tmp1 = u32_tmp1 / adp_khz; /* /(AdpClk in kHz) */
			u32_tmp1 *= QamSizeCorr * 9; /* *1000*corr factor */
			u32_tmp1 = u32_tmp1 / 10000000;

		} else if (u32_tmp < 4194304) { /* 4194304 = 2**22 */
			/* Symbol rate calculation */
			u32_tmp *= 1024 ; /* 1024 = 2**10 */
			u32_tmp = u32_tmp / adp_khz;
			u32_tmp = u32_tmp * 16384; /* 16384 = 2**14 */
			u32_tmp /= 125 ; /* 125 = 1000/2**3 */
			u32_tmp = u32_tmp * 16; /* 16 = 2**4 */

			/* SRC Gain Calculation */
			u32_tmp1 *= 1024; /* *2*2^9 */
			u32_tmp1 /= 439; /* *2/878 */
			u32_tmp1 *= 256; /* *2^8 */
			u32_tmp1 = u32_tmp1 / adp_khz; /* /(AdpClk in kHz)*/
			u32_tmp1 *= QamSizeCorr * 9; /* *1000*corr factor */
			u32_tmp1 = u32_tmp1 / 5000000;
		} else if (u32_tmp < 8388607) { /* 8388607 = 2**23 */
			/* Symbol rate calculation */
			u32_tmp *= 512 ; /* 512 = 2**9 */
			u32_tmp = u32_tmp / adp_khz;
			u32_tmp = u32_tmp * 16384; /* 16384 = 2**14 */
			u32_tmp /= 125 ; /* 125 = 1000/2**3 */
			u32_tmp = u32_tmp * 32; /* 32 = 2**5 */

			/* SRC Gain Calculation */
			u32_tmp1 *= 512; /* *2*2^8 */
			u32_tmp1 /= 439; /* *2/878 */
			u32_tmp1 *= 256; /* *2^8 */
			u32_tmp1 = u32_tmp1 / adp_khz; /* /(AdpClk in kHz) */
			u32_tmp1 *= QamSizeCorr * 9; /* *1000*corr factor */
			u32_tmp1 = u32_tmp1 / 2500000;
		} else {
			/* Symbol rate calculation */
			u32_tmp *= 256 ; /* 256 = 2**8 */
			u32_tmp = u32_tmp / adp_khz;
			u32_tmp = u32_tmp * 16384; /* 16384 = 2**13 */
			u32_tmp /= 125 ; /* 125 = 1000/2**3 */
			u32_tmp = u32_tmp * 64; /* 64 = 2**6 */

			/* SRC Gain Calculation */
			u32_tmp1 *= 256; /* 2*2^7 */
			u32_tmp1 /= 439; /* *2/878 */
			u32_tmp1 *= 256; /* *2^8 */
			u32_tmp1 = u32_tmp1 / adp_khz; /* /(AdpClk in kHz) */
			u32_tmp1 *= QamSizeCorr * 9; /* *1000*corr factor */
			u32_tmp1 = u32_tmp1 / 1250000;
		}
	}
#if 0
	/* Filters' coefficients are calculated and written
	into registers only if the filters are enabled */
	if (stv0367_readbits(state, F367CAB_ADJ_EN)) {
		stv0367cab_SetIirAdjacentcoefficient(state, mclk_hz,
								SymbolRate);
		/* AllPass filter must be enabled
		when the adjacents filter is used */
		stv0367_writebits(state, F367CAB_ALLPASSFILT_EN, 1);
		stv0367cab_SetAllPasscoefficient(state, mclk_hz, SymbolRate);
	} else
		/* AllPass filter must be disabled
		when the adjacents filter is not used */
#endif
	stv0367_writebits(state, F367CAB_ALLPASSFILT_EN, 0);

	stv0367_writereg(state, R367CAB_SRC_NCO_LL, u32_tmp);
	stv0367_writereg(state, R367CAB_SRC_NCO_LH, (u32_tmp >> 8));
	stv0367_writereg(state, R367CAB_SRC_NCO_HL, (u32_tmp >> 16));
	stv0367_writereg(state, R367CAB_SRC_NCO_HH, (u32_tmp >> 24));

	stv0367_writereg(state, R367CAB_IQDEM_GAIN_SRC_L, u32_tmp1 & 0x00ff);
	stv0367_writebits(state, F367CAB_GAIN_SRC_HI, (u32_tmp1 >> 8) & 0x00ff);

	return SymbolRate ;
}

static u32 stv0367cab_GetSymbolRate(struct stv0367_state *state, u32 mclk_hz)
{
	u32 regsym;
	u32 adp_khz;

	regsym = stv0367_readreg(state, R367CAB_SRC_NCO_LL) +
		(stv0367_readreg(state, R367CAB_SRC_NCO_LH) << 8) +
		(stv0367_readreg(state, R367CAB_SRC_NCO_HL) << 16) +
		(stv0367_readreg(state, R367CAB_SRC_NCO_HH) << 24);

	adp_khz = (mclk_hz >> 1) / 1000;/* TRL works at half the system clock */

	if (regsym < 134217728) {		/* 134217728L = 2**27*/
		regsym = regsym * 32;		/* 32 = 2**5 */
		regsym = regsym / 32768;	/* 32768L = 2**15 */
		regsym = adp_khz * regsym;	/* AdpClk in kHz */
		regsym = regsym / 128;		/* 128 = 2**7 */
		regsym *= 125 ;			/* 125 = 1000/2**3 */
		regsym /= 2048 ;		/* 2048 = 2**11	*/
	} else if (regsym < 268435456) {	/* 268435456L = 2**28 */
		regsym = regsym * 16;		/* 16 = 2**4 */
		regsym = regsym / 32768;	/* 32768L = 2**15 */
		regsym = adp_khz * regsym;	/* AdpClk in kHz */
		regsym = regsym / 128;		/* 128 = 2**7 */
		regsym *= 125 ;			/* 125 = 1000/2**3*/
		regsym /= 1024 ;		/* 256 = 2**10*/
	} else if (regsym < 536870912) {	/* 536870912L = 2**29*/
		regsym = regsym * 8;		/* 8 = 2**3 */
		regsym = regsym / 32768;	/* 32768L = 2**15 */
		regsym = adp_khz * regsym;	/* AdpClk in kHz */
		regsym = regsym / 128;		/* 128 = 2**7 */
		regsym *= 125 ;			/* 125 = 1000/2**3 */
		regsym /= 512 ;			/* 128 = 2**9 */
	} else {
		regsym = regsym * 4;		/* 4 = 2**2 */
		regsym = regsym / 32768;	/* 32768L = 2**15 */
		regsym = adp_khz * regsym;	/* AdpClk in kHz */
		regsym = regsym / 128;		/* 128 = 2**7 */
		regsym *= 125 ;			/* 125 = 1000/2**3 */
		regsym /= 256 ;			/* 64 = 2**8 */
	}

	return regsym;
}

2139 2140
static int stv0367cab_read_status(struct dvb_frontend *fe,
				  enum fe_status *status)
2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
{
	struct stv0367_state *state = fe->demodulator_priv;

	dprintk("%s:\n", __func__);

	*status = 0;

	if (stv0367_readbits(state, F367CAB_QAMFEC_LOCK)) {
		*status |= FE_HAS_LOCK;
		dprintk("%s: stv0367 has locked\n", __func__);
	}

	return 0;
}

static int stv0367cab_standby(struct dvb_frontend *fe, u8 standby_on)
{
	struct stv0367_state *state = fe->demodulator_priv;

	dprintk("%s:\n", __func__);

	if (standby_on) {
		stv0367_writebits(state, F367CAB_BYPASS_PLLXN, 0x03);
		stv0367_writebits(state, F367CAB_STDBY_PLLXN, 0x01);
		stv0367_writebits(state, F367CAB_STDBY, 1);
		stv0367_writebits(state, F367CAB_STDBY_CORE, 1);
		stv0367_writebits(state, F367CAB_EN_BUFFER_I, 0);
		stv0367_writebits(state, F367CAB_EN_BUFFER_Q, 0);
		stv0367_writebits(state, F367CAB_POFFQ, 1);
		stv0367_writebits(state, F367CAB_POFFI, 1);
	} else {
		stv0367_writebits(state, F367CAB_STDBY_PLLXN, 0x00);
		stv0367_writebits(state, F367CAB_BYPASS_PLLXN, 0x00);
		stv0367_writebits(state, F367CAB_STDBY, 0);
		stv0367_writebits(state, F367CAB_STDBY_CORE, 0);
		stv0367_writebits(state, F367CAB_EN_BUFFER_I, 1);
		stv0367_writebits(state, F367CAB_EN_BUFFER_Q, 1);
		stv0367_writebits(state, F367CAB_POFFQ, 0);
		stv0367_writebits(state, F367CAB_POFFI, 0);
	}

	return 0;
}

static int stv0367cab_sleep(struct dvb_frontend *fe)
{
	return stv0367cab_standby(fe, 1);
}

2190
static int stv0367cab_init(struct dvb_frontend *fe)
2191 2192 2193 2194 2195 2196
{
	struct stv0367_state *state = fe->demodulator_priv;
	struct stv0367cab_state *cab_state = state->cab_state;

	dprintk("%s:\n", __func__);

2197 2198
	stv0367_write_table(state,
		stv0367_deftabs[state->deftabs][STV0367_TAB_CAB]);
2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241

	switch (state->config->ts_mode) {
	case STV0367_DVBCI_CLOCK:
		dprintk("Setting TSMode = STV0367_DVBCI_CLOCK\n");
		stv0367_writebits(state, F367CAB_OUTFORMAT, 0x03);
		break;
	case STV0367_SERIAL_PUNCT_CLOCK:
	case STV0367_SERIAL_CONT_CLOCK:
		stv0367_writebits(state, F367CAB_OUTFORMAT, 0x01);
		break;
	case STV0367_PARALLEL_PUNCT_CLOCK:
	case STV0367_OUTPUTMODE_DEFAULT:
		stv0367_writebits(state, F367CAB_OUTFORMAT, 0x00);
		break;
	}

	switch (state->config->clk_pol) {
	case STV0367_RISINGEDGE_CLOCK:
		stv0367_writebits(state, F367CAB_CLK_POLARITY, 0x00);
		break;
	case STV0367_FALLINGEDGE_CLOCK:
	case STV0367_CLOCKPOLARITY_DEFAULT:
		stv0367_writebits(state, F367CAB_CLK_POLARITY, 0x01);
		break;
	}

	stv0367_writebits(state, F367CAB_SYNC_STRIP, 0x00);

	stv0367_writebits(state, F367CAB_CT_NBST, 0x01);

	stv0367_writebits(state, F367CAB_TS_SWAP, 0x01);

	stv0367_writebits(state, F367CAB_FIFO_BYPASS, 0x00);

	stv0367_writereg(state, R367CAB_ANACTRL, 0x00);/*PLL enabled and used */

	cab_state->mclk = stv0367cab_get_mclk(fe, state->config->xtal);
	cab_state->adc_clk = stv0367cab_get_adc_freq(fe, state->config->xtal);

	return 0;
}
static
enum stv0367_cab_signal_type stv0367cab_algo(struct stv0367_state *state,
2242
					     struct dtv_frontend_properties *p)
2243 2244 2245
{
	struct stv0367cab_state *cab_state = state->cab_state;
	enum stv0367_cab_signal_type signalType = FE_CAB_NOAGC;
2246
	u32	QAMFEC_Lock, QAM_Lock, u32_tmp, ifkhz,
2247 2248 2249 2250 2251 2252 2253
		LockTime, TRLTimeOut, AGCTimeOut, CRLSymbols,
		CRLTimeOut, EQLTimeOut, DemodTimeOut, FECTimeOut;
	u8	TrackAGCAccum;
	s32	tmp;

	dprintk("%s:\n", __func__);

2254 2255
	stv0367_get_if_khz(state, &ifkhz);

2256 2257 2258 2259
	/* Timeouts calculation */
	/* A max lock time of 25 ms is allowed for delayed AGC */
	AGCTimeOut = 25;
	/* 100000 symbols needed by the TRL as a maximum value */
2260
	TRLTimeOut = 100000000 / p->symbol_rate;
2261 2262 2263 2264 2265 2266 2267 2268 2269
	/* CRLSymbols is the needed number of symbols to achieve a lock
	   within [-4%, +4%] of the symbol rate.
	   CRL timeout is calculated
	   for a lock within [-search_range, +search_range].
	   EQL timeout can be changed depending on
	   the micro-reflections we want to handle.
	   A characterization must be performed
	   with these echoes to get new timeout values.
	*/
2270
	switch (p->modulation) {
2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
	case QAM_16:
		CRLSymbols = 150000;
		EQLTimeOut = 100;
		break;
	case QAM_32:
		CRLSymbols = 250000;
		EQLTimeOut = 100;
		break;
	case QAM_64:
		CRLSymbols = 200000;
		EQLTimeOut = 100;
		break;
	case QAM_128:
		CRLSymbols = 250000;
		EQLTimeOut = 100;
		break;
	case QAM_256:
		CRLSymbols = 250000;
		EQLTimeOut = 100;
		break;
	default:
		CRLSymbols = 200000;
		EQLTimeOut = 100;
		break;
	}
#if 0
	if (pIntParams->search_range < 0) {
		CRLTimeOut = (25 * CRLSymbols *
				(-pIntParams->search_range / 1000)) /
					(pIntParams->symbol_rate / 1000);
	} else
#endif
	CRLTimeOut = (25 * CRLSymbols * (cab_state->search_range / 1000)) /
2304
					(p->symbol_rate / 1000);
2305

2306
	CRLTimeOut = (1000 * CRLTimeOut) / p->symbol_rate;
2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
	/* Timeouts below 50ms are coerced */
	if (CRLTimeOut < 50)
		CRLTimeOut = 50;
	/* A maximum of 100 TS packets is needed to get FEC lock even in case
	the spectrum inversion needs to be changed.
	   This is equal to 20 ms in case of the lowest symbol rate of 0.87Msps
	*/
	FECTimeOut = 20;
	DemodTimeOut = AGCTimeOut + TRLTimeOut + CRLTimeOut + EQLTimeOut;

	dprintk("%s: DemodTimeOut=%d\n", __func__, DemodTimeOut);

	/* Reset the TRL to ensure nothing starts until the
	   AGC is stable which ensures a better lock time
	*/
	stv0367_writereg(state, R367CAB_CTRL_1, 0x04);
	/* Set AGC accumulation time to minimum and lock threshold to maximum
	in order to speed up the AGC lock */
	TrackAGCAccum = stv0367_readbits(state, F367CAB_AGC_ACCUMRSTSEL);
	stv0367_writebits(state, F367CAB_AGC_ACCUMRSTSEL, 0x0);
	/* Modulus Mapper is disabled */
	stv0367_writebits(state, F367CAB_MODULUSMAP_EN, 0);
	/* Disable the sweep function */
	stv0367_writebits(state, F367CAB_SWEEP_EN, 0);
	/* The sweep function is never used, Sweep rate must be set to 0 */
	/* Set the derotator frequency in Hz */
	stv0367cab_set_derot_freq(state, cab_state->adc_clk,
2334
		(1000 * (s32)ifkhz + cab_state->derot_offset));
2335
	/* Disable the Allpass Filter when the symbol rate is out of range */
2336
	if ((p->symbol_rate > 10800000) | (p->symbol_rate < 1800000)) {
2337 2338 2339 2340 2341 2342 2343 2344 2345
		stv0367_writebits(state, F367CAB_ADJ_EN, 0);
		stv0367_writebits(state, F367CAB_ALLPASSFILT_EN, 0);
	}
#if 0
	/* Check if the tuner is locked */
	tuner_lock = stv0367cab_tuner_get_status(fe);
	if (tuner_lock == 0)
		return FE_367CAB_NOTUNER;
#endif
G
Geert Uytterhoeven 已提交
2346
	/* Release the TRL to start demodulator acquisition */
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
	/* Wait for QAM lock */
	LockTime = 0;
	stv0367_writereg(state, R367CAB_CTRL_1, 0x00);
	do {
		QAM_Lock = stv0367_readbits(state, F367CAB_FSM_STATUS);
		if ((LockTime >= (DemodTimeOut - EQLTimeOut)) &&
							(QAM_Lock == 0x04))
			/*
			 * We don't wait longer, the frequency/phase offset
			 * must be too big
			 */
			LockTime = DemodTimeOut;
		else if ((LockTime >= (AGCTimeOut + TRLTimeOut)) &&
							(QAM_Lock == 0x02))
			/*
			 * We don't wait longer, either there is no signal or
			 * it is not the right symbol rate or it is an analog
			 * carrier
			 */
		{
			LockTime = DemodTimeOut;
			u32_tmp = stv0367_readbits(state,
						F367CAB_AGC_PWR_WORD_LO) +
					(stv0367_readbits(state,
						F367CAB_AGC_PWR_WORD_ME) << 8) +
					(stv0367_readbits(state,
						F367CAB_AGC_PWR_WORD_HI) << 16);
			if (u32_tmp >= 131072)
				u32_tmp = 262144 - u32_tmp;
			u32_tmp = u32_tmp / (1 << (11 - stv0367_readbits(state,
							F367CAB_AGC_IF_BWSEL)));

			if (u32_tmp < stv0367_readbits(state,
						F367CAB_AGC_PWRREF_LO) +
					256 * stv0367_readbits(state,
						F367CAB_AGC_PWRREF_HI) - 10)
				QAM_Lock = 0x0f;
		} else {
			usleep_range(10000, 20000);
			LockTime += 10;
		}
		dprintk("QAM_Lock=0x%x LockTime=%d\n", QAM_Lock, LockTime);
		tmp = stv0367_readreg(state, R367CAB_IT_STATUS1);

		dprintk("R367CAB_IT_STATUS1=0x%x\n", tmp);

	} while (((QAM_Lock != 0x0c) && (QAM_Lock != 0x0b)) &&
						(LockTime < DemodTimeOut));

	dprintk("QAM_Lock=0x%x\n", QAM_Lock);

	tmp = stv0367_readreg(state, R367CAB_IT_STATUS1);
	dprintk("R367CAB_IT_STATUS1=0x%x\n", tmp);
	tmp = stv0367_readreg(state, R367CAB_IT_STATUS2);
	dprintk("R367CAB_IT_STATUS2=0x%x\n", tmp);

	tmp  = stv0367cab_get_derot_freq(state, cab_state->adc_clk);
	dprintk("stv0367cab_get_derot_freq=0x%x\n", tmp);

	if ((QAM_Lock == 0x0c) || (QAM_Lock == 0x0b)) {
		/* Wait for FEC lock */
		LockTime = 0;
		do {
			usleep_range(5000, 7000);
			LockTime += 5;
			QAMFEC_Lock = stv0367_readbits(state,
							F367CAB_QAMFEC_LOCK);
		} while (!QAMFEC_Lock && (LockTime < FECTimeOut));
	} else
		QAMFEC_Lock = 0;

	if (QAMFEC_Lock) {
		signalType = FE_CAB_DATAOK;
		cab_state->spect_inv = stv0367_readbits(state,
							F367CAB_QUAD_INV);
#if 0
/* not clear for me */
2424 2425
		if (ifkhz != 0) {
			if (ifkhz > cab_state->adc_clk / 1000) {
2426 2427 2428
				cab_state->freq_khz =
					FE_Cab_TunerGetFrequency(pIntParams->hTuner)
				- stv0367cab_get_derot_freq(state, cab_state->adc_clk)
2429
				- cab_state->adc_clk / 1000 + ifkhz;
2430 2431 2432 2433
			} else {
				cab_state->freq_khz =
						FE_Cab_TunerGetFrequency(pIntParams->hTuner)
						- stv0367cab_get_derot_freq(state, cab_state->adc_clk)
2434
						+ ifkhz;
2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500
			}
		} else {
			cab_state->freq_khz =
				FE_Cab_TunerGetFrequency(pIntParams->hTuner) +
				stv0367cab_get_derot_freq(state,
							cab_state->adc_clk) -
				cab_state->adc_clk / 4000;
		}
#endif
		cab_state->symbol_rate = stv0367cab_GetSymbolRate(state,
							cab_state->mclk);
		cab_state->locked = 1;

		/* stv0367_setbits(state, F367CAB_AGC_ACCUMRSTSEL,7);*/
	} else {
		switch (QAM_Lock) {
		case 1:
			signalType = FE_CAB_NOAGC;
			break;
		case 2:
			signalType = FE_CAB_NOTIMING;
			break;
		case 3:
			signalType = FE_CAB_TIMINGOK;
			break;
		case 4:
			signalType = FE_CAB_NOCARRIER;
			break;
		case 5:
			signalType = FE_CAB_CARRIEROK;
			break;
		case 7:
			signalType = FE_CAB_NOBLIND;
			break;
		case 8:
			signalType = FE_CAB_BLINDOK;
			break;
		case 10:
			signalType = FE_CAB_NODEMOD;
			break;
		case 11:
			signalType = FE_CAB_DEMODOK;
			break;
		case 12:
			signalType = FE_CAB_DEMODOK;
			break;
		case 13:
			signalType = FE_CAB_NODEMOD;
			break;
		case 14:
			signalType = FE_CAB_NOBLIND;
			break;
		case 15:
			signalType = FE_CAB_NOSIGNAL;
			break;
		default:
			break;
		}

	}

	/* Set the AGC control values to tracking values */
	stv0367_writebits(state, F367CAB_AGC_ACCUMRSTSEL, TrackAGCAccum);
	return signalType;
}

2501
static int stv0367cab_set_frontend(struct dvb_frontend *fe)
2502
{
2503
	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
2504 2505 2506 2507 2508
	struct stv0367_state *state = fe->demodulator_priv;
	struct stv0367cab_state *cab_state = state->cab_state;
	enum stv0367cab_mod QAMSize = 0;

	dprintk("%s: freq = %d, srate = %d\n", __func__,
2509
					p->frequency, p->symbol_rate);
2510 2511 2512

	cab_state->derot_offset = 0;

2513
	switch (p->modulation) {
2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532
	case QAM_16:
		QAMSize = FE_CAB_MOD_QAM16;
		break;
	case QAM_32:
		QAMSize = FE_CAB_MOD_QAM32;
		break;
	case QAM_64:
		QAMSize = FE_CAB_MOD_QAM64;
		break;
	case QAM_128:
		QAMSize = FE_CAB_MOD_QAM128;
		break;
	case QAM_256:
		QAMSize = FE_CAB_MOD_QAM256;
		break;
	default:
		break;
	}

2533 2534
	if (state->reinit_on_setfrontend)
		stv0367cab_init(fe);
2535 2536 2537

	/* Tuner Frequency Setting */
	if (fe->ops.tuner_ops.set_params) {
2538
		if (state->use_i2c_gatectrl && fe->ops.i2c_gate_ctrl)
2539
			fe->ops.i2c_gate_ctrl(fe, 1);
2540
		fe->ops.tuner_ops.set_params(fe);
2541
		if (state->use_i2c_gatectrl && fe->ops.i2c_gate_ctrl)
2542 2543 2544 2545 2546
			fe->ops.i2c_gate_ctrl(fe, 0);
	}

	stv0367cab_SetQamSize(
			state,
2547
			p->symbol_rate,
2548 2549 2550 2551 2552
			QAMSize);

	stv0367cab_set_srate(state,
			cab_state->adc_clk,
			cab_state->mclk,
2553
			p->symbol_rate,
2554 2555
			QAMSize);
	/* Search algorithm launch, [-1.1*RangeOffset, +1.1*RangeOffset] scan */
2556
	cab_state->state = stv0367cab_algo(state, p);
2557 2558 2559
	return 0;
}

2560 2561
static int stv0367cab_get_frontend(struct dvb_frontend *fe,
				   struct dtv_frontend_properties *p)
2562 2563 2564
{
	struct stv0367_state *state = fe->demodulator_priv;
	struct stv0367cab_state *cab_state = state->cab_state;
2565
	u32 ifkhz = 0;
2566 2567 2568 2569 2570

	enum stv0367cab_mod QAMSize;

	dprintk("%s:\n", __func__);

2571
	stv0367_get_if_khz(state, &ifkhz);
2572
	p->symbol_rate = stv0367cab_GetSymbolRate(state, cab_state->mclk);
2573 2574 2575 2576

	QAMSize = stv0367_readbits(state, F367CAB_QAM_MODE);
	switch (QAMSize) {
	case FE_CAB_MOD_QAM16:
2577
		p->modulation = QAM_16;
2578 2579
		break;
	case FE_CAB_MOD_QAM32:
2580
		p->modulation = QAM_32;
2581 2582
		break;
	case FE_CAB_MOD_QAM64:
2583
		p->modulation = QAM_64;
2584 2585
		break;
	case FE_CAB_MOD_QAM128:
2586
		p->modulation = QAM_128;
2587
		break;
2588
	case FE_CAB_MOD_QAM256:
2589
		p->modulation = QAM_256;
2590 2591 2592 2593 2594
		break;
	default:
		break;
	}

2595
	p->frequency = stv0367_get_tuner_freq(fe);
2596

2597
	dprintk("%s: tuner frequency = %d\n", __func__, p->frequency);
2598

2599
	if (ifkhz == 0) {
2600
		p->frequency +=
2601 2602 2603 2604 2605
			(stv0367cab_get_derot_freq(state, cab_state->adc_clk) -
			cab_state->adc_clk / 4000);
		return 0;
	}

2606 2607
	if (ifkhz > cab_state->adc_clk / 1000)
		p->frequency += (ifkhz
2608 2609 2610
			- stv0367cab_get_derot_freq(state, cab_state->adc_clk)
			- cab_state->adc_clk / 1000);
	else
2611
		p->frequency += (ifkhz
2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787
			- stv0367cab_get_derot_freq(state, cab_state->adc_clk));

	return 0;
}

#if 0
void stv0367cab_GetErrorCount(state, enum stv0367cab_mod QAMSize,
			u32 symbol_rate, FE_367qam_Monitor *Monitor_results)
{
	stv0367cab_OptimiseNByteAndGetBER(state, QAMSize, symbol_rate, Monitor_results);
	stv0367cab_GetPacketsCount(state, Monitor_results);

	return;
}

static int stv0367cab_read_ber(struct dvb_frontend *fe, u32 *ber)
{
	struct stv0367_state *state = fe->demodulator_priv;

	return 0;
}
#endif
static s32 stv0367cab_get_rf_lvl(struct stv0367_state *state)
{
	s32 rfLevel = 0;
	s32 RfAgcPwm = 0, IfAgcPwm = 0;
	u8 i;

	stv0367_writebits(state, F367CAB_STDBY_ADCGP, 0x0);

	RfAgcPwm =
		(stv0367_readbits(state, F367CAB_RF_AGC1_LEVEL_LO) & 0x03) +
		(stv0367_readbits(state, F367CAB_RF_AGC1_LEVEL_HI) << 2);
	RfAgcPwm = 100 * RfAgcPwm / 1023;

	IfAgcPwm =
		stv0367_readbits(state, F367CAB_AGC_IF_PWMCMD_LO) +
		(stv0367_readbits(state, F367CAB_AGC_IF_PWMCMD_HI) << 8);
	if (IfAgcPwm >= 2048)
		IfAgcPwm -= 2048;
	else
		IfAgcPwm += 2048;

	IfAgcPwm = 100 * IfAgcPwm / 4095;

	/* For DTT75467 on NIM */
	if (RfAgcPwm < 90  && IfAgcPwm < 28) {
		for (i = 0; i < RF_LOOKUP_TABLE_SIZE; i++) {
			if (RfAgcPwm <= stv0367cab_RF_LookUp1[0][i]) {
				rfLevel = (-1) * stv0367cab_RF_LookUp1[1][i];
				break;
			}
		}
		if (i == RF_LOOKUP_TABLE_SIZE)
			rfLevel = -56;
	} else { /*if IF AGC>10*/
		for (i = 0; i < RF_LOOKUP_TABLE2_SIZE; i++) {
			if (IfAgcPwm <= stv0367cab_RF_LookUp2[0][i]) {
				rfLevel = (-1) * stv0367cab_RF_LookUp2[1][i];
				break;
			}
		}
		if (i == RF_LOOKUP_TABLE2_SIZE)
			rfLevel = -72;
	}
	return rfLevel;
}

static int stv0367cab_read_strength(struct dvb_frontend *fe, u16 *strength)
{
	struct stv0367_state *state = fe->demodulator_priv;

	s32 signal =  stv0367cab_get_rf_lvl(state);

	dprintk("%s: signal=%d dBm\n", __func__, signal);

	if (signal <= -72)
		*strength = 65535;
	else
		*strength = (22 + signal) * (-1311);

	dprintk("%s: strength=%d\n", __func__, (*strength));

	return 0;
}

static int stv0367cab_read_snr(struct dvb_frontend *fe, u16 *snr)
{
	struct stv0367_state *state = fe->demodulator_priv;
	u32 noisepercentage;
	enum stv0367cab_mod QAMSize;
	u32 regval = 0, temp = 0;
	int power, i;

	QAMSize = stv0367_readbits(state, F367CAB_QAM_MODE);
	switch (QAMSize) {
	case FE_CAB_MOD_QAM4:
		power = 21904;
		break;
	case FE_CAB_MOD_QAM16:
		power = 20480;
		break;
	case FE_CAB_MOD_QAM32:
		power = 23040;
		break;
	case FE_CAB_MOD_QAM64:
		power = 21504;
		break;
	case FE_CAB_MOD_QAM128:
		power = 23616;
		break;
	case FE_CAB_MOD_QAM256:
		power = 21760;
		break;
	case FE_CAB_MOD_QAM512:
		power = 1;
		break;
	case FE_CAB_MOD_QAM1024:
		power = 21280;
		break;
	default:
		power = 1;
		break;
	}

	for (i = 0; i < 10; i++) {
		regval += (stv0367_readbits(state, F367CAB_SNR_LO)
			+ 256 * stv0367_readbits(state, F367CAB_SNR_HI));
	}

	regval /= 10; /*for average over 10 times in for loop above*/
	if (regval != 0) {
		temp = power
			* (1 << (3 + stv0367_readbits(state, F367CAB_SNR_PER)));
		temp /= regval;
	}

	/* table values, not needed to calculate logarithms */
	if (temp >= 5012)
		noisepercentage = 100;
	else if (temp >= 3981)
		noisepercentage = 93;
	else if (temp >= 3162)
		noisepercentage = 86;
	else if (temp >= 2512)
		noisepercentage = 79;
	else if (temp >= 1995)
		noisepercentage = 72;
	else if (temp >= 1585)
		noisepercentage = 65;
	else if (temp >= 1259)
		noisepercentage = 58;
	else if (temp >= 1000)
		noisepercentage = 50;
	else if (temp >= 794)
		noisepercentage = 43;
	else if (temp >= 501)
		noisepercentage = 36;
	else if (temp >= 316)
		noisepercentage = 29;
	else if (temp >= 200)
		noisepercentage = 22;
	else if (temp >= 158)
		noisepercentage = 14;
	else if (temp >= 126)
		noisepercentage = 7;
	else
		noisepercentage = 0;

	dprintk("%s: noisepercentage=%d\n", __func__, noisepercentage);

	*snr = (noisepercentage * 65535) / 100;

	return 0;
}

2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805
static int stv0367cab_read_ucblcks(struct dvb_frontend *fe, u32 *ucblocks)
{
	struct stv0367_state *state = fe->demodulator_priv;
	int corrected, tscount;

	*ucblocks = (stv0367_readreg(state, R367CAB_RS_COUNTER_5) << 8)
			| stv0367_readreg(state, R367CAB_RS_COUNTER_4);
	corrected = (stv0367_readreg(state, R367CAB_RS_COUNTER_3) << 8)
			| stv0367_readreg(state, R367CAB_RS_COUNTER_2);
	tscount = (stv0367_readreg(state, R367CAB_RS_COUNTER_2) << 8)
			| stv0367_readreg(state, R367CAB_RS_COUNTER_1);

	dprintk("%s: uncorrected blocks=%d corrected blocks=%d tscount=%d\n",
				__func__, *ucblocks, corrected, tscount);

	return 0;
};

2806
static const struct dvb_frontend_ops stv0367cab_ops = {
2807
	.delsys = { SYS_DVBC_ANNEX_A },
2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
	.info = {
		.name = "ST STV0367 DVB-C",
		.frequency_min = 47000000,
		.frequency_max = 862000000,
		.frequency_stepsize = 62500,
		.symbol_rate_min = 870000,
		.symbol_rate_max = 11700000,
		.caps = 0x400 |/* FE_CAN_QAM_4 */
			FE_CAN_QAM_16 | FE_CAN_QAM_32  |
			FE_CAN_QAM_64 | FE_CAN_QAM_128 |
			FE_CAN_QAM_256 | FE_CAN_FEC_AUTO
	},
	.release				= stv0367_release,
	.init					= stv0367cab_init,
	.sleep					= stv0367cab_sleep,
	.i2c_gate_ctrl				= stv0367cab_gate_ctrl,
2824 2825
	.set_frontend				= stv0367cab_set_frontend,
	.get_frontend				= stv0367cab_get_frontend,
2826 2827 2828 2829
	.read_status				= stv0367cab_read_status,
/*	.read_ber				= stv0367cab_read_ber, */
	.read_signal_strength			= stv0367cab_read_strength,
	.read_snr				= stv0367cab_read_snr,
2830
	.read_ucblocks				= stv0367cab_read_ucblcks,
2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856
	.get_tune_settings			= stv0367_get_tune_settings,
};

struct dvb_frontend *stv0367cab_attach(const struct stv0367_config *config,
				   struct i2c_adapter *i2c)
{
	struct stv0367_state *state = NULL;
	struct stv0367cab_state *cab_state = NULL;

	/* allocate memory for the internal state */
	state = kzalloc(sizeof(struct stv0367_state), GFP_KERNEL);
	if (state == NULL)
		goto error;
	cab_state = kzalloc(sizeof(struct stv0367cab_state), GFP_KERNEL);
	if (cab_state == NULL)
		goto error;

	/* setup the state */
	state->i2c = i2c;
	state->config = config;
	cab_state->search_range = 280000;
	state->cab_state = cab_state;
	state->fe.ops = stv0367cab_ops;
	state->fe.demodulator_priv = state;
	state->chip_id = stv0367_readreg(state, 0xf000);

2857 2858
	/* demod operation options */
	state->use_i2c_gatectrl = 1;
2859
	state->deftabs = STV0367_DEFTAB_GENERIC;
2860
	state->reinit_on_setfrontend = 1;
2861
	state->auto_if_khz = 0;
2862

2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883
	dprintk("%s: chip_id = 0x%x\n", __func__, state->chip_id);

	/* check if the demod is there */
	if ((state->chip_id != 0x50) && (state->chip_id != 0x60))
		goto error;

	return &state->fe;

error:
	kfree(cab_state);
	kfree(state);
	return NULL;
}
EXPORT_SYMBOL(stv0367cab_attach);

MODULE_PARM_DESC(debug, "Set debug");
MODULE_PARM_DESC(i2c_debug, "Set i2c debug");

MODULE_AUTHOR("Igor M. Liplianin");
MODULE_DESCRIPTION("ST STV0367 DVB-C/T demodulator driver");
MODULE_LICENSE("GPL");