time.c 17.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
/*
 *  arch/sh/kernel/time.c
 *
 *  Copyright (C) 1999  Tetsuya Okada & Niibe Yutaka
 *  Copyright (C) 2000  Philipp Rumpf <prumpf@tux.org>
 *  Copyright (C) 2002, 2003, 2004  Paul Mundt
 *  Copyright (C) 2002  M. R. Brown  <mrbrown@linux-sh.org>
 *
 *  Some code taken from i386 version.
 *    Copyright (C) 1991, 1992, 1995  Linus Torvalds
 */

#include <linux/config.h>
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/param.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/time.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/smp.h>
#include <linux/profile.h>

#include <asm/processor.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/delay.h>
#include <asm/machvec.h>
#include <asm/rtc.h>
#include <asm/freq.h>
#include <asm/cpu/timer.h>
#ifdef CONFIG_SH_KGDB
#include <asm/kgdb.h>
#endif

#include <linux/timex.h>
#include <linux/irq.h>

#define TMU_TOCR_INIT	0x00
#define TMU0_TCR_INIT	0x0020
#define TMU_TSTR_INIT	1

#define TMU0_TCR_CALIB	0x0000

#ifdef CONFIG_CPU_SUBTYPE_ST40STB1
#define CLOCKGEN_MEMCLKCR 0xbb040038
#define MEMCLKCR_RATIO_MASK 0x7
#endif /* CONFIG_CPU_SUBTYPE_ST40STB1 */

extern unsigned long wall_jiffies;
#define TICK_SIZE (tick_nsec / 1000)
DEFINE_SPINLOCK(tmu0_lock);

u64 jiffies_64 = INITIAL_JIFFIES;

EXPORT_SYMBOL(jiffies_64);

/* XXX: Can we initialize this in a routine somewhere?  Dreamcast doesn't want
 * these routines anywhere... */
#ifdef CONFIG_SH_RTC
void (*rtc_get_time)(struct timespec *) = sh_rtc_gettimeofday;
int (*rtc_set_time)(const time_t) = sh_rtc_settimeofday;
#else
void (*rtc_get_time)(struct timespec *);
int (*rtc_set_time)(const time_t);
#endif

#if defined(CONFIG_CPU_SUBTYPE_SH7300)
static int md_table[] = { 1, 2, 3, 4, 6, 8, 12 };
#endif
#if defined(CONFIG_CPU_SH3)
static int stc_multipliers[] = { 1, 2, 3, 4, 6, 1, 1, 1 };
static int stc_values[]      = { 0, 1, 4, 2, 5, 0, 0, 0 };
#define bfc_divisors stc_multipliers
#define bfc_values stc_values
static int ifc_divisors[]    = { 1, 2, 3, 4, 1, 1, 1, 1 };
static int ifc_values[]      = { 0, 1, 4, 2, 0, 0, 0, 0 };
static int pfc_divisors[]    = { 1, 2, 3, 4, 6, 1, 1, 1 };
static int pfc_values[]      = { 0, 1, 4, 2, 5, 0, 0, 0 };
#elif defined(CONFIG_CPU_SH4)
#if defined(CONFIG_CPU_SUBTYPE_SH73180)
static int ifc_divisors[] = { 1, 2, 3, 4, 6, 8, 12, 16 };
static int ifc_values[] = { 0, 1, 2, 3, 4, 5, 6, 7 };
#define bfc_divisors ifc_divisors	/* Same */
#define bfc_values ifc_values
#define pfc_divisors ifc_divisors	/* Same */
#define pfc_values ifc_values
#else
static int ifc_divisors[] = { 1, 2, 3, 4, 6, 8, 1, 1 };
static int ifc_values[]   = { 0, 1, 2, 3, 0, 4, 0, 5 };
#define bfc_divisors ifc_divisors	/* Same */
#define bfc_values ifc_values
static int pfc_divisors[] = { 2, 3, 4, 6, 8, 2, 2, 2 };
static int pfc_values[]   = { 0, 0, 1, 2, 0, 3, 0, 4 };
#endif
#else
#error "Unknown ifc/bfc/pfc/stc values for this processor"
#endif

/*
 * Scheduler clock - returns current time in nanosec units.
 */
unsigned long long sched_clock(void)
{
	return (unsigned long long)jiffies * (1000000000 / HZ);
}

static unsigned long do_gettimeoffset(void)
{
	int count;
	unsigned long flags;

	static int count_p = 0x7fffffff;    /* for the first call after boot */
	static unsigned long jiffies_p = 0;

	/*
	 * cache volatile jiffies temporarily; we have IRQs turned off.
	 */
	unsigned long jiffies_t;

	spin_lock_irqsave(&tmu0_lock, flags);
	/* timer count may underflow right here */
	count = ctrl_inl(TMU0_TCNT);	/* read the latched count */

	jiffies_t = jiffies;

	/*
	 * avoiding timer inconsistencies (they are rare, but they happen)...
	 * there is one kind of problem that must be avoided here:
	 *  1. the timer counter underflows
	 */

	if( jiffies_t == jiffies_p ) {
		if( count > count_p ) {
			/* the nutcase */

			if(ctrl_inw(TMU0_TCR) & 0x100) { /* Check UNF bit */
				/*
				 * We cannot detect lost timer interrupts ...
				 * well, that's why we call them lost, don't we? :)
				 * [hmm, on the Pentium and Alpha we can ... sort of]
				 */
				count -= LATCH;
			} else {
				printk("do_slow_gettimeoffset(): hardware timer problem?\n");
			}
		}
	} else
		jiffies_p = jiffies_t;

	count_p = count;
	spin_unlock_irqrestore(&tmu0_lock, flags);

	count = ((LATCH-1) - count) * TICK_SIZE;
	count = (count + LATCH/2) / LATCH;

	return count;
}

void do_gettimeofday(struct timeval *tv)
{
	unsigned long seq;
	unsigned long usec, sec;
	unsigned long lost;

	do {
		seq = read_seqbegin(&xtime_lock);
		usec = do_gettimeoffset();

		lost = jiffies - wall_jiffies;
		if (lost)
			usec += lost * (1000000 / HZ);

		sec = xtime.tv_sec;
		usec += xtime.tv_nsec / 1000;
	} while (read_seqretry(&xtime_lock, seq));

	while (usec >= 1000000) {
		usec -= 1000000;
		sec++;
	}

	tv->tv_sec = sec;
	tv->tv_usec = usec;
}

EXPORT_SYMBOL(do_gettimeofday);

int do_settimeofday(struct timespec *tv)
{
	time_t wtm_sec, sec = tv->tv_sec;
	long wtm_nsec, nsec = tv->tv_nsec;

	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

	write_seqlock_irq(&xtime_lock);
	/*
	 * This is revolting. We need to set "xtime" correctly. However, the
	 * value in this location is the value at the most recent update of
	 * wall time.  Discover what correction gettimeofday() would have
	 * made, and then undo it!
	 */
	nsec -= 1000 * (do_gettimeoffset() +
				(jiffies - wall_jiffies) * (1000000 / HZ));

	wtm_sec  = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
	wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);

	set_normalized_timespec(&xtime, sec, nsec);
	set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);

J
john stultz 已提交
218
	ntp_clear();
L
Linus Torvalds 已提交
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
	write_sequnlock_irq(&xtime_lock);
	clock_was_set();

	return 0;
}

EXPORT_SYMBOL(do_settimeofday);

/* last time the RTC clock got updated */
static long last_rtc_update;

/*
 * timer_interrupt() needs to keep up the real-time clock,
 * as well as call the "do_timer()" routine every clocktick
 */
234
static inline void do_timer_interrupt(int irq, struct pt_regs *regs)
L
Linus Torvalds 已提交
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
{
	do_timer(regs);
#ifndef CONFIG_SMP
	update_process_times(user_mode(regs));
#endif
	profile_tick(CPU_PROFILING, regs);

#ifdef CONFIG_HEARTBEAT
	if (sh_mv.mv_heartbeat != NULL)
		sh_mv.mv_heartbeat();
#endif

	/*
	 * If we have an externally synchronized Linux clock, then update
	 * RTC clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
	 * called as close as possible to 500 ms before the new second starts.
	 */
J
john stultz 已提交
252
	if (ntp_synced() &&
L
Linus Torvalds 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
	    xtime.tv_sec > last_rtc_update + 660 &&
	    (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 &&
	    (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) {
		if (rtc_set_time(xtime.tv_sec) == 0)
			last_rtc_update = xtime.tv_sec;
		else
			last_rtc_update = xtime.tv_sec - 600; /* do it again in 60 s */
	}
}

/*
 * This is the same as the above, except we _also_ save the current
 * Time Stamp Counter value at the time of the timer interrupt, so that
 * we later on can estimate the time of day more exactly.
 */
static irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
	unsigned long timer_status;

	/* Clear UNF bit */
	timer_status = ctrl_inw(TMU0_TCR);
	timer_status &= ~0x100;
	ctrl_outw(timer_status, TMU0_TCR);

	/*
	 * Here we are in the timer irq handler. We just have irqs locally
	 * disabled but we don't know if the timer_bh is running on the other
	 * CPU. We need to avoid to SMP race with it. NOTE: we don' t need
	 * the irq version of write_lock because as just said we have irq
	 * locally disabled. -arca
	 */
	write_seqlock(&xtime_lock);
285
	do_timer_interrupt(irq, regs);
L
Linus Torvalds 已提交
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
	write_sequnlock(&xtime_lock);

	return IRQ_HANDLED;
}

/*
 * Hah!  We'll see if this works (switching from usecs to nsecs).
 */
static unsigned int __init get_timer_frequency(void)
{
	u32 freq;
	struct timespec ts1, ts2;
	unsigned long diff_nsec;
	unsigned long factor;

	/* Setup the timer:  We don't want to generate interrupts, just
	 * have it count down at its natural rate.
	 */
	ctrl_outb(0, TMU_TSTR);
#if !defined(CONFIG_CPU_SUBTYPE_SH7300)
	ctrl_outb(TMU_TOCR_INIT, TMU_TOCR);
#endif
	ctrl_outw(TMU0_TCR_CALIB, TMU0_TCR);
	ctrl_outl(0xffffffff, TMU0_TCOR);
	ctrl_outl(0xffffffff, TMU0_TCNT);

	rtc_get_time(&ts2);

	do {
		rtc_get_time(&ts1);
	} while (ts1.tv_nsec == ts2.tv_nsec && ts1.tv_sec == ts2.tv_sec);

	/* actually start the timer */
	ctrl_outb(TMU_TSTR_INIT, TMU_TSTR);

	do {
		rtc_get_time(&ts2);
	} while (ts1.tv_nsec == ts2.tv_nsec && ts1.tv_sec == ts2.tv_sec);

	freq = 0xffffffff - ctrl_inl(TMU0_TCNT);
	if (ts2.tv_nsec < ts1.tv_nsec) {
		ts2.tv_nsec += 1000000000;
		ts2.tv_sec--;
	}

	diff_nsec = (ts2.tv_sec - ts1.tv_sec) * 1000000000 + (ts2.tv_nsec - ts1.tv_nsec);

	/* this should work well if the RTC has a precision of n Hz, where
	 * n is an integer.  I don't think we have to worry about the other
	 * cases. */
	factor = (1000000000 + diff_nsec/2) / diff_nsec;

	if (factor * diff_nsec > 1100000000 ||
	    factor * diff_nsec <  900000000)
		panic("weird RTC (diff_nsec %ld)", diff_nsec);

	return freq * factor;
}

void (*board_time_init)(void);
void (*board_timer_setup)(struct irqaction *irq);

static unsigned int sh_pclk_freq __initdata = CONFIG_SH_PCLK_FREQ;

static int __init sh_pclk_setup(char *str)
{
        unsigned int freq;

	if (get_option(&str, &freq))
		sh_pclk_freq = freq;

	return 1;
}
__setup("sh_pclk=", sh_pclk_setup);

static struct irqaction irq0  = { timer_interrupt, SA_INTERRUPT, CPU_MASK_NONE, "timer", NULL, NULL};

void get_current_frequency_divisors(unsigned int *ifc, unsigned int *bfc, unsigned int *pfc)
{
	unsigned int frqcr = ctrl_inw(FRQCR);

#if defined(CONFIG_CPU_SH3)
#if defined(CONFIG_CPU_SUBTYPE_SH7300)
	*ifc = md_table[((frqcr & 0x0070) >> 4)];
	*bfc = md_table[((frqcr & 0x0700) >> 8)];
	*pfc = md_table[frqcr & 0x0007];
#elif defined(CONFIG_CPU_SUBTYPE_SH7705)
	*bfc = stc_multipliers[(frqcr & 0x0300) >> 8];
	*ifc = ifc_divisors[(frqcr & 0x0030) >> 4];
	*pfc = pfc_divisors[frqcr & 0x0003];
#else
	unsigned int tmp;

	tmp  = (frqcr & 0x8000) >> 13;
	tmp |= (frqcr & 0x0030) >>  4;
	*bfc = stc_multipliers[tmp];
	tmp  = (frqcr & 0x4000)  >> 12;
	tmp |= (frqcr & 0x000c) >> 2;
	*ifc = ifc_divisors[tmp];
	tmp  = (frqcr & 0x2000) >> 11;
	tmp |= frqcr & 0x0003;
	*pfc = pfc_divisors[tmp];
#endif
#elif defined(CONFIG_CPU_SH4)
#if defined(CONFIG_CPU_SUBTYPE_SH73180)
	*ifc = ifc_divisors[(frqcr>> 20) & 0x0007];
	*bfc = bfc_divisors[(frqcr>> 12) & 0x0007];
	*pfc = pfc_divisors[frqcr & 0x0007];
#else
	*ifc = ifc_divisors[(frqcr >> 6) & 0x0007];
	*bfc = bfc_divisors[(frqcr >> 3) & 0x0007];
	*pfc = pfc_divisors[frqcr & 0x0007];
#endif
#endif
}

/*
 * This bit of ugliness builds up accessor routines to get at both
 * the divisors and the physical values.
 */
#define _FREQ_TABLE(x) \
	unsigned int get_##x##_divisor(unsigned int value)	\
		{ return x##_divisors[value]; }			\
								\
	unsigned int get_##x##_value(unsigned int divisor)	\
		{ return x##_values[(divisor - 1)]; }

_FREQ_TABLE(ifc);
_FREQ_TABLE(bfc);
_FREQ_TABLE(pfc);

#ifdef CONFIG_CPU_SUBTYPE_ST40STB1

/*
 * The ST40 divisors are totally different so we set the cpu data
 * clocks using a different algorithm
 *
 * I've just plugged this from the 2.4 code
 *	- Alex Bennee <kernel-hacker@bennee.com>
 */
#define CCN_PVR_CHIP_SHIFT 24
#define CCN_PVR_CHIP_MASK  0xff
#define CCN_PVR_CHIP_ST40STB1 0x4


struct frqcr_data {
	unsigned short frqcr;

	struct {
		unsigned char multiplier;
		unsigned char divisor;
	} factor[3];
};

static struct frqcr_data st40_frqcr_table[] = {
	{ 0x000, {{1,1}, {1,1}, {1,2}}},
	{ 0x002, {{1,1}, {1,1}, {1,4}}},
	{ 0x004, {{1,1}, {1,1}, {1,8}}},
	{ 0x008, {{1,1}, {1,2}, {1,2}}},
	{ 0x00A, {{1,1}, {1,2}, {1,4}}},
	{ 0x00C, {{1,1}, {1,2}, {1,8}}},
	{ 0x011, {{1,1}, {2,3}, {1,6}}},
	{ 0x013, {{1,1}, {2,3}, {1,3}}},
	{ 0x01A, {{1,1}, {1,2}, {1,4}}},
	{ 0x01C, {{1,1}, {1,2}, {1,8}}},
	{ 0x023, {{1,1}, {2,3}, {1,3}}},
	{ 0x02C, {{1,1}, {1,2}, {1,8}}},
	{ 0x048, {{1,2}, {1,2}, {1,4}}},
	{ 0x04A, {{1,2}, {1,2}, {1,6}}},
	{ 0x04C, {{1,2}, {1,2}, {1,8}}},
	{ 0x05A, {{1,2}, {1,3}, {1,6}}},
	{ 0x05C, {{1,2}, {1,3}, {1,6}}},
	{ 0x063, {{1,2}, {1,4}, {1,4}}},
	{ 0x06C, {{1,2}, {1,4}, {1,8}}},
	{ 0x091, {{1,3}, {1,3}, {1,6}}},
	{ 0x093, {{1,3}, {1,3}, {1,6}}},
	{ 0x0A3, {{1,3}, {1,6}, {1,6}}},
	{ 0x0DA, {{1,4}, {1,4}, {1,8}}},
	{ 0x0DC, {{1,4}, {1,4}, {1,8}}},
	{ 0x0EC, {{1,4}, {1,8}, {1,8}}},
	{ 0x123, {{1,4}, {1,4}, {1,8}}},
	{ 0x16C, {{1,4}, {1,8}, {1,8}}},
};

struct memclk_data {
	unsigned char multiplier;
	unsigned char divisor;
};

static struct memclk_data st40_memclk_table[8] = {
	{1,1},	// 000
	{1,2},	// 001
	{1,3},	// 010
	{2,3},	// 011
	{1,4},	// 100
	{1,6},	// 101
	{1,8},	// 110
	{1,8}	// 111
};

static void st40_specific_time_init(unsigned int module_clock, unsigned short frqcr)
{
	unsigned int cpu_clock, master_clock, bus_clock, memory_clock;
	struct frqcr_data *d;
	int a;
	unsigned long memclkcr;
	struct memclk_data *e;

	for (a = 0; a < ARRAY_SIZE(st40_frqcr_table); a++) {
		d = &st40_frqcr_table[a];

		if (d->frqcr == (frqcr & 0x1ff))
			break;
	}

	if (a == ARRAY_SIZE(st40_frqcr_table)) {
		d = st40_frqcr_table;

		printk("ERROR: Unrecognised FRQCR value (0x%x), "
		       "using default multipliers\n", frqcr);
	}

	memclkcr = ctrl_inl(CLOCKGEN_MEMCLKCR);
	e = &st40_memclk_table[memclkcr & MEMCLKCR_RATIO_MASK];

	printk(KERN_INFO "Clock multipliers: CPU: %d/%d Bus: %d/%d "
	       "Mem: %d/%d Periph: %d/%d\n",
	       d->factor[0].multiplier, d->factor[0].divisor,
	       d->factor[1].multiplier, d->factor[1].divisor,
	       e->multiplier,           e->divisor,
	       d->factor[2].multiplier, d->factor[2].divisor);

	master_clock = module_clock * d->factor[2].divisor
				    / d->factor[2].multiplier;
	bus_clock    = master_clock * d->factor[1].multiplier
				    / d->factor[1].divisor;
	memory_clock = master_clock * e->multiplier
				    / e->divisor;
	cpu_clock    = master_clock * d->factor[0].multiplier
				    / d->factor[0].divisor;

	current_cpu_data.cpu_clock    = cpu_clock;
	current_cpu_data.master_clock = master_clock;
	current_cpu_data.bus_clock    = bus_clock;
	current_cpu_data.memory_clock = memory_clock;
	current_cpu_data.module_clock = module_clock;
}
#endif

void __init time_init(void)
{
	unsigned int timer_freq = 0;
	unsigned int ifc, pfc, bfc;
	unsigned long interval;
#ifdef CONFIG_CPU_SUBTYPE_ST40STB1
	unsigned long pvr;
	unsigned short frqcr;
#endif

	if (board_time_init)
		board_time_init();

	/*
	 * If we don't have an RTC (such as with the SH7300), don't attempt to
	 * probe the timer frequency. Rely on an either hardcoded peripheral
	 * clock value, or on the sh_pclk command line option. Note that we
	 * still need to have CONFIG_SH_PCLK_FREQ set in order for things like
	 * CLOCK_TICK_RATE to be sane.
	 */
	current_cpu_data.module_clock = sh_pclk_freq;

#ifdef CONFIG_SH_PCLK_CALC
	/* XXX: Switch this over to a more generic test. */
	{
		unsigned int freq;

		/*
		 * If we've specified a peripheral clock frequency, and we have
		 * an RTC, compare it against the autodetected value. Complain
		 * if there's a mismatch.
		 */
		timer_freq = get_timer_frequency();
		freq = timer_freq * 4;

		if (sh_pclk_freq && (sh_pclk_freq/100*99 > freq || sh_pclk_freq/100*101 < freq)) {
			printk(KERN_NOTICE "Calculated peripheral clock value "
			       "%d differs from sh_pclk value %d, fixing..\n",
			       freq, sh_pclk_freq);
			current_cpu_data.module_clock = freq;
		}
	}
#endif

#ifdef CONFIG_CPU_SUBTYPE_ST40STB1
	/* XXX: Update ST40 code to use board_time_init() */
	pvr = ctrl_inl(CCN_PVR);
	frqcr = ctrl_inw(FRQCR);
	printk("time.c ST40 Probe: PVR %08lx, FRQCR %04hx\n", pvr, frqcr);

	if (((pvr >> CCN_PVR_CHIP_SHIFT) & CCN_PVR_CHIP_MASK) == CCN_PVR_CHIP_ST40STB1)
		st40_specific_time_init(current_cpu_data.module_clock, frqcr);
	else
#endif
		get_current_frequency_divisors(&ifc, &bfc, &pfc);

	if (rtc_get_time) {
		rtc_get_time(&xtime);
	} else {
		xtime.tv_sec = mktime(2000, 1, 1, 0, 0, 0);
		xtime.tv_nsec = 0;
	}

        set_normalized_timespec(&wall_to_monotonic,
                                -xtime.tv_sec, -xtime.tv_nsec);

	if (board_timer_setup) {
		board_timer_setup(&irq0);
	} else {
		setup_irq(TIMER_IRQ, &irq0);
	}

	/*
	 * for ST40 chips the current_cpu_data should already be set
	 * so not having valid pfc/bfc/ifc shouldn't be a problem
	 */
	if (!current_cpu_data.master_clock)
		current_cpu_data.master_clock = current_cpu_data.module_clock * pfc;
	if (!current_cpu_data.bus_clock)
		current_cpu_data.bus_clock = current_cpu_data.master_clock / bfc;
	if (!current_cpu_data.cpu_clock)
		current_cpu_data.cpu_clock = current_cpu_data.master_clock / ifc;

	printk("CPU clock: %d.%02dMHz\n",
	       (current_cpu_data.cpu_clock / 1000000),
	       (current_cpu_data.cpu_clock % 1000000)/10000);
	printk("Bus clock: %d.%02dMHz\n",
	       (current_cpu_data.bus_clock / 1000000),
	       (current_cpu_data.bus_clock % 1000000)/10000);
#ifdef CONFIG_CPU_SUBTYPE_ST40STB1
	printk("Memory clock: %d.%02dMHz\n",
	       (current_cpu_data.memory_clock / 1000000),
	       (current_cpu_data.memory_clock % 1000000)/10000);
#endif
	printk("Module clock: %d.%02dMHz\n",
	       (current_cpu_data.module_clock / 1000000),
	       (current_cpu_data.module_clock % 1000000)/10000);

	interval = (current_cpu_data.module_clock/4 + HZ/2) / HZ;

	printk("Interval = %ld\n", interval);

	/* Start TMU0 */
	ctrl_outb(0, TMU_TSTR);
#if !defined(CONFIG_CPU_SUBTYPE_SH7300)
	ctrl_outb(TMU_TOCR_INIT, TMU_TOCR);
#endif
	ctrl_outw(TMU0_TCR_INIT, TMU0_TCR);
	ctrl_outl(interval, TMU0_TCOR);
	ctrl_outl(interval, TMU0_TCNT);
	ctrl_outb(TMU_TSTR_INIT, TMU_TSTR);

#if defined(CONFIG_SH_KGDB)
	/*
	 * Set up kgdb as requested. We do it here because the serial
	 * init uses the timer vars we just set up for figuring baud.
	 */
	kgdb_init();
#endif
}