farch.c 87.1 KB
Newer Older
1
/****************************************************************************
B
Ben Hutchings 已提交
2
 * Driver for Solarflare network controllers and boards
3
 * Copyright 2005-2006 Fen Systems Ltd.
B
Ben Hutchings 已提交
4
 * Copyright 2006-2013 Solarflare Communications Inc.
5 6 7 8 9 10 11 12 13 14 15 16
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/module.h>
#include <linux/seq_file.h>
17
#include <linux/crc32.h>
18 19 20 21 22
#include "net_driver.h"
#include "bitfield.h"
#include "efx.h"
#include "nic.h"
#include "farch_regs.h"
23 24
#include "sriov.h"
#include "siena_sriov.h"
25 26 27
#include "io.h"
#include "workarounds.h"

28
/* Falcon-architecture (SFC9000-family) support */
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106

/**************************************************************************
 *
 * Configurable values
 *
 **************************************************************************
 */

/* This is set to 16 for a good reason.  In summary, if larger than
 * 16, the descriptor cache holds more than a default socket
 * buffer's worth of packets (for UDP we can only have at most one
 * socket buffer's worth outstanding).  This combined with the fact
 * that we only get 1 TX event per descriptor cache means the NIC
 * goes idle.
 */
#define TX_DC_ENTRIES 16
#define TX_DC_ENTRIES_ORDER 1

#define RX_DC_ENTRIES 64
#define RX_DC_ENTRIES_ORDER 3

/* If EFX_MAX_INT_ERRORS internal errors occur within
 * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
 * disable it.
 */
#define EFX_INT_ERROR_EXPIRE 3600
#define EFX_MAX_INT_ERRORS 5

/* Depth of RX flush request fifo */
#define EFX_RX_FLUSH_COUNT 4

/* Driver generated events */
#define _EFX_CHANNEL_MAGIC_TEST		0x000101
#define _EFX_CHANNEL_MAGIC_FILL		0x000102
#define _EFX_CHANNEL_MAGIC_RX_DRAIN	0x000103
#define _EFX_CHANNEL_MAGIC_TX_DRAIN	0x000104

#define _EFX_CHANNEL_MAGIC(_code, _data)	((_code) << 8 | (_data))
#define _EFX_CHANNEL_MAGIC_CODE(_magic)		((_magic) >> 8)

#define EFX_CHANNEL_MAGIC_TEST(_channel)				\
	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
#define EFX_CHANNEL_MAGIC_FILL(_rx_queue)				\
	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL,			\
			   efx_rx_queue_index(_rx_queue))
#define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue)				\
	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN,			\
			   efx_rx_queue_index(_rx_queue))
#define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue)				\
	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN,			\
			   (_tx_queue)->queue)

static void efx_farch_magic_event(struct efx_channel *channel, u32 magic);

/**************************************************************************
 *
 * Hardware access
 *
 **************************************************************************/

static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
				     unsigned int index)
{
	efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
			value, index);
}

static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
				     const efx_oword_t *mask)
{
	return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
		((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
}

int efx_farch_test_registers(struct efx_nic *efx,
			     const struct efx_farch_register_test *regs,
			     size_t n_regs)
{
107 108
	unsigned address = 0;
	int i, j;
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
	efx_oword_t mask, imask, original, reg, buf;

	for (i = 0; i < n_regs; ++i) {
		address = regs[i].address;
		mask = imask = regs[i].mask;
		EFX_INVERT_OWORD(imask);

		efx_reado(efx, &original, address);

		/* bit sweep on and off */
		for (j = 0; j < 128; j++) {
			if (!EFX_EXTRACT_OWORD32(mask, j, j))
				continue;

			/* Test this testable bit can be set in isolation */
			EFX_AND_OWORD(reg, original, mask);
			EFX_SET_OWORD32(reg, j, j, 1);

			efx_writeo(efx, &reg, address);
			efx_reado(efx, &buf, address);

			if (efx_masked_compare_oword(&reg, &buf, &mask))
				goto fail;

			/* Test this testable bit can be cleared in isolation */
			EFX_OR_OWORD(reg, original, mask);
			EFX_SET_OWORD32(reg, j, j, 0);

			efx_writeo(efx, &reg, address);
			efx_reado(efx, &buf, address);

			if (efx_masked_compare_oword(&reg, &buf, &mask))
				goto fail;
		}

		efx_writeo(efx, &original, address);
	}

	return 0;

fail:
	netif_err(efx, hw, efx->net_dev,
		  "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
		  " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
		  EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
	return -EIO;
}

/**************************************************************************
 *
 * Special buffer handling
 * Special buffers are used for event queues and the TX and RX
 * descriptor rings.
 *
 *************************************************************************/

/*
 * Initialise a special buffer
 *
 * This will define a buffer (previously allocated via
 * efx_alloc_special_buffer()) in the buffer table, allowing
 * it to be used for event queues, descriptor rings etc.
 */
static void
efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
{
	efx_qword_t buf_desc;
	unsigned int index;
	dma_addr_t dma_addr;
	int i;

180
	EFX_WARN_ON_PARANOID(!buffer->buf.addr);
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231

	/* Write buffer descriptors to NIC */
	for (i = 0; i < buffer->entries; i++) {
		index = buffer->index + i;
		dma_addr = buffer->buf.dma_addr + (i * EFX_BUF_SIZE);
		netif_dbg(efx, probe, efx->net_dev,
			  "mapping special buffer %d at %llx\n",
			  index, (unsigned long long)dma_addr);
		EFX_POPULATE_QWORD_3(buf_desc,
				     FRF_AZ_BUF_ADR_REGION, 0,
				     FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
				     FRF_AZ_BUF_OWNER_ID_FBUF, 0);
		efx_write_buf_tbl(efx, &buf_desc, index);
	}
}

/* Unmaps a buffer and clears the buffer table entries */
static void
efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
{
	efx_oword_t buf_tbl_upd;
	unsigned int start = buffer->index;
	unsigned int end = (buffer->index + buffer->entries - 1);

	if (!buffer->entries)
		return;

	netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
		  buffer->index, buffer->index + buffer->entries - 1);

	EFX_POPULATE_OWORD_4(buf_tbl_upd,
			     FRF_AZ_BUF_UPD_CMD, 0,
			     FRF_AZ_BUF_CLR_CMD, 1,
			     FRF_AZ_BUF_CLR_END_ID, end,
			     FRF_AZ_BUF_CLR_START_ID, start);
	efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
}

/*
 * Allocate a new special buffer
 *
 * This allocates memory for a new buffer, clears it and allocates a
 * new buffer ID range.  It does not write into the buffer table.
 *
 * This call will allocate 4KB buffers, since 8KB buffers can't be
 * used for event queues and descriptor rings.
 */
static int efx_alloc_special_buffer(struct efx_nic *efx,
				    struct efx_special_buffer *buffer,
				    unsigned int len)
{
232 233 234
#ifdef CONFIG_SFC_SRIOV
	struct siena_nic_data *nic_data = efx->nic_data;
#endif
235 236 237 238 239 240 241 242 243 244 245
	len = ALIGN(len, EFX_BUF_SIZE);

	if (efx_nic_alloc_buffer(efx, &buffer->buf, len, GFP_KERNEL))
		return -ENOMEM;
	buffer->entries = len / EFX_BUF_SIZE;
	BUG_ON(buffer->buf.dma_addr & (EFX_BUF_SIZE - 1));

	/* Select new buffer ID */
	buffer->index = efx->next_buffer_table;
	efx->next_buffer_table += buffer->entries;
#ifdef CONFIG_SFC_SRIOV
246
	BUG_ON(efx_siena_sriov_enabled(efx) &&
247
	       nic_data->vf_buftbl_base < efx->next_buffer_table);
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
#endif

	netif_dbg(efx, probe, efx->net_dev,
		  "allocating special buffers %d-%d at %llx+%x "
		  "(virt %p phys %llx)\n", buffer->index,
		  buffer->index + buffer->entries - 1,
		  (u64)buffer->buf.dma_addr, len,
		  buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));

	return 0;
}

static void
efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
{
	if (!buffer->buf.addr)
		return;

	netif_dbg(efx, hw, efx->net_dev,
		  "deallocating special buffers %d-%d at %llx+%x "
		  "(virt %p phys %llx)\n", buffer->index,
		  buffer->index + buffer->entries - 1,
		  (u64)buffer->buf.dma_addr, buffer->buf.len,
		  buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));

	efx_nic_free_buffer(efx, &buffer->buf);
	buffer->entries = 0;
}

/**************************************************************************
 *
 * TX path
 *
 **************************************************************************/

/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
static inline void efx_farch_notify_tx_desc(struct efx_tx_queue *tx_queue)
{
	unsigned write_ptr;
	efx_dword_t reg;

	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
	EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
	efx_writed_page(tx_queue->efx, &reg,
			FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
}

/* Write pointer and first descriptor for TX descriptor ring */
static inline void efx_farch_push_tx_desc(struct efx_tx_queue *tx_queue,
					  const efx_qword_t *txd)
{
	unsigned write_ptr;
	efx_oword_t reg;

	BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
	BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);

	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
	EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
			     FRF_AZ_TX_DESC_WPTR, write_ptr);
	reg.qword[0] = *txd;
	efx_writeo_page(tx_queue->efx, &reg,
			FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
}


/* For each entry inserted into the software descriptor ring, create a
 * descriptor in the hardware TX descriptor ring (in host memory), and
 * write a doorbell.
 */
void efx_farch_tx_write(struct efx_tx_queue *tx_queue)
{
	struct efx_tx_buffer *buffer;
	efx_qword_t *txd;
	unsigned write_ptr;
	unsigned old_write_count = tx_queue->write_count;

325 326 327
	tx_queue->xmit_more_available = false;
	if (unlikely(tx_queue->write_count == tx_queue->insert_count))
		return;
328 329 330 331 332 333 334

	do {
		write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
		buffer = &tx_queue->buffer[write_ptr];
		txd = efx_tx_desc(tx_queue, write_ptr);
		++tx_queue->write_count;

335
		EFX_WARN_ON_ONCE_PARANOID(buffer->flags & EFX_TX_BUF_OPTION);
336

337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
		/* Create TX descriptor ring entry */
		BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
		EFX_POPULATE_QWORD_4(*txd,
				     FSF_AZ_TX_KER_CONT,
				     buffer->flags & EFX_TX_BUF_CONT,
				     FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
				     FSF_AZ_TX_KER_BUF_REGION, 0,
				     FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
	} while (tx_queue->write_count != tx_queue->insert_count);

	wmb(); /* Ensure descriptors are written before they are fetched */

	if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
		txd = efx_tx_desc(tx_queue,
				  old_write_count & tx_queue->ptr_mask);
		efx_farch_push_tx_desc(tx_queue, txd);
		++tx_queue->pushes;
	} else {
		efx_farch_notify_tx_desc(tx_queue);
	}
}

359 360 361 362 363 364 365 366 367 368 369 370
unsigned int efx_farch_tx_limit_len(struct efx_tx_queue *tx_queue,
				    dma_addr_t dma_addr, unsigned int len)
{
	/* Don't cross 4K boundaries with descriptors. */
	unsigned int limit = (~dma_addr & (EFX_PAGE_SIZE - 1)) + 1;

	len = min(limit, len);

	return len;
}


371 372 373 374 375 376 377 378 379 380 381 382 383
/* Allocate hardware resources for a TX queue */
int efx_farch_tx_probe(struct efx_tx_queue *tx_queue)
{
	struct efx_nic *efx = tx_queue->efx;
	unsigned entries;

	entries = tx_queue->ptr_mask + 1;
	return efx_alloc_special_buffer(efx, &tx_queue->txd,
					entries * sizeof(efx_qword_t));
}

void efx_farch_tx_init(struct efx_tx_queue *tx_queue)
{
384
	int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
	struct efx_nic *efx = tx_queue->efx;
	efx_oword_t reg;

	/* Pin TX descriptor ring */
	efx_init_special_buffer(efx, &tx_queue->txd);

	/* Push TX descriptor ring to card */
	EFX_POPULATE_OWORD_10(reg,
			      FRF_AZ_TX_DESCQ_EN, 1,
			      FRF_AZ_TX_ISCSI_DDIG_EN, 0,
			      FRF_AZ_TX_ISCSI_HDIG_EN, 0,
			      FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
			      FRF_AZ_TX_DESCQ_EVQ_ID,
			      tx_queue->channel->channel,
			      FRF_AZ_TX_DESCQ_OWNER_ID, 0,
			      FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
			      FRF_AZ_TX_DESCQ_SIZE,
			      __ffs(tx_queue->txd.entries),
			      FRF_AZ_TX_DESCQ_TYPE, 0,
			      FRF_BZ_TX_NON_IP_DROP_DIS, 1);

406 407
	EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
	EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS, !csum);
408 409 410 411

	efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
			 tx_queue->queue);

412 413 414 415 416 417
	EFX_POPULATE_OWORD_1(reg,
			     FRF_BZ_TX_PACE,
			     (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
			     FFE_BZ_TX_PACE_OFF :
			     FFE_BZ_TX_PACE_RESERVED);
	efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL, tx_queue->queue);
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
}

static void efx_farch_flush_tx_queue(struct efx_tx_queue *tx_queue)
{
	struct efx_nic *efx = tx_queue->efx;
	efx_oword_t tx_flush_descq;

	WARN_ON(atomic_read(&tx_queue->flush_outstanding));
	atomic_set(&tx_queue->flush_outstanding, 1);

	EFX_POPULATE_OWORD_2(tx_flush_descq,
			     FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
			     FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
	efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
}

void efx_farch_tx_fini(struct efx_tx_queue *tx_queue)
{
	struct efx_nic *efx = tx_queue->efx;
	efx_oword_t tx_desc_ptr;

	/* Remove TX descriptor ring from card */
	EFX_ZERO_OWORD(tx_desc_ptr);
	efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
			 tx_queue->queue);

	/* Unpin TX descriptor ring */
	efx_fini_special_buffer(efx, &tx_queue->txd);
}

/* Free buffers backing TX queue */
void efx_farch_tx_remove(struct efx_tx_queue *tx_queue)
{
	efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
}

/**************************************************************************
 *
 * RX path
 *
 **************************************************************************/

/* This creates an entry in the RX descriptor queue */
static inline void
efx_farch_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
{
	struct efx_rx_buffer *rx_buf;
	efx_qword_t *rxd;

	rxd = efx_rx_desc(rx_queue, index);
	rx_buf = efx_rx_buffer(rx_queue, index);
	EFX_POPULATE_QWORD_3(*rxd,
			     FSF_AZ_RX_KER_BUF_SIZE,
			     rx_buf->len -
			     rx_queue->efx->type->rx_buffer_padding,
			     FSF_AZ_RX_KER_BUF_REGION, 0,
			     FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
}

/* This writes to the RX_DESC_WPTR register for the specified receive
 * descriptor ring.
 */
void efx_farch_rx_write(struct efx_rx_queue *rx_queue)
{
	struct efx_nic *efx = rx_queue->efx;
	efx_dword_t reg;
	unsigned write_ptr;

	while (rx_queue->notified_count != rx_queue->added_count) {
		efx_farch_build_rx_desc(
			rx_queue,
			rx_queue->notified_count & rx_queue->ptr_mask);
		++rx_queue->notified_count;
	}

	wmb();
	write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
	EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
	efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
			efx_rx_queue_index(rx_queue));
}

int efx_farch_rx_probe(struct efx_rx_queue *rx_queue)
{
	struct efx_nic *efx = rx_queue->efx;
	unsigned entries;

	entries = rx_queue->ptr_mask + 1;
	return efx_alloc_special_buffer(efx, &rx_queue->rxd,
					entries * sizeof(efx_qword_t));
}

void efx_farch_rx_init(struct efx_rx_queue *rx_queue)
{
	efx_oword_t rx_desc_ptr;
	struct efx_nic *efx = rx_queue->efx;
	bool jumbo_en;

516 517
	/* For kernel-mode queues in Siena, the JUMBO flag enables scatter. */
	jumbo_en = efx->rx_scatter;
518 519 520 521 522 523 524 525 526 527 528 529 530

	netif_dbg(efx, hw, efx->net_dev,
		  "RX queue %d ring in special buffers %d-%d\n",
		  efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
		  rx_queue->rxd.index + rx_queue->rxd.entries - 1);

	rx_queue->scatter_n = 0;

	/* Pin RX descriptor ring */
	efx_init_special_buffer(efx, &rx_queue->rxd);

	/* Push RX descriptor ring to card */
	EFX_POPULATE_OWORD_10(rx_desc_ptr,
531 532
			      FRF_AZ_RX_ISCSI_DDIG_EN, true,
			      FRF_AZ_RX_ISCSI_HDIG_EN, true,
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
			      FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
			      FRF_AZ_RX_DESCQ_EVQ_ID,
			      efx_rx_queue_channel(rx_queue)->channel,
			      FRF_AZ_RX_DESCQ_OWNER_ID, 0,
			      FRF_AZ_RX_DESCQ_LABEL,
			      efx_rx_queue_index(rx_queue),
			      FRF_AZ_RX_DESCQ_SIZE,
			      __ffs(rx_queue->rxd.entries),
			      FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
			      FRF_AZ_RX_DESCQ_JUMBO, jumbo_en,
			      FRF_AZ_RX_DESCQ_EN, 1);
	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
			 efx_rx_queue_index(rx_queue));
}

static void efx_farch_flush_rx_queue(struct efx_rx_queue *rx_queue)
{
	struct efx_nic *efx = rx_queue->efx;
	efx_oword_t rx_flush_descq;

	EFX_POPULATE_OWORD_2(rx_flush_descq,
			     FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
			     FRF_AZ_RX_FLUSH_DESCQ,
			     efx_rx_queue_index(rx_queue));
	efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
}

void efx_farch_rx_fini(struct efx_rx_queue *rx_queue)
{
	efx_oword_t rx_desc_ptr;
	struct efx_nic *efx = rx_queue->efx;

	/* Remove RX descriptor ring from card */
	EFX_ZERO_OWORD(rx_desc_ptr);
	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
			 efx_rx_queue_index(rx_queue));

	/* Unpin RX descriptor ring */
	efx_fini_special_buffer(efx, &rx_queue->rxd);
}

/* Free buffers backing RX queue */
void efx_farch_rx_remove(struct efx_rx_queue *rx_queue)
{
	efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
}

/**************************************************************************
 *
 * Flush handling
 *
 **************************************************************************/

/* efx_farch_flush_queues() must be woken up when all flushes are completed,
 * or more RX flushes can be kicked off.
 */
static bool efx_farch_flush_wake(struct efx_nic *efx)
{
	/* Ensure that all updates are visible to efx_farch_flush_queues() */
	smp_mb();

594
	return (atomic_read(&efx->active_queues) == 0 ||
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
		(atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
		 && atomic_read(&efx->rxq_flush_pending) > 0));
}

static bool efx_check_tx_flush_complete(struct efx_nic *efx)
{
	bool i = true;
	efx_oword_t txd_ptr_tbl;
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;

	efx_for_each_channel(channel, efx) {
		efx_for_each_channel_tx_queue(tx_queue, channel) {
			efx_reado_table(efx, &txd_ptr_tbl,
					FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
			if (EFX_OWORD_FIELD(txd_ptr_tbl,
					    FRF_AZ_TX_DESCQ_FLUSH) ||
			    EFX_OWORD_FIELD(txd_ptr_tbl,
					    FRF_AZ_TX_DESCQ_EN)) {
				netif_dbg(efx, hw, efx->net_dev,
					  "flush did not complete on TXQ %d\n",
					  tx_queue->queue);
				i = false;
			} else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
						  1, 0)) {
				/* The flush is complete, but we didn't
				 * receive a flush completion event
				 */
				netif_dbg(efx, hw, efx->net_dev,
					  "flush complete on TXQ %d, so drain "
					  "the queue\n", tx_queue->queue);
626
				/* Don't need to increment active_queues as it
627 628 629 630 631 632 633 634 635 636 637 638 639 640
				 * has already been incremented for the queues
				 * which did not drain
				 */
				efx_farch_magic_event(channel,
						      EFX_CHANNEL_MAGIC_TX_DRAIN(
							      tx_queue));
			}
		}
	}

	return i;
}

/* Flush all the transmit queues, and continue flushing receive queues until
641
 * they're all flushed. Wait for the DRAIN events to be received so that there
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
 * are no more RX and TX events left on any channel. */
static int efx_farch_do_flush(struct efx_nic *efx)
{
	unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int rc = 0;

	efx_for_each_channel(channel, efx) {
		efx_for_each_channel_tx_queue(tx_queue, channel) {
			efx_farch_flush_tx_queue(tx_queue);
		}
		efx_for_each_channel_rx_queue(rx_queue, channel) {
			rx_queue->flush_pending = true;
			atomic_inc(&efx->rxq_flush_pending);
		}
	}

661
	while (timeout && atomic_read(&efx->active_queues) > 0) {
662 663 664 665
		/* If SRIOV is enabled, then offload receive queue flushing to
		 * the firmware (though we will still have to poll for
		 * completion). If that fails, fall back to the old scheme.
		 */
666
		if (efx_siena_sriov_enabled(efx)) {
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
			rc = efx_mcdi_flush_rxqs(efx);
			if (!rc)
				goto wait;
		}

		/* The hardware supports four concurrent rx flushes, each of
		 * which may need to be retried if there is an outstanding
		 * descriptor fetch
		 */
		efx_for_each_channel(channel, efx) {
			efx_for_each_channel_rx_queue(rx_queue, channel) {
				if (atomic_read(&efx->rxq_flush_outstanding) >=
				    EFX_RX_FLUSH_COUNT)
					break;

				if (rx_queue->flush_pending) {
					rx_queue->flush_pending = false;
					atomic_dec(&efx->rxq_flush_pending);
					atomic_inc(&efx->rxq_flush_outstanding);
					efx_farch_flush_rx_queue(rx_queue);
				}
			}
		}

	wait:
		timeout = wait_event_timeout(efx->flush_wq,
					     efx_farch_flush_wake(efx),
					     timeout);
	}

697
	if (atomic_read(&efx->active_queues) &&
698 699
	    !efx_check_tx_flush_complete(efx)) {
		netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
700
			  "(rx %d+%d)\n", atomic_read(&efx->active_queues),
701 702 703 704
			  atomic_read(&efx->rxq_flush_outstanding),
			  atomic_read(&efx->rxq_flush_pending));
		rc = -ETIMEDOUT;

705
		atomic_set(&efx->active_queues, 0);
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
		atomic_set(&efx->rxq_flush_pending, 0);
		atomic_set(&efx->rxq_flush_outstanding, 0);
	}

	return rc;
}

int efx_farch_fini_dmaq(struct efx_nic *efx)
{
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	int rc = 0;

	/* Do not attempt to write to the NIC during EEH recovery */
	if (efx->state != STATE_RECOVERY) {
		/* Only perform flush if DMA is enabled */
		if (efx->pci_dev->is_busmaster) {
			efx->type->prepare_flush(efx);
			rc = efx_farch_do_flush(efx);
			efx->type->finish_flush(efx);
		}

		efx_for_each_channel(channel, efx) {
			efx_for_each_channel_rx_queue(rx_queue, channel)
				efx_farch_rx_fini(rx_queue);
			efx_for_each_channel_tx_queue(tx_queue, channel)
				efx_farch_tx_fini(tx_queue);
		}
	}

	return rc;
}

740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
/* Reset queue and flush accounting after FLR
 *
 * One possible cause of FLR recovery is that DMA may be failing (eg. if bus
 * mastering was disabled), in which case we don't receive (RXQ) flush
 * completion events.  This means that efx->rxq_flush_outstanding remained at 4
 * after the FLR; also, efx->active_queues was non-zero (as no flush completion
 * events were received, and we didn't go through efx_check_tx_flush_complete())
 * If we don't fix this up, on the next call to efx_realloc_channels() we won't
 * flush any RX queues because efx->rxq_flush_outstanding is at the limit of 4
 * for batched flush requests; and the efx->active_queues gets messed up because
 * we keep incrementing for the newly initialised queues, but it never went to
 * zero previously.  Then we get a timeout every time we try to restart the
 * queues, as it doesn't go back to zero when we should be flushing the queues.
 */
void efx_farch_finish_flr(struct efx_nic *efx)
{
	atomic_set(&efx->rxq_flush_pending, 0);
	atomic_set(&efx->rxq_flush_outstanding, 0);
	atomic_set(&efx->active_queues, 0);
}


762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
/**************************************************************************
 *
 * Event queue processing
 * Event queues are processed by per-channel tasklets.
 *
 **************************************************************************/

/* Update a channel's event queue's read pointer (RPTR) register
 *
 * This writes the EVQ_RPTR_REG register for the specified channel's
 * event queue.
 */
void efx_farch_ev_read_ack(struct efx_channel *channel)
{
	efx_dword_t reg;
	struct efx_nic *efx = channel->efx;

	EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
			     channel->eventq_read_ptr & channel->eventq_mask);

	/* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
	 * of 4 bytes, but it is really 16 bytes just like later revisions.
	 */
	efx_writed(efx, &reg,
		   efx->type->evq_rptr_tbl_base +
		   FR_BZ_EVQ_RPTR_STEP * channel->channel);
}

/* Use HW to insert a SW defined event */
void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
			      efx_qword_t *event)
{
	efx_oword_t drv_ev_reg;

	BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
		     FRF_AZ_DRV_EV_DATA_WIDTH != 64);
	drv_ev_reg.u32[0] = event->u32[0];
	drv_ev_reg.u32[1] = event->u32[1];
	drv_ev_reg.u32[2] = 0;
	drv_ev_reg.u32[3] = 0;
	EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
	efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
}

static void efx_farch_magic_event(struct efx_channel *channel, u32 magic)
{
	efx_qword_t event;

	EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
			     FSE_AZ_EV_CODE_DRV_GEN_EV,
			     FSF_AZ_DRV_GEN_EV_MAGIC, magic);
	efx_farch_generate_event(channel->efx, channel->channel, &event);
}

/* Handle a transmit completion event
 *
 * The NIC batches TX completion events; the message we receive is of
 * the form "complete all TX events up to this index".
 */
static int
efx_farch_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
{
	unsigned int tx_ev_desc_ptr;
	unsigned int tx_ev_q_label;
	struct efx_tx_queue *tx_queue;
	struct efx_nic *efx = channel->efx;
	int tx_packets = 0;

	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
		return 0;

	if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
		/* Transmit completion */
		tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
		tx_queue = efx_channel_get_tx_queue(
			channel, tx_ev_q_label % EFX_TXQ_TYPES);
		tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
			      tx_queue->ptr_mask);
		efx_xmit_done(tx_queue, tx_ev_desc_ptr);
	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
		/* Rewrite the FIFO write pointer */
		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
		tx_queue = efx_channel_get_tx_queue(
			channel, tx_ev_q_label % EFX_TXQ_TYPES);

		netif_tx_lock(efx->net_dev);
		efx_farch_notify_tx_desc(tx_queue);
		netif_tx_unlock(efx->net_dev);
851
	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR)) {
852
		efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
	} else {
		netif_err(efx, tx_err, efx->net_dev,
			  "channel %d unexpected TX event "
			  EFX_QWORD_FMT"\n", channel->channel,
			  EFX_QWORD_VAL(*event));
	}

	return tx_packets;
}

/* Detect errors included in the rx_evt_pkt_ok bit. */
static u16 efx_farch_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
				      const efx_qword_t *event)
{
	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
	struct efx_nic *efx = rx_queue->efx;
	bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
	bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
871
	bool rx_ev_frm_trunc, rx_ev_tobe_disc;
872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
	bool rx_ev_other_err, rx_ev_pause_frm;
	bool rx_ev_hdr_type, rx_ev_mcast_pkt;
	unsigned rx_ev_pkt_type;

	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
	rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
	rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
	rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
						 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
	rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
						  FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
	rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
						   FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
	rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
	rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
	rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);

	/* Every error apart from tobe_disc and pause_frm */
891
	rx_ev_other_err = (rx_ev_tcp_udp_chksum_err |
892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
			   rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
			   rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);

	/* Count errors that are not in MAC stats.  Ignore expected
	 * checksum errors during self-test. */
	if (rx_ev_frm_trunc)
		++channel->n_rx_frm_trunc;
	else if (rx_ev_tobe_disc)
		++channel->n_rx_tobe_disc;
	else if (!efx->loopback_selftest) {
		if (rx_ev_ip_hdr_chksum_err)
			++channel->n_rx_ip_hdr_chksum_err;
		else if (rx_ev_tcp_udp_chksum_err)
			++channel->n_rx_tcp_udp_chksum_err;
	}

	/* TOBE_DISC is expected on unicast mismatches; don't print out an
	 * error message.  FRM_TRUNC indicates RXDP dropped the packet due
	 * to a FIFO overflow.
	 */
#ifdef DEBUG
	if (rx_ev_other_err && net_ratelimit()) {
		netif_dbg(efx, rx_err, efx->net_dev,
			  " RX queue %d unexpected RX event "
916
			  EFX_QWORD_FMT "%s%s%s%s%s%s%s\n",
917 918 919 920 921 922 923 924 925 926 927 928 929 930
			  efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
			  rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
			  rx_ev_ip_hdr_chksum_err ?
			  " [IP_HDR_CHKSUM_ERR]" : "",
			  rx_ev_tcp_udp_chksum_err ?
			  " [TCP_UDP_CHKSUM_ERR]" : "",
			  rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
			  rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
			  rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
			  rx_ev_pause_frm ? " [PAUSE]" : "");
	}
#endif

	/* The frame must be discarded if any of these are true. */
931
	return (rx_ev_eth_crc_err | rx_ev_frm_trunc |
932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
		rx_ev_tobe_disc | rx_ev_pause_frm) ?
		EFX_RX_PKT_DISCARD : 0;
}

/* Handle receive events that are not in-order. Return true if this
 * can be handled as a partial packet discard, false if it's more
 * serious.
 */
static bool
efx_farch_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
{
	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
	struct efx_nic *efx = rx_queue->efx;
	unsigned expected, dropped;

	if (rx_queue->scatter_n &&
	    index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) &
		      rx_queue->ptr_mask)) {
		++channel->n_rx_nodesc_trunc;
		return true;
	}

	expected = rx_queue->removed_count & rx_queue->ptr_mask;
	dropped = (index - expected) & rx_queue->ptr_mask;
	netif_info(efx, rx_err, efx->net_dev,
		   "dropped %d events (index=%d expected=%d)\n",
		   dropped, index, expected);

960
	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
	return false;
}

/* Handle a packet received event
 *
 * The NIC gives a "discard" flag if it's a unicast packet with the
 * wrong destination address
 * Also "is multicast" and "matches multicast filter" flags can be used to
 * discard non-matching multicast packets.
 */
static void
efx_farch_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
{
	unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
	unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
	unsigned expected_ptr;
	bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont;
	u16 flags;
	struct efx_rx_queue *rx_queue;
	struct efx_nic *efx = channel->efx;

	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
		return;

	rx_ev_cont = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT);
	rx_ev_sop = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP);
	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
		channel->channel);

	rx_queue = efx_channel_get_rx_queue(channel);

	rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
	expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) &
			rx_queue->ptr_mask);

	/* Check for partial drops and other errors */
	if (unlikely(rx_ev_desc_ptr != expected_ptr) ||
	    unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) {
		if (rx_ev_desc_ptr != expected_ptr &&
		    !efx_farch_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr))
			return;

		/* Discard all pending fragments */
		if (rx_queue->scatter_n) {
			efx_rx_packet(
				rx_queue,
				rx_queue->removed_count & rx_queue->ptr_mask,
				rx_queue->scatter_n, 0, EFX_RX_PKT_DISCARD);
			rx_queue->removed_count += rx_queue->scatter_n;
			rx_queue->scatter_n = 0;
		}

		/* Return if there is no new fragment */
		if (rx_ev_desc_ptr != expected_ptr)
			return;

		/* Discard new fragment if not SOP */
		if (!rx_ev_sop) {
			efx_rx_packet(
				rx_queue,
				rx_queue->removed_count & rx_queue->ptr_mask,
				1, 0, EFX_RX_PKT_DISCARD);
			++rx_queue->removed_count;
			return;
		}
	}

	++rx_queue->scatter_n;
	if (rx_ev_cont)
		return;

	rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
	rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);

	if (likely(rx_ev_pkt_ok)) {
		/* If packet is marked as OK then we can rely on the
		 * hardware checksum and classification.
		 */
		flags = 0;
		switch (rx_ev_hdr_type) {
		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP:
			flags |= EFX_RX_PKT_TCP;
			/* fall through */
		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP:
			flags |= EFX_RX_PKT_CSUMMED;
			/* fall through */
		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER:
		case FSE_AZ_RX_EV_HDR_TYPE_OTHER:
			break;
		}
	} else {
		flags = efx_farch_handle_rx_not_ok(rx_queue, event);
	}

	/* Detect multicast packets that didn't match the filter */
	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
	if (rx_ev_mcast_pkt) {
		unsigned int rx_ev_mcast_hash_match =
			EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);

		if (unlikely(!rx_ev_mcast_hash_match)) {
			++channel->n_rx_mcast_mismatch;
			flags |= EFX_RX_PKT_DISCARD;
		}
	}

	channel->irq_mod_score += 2;

	/* Handle received packet */
	efx_rx_packet(rx_queue,
		      rx_queue->removed_count & rx_queue->ptr_mask,
		      rx_queue->scatter_n, rx_ev_byte_cnt, flags);
	rx_queue->removed_count += rx_queue->scatter_n;
	rx_queue->scatter_n = 0;
}

/* If this flush done event corresponds to a &struct efx_tx_queue, then
 * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
 * of all transmit completions.
 */
static void
efx_farch_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
{
	struct efx_tx_queue *tx_queue;
	int qid;

	qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
	if (qid < EFX_TXQ_TYPES * efx->n_tx_channels) {
		tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
					    qid % EFX_TXQ_TYPES);
		if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) {
			efx_farch_magic_event(tx_queue->channel,
					      EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
		}
	}
}

/* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1100
 * was successful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
 * the RX queue back to the mask of RX queues in need of flushing.
 */
static void
efx_farch_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	int qid;
	bool failed;

	qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
	failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
	if (qid >= efx->n_channels)
		return;
	channel = efx_get_channel(efx, qid);
	if (!efx_channel_has_rx_queue(channel))
		return;
	rx_queue = efx_channel_get_rx_queue(channel);

	if (failed) {
		netif_info(efx, hw, efx->net_dev,
			   "RXQ %d flush retry\n", qid);
		rx_queue->flush_pending = true;
		atomic_inc(&efx->rxq_flush_pending);
	} else {
		efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
				      EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
	}
	atomic_dec(&efx->rxq_flush_outstanding);
	if (efx_farch_flush_wake(efx))
		wake_up(&efx->flush_wq);
}

static void
efx_farch_handle_drain_event(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;

1139 1140
	WARN_ON(atomic_read(&efx->active_queues) == 0);
	atomic_dec(&efx->active_queues);
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
	if (efx_farch_flush_wake(efx))
		wake_up(&efx->flush_wq);
}

static void efx_farch_handle_generated_event(struct efx_channel *channel,
					     efx_qword_t *event)
{
	struct efx_nic *efx = channel->efx;
	struct efx_rx_queue *rx_queue =
		efx_channel_has_rx_queue(channel) ?
		efx_channel_get_rx_queue(channel) : NULL;
	unsigned magic, code;

	magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
	code = _EFX_CHANNEL_MAGIC_CODE(magic);

	if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
		channel->event_test_cpu = raw_smp_processor_id();
	} else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
		/* The queue must be empty, so we won't receive any rx
		 * events, so efx_process_channel() won't refill the
		 * queue. Refill it here */
1163
		efx_fast_push_rx_descriptors(rx_queue, true);
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
	} else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
		efx_farch_handle_drain_event(channel);
	} else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
		efx_farch_handle_drain_event(channel);
	} else {
		netif_dbg(efx, hw, efx->net_dev, "channel %d received "
			  "generated event "EFX_QWORD_FMT"\n",
			  channel->channel, EFX_QWORD_VAL(*event));
	}
}

static void
efx_farch_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
{
	struct efx_nic *efx = channel->efx;
	unsigned int ev_sub_code;
	unsigned int ev_sub_data;

	ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
	ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);

	switch (ev_sub_code) {
	case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
		netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
			   channel->channel, ev_sub_data);
		efx_farch_handle_tx_flush_done(efx, event);
1190
#ifdef CONFIG_SFC_SRIOV
1191
		efx_siena_sriov_tx_flush_done(efx, event);
1192
#endif
1193 1194 1195 1196 1197
		break;
	case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
		netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
			   channel->channel, ev_sub_data);
		efx_farch_handle_rx_flush_done(efx, event);
1198
#ifdef CONFIG_SFC_SRIOV
1199
		efx_siena_sriov_rx_flush_done(efx, event);
1200
#endif
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
		break;
	case FSE_AZ_EVQ_INIT_DONE_EV:
		netif_dbg(efx, hw, efx->net_dev,
			  "channel %d EVQ %d initialised\n",
			  channel->channel, ev_sub_data);
		break;
	case FSE_AZ_SRM_UPD_DONE_EV:
		netif_vdbg(efx, hw, efx->net_dev,
			   "channel %d SRAM update done\n", channel->channel);
		break;
	case FSE_AZ_WAKE_UP_EV:
		netif_vdbg(efx, hw, efx->net_dev,
			   "channel %d RXQ %d wakeup event\n",
			   channel->channel, ev_sub_data);
		break;
	case FSE_AZ_TIMER_EV:
		netif_vdbg(efx, hw, efx->net_dev,
			   "channel %d RX queue %d timer expired\n",
			   channel->channel, ev_sub_data);
		break;
	case FSE_AA_RX_RECOVER_EV:
		netif_err(efx, rx_err, efx->net_dev,
			  "channel %d seen DRIVER RX_RESET event. "
			"Resetting.\n", channel->channel);
		atomic_inc(&efx->rx_reset);
1226
		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1227 1228 1229 1230 1231 1232 1233
		break;
	case FSE_BZ_RX_DSC_ERROR_EV:
		if (ev_sub_data < EFX_VI_BASE) {
			netif_err(efx, rx_err, efx->net_dev,
				  "RX DMA Q %d reports descriptor fetch error."
				  " RX Q %d is disabled.\n", ev_sub_data,
				  ev_sub_data);
1234
			efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1235 1236 1237
		}
#ifdef CONFIG_SFC_SRIOV
		else
1238
			efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
1239
#endif
1240 1241 1242 1243 1244 1245 1246
		break;
	case FSE_BZ_TX_DSC_ERROR_EV:
		if (ev_sub_data < EFX_VI_BASE) {
			netif_err(efx, tx_err, efx->net_dev,
				  "TX DMA Q %d reports descriptor fetch error."
				  " TX Q %d is disabled.\n", ev_sub_data,
				  ev_sub_data);
1247
			efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1248 1249 1250
		}
#ifdef CONFIG_SFC_SRIOV
		else
1251
			efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
1252
#endif
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
		break;
	default:
		netif_vdbg(efx, hw, efx->net_dev,
			   "channel %d unknown driver event code %d "
			   "data %04x\n", channel->channel, ev_sub_code,
			   ev_sub_data);
		break;
	}
}

int efx_farch_ev_process(struct efx_channel *channel, int budget)
{
	struct efx_nic *efx = channel->efx;
	unsigned int read_ptr;
	efx_qword_t event, *p_event;
	int ev_code;
	int tx_packets = 0;
	int spent = 0;

1272 1273 1274
	if (budget <= 0)
		return spent;

1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
	read_ptr = channel->eventq_read_ptr;

	for (;;) {
		p_event = efx_event(channel, read_ptr);
		event = *p_event;

		if (!efx_event_present(&event))
			/* End of events */
			break;

		netif_vdbg(channel->efx, intr, channel->efx->net_dev,
			   "channel %d event is "EFX_QWORD_FMT"\n",
			   channel->channel, EFX_QWORD_VAL(event));

		/* Clear this event by marking it all ones */
		EFX_SET_QWORD(*p_event);

		++read_ptr;

		ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);

		switch (ev_code) {
		case FSE_AZ_EV_CODE_RX_EV:
			efx_farch_handle_rx_event(channel, &event);
			if (++spent == budget)
				goto out;
			break;
		case FSE_AZ_EV_CODE_TX_EV:
			tx_packets += efx_farch_handle_tx_event(channel,
								&event);
			if (tx_packets > efx->txq_entries) {
				spent = budget;
				goto out;
			}
			break;
		case FSE_AZ_EV_CODE_DRV_GEN_EV:
			efx_farch_handle_generated_event(channel, &event);
			break;
		case FSE_AZ_EV_CODE_DRIVER_EV:
			efx_farch_handle_driver_event(channel, &event);
			break;
1316
#ifdef CONFIG_SFC_SRIOV
1317
		case FSE_CZ_EV_CODE_USER_EV:
1318
			efx_siena_sriov_event(channel, &event);
1319
			break;
1320
#endif
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
		case FSE_CZ_EV_CODE_MCDI_EV:
			efx_mcdi_process_event(channel, &event);
			break;
		case FSE_AZ_EV_CODE_GLOBAL_EV:
			if (efx->type->handle_global_event &&
			    efx->type->handle_global_event(channel, &event))
				break;
			/* else fall through */
		default:
			netif_err(channel->efx, hw, channel->efx->net_dev,
				  "channel %d unknown event type %d (data "
				  EFX_QWORD_FMT ")\n", channel->channel,
				  ev_code, EFX_QWORD_VAL(event));
		}
	}

out:
	channel->eventq_read_ptr = read_ptr;
	return spent;
}

/* Allocate buffer table entries for event queue */
int efx_farch_ev_probe(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;
	unsigned entries;

	entries = channel->eventq_mask + 1;
	return efx_alloc_special_buffer(efx, &channel->eventq,
					entries * sizeof(efx_qword_t));
}

1353
int efx_farch_ev_init(struct efx_channel *channel)
1354 1355 1356 1357 1358 1359 1360 1361 1362
{
	efx_oword_t reg;
	struct efx_nic *efx = channel->efx;

	netif_dbg(efx, hw, efx->net_dev,
		  "channel %d event queue in special buffers %d-%d\n",
		  channel->channel, channel->eventq.index,
		  channel->eventq.index + channel->eventq.entries - 1);

1363 1364 1365 1366 1367
	EFX_POPULATE_OWORD_3(reg,
			     FRF_CZ_TIMER_Q_EN, 1,
			     FRF_CZ_HOST_NOTIFY_MODE, 0,
			     FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
	efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382

	/* Pin event queue buffer */
	efx_init_special_buffer(efx, &channel->eventq);

	/* Fill event queue with all ones (i.e. empty events) */
	memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);

	/* Push event queue to card */
	EFX_POPULATE_OWORD_3(reg,
			     FRF_AZ_EVQ_EN, 1,
			     FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
			     FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
	efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
			 channel->channel);

1383
	return 0;
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
}

void efx_farch_ev_fini(struct efx_channel *channel)
{
	efx_oword_t reg;
	struct efx_nic *efx = channel->efx;

	/* Remove event queue from card */
	EFX_ZERO_OWORD(reg);
	efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
			 channel->channel);
1395
	efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457

	/* Unpin event queue */
	efx_fini_special_buffer(efx, &channel->eventq);
}

/* Free buffers backing event queue */
void efx_farch_ev_remove(struct efx_channel *channel)
{
	efx_free_special_buffer(channel->efx, &channel->eventq);
}


void efx_farch_ev_test_generate(struct efx_channel *channel)
{
	efx_farch_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
}

void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue)
{
	efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
			      EFX_CHANNEL_MAGIC_FILL(rx_queue));
}

/**************************************************************************
 *
 * Hardware interrupts
 * The hardware interrupt handler does very little work; all the event
 * queue processing is carried out by per-channel tasklets.
 *
 **************************************************************************/

/* Enable/disable/generate interrupts */
static inline void efx_farch_interrupts(struct efx_nic *efx,
				      bool enabled, bool force)
{
	efx_oword_t int_en_reg_ker;

	EFX_POPULATE_OWORD_3(int_en_reg_ker,
			     FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
			     FRF_AZ_KER_INT_KER, force,
			     FRF_AZ_DRV_INT_EN_KER, enabled);
	efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
}

void efx_farch_irq_enable_master(struct efx_nic *efx)
{
	EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
	wmb(); /* Ensure interrupt vector is clear before interrupts enabled */

	efx_farch_interrupts(efx, true, false);
}

void efx_farch_irq_disable_master(struct efx_nic *efx)
{
	/* Disable interrupts */
	efx_farch_interrupts(efx, false, false);
}

/* Generate a test interrupt
 * Interrupt must already have been enabled, otherwise nasty things
 * may happen.
 */
1458
int efx_farch_irq_test_generate(struct efx_nic *efx)
1459 1460
{
	efx_farch_interrupts(efx, true, true);
1461
	return 0;
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
}

/* Process a fatal interrupt
 * Disable bus mastering ASAP and schedule a reset
 */
irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx)
{
	efx_oword_t *int_ker = efx->irq_status.addr;
	efx_oword_t fatal_intr;
	int error, mem_perr;

	efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
	error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);

	netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
		  EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
		  EFX_OWORD_VAL(fatal_intr),
		  error ? "disabling bus mastering" : "no recognised error");

	/* If this is a memory parity error dump which blocks are offending */
	mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
		    EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
	if (mem_perr) {
		efx_oword_t reg;
		efx_reado(efx, &reg, FR_AZ_MEM_STAT);
		netif_err(efx, hw, efx->net_dev,
			  "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
			  EFX_OWORD_VAL(reg));
	}

	/* Disable both devices */
	pci_clear_master(efx->pci_dev);
	efx_farch_irq_disable_master(efx);

	/* Count errors and reset or disable the NIC accordingly */
	if (efx->int_error_count == 0 ||
	    time_after(jiffies, efx->int_error_expire)) {
		efx->int_error_count = 0;
		efx->int_error_expire =
			jiffies + EFX_INT_ERROR_EXPIRE * HZ;
	}
	if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
		netif_err(efx, hw, efx->net_dev,
			  "SYSTEM ERROR - reset scheduled\n");
		efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
	} else {
		netif_err(efx, hw, efx->net_dev,
			  "SYSTEM ERROR - max number of errors seen."
			  "NIC will be disabled\n");
		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
	}

	return IRQ_HANDLED;
}

/* Handle a legacy interrupt
 * Acknowledges the interrupt and schedule event queue processing.
 */
irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id)
{
	struct efx_nic *efx = dev_id;
	bool soft_enabled = ACCESS_ONCE(efx->irq_soft_enabled);
	efx_oword_t *int_ker = efx->irq_status.addr;
	irqreturn_t result = IRQ_NONE;
	struct efx_channel *channel;
	efx_dword_t reg;
	u32 queues;
	int syserr;

	/* Read the ISR which also ACKs the interrupts */
	efx_readd(efx, &reg, FR_BZ_INT_ISR0);
	queues = EFX_EXTRACT_DWORD(reg, 0, 31);

	/* Legacy interrupts are disabled too late by the EEH kernel
	 * code. Disable them earlier.
	 * If an EEH error occurred, the read will have returned all ones.
	 */
	if (EFX_DWORD_IS_ALL_ONES(reg) && efx_try_recovery(efx) &&
	    !efx->eeh_disabled_legacy_irq) {
		disable_irq_nosync(efx->legacy_irq);
		efx->eeh_disabled_legacy_irq = true;
	}

	/* Handle non-event-queue sources */
	if (queues & (1U << efx->irq_level) && soft_enabled) {
		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
		if (unlikely(syserr))
			return efx_farch_fatal_interrupt(efx);
		efx->last_irq_cpu = raw_smp_processor_id();
	}

	if (queues != 0) {
1554
		efx->irq_zero_count = 0;
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565

		/* Schedule processing of any interrupting queues */
		if (likely(soft_enabled)) {
			efx_for_each_channel(channel, efx) {
				if (queues & 1)
					efx_schedule_channel_irq(channel);
				queues >>= 1;
			}
		}
		result = IRQ_HANDLED;

1566
	} else {
1567 1568
		efx_qword_t *event;

1569 1570
		/* Legacy ISR read can return zero once (SF bug 15783) */

1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
		/* We can't return IRQ_HANDLED more than once on seeing ISR=0
		 * because this might be a shared interrupt. */
		if (efx->irq_zero_count++ == 0)
			result = IRQ_HANDLED;

		/* Ensure we schedule or rearm all event queues */
		if (likely(soft_enabled)) {
			efx_for_each_channel(channel, efx) {
				event = efx_event(channel,
						  channel->eventq_read_ptr);
				if (efx_event_present(event))
					efx_schedule_channel_irq(channel);
				else
					efx_farch_ev_read_ack(channel);
			}
		}
	}

	if (result == IRQ_HANDLED)
		netif_vdbg(efx, intr, efx->net_dev,
			   "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
			   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));

	return result;
}

/* Handle an MSI interrupt
 *
 * Handle an MSI hardware interrupt.  This routine schedules event
 * queue processing.  No interrupt acknowledgement cycle is necessary.
 * Also, we never need to check that the interrupt is for us, since
 * MSI interrupts cannot be shared.
 */
irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id)
{
	struct efx_msi_context *context = dev_id;
	struct efx_nic *efx = context->efx;
	efx_oword_t *int_ker = efx->irq_status.addr;
	int syserr;

	netif_vdbg(efx, intr, efx->net_dev,
		   "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
		   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));

	if (!likely(ACCESS_ONCE(efx->irq_soft_enabled)))
		return IRQ_HANDLED;

	/* Handle non-event-queue sources */
	if (context->index == efx->irq_level) {
		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
		if (unlikely(syserr))
			return efx_farch_fatal_interrupt(efx);
		efx->last_irq_cpu = raw_smp_processor_id();
	}

	/* Schedule processing of the channel */
	efx_schedule_channel_irq(efx->channel[context->index]);

	return IRQ_HANDLED;
}

/* Setup RSS indirection table.
 * This maps from the hash value of the packet to RXQ
 */
void efx_farch_rx_push_indir_table(struct efx_nic *efx)
{
	size_t i = 0;
	efx_dword_t dword;

	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
		     FR_BZ_RX_INDIRECTION_TBL_ROWS);

	for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
		EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
				     efx->rx_indir_table[i]);
		efx_writed(efx, &dword,
			   FR_BZ_RX_INDIRECTION_TBL +
			   FR_BZ_RX_INDIRECTION_TBL_STEP * i);
	}
}

1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
void efx_farch_rx_pull_indir_table(struct efx_nic *efx)
{
	size_t i = 0;
	efx_dword_t dword;

	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
		     FR_BZ_RX_INDIRECTION_TBL_ROWS);

	for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
		efx_readd(efx, &dword,
			   FR_BZ_RX_INDIRECTION_TBL +
			   FR_BZ_RX_INDIRECTION_TBL_STEP * i);
		efx->rx_indir_table[i] = EFX_DWORD_FIELD(dword, FRF_BZ_IT_QUEUE);
	}
}

1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
/* Looks at available SRAM resources and works out how many queues we
 * can support, and where things like descriptor caches should live.
 *
 * SRAM is split up as follows:
 * 0                          buftbl entries for channels
 * efx->vf_buftbl_base        buftbl entries for SR-IOV
 * efx->rx_dc_base            RX descriptor caches
 * efx->tx_dc_base            TX descriptor caches
 */
void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
{
	unsigned vi_count, buftbl_min;

1681 1682 1683 1684
#ifdef CONFIG_SFC_SRIOV
	struct siena_nic_data *nic_data = efx->nic_data;
#endif

1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
	/* Account for the buffer table entries backing the datapath channels
	 * and the descriptor caches for those channels.
	 */
	buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
		       efx->n_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE +
		       efx->n_channels * EFX_MAX_EVQ_SIZE)
		      * sizeof(efx_qword_t) / EFX_BUF_SIZE);
	vi_count = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);

#ifdef CONFIG_SFC_SRIOV
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
	if (efx->type->sriov_wanted) {
		if (efx->type->sriov_wanted(efx)) {
			unsigned vi_dc_entries, buftbl_free;
			unsigned entries_per_vf, vf_limit;

			nic_data->vf_buftbl_base = buftbl_min;

			vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
			vi_count = max(vi_count, EFX_VI_BASE);
			buftbl_free = (sram_lim_qw - buftbl_min -
				       vi_count * vi_dc_entries);

			entries_per_vf = ((vi_dc_entries +
					   EFX_VF_BUFTBL_PER_VI) *
					  efx_vf_size(efx));
			vf_limit = min(buftbl_free / entries_per_vf,
				       (1024U - EFX_VI_BASE) >> efx->vi_scale);

			if (efx->vf_count > vf_limit) {
				netif_err(efx, probe, efx->net_dev,
					  "Reducing VF count from from %d to %d\n",
					  efx->vf_count, vf_limit);
				efx->vf_count = vf_limit;
			}
			vi_count += efx->vf_count * efx_vf_size(efx);
1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
		}
	}
#endif

	efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
	efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
}

u32 efx_farch_fpga_ver(struct efx_nic *efx)
{
	efx_oword_t altera_build;
	efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
	return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
}

void efx_farch_init_common(struct efx_nic *efx)
{
	efx_oword_t temp;

	/* Set positions of descriptor caches in SRAM. */
	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
	efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
	efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);

	/* Set TX descriptor cache size. */
	BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
	EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
	efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);

	/* Set RX descriptor cache size.  Set low watermark to size-8, as
	 * this allows most efficient prefetching.
	 */
	BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
	efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
	efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);

	/* Program INT_KER address */
	EFX_POPULATE_OWORD_2(temp,
			     FRF_AZ_NORM_INT_VEC_DIS_KER,
			     EFX_INT_MODE_USE_MSI(efx),
			     FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
	efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);

	if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
		/* Use an interrupt level unused by event queues */
		efx->irq_level = 0x1f;
	else
		/* Use a valid MSI-X vector */
		efx->irq_level = 0;

	/* Enable all the genuinely fatal interrupts.  (They are still
	 * masked by the overall interrupt mask, controlled by
	 * falcon_interrupts()).
	 *
	 * Note: All other fatal interrupts are enabled
	 */
	EFX_POPULATE_OWORD_3(temp,
			     FRF_AZ_ILL_ADR_INT_KER_EN, 1,
			     FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
			     FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1783
	EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
	EFX_INVERT_OWORD(temp);
	efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);

	/* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
	 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
	 */
	efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
	/* Enable SW_EV to inherit in char driver - assume harmless here */
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
	/* Prefetch threshold 2 => fetch when descriptor cache half empty */
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
	/* Disable hardware watchdog which can misfire */
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
	/* Squash TX of packets of 16 bytes or less */
1803
	EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1804 1805
	efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);

1806 1807 1808 1809 1810 1811 1812 1813 1814
	EFX_POPULATE_OWORD_4(temp,
			     /* Default values */
			     FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
			     FRF_BZ_TX_PACE_SB_AF, 0xb,
			     FRF_BZ_TX_PACE_FB_BASE, 0,
			     /* Allow large pace values in the fast bin. */
			     FRF_BZ_TX_PACE_BIN_TH,
			     FFE_BZ_TX_PACE_RESERVED);
	efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1815
}
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997

/**************************************************************************
 *
 * Filter tables
 *
 **************************************************************************
 */

/* "Fudge factors" - difference between programmed value and actual depth.
 * Due to pipelined implementation we need to program H/W with a value that
 * is larger than the hop limit we want.
 */
#define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD 3
#define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL 1

/* Hard maximum search limit.  Hardware will time-out beyond 200-something.
 * We also need to avoid infinite loops in efx_farch_filter_search() when the
 * table is full.
 */
#define EFX_FARCH_FILTER_CTL_SRCH_MAX 200

/* Don't try very hard to find space for performance hints, as this is
 * counter-productive. */
#define EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX 5

enum efx_farch_filter_type {
	EFX_FARCH_FILTER_TCP_FULL = 0,
	EFX_FARCH_FILTER_TCP_WILD,
	EFX_FARCH_FILTER_UDP_FULL,
	EFX_FARCH_FILTER_UDP_WILD,
	EFX_FARCH_FILTER_MAC_FULL = 4,
	EFX_FARCH_FILTER_MAC_WILD,
	EFX_FARCH_FILTER_UC_DEF = 8,
	EFX_FARCH_FILTER_MC_DEF,
	EFX_FARCH_FILTER_TYPE_COUNT,		/* number of specific types */
};

enum efx_farch_filter_table_id {
	EFX_FARCH_FILTER_TABLE_RX_IP = 0,
	EFX_FARCH_FILTER_TABLE_RX_MAC,
	EFX_FARCH_FILTER_TABLE_RX_DEF,
	EFX_FARCH_FILTER_TABLE_TX_MAC,
	EFX_FARCH_FILTER_TABLE_COUNT,
};

enum efx_farch_filter_index {
	EFX_FARCH_FILTER_INDEX_UC_DEF,
	EFX_FARCH_FILTER_INDEX_MC_DEF,
	EFX_FARCH_FILTER_SIZE_RX_DEF,
};

struct efx_farch_filter_spec {
	u8	type:4;
	u8	priority:4;
	u8	flags;
	u16	dmaq_id;
	u32	data[3];
};

struct efx_farch_filter_table {
	enum efx_farch_filter_table_id id;
	u32		offset;		/* address of table relative to BAR */
	unsigned	size;		/* number of entries */
	unsigned	step;		/* step between entries */
	unsigned	used;		/* number currently used */
	unsigned long	*used_bitmap;
	struct efx_farch_filter_spec *spec;
	unsigned	search_limit[EFX_FARCH_FILTER_TYPE_COUNT];
};

struct efx_farch_filter_state {
	struct efx_farch_filter_table table[EFX_FARCH_FILTER_TABLE_COUNT];
};

static void
efx_farch_filter_table_clear_entry(struct efx_nic *efx,
				   struct efx_farch_filter_table *table,
				   unsigned int filter_idx);

/* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit
 * key derived from the n-tuple.  The initial LFSR state is 0xffff. */
static u16 efx_farch_filter_hash(u32 key)
{
	u16 tmp;

	/* First 16 rounds */
	tmp = 0x1fff ^ key >> 16;
	tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
	tmp = tmp ^ tmp >> 9;
	/* Last 16 rounds */
	tmp = tmp ^ tmp << 13 ^ key;
	tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
	return tmp ^ tmp >> 9;
}

/* To allow for hash collisions, filter search continues at these
 * increments from the first possible entry selected by the hash. */
static u16 efx_farch_filter_increment(u32 key)
{
	return key * 2 - 1;
}

static enum efx_farch_filter_table_id
efx_farch_filter_spec_table_id(const struct efx_farch_filter_spec *spec)
{
	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
		     (EFX_FARCH_FILTER_TCP_FULL >> 2));
	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
		     (EFX_FARCH_FILTER_TCP_WILD >> 2));
	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
		     (EFX_FARCH_FILTER_UDP_FULL >> 2));
	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
		     (EFX_FARCH_FILTER_UDP_WILD >> 2));
	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
		     (EFX_FARCH_FILTER_MAC_FULL >> 2));
	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
		     (EFX_FARCH_FILTER_MAC_WILD >> 2));
	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_TX_MAC !=
		     EFX_FARCH_FILTER_TABLE_RX_MAC + 2);
	return (spec->type >> 2) + ((spec->flags & EFX_FILTER_FLAG_TX) ? 2 : 0);
}

static void efx_farch_filter_push_rx_config(struct efx_nic *efx)
{
	struct efx_farch_filter_state *state = efx->filter_state;
	struct efx_farch_filter_table *table;
	efx_oword_t filter_ctl;

	efx_reado(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);

	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_FULL_SRCH_LIMIT,
			    table->search_limit[EFX_FARCH_FILTER_TCP_FULL] +
			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_WILD_SRCH_LIMIT,
			    table->search_limit[EFX_FARCH_FILTER_TCP_WILD] +
			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_FULL_SRCH_LIMIT,
			    table->search_limit[EFX_FARCH_FILTER_UDP_FULL] +
			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_WILD_SRCH_LIMIT,
			    table->search_limit[EFX_FARCH_FILTER_UDP_WILD] +
			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);

	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
	if (table->size) {
		EFX_SET_OWORD_FIELD(
			filter_ctl, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT,
			table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
		EFX_SET_OWORD_FIELD(
			filter_ctl, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT,
			table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
	}

	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
	if (table->size) {
		EFX_SET_OWORD_FIELD(
			filter_ctl, FRF_CZ_UNICAST_NOMATCH_Q_ID,
			table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].dmaq_id);
		EFX_SET_OWORD_FIELD(
			filter_ctl, FRF_CZ_UNICAST_NOMATCH_RSS_ENABLED,
			!!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
			   EFX_FILTER_FLAG_RX_RSS));
		EFX_SET_OWORD_FIELD(
			filter_ctl, FRF_CZ_MULTICAST_NOMATCH_Q_ID,
			table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].dmaq_id);
		EFX_SET_OWORD_FIELD(
			filter_ctl, FRF_CZ_MULTICAST_NOMATCH_RSS_ENABLED,
			!!(table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
			   EFX_FILTER_FLAG_RX_RSS));

		/* There is a single bit to enable RX scatter for all
		 * unmatched packets.  Only set it if scatter is
		 * enabled in both filter specs.
		 */
		EFX_SET_OWORD_FIELD(
			filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
			!!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
			   table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
			   EFX_FILTER_FLAG_RX_SCATTER));
1998
	} else {
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
		/* We don't expose 'default' filters because unmatched
		 * packets always go to the queue number found in the
		 * RSS table.  But we still need to set the RX scatter
		 * bit here.
		 */
		EFX_SET_OWORD_FIELD(
			filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
			efx->rx_scatter);
	}

	efx_writeo(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
}

static void efx_farch_filter_push_tx_limits(struct efx_nic *efx)
{
	struct efx_farch_filter_state *state = efx->filter_state;
	struct efx_farch_filter_table *table;
	efx_oword_t tx_cfg;

	efx_reado(efx, &tx_cfg, FR_AZ_TX_CFG);

	table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
	if (table->size) {
		EFX_SET_OWORD_FIELD(
			tx_cfg, FRF_CZ_TX_ETH_FILTER_FULL_SEARCH_RANGE,
			table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
		EFX_SET_OWORD_FIELD(
			tx_cfg, FRF_CZ_TX_ETH_FILTER_WILD_SEARCH_RANGE,
			table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
	}

	efx_writeo(efx, &tx_cfg, FR_AZ_TX_CFG);
}

static int
efx_farch_filter_from_gen_spec(struct efx_farch_filter_spec *spec,
			       const struct efx_filter_spec *gen_spec)
{
	bool is_full = false;

	if ((gen_spec->flags & EFX_FILTER_FLAG_RX_RSS) &&
	    gen_spec->rss_context != EFX_FILTER_RSS_CONTEXT_DEFAULT)
		return -EINVAL;

	spec->priority = gen_spec->priority;
	spec->flags = gen_spec->flags;
	spec->dmaq_id = gen_spec->dmaq_id;

	switch (gen_spec->match_flags) {
	case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
	      EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
	      EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT):
		is_full = true;
		/* fall through */
	case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
	      EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT): {
		__be32 rhost, host1, host2;
		__be16 rport, port1, port2;

2060
		EFX_WARN_ON_PARANOID(!(gen_spec->flags & EFX_FILTER_FLAG_RX));
2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222

		if (gen_spec->ether_type != htons(ETH_P_IP))
			return -EPROTONOSUPPORT;
		if (gen_spec->loc_port == 0 ||
		    (is_full && gen_spec->rem_port == 0))
			return -EADDRNOTAVAIL;
		switch (gen_spec->ip_proto) {
		case IPPROTO_TCP:
			spec->type = (is_full ? EFX_FARCH_FILTER_TCP_FULL :
				      EFX_FARCH_FILTER_TCP_WILD);
			break;
		case IPPROTO_UDP:
			spec->type = (is_full ? EFX_FARCH_FILTER_UDP_FULL :
				      EFX_FARCH_FILTER_UDP_WILD);
			break;
		default:
			return -EPROTONOSUPPORT;
		}

		/* Filter is constructed in terms of source and destination,
		 * with the odd wrinkle that the ports are swapped in a UDP
		 * wildcard filter.  We need to convert from local and remote
		 * (= zero for wildcard) addresses.
		 */
		rhost = is_full ? gen_spec->rem_host[0] : 0;
		rport = is_full ? gen_spec->rem_port : 0;
		host1 = rhost;
		host2 = gen_spec->loc_host[0];
		if (!is_full && gen_spec->ip_proto == IPPROTO_UDP) {
			port1 = gen_spec->loc_port;
			port2 = rport;
		} else {
			port1 = rport;
			port2 = gen_spec->loc_port;
		}
		spec->data[0] = ntohl(host1) << 16 | ntohs(port1);
		spec->data[1] = ntohs(port2) << 16 | ntohl(host1) >> 16;
		spec->data[2] = ntohl(host2);

		break;
	}

	case EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_OUTER_VID:
		is_full = true;
		/* fall through */
	case EFX_FILTER_MATCH_LOC_MAC:
		spec->type = (is_full ? EFX_FARCH_FILTER_MAC_FULL :
			      EFX_FARCH_FILTER_MAC_WILD);
		spec->data[0] = is_full ? ntohs(gen_spec->outer_vid) : 0;
		spec->data[1] = (gen_spec->loc_mac[2] << 24 |
				 gen_spec->loc_mac[3] << 16 |
				 gen_spec->loc_mac[4] << 8 |
				 gen_spec->loc_mac[5]);
		spec->data[2] = (gen_spec->loc_mac[0] << 8 |
				 gen_spec->loc_mac[1]);
		break;

	case EFX_FILTER_MATCH_LOC_MAC_IG:
		spec->type = (is_multicast_ether_addr(gen_spec->loc_mac) ?
			      EFX_FARCH_FILTER_MC_DEF :
			      EFX_FARCH_FILTER_UC_DEF);
		memset(spec->data, 0, sizeof(spec->data)); /* ensure equality */
		break;

	default:
		return -EPROTONOSUPPORT;
	}

	return 0;
}

static void
efx_farch_filter_to_gen_spec(struct efx_filter_spec *gen_spec,
			     const struct efx_farch_filter_spec *spec)
{
	bool is_full = false;

	/* *gen_spec should be completely initialised, to be consistent
	 * with efx_filter_init_{rx,tx}() and in case we want to copy
	 * it back to userland.
	 */
	memset(gen_spec, 0, sizeof(*gen_spec));

	gen_spec->priority = spec->priority;
	gen_spec->flags = spec->flags;
	gen_spec->dmaq_id = spec->dmaq_id;

	switch (spec->type) {
	case EFX_FARCH_FILTER_TCP_FULL:
	case EFX_FARCH_FILTER_UDP_FULL:
		is_full = true;
		/* fall through */
	case EFX_FARCH_FILTER_TCP_WILD:
	case EFX_FARCH_FILTER_UDP_WILD: {
		__be32 host1, host2;
		__be16 port1, port2;

		gen_spec->match_flags =
			EFX_FILTER_MATCH_ETHER_TYPE |
			EFX_FILTER_MATCH_IP_PROTO |
			EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT;
		if (is_full)
			gen_spec->match_flags |= (EFX_FILTER_MATCH_REM_HOST |
						  EFX_FILTER_MATCH_REM_PORT);
		gen_spec->ether_type = htons(ETH_P_IP);
		gen_spec->ip_proto =
			(spec->type == EFX_FARCH_FILTER_TCP_FULL ||
			 spec->type == EFX_FARCH_FILTER_TCP_WILD) ?
			IPPROTO_TCP : IPPROTO_UDP;

		host1 = htonl(spec->data[0] >> 16 | spec->data[1] << 16);
		port1 = htons(spec->data[0]);
		host2 = htonl(spec->data[2]);
		port2 = htons(spec->data[1] >> 16);
		if (spec->flags & EFX_FILTER_FLAG_TX) {
			gen_spec->loc_host[0] = host1;
			gen_spec->rem_host[0] = host2;
		} else {
			gen_spec->loc_host[0] = host2;
			gen_spec->rem_host[0] = host1;
		}
		if (!!(gen_spec->flags & EFX_FILTER_FLAG_TX) ^
		    (!is_full && gen_spec->ip_proto == IPPROTO_UDP)) {
			gen_spec->loc_port = port1;
			gen_spec->rem_port = port2;
		} else {
			gen_spec->loc_port = port2;
			gen_spec->rem_port = port1;
		}

		break;
	}

	case EFX_FARCH_FILTER_MAC_FULL:
		is_full = true;
		/* fall through */
	case EFX_FARCH_FILTER_MAC_WILD:
		gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC;
		if (is_full)
			gen_spec->match_flags |= EFX_FILTER_MATCH_OUTER_VID;
		gen_spec->loc_mac[0] = spec->data[2] >> 8;
		gen_spec->loc_mac[1] = spec->data[2];
		gen_spec->loc_mac[2] = spec->data[1] >> 24;
		gen_spec->loc_mac[3] = spec->data[1] >> 16;
		gen_spec->loc_mac[4] = spec->data[1] >> 8;
		gen_spec->loc_mac[5] = spec->data[1];
		gen_spec->outer_vid = htons(spec->data[0]);
		break;

	case EFX_FARCH_FILTER_UC_DEF:
	case EFX_FARCH_FILTER_MC_DEF:
		gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC_IG;
		gen_spec->loc_mac[0] = spec->type == EFX_FARCH_FILTER_MC_DEF;
		break;

	default:
		WARN_ON(1);
		break;
	}
}

static void
2223 2224
efx_farch_filter_init_rx_auto(struct efx_nic *efx,
			      struct efx_farch_filter_spec *spec)
2225 2226 2227 2228
{
	/* If there's only one channel then disable RSS for non VF
	 * traffic, thereby allowing VFs to use RSS when the PF can't.
	 */
2229 2230
	spec->priority = EFX_FILTER_PRI_AUTO;
	spec->flags = (EFX_FILTER_FLAG_RX |
2231
		       (efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0) |
2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
		       (efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0));
	spec->dmaq_id = 0;
}

/* Build a filter entry and return its n-tuple key. */
static u32 efx_farch_filter_build(efx_oword_t *filter,
				  struct efx_farch_filter_spec *spec)
{
	u32 data3;

	switch (efx_farch_filter_spec_table_id(spec)) {
	case EFX_FARCH_FILTER_TABLE_RX_IP: {
		bool is_udp = (spec->type == EFX_FARCH_FILTER_UDP_FULL ||
			       spec->type == EFX_FARCH_FILTER_UDP_WILD);
		EFX_POPULATE_OWORD_7(
			*filter,
			FRF_BZ_RSS_EN,
			!!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
			FRF_BZ_SCATTER_EN,
			!!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
			FRF_BZ_TCP_UDP, is_udp,
			FRF_BZ_RXQ_ID, spec->dmaq_id,
			EFX_DWORD_2, spec->data[2],
			EFX_DWORD_1, spec->data[1],
			EFX_DWORD_0, spec->data[0]);
		data3 = is_udp;
		break;
	}

	case EFX_FARCH_FILTER_TABLE_RX_MAC: {
		bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
		EFX_POPULATE_OWORD_7(
			*filter,
			FRF_CZ_RMFT_RSS_EN,
			!!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
			FRF_CZ_RMFT_SCATTER_EN,
			!!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
			FRF_CZ_RMFT_RXQ_ID, spec->dmaq_id,
			FRF_CZ_RMFT_WILDCARD_MATCH, is_wild,
			FRF_CZ_RMFT_DEST_MAC_HI, spec->data[2],
			FRF_CZ_RMFT_DEST_MAC_LO, spec->data[1],
			FRF_CZ_RMFT_VLAN_ID, spec->data[0]);
		data3 = is_wild;
		break;
	}

	case EFX_FARCH_FILTER_TABLE_TX_MAC: {
		bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
		EFX_POPULATE_OWORD_5(*filter,
				     FRF_CZ_TMFT_TXQ_ID, spec->dmaq_id,
				     FRF_CZ_TMFT_WILDCARD_MATCH, is_wild,
				     FRF_CZ_TMFT_SRC_MAC_HI, spec->data[2],
				     FRF_CZ_TMFT_SRC_MAC_LO, spec->data[1],
				     FRF_CZ_TMFT_VLAN_ID, spec->data[0]);
		data3 = is_wild | spec->dmaq_id << 1;
		break;
	}

	default:
		BUG();
	}

	return spec->data[0] ^ spec->data[1] ^ spec->data[2] ^ data3;
}

static bool efx_farch_filter_equal(const struct efx_farch_filter_spec *left,
				   const struct efx_farch_filter_spec *right)
{
	if (left->type != right->type ||
	    memcmp(left->data, right->data, sizeof(left->data)))
		return false;

	if (left->flags & EFX_FILTER_FLAG_TX &&
	    left->dmaq_id != right->dmaq_id)
		return false;

	return true;
}

/*
 * Construct/deconstruct external filter IDs.  At least the RX filter
 * IDs must be ordered by matching priority, for RX NFC semantics.
 *
 * Deconstruction needs to be robust against invalid IDs so that
 * efx_filter_remove_id_safe() and efx_filter_get_filter_safe() can
 * accept user-provided IDs.
 */

#define EFX_FARCH_FILTER_MATCH_PRI_COUNT	5

static const u8 efx_farch_filter_type_match_pri[EFX_FARCH_FILTER_TYPE_COUNT] = {
	[EFX_FARCH_FILTER_TCP_FULL]	= 0,
	[EFX_FARCH_FILTER_UDP_FULL]	= 0,
	[EFX_FARCH_FILTER_TCP_WILD]	= 1,
	[EFX_FARCH_FILTER_UDP_WILD]	= 1,
	[EFX_FARCH_FILTER_MAC_FULL]	= 2,
	[EFX_FARCH_FILTER_MAC_WILD]	= 3,
	[EFX_FARCH_FILTER_UC_DEF]	= 4,
	[EFX_FARCH_FILTER_MC_DEF]	= 4,
};

static const enum efx_farch_filter_table_id efx_farch_filter_range_table[] = {
	EFX_FARCH_FILTER_TABLE_RX_IP,	/* RX match pri 0 */
	EFX_FARCH_FILTER_TABLE_RX_IP,
	EFX_FARCH_FILTER_TABLE_RX_MAC,
	EFX_FARCH_FILTER_TABLE_RX_MAC,
	EFX_FARCH_FILTER_TABLE_RX_DEF,	/* RX match pri 4 */
	EFX_FARCH_FILTER_TABLE_TX_MAC,	/* TX match pri 0 */
	EFX_FARCH_FILTER_TABLE_TX_MAC,	/* TX match pri 1 */
};

#define EFX_FARCH_FILTER_INDEX_WIDTH 13
#define EFX_FARCH_FILTER_INDEX_MASK ((1 << EFX_FARCH_FILTER_INDEX_WIDTH) - 1)

static inline u32
efx_farch_filter_make_id(const struct efx_farch_filter_spec *spec,
			 unsigned int index)
{
	unsigned int range;

	range = efx_farch_filter_type_match_pri[spec->type];
	if (!(spec->flags & EFX_FILTER_FLAG_RX))
		range += EFX_FARCH_FILTER_MATCH_PRI_COUNT;

	return range << EFX_FARCH_FILTER_INDEX_WIDTH | index;
}

static inline enum efx_farch_filter_table_id
efx_farch_filter_id_table_id(u32 id)
{
	unsigned int range = id >> EFX_FARCH_FILTER_INDEX_WIDTH;

	if (range < ARRAY_SIZE(efx_farch_filter_range_table))
		return efx_farch_filter_range_table[range];
	else
		return EFX_FARCH_FILTER_TABLE_COUNT; /* invalid */
}

static inline unsigned int efx_farch_filter_id_index(u32 id)
{
	return id & EFX_FARCH_FILTER_INDEX_MASK;
}

u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx)
{
	struct efx_farch_filter_state *state = efx->filter_state;
	unsigned int range = EFX_FARCH_FILTER_MATCH_PRI_COUNT - 1;
	enum efx_farch_filter_table_id table_id;

	do {
		table_id = efx_farch_filter_range_table[range];
		if (state->table[table_id].size != 0)
			return range << EFX_FARCH_FILTER_INDEX_WIDTH |
				state->table[table_id].size;
	} while (range--);

	return 0;
}

s32 efx_farch_filter_insert(struct efx_nic *efx,
			    struct efx_filter_spec *gen_spec,
			    bool replace_equal)
{
	struct efx_farch_filter_state *state = efx->filter_state;
	struct efx_farch_filter_table *table;
	struct efx_farch_filter_spec spec;
	efx_oword_t filter;
	int rep_index, ins_index;
	unsigned int depth = 0;
	int rc;

	rc = efx_farch_filter_from_gen_spec(&spec, gen_spec);
	if (rc)
		return rc;

	table = &state->table[efx_farch_filter_spec_table_id(&spec)];
	if (table->size == 0)
		return -EINVAL;

	netif_vdbg(efx, hw, efx->net_dev,
		   "%s: type %d search_limit=%d", __func__, spec.type,
		   table->search_limit[spec.type]);

	if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
		/* One filter spec per type */
		BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_UC_DEF != 0);
		BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_MC_DEF !=
			     EFX_FARCH_FILTER_MC_DEF - EFX_FARCH_FILTER_UC_DEF);
		rep_index = spec.type - EFX_FARCH_FILTER_UC_DEF;
		ins_index = rep_index;

		spin_lock_bh(&efx->filter_lock);
	} else {
		/* Search concurrently for
		 * (1) a filter to be replaced (rep_index): any filter
		 *     with the same match values, up to the current
		 *     search depth for this type, and
		 * (2) the insertion point (ins_index): (1) or any
		 *     free slot before it or up to the maximum search
		 *     depth for this priority
		 * We fail if we cannot find (2).
		 *
		 * We can stop once either
		 * (a) we find (1), in which case we have definitely
		 *     found (2) as well; or
		 * (b) we have searched exhaustively for (1), and have
		 *     either found (2) or searched exhaustively for it
		 */
		u32 key = efx_farch_filter_build(&filter, &spec);
		unsigned int hash = efx_farch_filter_hash(key);
		unsigned int incr = efx_farch_filter_increment(key);
		unsigned int max_rep_depth = table->search_limit[spec.type];
		unsigned int max_ins_depth =
			spec.priority <= EFX_FILTER_PRI_HINT ?
			EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX :
			EFX_FARCH_FILTER_CTL_SRCH_MAX;
		unsigned int i = hash & (table->size - 1);

		ins_index = -1;
		depth = 1;

		spin_lock_bh(&efx->filter_lock);

		for (;;) {
			if (!test_bit(i, table->used_bitmap)) {
				if (ins_index < 0)
					ins_index = i;
			} else if (efx_farch_filter_equal(&spec,
							  &table->spec[i])) {
				/* Case (a) */
				if (ins_index < 0)
					ins_index = i;
				rep_index = i;
				break;
			}

			if (depth >= max_rep_depth &&
			    (ins_index >= 0 || depth >= max_ins_depth)) {
				/* Case (b) */
				if (ins_index < 0) {
					rc = -EBUSY;
					goto out;
				}
				rep_index = -1;
				break;
			}

			i = (i + incr) & (table->size - 1);
			++depth;
		}
	}

	/* If we found a filter to be replaced, check whether we
	 * should do so
	 */
	if (rep_index >= 0) {
		struct efx_farch_filter_spec *saved_spec =
			&table->spec[rep_index];

		if (spec.priority == saved_spec->priority && !replace_equal) {
			rc = -EEXIST;
			goto out;
		}
2495
		if (spec.priority < saved_spec->priority) {
2496 2497 2498
			rc = -EPERM;
			goto out;
		}
2499 2500 2501
		if (saved_spec->priority == EFX_FILTER_PRI_AUTO ||
		    saved_spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO)
			spec.flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549
	}

	/* Insert the filter */
	if (ins_index != rep_index) {
		__set_bit(ins_index, table->used_bitmap);
		++table->used;
	}
	table->spec[ins_index] = spec;

	if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
		efx_farch_filter_push_rx_config(efx);
	} else {
		if (table->search_limit[spec.type] < depth) {
			table->search_limit[spec.type] = depth;
			if (spec.flags & EFX_FILTER_FLAG_TX)
				efx_farch_filter_push_tx_limits(efx);
			else
				efx_farch_filter_push_rx_config(efx);
		}

		efx_writeo(efx, &filter,
			   table->offset + table->step * ins_index);

		/* If we were able to replace a filter by inserting
		 * at a lower depth, clear the replaced filter
		 */
		if (ins_index != rep_index && rep_index >= 0)
			efx_farch_filter_table_clear_entry(efx, table,
							   rep_index);
	}

	netif_vdbg(efx, hw, efx->net_dev,
		   "%s: filter type %d index %d rxq %u set",
		   __func__, spec.type, ins_index, spec.dmaq_id);
	rc = efx_farch_filter_make_id(&spec, ins_index);

out:
	spin_unlock_bh(&efx->filter_lock);
	return rc;
}

static void
efx_farch_filter_table_clear_entry(struct efx_nic *efx,
				   struct efx_farch_filter_table *table,
				   unsigned int filter_idx)
{
	static efx_oword_t filter;

2550
	EFX_WARN_ON_PARANOID(!test_bit(filter_idx, table->used_bitmap));
2551
	BUG_ON(table->offset == 0); /* can't clear MAC default filters */
2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581

	__clear_bit(filter_idx, table->used_bitmap);
	--table->used;
	memset(&table->spec[filter_idx], 0, sizeof(table->spec[0]));

	efx_writeo(efx, &filter, table->offset + table->step * filter_idx);

	/* If this filter required a greater search depth than
	 * any other, the search limit for its type can now be
	 * decreased.  However, it is hard to determine that
	 * unless the table has become completely empty - in
	 * which case, all its search limits can be set to 0.
	 */
	if (unlikely(table->used == 0)) {
		memset(table->search_limit, 0, sizeof(table->search_limit));
		if (table->id == EFX_FARCH_FILTER_TABLE_TX_MAC)
			efx_farch_filter_push_tx_limits(efx);
		else
			efx_farch_filter_push_rx_config(efx);
	}
}

static int efx_farch_filter_remove(struct efx_nic *efx,
				   struct efx_farch_filter_table *table,
				   unsigned int filter_idx,
				   enum efx_filter_priority priority)
{
	struct efx_farch_filter_spec *spec = &table->spec[filter_idx];

	if (!test_bit(filter_idx, table->used_bitmap) ||
2582
	    spec->priority != priority)
2583 2584
		return -ENOENT;

2585
	if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
2586
		efx_farch_filter_init_rx_auto(efx, spec);
2587
		efx_farch_filter_push_rx_config(efx);
2588 2589
	} else {
		efx_farch_filter_table_clear_entry(efx, table, filter_idx);
2590
	}
2591 2592

	return 0;
2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
}

int efx_farch_filter_remove_safe(struct efx_nic *efx,
				 enum efx_filter_priority priority,
				 u32 filter_id)
{
	struct efx_farch_filter_state *state = efx->filter_state;
	enum efx_farch_filter_table_id table_id;
	struct efx_farch_filter_table *table;
	unsigned int filter_idx;
	struct efx_farch_filter_spec *spec;
	int rc;

	table_id = efx_farch_filter_id_table_id(filter_id);
	if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
		return -ENOENT;
	table = &state->table[table_id];

	filter_idx = efx_farch_filter_id_index(filter_id);
	if (filter_idx >= table->size)
		return -ENOENT;
	spec = &table->spec[filter_idx];

	spin_lock_bh(&efx->filter_lock);
2617
	rc = efx_farch_filter_remove(efx, table, filter_idx, priority);
2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668
	spin_unlock_bh(&efx->filter_lock);

	return rc;
}

int efx_farch_filter_get_safe(struct efx_nic *efx,
			      enum efx_filter_priority priority,
			      u32 filter_id, struct efx_filter_spec *spec_buf)
{
	struct efx_farch_filter_state *state = efx->filter_state;
	enum efx_farch_filter_table_id table_id;
	struct efx_farch_filter_table *table;
	struct efx_farch_filter_spec *spec;
	unsigned int filter_idx;
	int rc;

	table_id = efx_farch_filter_id_table_id(filter_id);
	if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
		return -ENOENT;
	table = &state->table[table_id];

	filter_idx = efx_farch_filter_id_index(filter_id);
	if (filter_idx >= table->size)
		return -ENOENT;
	spec = &table->spec[filter_idx];

	spin_lock_bh(&efx->filter_lock);

	if (test_bit(filter_idx, table->used_bitmap) &&
	    spec->priority == priority) {
		efx_farch_filter_to_gen_spec(spec_buf, spec);
		rc = 0;
	} else {
		rc = -ENOENT;
	}

	spin_unlock_bh(&efx->filter_lock);

	return rc;
}

static void
efx_farch_filter_table_clear(struct efx_nic *efx,
			     enum efx_farch_filter_table_id table_id,
			     enum efx_filter_priority priority)
{
	struct efx_farch_filter_state *state = efx->filter_state;
	struct efx_farch_filter_table *table = &state->table[table_id];
	unsigned int filter_idx;

	spin_lock_bh(&efx->filter_lock);
2669 2670 2671 2672 2673
	for (filter_idx = 0; filter_idx < table->size; ++filter_idx) {
		if (table->spec[filter_idx].priority != EFX_FILTER_PRI_AUTO)
			efx_farch_filter_remove(efx, table,
						filter_idx, priority);
	}
2674 2675 2676
	spin_unlock_bh(&efx->filter_lock);
}

2677
int efx_farch_filter_clear_rx(struct efx_nic *efx,
2678 2679 2680 2681 2682 2683
			       enum efx_filter_priority priority)
{
	efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_IP,
				     priority);
	efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_MAC,
				     priority);
2684 2685
	efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_DEF,
				     priority);
2686
	return 0;
2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805
}

u32 efx_farch_filter_count_rx_used(struct efx_nic *efx,
				   enum efx_filter_priority priority)
{
	struct efx_farch_filter_state *state = efx->filter_state;
	enum efx_farch_filter_table_id table_id;
	struct efx_farch_filter_table *table;
	unsigned int filter_idx;
	u32 count = 0;

	spin_lock_bh(&efx->filter_lock);

	for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
	     table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
	     table_id++) {
		table = &state->table[table_id];
		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
			if (test_bit(filter_idx, table->used_bitmap) &&
			    table->spec[filter_idx].priority == priority)
				++count;
		}
	}

	spin_unlock_bh(&efx->filter_lock);

	return count;
}

s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx,
				enum efx_filter_priority priority,
				u32 *buf, u32 size)
{
	struct efx_farch_filter_state *state = efx->filter_state;
	enum efx_farch_filter_table_id table_id;
	struct efx_farch_filter_table *table;
	unsigned int filter_idx;
	s32 count = 0;

	spin_lock_bh(&efx->filter_lock);

	for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
	     table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
	     table_id++) {
		table = &state->table[table_id];
		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
			if (test_bit(filter_idx, table->used_bitmap) &&
			    table->spec[filter_idx].priority == priority) {
				if (count == size) {
					count = -EMSGSIZE;
					goto out;
				}
				buf[count++] = efx_farch_filter_make_id(
					&table->spec[filter_idx], filter_idx);
			}
		}
	}
out:
	spin_unlock_bh(&efx->filter_lock);

	return count;
}

/* Restore filter stater after reset */
void efx_farch_filter_table_restore(struct efx_nic *efx)
{
	struct efx_farch_filter_state *state = efx->filter_state;
	enum efx_farch_filter_table_id table_id;
	struct efx_farch_filter_table *table;
	efx_oword_t filter;
	unsigned int filter_idx;

	spin_lock_bh(&efx->filter_lock);

	for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
		table = &state->table[table_id];

		/* Check whether this is a regular register table */
		if (table->step == 0)
			continue;

		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
			if (!test_bit(filter_idx, table->used_bitmap))
				continue;
			efx_farch_filter_build(&filter, &table->spec[filter_idx]);
			efx_writeo(efx, &filter,
				   table->offset + table->step * filter_idx);
		}
	}

	efx_farch_filter_push_rx_config(efx);
	efx_farch_filter_push_tx_limits(efx);

	spin_unlock_bh(&efx->filter_lock);
}

void efx_farch_filter_table_remove(struct efx_nic *efx)
{
	struct efx_farch_filter_state *state = efx->filter_state;
	enum efx_farch_filter_table_id table_id;

	for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
		kfree(state->table[table_id].used_bitmap);
		vfree(state->table[table_id].spec);
	}
	kfree(state);
}

int efx_farch_filter_table_probe(struct efx_nic *efx)
{
	struct efx_farch_filter_state *state;
	struct efx_farch_filter_table *table;
	unsigned table_id;

	state = kzalloc(sizeof(struct efx_farch_filter_state), GFP_KERNEL);
	if (!state)
		return -ENOMEM;
	efx->filter_state = state;

2806 2807 2808 2809 2810
	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
	table->id = EFX_FARCH_FILTER_TABLE_RX_IP;
	table->offset = FR_BZ_RX_FILTER_TBL0;
	table->size = FR_BZ_RX_FILTER_TBL0_ROWS;
	table->step = FR_BZ_RX_FILTER_TBL0_STEP;
2811

2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826
	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
	table->id = EFX_FARCH_FILTER_TABLE_RX_MAC;
	table->offset = FR_CZ_RX_MAC_FILTER_TBL0;
	table->size = FR_CZ_RX_MAC_FILTER_TBL0_ROWS;
	table->step = FR_CZ_RX_MAC_FILTER_TBL0_STEP;

	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
	table->id = EFX_FARCH_FILTER_TABLE_RX_DEF;
	table->size = EFX_FARCH_FILTER_SIZE_RX_DEF;

	table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
	table->id = EFX_FARCH_FILTER_TABLE_TX_MAC;
	table->offset = FR_CZ_TX_MAC_FILTER_TBL0;
	table->size = FR_CZ_TX_MAC_FILTER_TBL0_ROWS;
	table->step = FR_CZ_TX_MAC_FILTER_TBL0_STEP;
2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841

	for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
		table = &state->table[table_id];
		if (table->size == 0)
			continue;
		table->used_bitmap = kcalloc(BITS_TO_LONGS(table->size),
					     sizeof(unsigned long),
					     GFP_KERNEL);
		if (!table->used_bitmap)
			goto fail;
		table->spec = vzalloc(table->size * sizeof(*table->spec));
		if (!table->spec)
			goto fail;
	}

2842 2843
	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
	if (table->size) {
2844
		/* RX default filters must always exist */
2845
		struct efx_farch_filter_spec *spec;
2846
		unsigned i;
2847 2848 2849 2850

		for (i = 0; i < EFX_FARCH_FILTER_SIZE_RX_DEF; i++) {
			spec = &table->spec[i];
			spec->type = EFX_FARCH_FILTER_UC_DEF + i;
2851
			efx_farch_filter_init_rx_auto(efx, spec);
2852 2853
			__set_bit(i, table->used_bitmap);
		}
2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935
	}

	efx_farch_filter_push_rx_config(efx);

	return 0;

fail:
	efx_farch_filter_table_remove(efx);
	return -ENOMEM;
}

/* Update scatter enable flags for filters pointing to our own RX queues */
void efx_farch_filter_update_rx_scatter(struct efx_nic *efx)
{
	struct efx_farch_filter_state *state = efx->filter_state;
	enum efx_farch_filter_table_id table_id;
	struct efx_farch_filter_table *table;
	efx_oword_t filter;
	unsigned int filter_idx;

	spin_lock_bh(&efx->filter_lock);

	for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
	     table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
	     table_id++) {
		table = &state->table[table_id];

		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
			if (!test_bit(filter_idx, table->used_bitmap) ||
			    table->spec[filter_idx].dmaq_id >=
			    efx->n_rx_channels)
				continue;

			if (efx->rx_scatter)
				table->spec[filter_idx].flags |=
					EFX_FILTER_FLAG_RX_SCATTER;
			else
				table->spec[filter_idx].flags &=
					~EFX_FILTER_FLAG_RX_SCATTER;

			if (table_id == EFX_FARCH_FILTER_TABLE_RX_DEF)
				/* Pushed by efx_farch_filter_push_rx_config() */
				continue;

			efx_farch_filter_build(&filter, &table->spec[filter_idx]);
			efx_writeo(efx, &filter,
				   table->offset + table->step * filter_idx);
		}
	}

	efx_farch_filter_push_rx_config(efx);

	spin_unlock_bh(&efx->filter_lock);
}

#ifdef CONFIG_RFS_ACCEL

s32 efx_farch_filter_rfs_insert(struct efx_nic *efx,
				struct efx_filter_spec *gen_spec)
{
	return efx_farch_filter_insert(efx, gen_spec, true);
}

bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
				     unsigned int index)
{
	struct efx_farch_filter_state *state = efx->filter_state;
	struct efx_farch_filter_table *table =
		&state->table[EFX_FARCH_FILTER_TABLE_RX_IP];

	if (test_bit(index, table->used_bitmap) &&
	    table->spec[index].priority == EFX_FILTER_PRI_HINT &&
	    rps_may_expire_flow(efx->net_dev, table->spec[index].dmaq_id,
				flow_id, index)) {
		efx_farch_filter_table_clear_entry(efx, table, index);
		return true;
	}

	return false;
}

#endif /* CONFIG_RFS_ACCEL */
2936 2937 2938 2939 2940 2941 2942 2943 2944

void efx_farch_filter_sync_rx_mode(struct efx_nic *efx)
{
	struct net_device *net_dev = efx->net_dev;
	struct netdev_hw_addr *ha;
	union efx_multicast_hash *mc_hash = &efx->multicast_hash;
	u32 crc;
	int bit;

2945 2946 2947
	if (!efx_dev_registered(efx))
		return;

2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971
	netif_addr_lock_bh(net_dev);

	efx->unicast_filter = !(net_dev->flags & IFF_PROMISC);

	/* Build multicast hash table */
	if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) {
		memset(mc_hash, 0xff, sizeof(*mc_hash));
	} else {
		memset(mc_hash, 0x00, sizeof(*mc_hash));
		netdev_for_each_mc_addr(ha, net_dev) {
			crc = ether_crc_le(ETH_ALEN, ha->addr);
			bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
			__set_bit_le(bit, mc_hash);
		}

		/* Broadcast packets go through the multicast hash filter.
		 * ether_crc_le() of the broadcast address is 0xbe2612ff
		 * so we always add bit 0xff to the mask.
		 */
		__set_bit_le(0xff, mc_hash);
	}

	netif_addr_unlock_bh(net_dev);
}