m88ts2022.c 14.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Montage M88TS2022 silicon tuner driver
 *
 * Copyright (C) 2013 Antti Palosaari <crope@iki.fi>
 *
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 * Some calculations are taken from existing TS2020 driver.
 */

#include "m88ts2022_priv.h"

/* write multiple registers */
static int m88ts2022_wr_regs(struct m88ts2022_priv *priv,
		u8 reg, const u8 *val, int len)
{
25 26
#define MAX_WR_LEN 3
#define MAX_WR_XFER_LEN (MAX_WR_LEN + 1)
27
	int ret;
28
	u8 buf[MAX_WR_XFER_LEN];
29 30
	struct i2c_msg msg[1] = {
		{
31
			.addr = priv->client->addr,
32
			.flags = 0,
33
			.len = 1 + len,
34 35 36 37
			.buf = buf,
		}
	};

38 39 40
	if (WARN_ON(len > MAX_WR_LEN))
		return -EINVAL;

41 42 43
	buf[0] = reg;
	memcpy(&buf[1], val, len);

44
	ret = i2c_transfer(priv->client->adapter, msg, 1);
45 46 47
	if (ret == 1) {
		ret = 0;
	} else {
48
		dev_warn(&priv->client->dev,
49 50 51 52 53 54 55 56 57 58 59 60
				"%s: i2c wr failed=%d reg=%02x len=%d\n",
				KBUILD_MODNAME, ret, reg, len);
		ret = -EREMOTEIO;
	}

	return ret;
}

/* read multiple registers */
static int m88ts2022_rd_regs(struct m88ts2022_priv *priv, u8 reg,
		u8 *val, int len)
{
61 62
#define MAX_RD_LEN 1
#define MAX_RD_XFER_LEN (MAX_RD_LEN)
63
	int ret;
64
	u8 buf[MAX_RD_XFER_LEN];
65 66
	struct i2c_msg msg[2] = {
		{
67
			.addr = priv->client->addr,
68 69 70 71
			.flags = 0,
			.len = 1,
			.buf = &reg,
		}, {
72
			.addr = priv->client->addr,
73
			.flags = I2C_M_RD,
74
			.len = len,
75 76 77 78
			.buf = buf,
		}
	};

79 80 81
	if (WARN_ON(len > MAX_RD_LEN))
		return -EINVAL;

82
	ret = i2c_transfer(priv->client->adapter, msg, 2);
83 84 85 86
	if (ret == 2) {
		memcpy(val, buf, len);
		ret = 0;
	} else {
87
		dev_warn(&priv->client->dev,
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
				"%s: i2c rd failed=%d reg=%02x len=%d\n",
				KBUILD_MODNAME, ret, reg, len);
		ret = -EREMOTEIO;
	}

	return ret;
}

/* write single register */
static int m88ts2022_wr_reg(struct m88ts2022_priv *priv, u8 reg, u8 val)
{
	return m88ts2022_wr_regs(priv, reg, &val, 1);
}

/* read single register */
static int m88ts2022_rd_reg(struct m88ts2022_priv *priv, u8 reg, u8 *val)
{
	return m88ts2022_rd_regs(priv, reg, val, 1);
}

/* write single register with mask */
static int m88ts2022_wr_reg_mask(struct m88ts2022_priv *priv,
		u8 reg, u8 val, u8 mask)
{
	int ret;
	u8 u8tmp;

	/* no need for read if whole reg is written */
	if (mask != 0xff) {
		ret = m88ts2022_rd_regs(priv, reg, &u8tmp, 1);
		if (ret)
			return ret;

		val &= mask;
		u8tmp &= ~mask;
		val |= u8tmp;
	}

	return m88ts2022_wr_regs(priv, reg, &val, 1);
}

static int m88ts2022_cmd(struct dvb_frontend *fe,
		int op, int sleep, u8 reg, u8 mask, u8 val, u8 *reg_val)
{
	struct m88ts2022_priv *priv = fe->tuner_priv;
	int ret, i;
	u8 u8tmp;
	struct m88ts2022_reg_val reg_vals[] = {
		{0x51, 0x1f - op},
		{0x51, 0x1f},
		{0x50, 0x00 + op},
		{0x50, 0x00},
	};

	for (i = 0; i < 2; i++) {
143
		dev_dbg(&priv->client->dev,
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
				"%s: i=%d op=%02x reg=%02x mask=%02x val=%02x\n",
				__func__, i, op, reg, mask, val);

		for (i = 0; i < ARRAY_SIZE(reg_vals); i++) {
			ret = m88ts2022_wr_reg(priv, reg_vals[i].reg,
					reg_vals[i].val);
			if (ret)
				goto err;
		}

		usleep_range(sleep * 1000, sleep * 10000);

		ret = m88ts2022_rd_reg(priv, reg, &u8tmp);
		if (ret)
			goto err;

		if ((u8tmp & mask) != val)
			break;
	}

	if (reg_val)
		*reg_val = u8tmp;
err:
	return ret;
}

static int m88ts2022_set_params(struct dvb_frontend *fe)
{
	struct m88ts2022_priv *priv = fe->tuner_priv;
	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
174 175 176 177 178
	int ret;
	unsigned int frequency_khz, frequency_offset_khz, f_3db_hz;
	unsigned int f_ref_khz, f_vco_khz, div_ref, div_out, pll_n, gdiv28;
	u8 buf[3], u8tmp, cap_code, lpf_gm, lpf_mxdiv, div_max, div_min;
	u16 u16tmp;
179
	dev_dbg(&priv->client->dev,
180 181
			"%s: frequency=%d symbol_rate=%d rolloff=%d\n",
			__func__, c->frequency, c->symbol_rate, c->rolloff);
182 183 184 185
	/*
	 * Integer-N PLL synthesizer
	 * kHz is used for all calculations to keep calculations within 32-bit
	 */
186
	f_ref_khz = DIV_ROUND_CLOSEST(priv->cfg.clock, 1000);
187
	div_ref = DIV_ROUND_CLOSEST(f_ref_khz, 2000);
188 189

	if (c->symbol_rate < 5000000)
190
		frequency_offset_khz = 3000; /* 3 MHz */
191
	else
192
		frequency_offset_khz = 0;
193

194
	frequency_khz = c->frequency + frequency_offset_khz;
195 196

	if (frequency_khz < 1103000) {
197
		div_out = 4;
198 199
		u8tmp = 0x1b;
	} else {
200
		div_out = 2;
201 202 203 204 205 206 207 208 209
		u8tmp = 0x0b;
	}

	buf[0] = u8tmp;
	buf[1] = 0x40;
	ret = m88ts2022_wr_regs(priv, 0x10, buf, 2);
	if (ret)
		goto err;

210 211 212 213
	f_vco_khz = frequency_khz * div_out;
	pll_n = f_vco_khz * div_ref / f_ref_khz;
	pll_n += pll_n % 2;
	priv->frequency_khz = pll_n * f_ref_khz / div_ref / div_out;
214

215 216 217 218
	if (pll_n < 4095)
		u16tmp = pll_n - 1024;
	else if (pll_n < 6143)
		u16tmp = pll_n + 1024;
219
	else
220
		u16tmp = pll_n + 3072;
221

222 223 224
	buf[0] = (u16tmp >> 8) & 0x3f;
	buf[1] = (u16tmp >> 0) & 0xff;
	buf[2] = div_ref - 8;
225 226 227 228
	ret = m88ts2022_wr_regs(priv, 0x01, buf, 3);
	if (ret)
		goto err;

229
	dev_dbg(&priv->client->dev,
230
			"%s: frequency=%u offset=%d f_vco_khz=%u pll_n=%u div_ref=%u div_out=%u\n",
231
			__func__, priv->frequency_khz,
232 233
			priv->frequency_khz - c->frequency, f_vco_khz, pll_n,
			div_ref, div_out);
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288

	ret = m88ts2022_cmd(fe, 0x10, 5, 0x15, 0x40, 0x00, NULL);
	if (ret)
		goto err;

	ret = m88ts2022_rd_reg(priv, 0x14, &u8tmp);
	if (ret)
		goto err;

	u8tmp &= 0x7f;
	if (u8tmp < 64) {
		ret = m88ts2022_wr_reg_mask(priv, 0x10, 0x80, 0x80);
		if (ret)
			goto err;

		ret = m88ts2022_wr_reg(priv, 0x11, 0x6f);
		if (ret)
			goto err;

		ret = m88ts2022_cmd(fe, 0x10, 5, 0x15, 0x40, 0x00, NULL);
		if (ret)
			goto err;
	}

	ret = m88ts2022_rd_reg(priv, 0x14, &u8tmp);
	if (ret)
		goto err;

	u8tmp &= 0x1f;
	if (u8tmp > 19) {
		ret = m88ts2022_wr_reg_mask(priv, 0x10, 0x00, 0x02);
		if (ret)
			goto err;
	}

	ret = m88ts2022_cmd(fe, 0x08, 5, 0x3c, 0xff, 0x00, NULL);
	if (ret)
		goto err;

	ret = m88ts2022_wr_reg(priv, 0x25, 0x00);
	if (ret)
		goto err;

	ret = m88ts2022_wr_reg(priv, 0x27, 0x70);
	if (ret)
		goto err;

	ret = m88ts2022_wr_reg(priv, 0x41, 0x09);
	if (ret)
		goto err;

	ret = m88ts2022_wr_reg(priv, 0x08, 0x0b);
	if (ret)
		goto err;

289 290
	/* filters */
	gdiv28 = DIV_ROUND_CLOSEST(f_ref_khz * 1694U, 1000000U);
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314

	ret = m88ts2022_wr_reg(priv, 0x04, gdiv28);
	if (ret)
		goto err;

	ret = m88ts2022_cmd(fe, 0x04, 2, 0x26, 0xff, 0x00, &u8tmp);
	if (ret)
		goto err;

	cap_code = u8tmp & 0x3f;

	ret = m88ts2022_wr_reg(priv, 0x41, 0x0d);
	if (ret)
		goto err;

	ret = m88ts2022_cmd(fe, 0x04, 2, 0x26, 0xff, 0x00, &u8tmp);
	if (ret)
		goto err;

	u8tmp &= 0x3f;
	cap_code = (cap_code + u8tmp) / 2;
	gdiv28 = gdiv28 * 207 / (cap_code * 2 + 151);
	div_max = gdiv28 * 135 / 100;
	div_min = gdiv28 * 78 / 100;
315 316 317 318 319
	div_max = clamp_val(div_max, 0U, 63U);

	f_3db_hz = c->symbol_rate * 135UL / 200UL;
	f_3db_hz +=  2000000U + (frequency_offset_khz * 1000U);
	f_3db_hz = clamp(f_3db_hz, 7000000U, 40000000U);
320

321 322 323 324 325 326 327 328
#define LPF_COEFF 3200U
	lpf_gm = DIV_ROUND_CLOSEST(f_3db_hz * gdiv28, LPF_COEFF * f_ref_khz);
	lpf_gm = clamp_val(lpf_gm, 1U, 23U);

	lpf_mxdiv = DIV_ROUND_CLOSEST(lpf_gm * LPF_COEFF * f_ref_khz, f_3db_hz);
	if (lpf_mxdiv < div_min)
		lpf_mxdiv = DIV_ROUND_CLOSEST(++lpf_gm * LPF_COEFF * f_ref_khz, f_3db_hz);
	lpf_mxdiv = clamp_val(lpf_mxdiv, 0U, div_max);
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372

	ret = m88ts2022_wr_reg(priv, 0x04, lpf_mxdiv);
	if (ret)
		goto err;

	ret = m88ts2022_wr_reg(priv, 0x06, lpf_gm);
	if (ret)
		goto err;

	ret = m88ts2022_cmd(fe, 0x04, 2, 0x26, 0xff, 0x00, &u8tmp);
	if (ret)
		goto err;

	cap_code = u8tmp & 0x3f;

	ret = m88ts2022_wr_reg(priv, 0x41, 0x09);
	if (ret)
		goto err;

	ret = m88ts2022_cmd(fe, 0x04, 2, 0x26, 0xff, 0x00, &u8tmp);
	if (ret)
		goto err;

	u8tmp &= 0x3f;
	cap_code = (cap_code + u8tmp) / 2;

	u8tmp = cap_code | 0x80;
	ret = m88ts2022_wr_reg(priv, 0x25, u8tmp);
	if (ret)
		goto err;

	ret = m88ts2022_wr_reg(priv, 0x27, 0x30);
	if (ret)
		goto err;

	ret = m88ts2022_wr_reg(priv, 0x08, 0x09);
	if (ret)
		goto err;

	ret = m88ts2022_cmd(fe, 0x01, 20, 0x21, 0xff, 0x00, NULL);
	if (ret)
		goto err;
err:
	if (ret)
373
		dev_dbg(&priv->client->dev, "%s: failed=%d\n", __func__, ret);
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395

	return ret;
}

static int m88ts2022_init(struct dvb_frontend *fe)
{
	struct m88ts2022_priv *priv = fe->tuner_priv;
	int ret, i;
	u8 u8tmp;
	static const struct m88ts2022_reg_val reg_vals[] = {
		{0x7d, 0x9d},
		{0x7c, 0x9a},
		{0x7a, 0x76},
		{0x3b, 0x01},
		{0x63, 0x88},
		{0x61, 0x85},
		{0x22, 0x30},
		{0x30, 0x40},
		{0x20, 0x23},
		{0x24, 0x02},
		{0x12, 0xa0},
	};
396
	dev_dbg(&priv->client->dev, "%s:\n", __func__);
397 398 399 400 401 402 403 404 405

	ret = m88ts2022_wr_reg(priv, 0x00, 0x01);
	if (ret)
		goto err;

	ret = m88ts2022_wr_reg(priv, 0x00, 0x03);
	if (ret)
		goto err;

406
	switch (priv->cfg.clock_out) {
407 408 409 410 411
	case M88TS2022_CLOCK_OUT_DISABLED:
		u8tmp = 0x60;
		break;
	case M88TS2022_CLOCK_OUT_ENABLED:
		u8tmp = 0x70;
412
		ret = m88ts2022_wr_reg(priv, 0x05, priv->cfg.clock_out_div);
413 414 415 416 417 418 419 420 421 422 423 424 425 426
		if (ret)
			goto err;
		break;
	case M88TS2022_CLOCK_OUT_ENABLED_XTALOUT:
		u8tmp = 0x6c;
		break;
	default:
		goto err;
	}

	ret = m88ts2022_wr_reg(priv, 0x42, u8tmp);
	if (ret)
		goto err;

427
	if (priv->cfg.loop_through)
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
		u8tmp = 0xec;
	else
		u8tmp = 0x6c;

	ret = m88ts2022_wr_reg(priv, 0x62, u8tmp);
	if (ret)
		goto err;

	for (i = 0; i < ARRAY_SIZE(reg_vals); i++) {
		ret = m88ts2022_wr_reg(priv, reg_vals[i].reg, reg_vals[i].val);
		if (ret)
			goto err;
	}
err:
	if (ret)
443
		dev_dbg(&priv->client->dev, "%s: failed=%d\n", __func__, ret);
444 445 446 447 448 449 450
	return ret;
}

static int m88ts2022_sleep(struct dvb_frontend *fe)
{
	struct m88ts2022_priv *priv = fe->tuner_priv;
	int ret;
451
	dev_dbg(&priv->client->dev, "%s:\n", __func__);
452 453 454 455 456 457

	ret = m88ts2022_wr_reg(priv, 0x00, 0x00);
	if (ret)
		goto err;
err:
	if (ret)
458
		dev_dbg(&priv->client->dev, "%s: failed=%d\n", __func__, ret);
459 460 461 462 463 464
	return ret;
}

static int m88ts2022_get_frequency(struct dvb_frontend *fe, u32 *frequency)
{
	struct m88ts2022_priv *priv = fe->tuner_priv;
465
	dev_dbg(&priv->client->dev, "%s:\n", __func__);
466 467 468 469 470 471 472 473

	*frequency = priv->frequency_khz;
	return 0;
}

static int m88ts2022_get_if_frequency(struct dvb_frontend *fe, u32 *frequency)
{
	struct m88ts2022_priv *priv = fe->tuner_priv;
474
	dev_dbg(&priv->client->dev, "%s:\n", __func__);
475 476 477 478 479 480 481 482 483

	*frequency = 0; /* Zero-IF */
	return 0;
}

static int m88ts2022_get_rf_strength(struct dvb_frontend *fe, u16 *strength)
{
	struct m88ts2022_priv *priv = fe->tuner_priv;
	int ret;
484 485 486
	u8 u8tmp;
	u16 gain, u16tmp;
	unsigned int gain1, gain2, gain3;
487 488 489 490 491 492

	ret = m88ts2022_rd_reg(priv, 0x3d, &u8tmp);
	if (ret)
		goto err;

	gain1 = (u8tmp >> 0) & 0x1f;
493
	gain1 = clamp(gain1, 0U, 15U);
494 495 496 497 498 499

	ret = m88ts2022_rd_reg(priv, 0x21, &u8tmp);
	if (ret)
		goto err;

	gain2 = (u8tmp >> 0) & 0x1f;
500
	gain2 = clamp(gain2, 2U, 16U);
501 502 503 504 505 506

	ret = m88ts2022_rd_reg(priv, 0x66, &u8tmp);
	if (ret)
		goto err;

	gain3 = (u8tmp >> 3) & 0x07;
507
	gain3 = clamp(gain3, 0U, 6U);
508 509 510 511 512

	gain = gain1 * 265 + gain2 * 338 + gain3 * 285;

	/* scale value to 0x0000-0xffff */
	u16tmp = (0xffff - gain);
513
	u16tmp = clamp_val(u16tmp, 59000U, 61500U);
514 515 516 517

	*strength = (u16tmp - 59000) * 0xffff / (61500 - 59000);
err:
	if (ret)
518
		dev_dbg(&priv->client->dev, "%s: failed=%d\n", __func__, ret);
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
	return ret;
}

static const struct dvb_tuner_ops m88ts2022_tuner_ops = {
	.info = {
		.name          = "Montage M88TS2022",
		.frequency_min = 950000,
		.frequency_max = 2150000,
	},

	.init = m88ts2022_init,
	.sleep = m88ts2022_sleep,
	.set_params = m88ts2022_set_params,

	.get_frequency = m88ts2022_get_frequency,
	.get_if_frequency = m88ts2022_get_if_frequency,
	.get_rf_strength = m88ts2022_get_rf_strength,
};

538 539
static int m88ts2022_probe(struct i2c_client *client,
		const struct i2c_device_id *id)
540
{
541 542
	struct m88ts2022_config *cfg = client->dev.platform_data;
	struct dvb_frontend *fe = cfg->fe;
543 544 545 546
	struct m88ts2022_priv *priv;
	int ret;
	u8 chip_id, u8tmp;

547
	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
548 549
	if (!priv) {
		ret = -ENOMEM;
550
		dev_err(&client->dev, "%s: kzalloc() failed\n", KBUILD_MODNAME);
551 552 553
		goto err;
	}

554 555
	memcpy(&priv->cfg, cfg, sizeof(struct m88ts2022_config));
	priv->client = client;
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579

	/* check if the tuner is there */
	ret = m88ts2022_rd_reg(priv, 0x00, &u8tmp);
	if (ret)
		goto err;

	if ((u8tmp & 0x03) == 0x00) {
		ret = m88ts2022_wr_reg(priv, 0x00, 0x01);
		if (ret < 0)
			goto err;

		usleep_range(2000, 50000);
	}

	ret = m88ts2022_wr_reg(priv, 0x00, 0x03);
	if (ret)
		goto err;

	usleep_range(2000, 50000);

	ret = m88ts2022_rd_reg(priv, 0x00, &chip_id);
	if (ret)
		goto err;

580
	dev_dbg(&priv->client->dev, "%s: chip_id=%02x\n", __func__, chip_id);
581 582 583 584 585 586 587 588 589

	switch (chip_id) {
	case 0xc3:
	case 0x83:
		break;
	default:
		goto err;
	}

590
	switch (priv->cfg.clock_out) {
591 592 593 594 595
	case M88TS2022_CLOCK_OUT_DISABLED:
		u8tmp = 0x60;
		break;
	case M88TS2022_CLOCK_OUT_ENABLED:
		u8tmp = 0x70;
596
		ret = m88ts2022_wr_reg(priv, 0x05, priv->cfg.clock_out_div);
597 598 599 600 601 602 603 604 605 606 607 608 609 610
		if (ret)
			goto err;
		break;
	case M88TS2022_CLOCK_OUT_ENABLED_XTALOUT:
		u8tmp = 0x6c;
		break;
	default:
		goto err;
	}

	ret = m88ts2022_wr_reg(priv, 0x42, u8tmp);
	if (ret)
		goto err;

611
	if (priv->cfg.loop_through)
612 613 614 615 616 617 618 619 620 621 622 623 624
		u8tmp = 0xec;
	else
		u8tmp = 0x6c;

	ret = m88ts2022_wr_reg(priv, 0x62, u8tmp);
	if (ret)
		goto err;

	/* sleep */
	ret = m88ts2022_wr_reg(priv, 0x00, 0x00);
	if (ret)
		goto err;

625
	dev_info(&priv->client->dev,
626 627 628 629 630 631
			"%s: Montage M88TS2022 successfully identified\n",
			KBUILD_MODNAME);

	fe->tuner_priv = priv;
	memcpy(&fe->ops.tuner_ops, &m88ts2022_tuner_ops,
			sizeof(struct dvb_tuner_ops));
632 633 634

	i2c_set_clientdata(client, priv);
	return 0;
635
err:
636 637 638 639 640 641 642 643 644 645
	dev_dbg(&client->dev, "%s: failed=%d\n", __func__, ret);
	kfree(priv);
	return ret;
}

static int m88ts2022_remove(struct i2c_client *client)
{
	struct m88ts2022_priv *priv = i2c_get_clientdata(client);
	struct dvb_frontend *fe = priv->cfg.fe;
	dev_dbg(&client->dev, "%s:\n", __func__);
646

647 648 649 650 651
	memset(&fe->ops.tuner_ops, 0, sizeof(struct dvb_tuner_ops));
	fe->tuner_priv = NULL;
	kfree(priv);

	return 0;
652
}
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670

static const struct i2c_device_id m88ts2022_id[] = {
	{"m88ts2022", 0},
	{}
};
MODULE_DEVICE_TABLE(i2c, m88ts2022_id);

static struct i2c_driver m88ts2022_driver = {
	.driver = {
		.owner	= THIS_MODULE,
		.name	= "m88ts2022",
	},
	.probe		= m88ts2022_probe,
	.remove		= m88ts2022_remove,
	.id_table	= m88ts2022_id,
};

module_i2c_driver(m88ts2022_driver);
671 672 673 674

MODULE_DESCRIPTION("Montage M88TS2022 silicon tuner driver");
MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
MODULE_LICENSE("GPL");